Controlling a Supply Chain Agent Using
Value-Based Decomposition

Christopher Kiekintveld, Jason Miller, Patrick R. Jordan, and Michael P. Wellman
University of Michigan
Artificial Intelligence Laboratory
Ann Arbor, MI 48109 USA

ckiekint@umich.edu

ABSTRACT

We present and evaluate the design of Deep Maize, our entry in the
2005 Trading Agent Competition Supply Chain Management sce-
nario. The central idea is to decompose the problem by estimating
the value of key resources in the game. We first create a high-level
production schedule that considers cross-cutting constraints and fu-
ture decisions, but abstracts aways from the details of sales and
purchasing. We then make specific sales and purchasing decisions
separately, coordinating these decisions with the high-level sched-
ule using resource values derived from the schedule. All of these
decisions are made using approximate optimization techniques and
make use of explicit predictions about market conditions. Deep
Maize was one of the most successful agents in the 2005 tourna-
ment, both in overall performance and on specific measures that
emphasize coordination.

Categories and Subject Descriptors
1.2.1 [Artificial Intelligence]: Applications and Expert Systems

General Terms

Design,Experimentation

Keywords

Optimization, Scheduling, Decomposition, Coordination, Trading
Agents, Supply Chain Management

1. INTRODUCTION

We present and evaluate the design of Deep Maize, a success-
ful entrant in the 2005 Trading Agent Competition Supply Chain
Management scenario (TAC SCM). The main idea of our design is
to estimate marginal values for each finished product and compo-
nent input as accurately as possible, given predictions about market
conditions and constraints on production. These values provide a
way to decompose the agent’s decisions into manageable subprob-
lems while retaining many of the advantages of global optimiza-
tion. We first perform a centralized, high-level optimization to cre-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EC’06, June 11-15, 2006, Ann Arbor, Michigan,USA.

Copyright 2006 ACM 1-59593-236-4/06/0006 ...$5.00.

ate a long-term projected production schedule. This optimization
accounts for the major constraints that act across markets and over
time, but abstracts away from the details of interacting with sup-
pliers and customers. We make specific decisions about actions in
the individual markets using a second stage of optimization. To co-
ordinate these second-stage optimizations with the high-level pro-
duction plan we introduction the notion of resource values. These
values derive from the production plan and are used to form a mod-
ified objective function for the low-level decisions. They transmit
information about global market conditions and constraints to the
individual subproblems.

We evaluate our approach in comparison with other TAC SCM
agents. These agents represent a diverse set of strategies designed
by other researchers, and the ability to benchmark against such a set
is one of the important advantages of participating in TAC. Deep
Maize was one of the most successful agents in the 2005 compe-
tition. However, there are many factors that contribute to overall
agent performance. To assess more thoroughly our value-based de-
composition methods we present additional comparisons that focus
on aspects of agent performance that require coordination between
decisions across markets and over time. These include analysis of
inventory management, market selection, and market timing. Deep
Maize performs strongly on these more specific measures, provid-
ing further evidence that value-based decomposition is a very ef-
fective design paradigm.

In the next section, we introduce the TAC SCM scenario and dis-
cuss in more detail the coordination problem our design addresses.
Section 3 presents a background of related work that is useful for
understanding the motivation of our design. Section 4 presents an
overview of the main elements of the design, and the following sec-
tion gives more detailed descriptions. Section 6 adds some further
discussion of the design in the context of prior work. We end with
an evaluation of the design and concluding remarks.

2. DECISIONS ON A SUPPLY CHAIN

2.1 TAC SCM Scenario

In the TAC SCM scenario [7], ! six agents representing PC (per-
sonal computer) manufacturers compete to maximize their profits
over a simulated year. There are 220 simulation days, and agents
have approximately 14 seconds to make decisions each day. Agents
participate simultaneously in markets for supplies (components)
and finished PCs. There are 16 different types of PCs (divided
into three market segments), defined by the compatible combina-
tions of 10 different component types. Components fall into one of

"For complete details of the game rules, see the specification doc-
ument [4]. This is available at http://www.sics.se/tac,
along with software and additional information about TAC.

four categories: CPU, motherboard, memory, and hard disk. There
are four types of CPUs and two types of all other components; one
component from each category is required to produce a PC.

Watergate

Agent 6

Suppliers Offers Offers
< /\\
Procurement Orders RFQs Orders RFQs
Mfg. Schedule Mfg. Schedule
Factory
Shipping Schedule | Shipping Schedule

Sales Offers Offers

(bids) (bids)

ahN N o
Customers Orders RFQs Orders RFQs

j=)
9
el
% RFQ
2 PC RFQ
supplier
offer bid Customer
o
g offer
= | Queenmax | acceptance

Hard Disk

Mintor

Figure 1: TAC SCM supply chain configuration.

Figure 1 shows the overall configuration of the supply chain.
The six manufacturers are in the middle of the chain; these are
the agents implemented by tournament participants. They procure
components from eight suppliers on the left and sell PCs to cus-
tomers, shown on the right. Trades at both levels are negotiated
through a request-for-quote (RFQ) mechanism, which proceeds in
three stages:

1. Buyer issues RFQs to one or more sellers.

\S]

. Sellers respond to RFQs with offers.

w

. Buyers accept or reject offers. An accepted offer becomes an
order.

The supplier and customer agents implement policies defined by
the game specification and implemented in the server. The suppli-
ers have limited production capacity that varies during the game
according to a random walk. They make offers and set prices based
on their ratio of available capacity. The customer agent generates
requests for PCs each day. The number generated is based on a
separate random walk with a trend parameter for each market seg-
ment. If a manufacturer does not deliver the order on time, it pays
a penalty specified in the request. Manufacturers face substantial
uncertainty in both markets. The underlying supplier capacities,
customer demand parameters, and local state of other manufactur-
ers are not directly observable, so agents must estimate these from
other sources of information. There is also strategic uncertainty,
since agents do not know the exact strategies employed by their
competitors.

Each manufacturer is endowed with an identical factory that has
limited production capacity, measured in “cycles.” Each PC type
requires a different number of cycles to produce. Agents pay stor-
age costs for all components and PCs held in inventory each day,
and are charged (or paid) interest on bank balances. At the end of
the game agents are evaluated based on total profit, and any remain-
ing inventory is worthless.

Figure 2 shows the decisions each agent makes during a game
and the negotiation procedures for interacting with suppliers and
customers. On each day the agent may receive offers and com-
ponent deliveries from suppliers, and RFQs and orders from cus-
tomers. The agent must then make five decisions:

Figure 2: Decisions and SCM agent makes during a game.

1. What RFQs to issue to component suppliers.

2. Of the offers received from suppliers (based on the previous
day’s RFQs), which to accept.

3. Given component inventory and factory capacity, what PCs
to manufacture.

4. Given inventory of finished PCs, which customer orders to
ship.

5. Given RFQs from customers, which to respond and with what
offers.

Customer and supplier decisions are interleaved with manufacturer
decisions.

2.2 Coordination Problem

The TAC SCM scenario is challenging for many reasons includ-
ing computational complexity [1], dealing with uncertainty [3, 13],
and strategic interactions [23]. A particularly challenging aspect of
the scenario is the problem of coordinating decisions at different
levels of the supply chain over time. Agents must integrate deci-
sions about factory operations, supply purchasing, and customer
sales. Each of these decisions has a different information structure
and requires different types of reasoning and interaction with other
agents, but they interact through cross-cutting constraints (e.g., fac-
tory capacity). Agents must also plan ahead to ensure that they have
inventory when it is needed.

To make the coordination problem more tangible, consider the
following examples of how decisions might interact. First, suppose
that profit margins are high and the manufacturer is operating at
full capacity.The agent should try to determine the optimal mix of
products, which requires assessing information about prices in both
the customer and supplier markets to determine which PC types of-
fer the highest profits. It also requires the agent to change customer
prices to induce the desired sales distribution and purchase the cor-
rect numbers of each type of component so that it does not run out
of key components or overstock others. Now, suppose that earlier
in the game margins were much lower, and the agent was able to
predict that prices would improve (perhaps by detecting a trend to-
wards greater customer demand). In this case the agent would be
able to improve profits by producing extra PC inventory and saving

it until prices in the customer market improved. This requires the
agent to purchase extra components for future use, while simulta-
neously raising prices in the customer market to reduce the number
of sales and build inventory.

These qualitative examples are intended to illustrate the types of
coordination and reasoning an agent may need to carry out. Situ-
ations in the actual game require agents to make quantitative deci-
sions, and may present ambiguous or contradictory circumstances
that require difficult tradeoffs.

3. RELATED WORK

The operations research literature contains various techniques
for decomposing Linear Programming (LP) problems. Of these,
the various price-directive decompositions are most closely related
to our approach. The basic form of this technique is the well-known
Dantzig-Wolfe decomposition [6]. The idea is to break the problem
into a master LP and multiple subproblems, all of which are simpler
and easier to solve than the original “monolithic” LP. The master
problem takes into account cross-cutting constraints, while the sub-
problems contain additional local constraints. A solution is found
by iteratively solving the master problem and subproblems, passing
information in both directions on each iteration. The master uses
estimates of the demand for each resource (i.e., variable) from the
subproblems to find a solution. It then sends shadow prices for each
resource to each of the subproblems, which find new solutions and
update their respective demand estimates. Eventually, the process
converges to an optimal solution to the original problem.

These decompositions were originally developed as an efficient
way to find solutions to LP problems with certain properties, but
they have also been proposed as a natural framework for organiza-
tional design [10]. Within the literature on supply chain manage-
ment, rigorous optimization techniques including decomposition
methods have been promoted as a useful tool for analyzing deci-
sions [20]. We note two successful applications of decomposition
techniques in supply chain settings. Shapiro and White employed a
hybrid price and resource decomposition approach to study the U.S.
coal market [21]. Leachman et al. [16] used a heuristic decomposi-
tion to formulate an optimization approach for a real semiconductor
production system.

Our design for Deep Maize also builds on previous designs for
the TAC SCM game. The winner of the first TAC SCM competi-
tion in 2003, RedAgent-03 [11, 12], implemented an interesting
design that used internal markets to allocate resources (e.g., com-
ponents, PCs, factory cycles) based on bids by agents representing
individual customer orders, PC assemblers, component purchasers,
and a seller of production cycles. The clearing prices of these mar-
kets can be interpreted as valuations for the resources and used to
make external decisions about sales and purchasing. A successful
implementation of this approach requires attention to market de-
sign and the bidding strategies of the individual agents, since the
quality of the values will depend on both of these factors.

Two other agents that make extensive use of optimization tech-
niques to solve portions of the TAC SCM problem are TacTex-03
[18] and Botticelli [2]. TacTex-03 uses a search procedure to opti-
mize the combined customer bidding and factory scheduling prob-
lem. It searches over possible sets of customer bids, using a very
fast greedy factory scheduler to estimate the profitability of the bids
with respect to estimated replacement costs. It accounts for future
orders by including predicted customer requests for the next sev-
eral days in its bid optimization process. The updated version of
this agent, TacTex-05, uses similar optimization approaches for
decision-making [19], in addition to making predictions of market
conditions. Botticelli optimizes a linear programming model of the

combined customer bidding and production problems. The Botti-
celli team has also investigated stochastic programming approaches
to model more effectively the uncertainty in the SCM game [3].

There are alternative approaches to TAC SCM that do not rely
explicitly on optimization tools. For instance, several agents have
taken knowledge-based approaches where developers build up a
base of (possibly fuzzy) rules for how to act in various situations.
Examples of this approach are PSUTAC [22] and Southampton-
SCM [9].

4. DESIGN OVERVIEW

State
Estimation

Market Predictions

Customer
Market
Prediction

Supply
Market
Prediction

N

Long-term .
Production High-level
Schedule Decisions
|__|{Component PC

Values Values

l l Low-level

Supply Factory Customer Decisions
Purchasing Schedule Sales

Figure 3: Organization of Deep Maize’s decision process on
each TAC SCM day.

Deep Maize uses internal estimates of the value of marginal re-
sources to coordinate decisions across all levels of the supply chain
and over time. These values provide a natural decomposition of the
problem that yields both design modularity and computational ben-
efits. Figure 3 displays a schematic organization of Deep Maize’s
daily decisions. The agent starts by using any new information it
receives to update its beliefs about hidden state in the supply chain.
It then makes comprehensive predictions about the conditions it
faces in the markets for components and finished PCs, accounting
for the behavior of the other manufacturers. These predictions may
be based on a variety of data sources, including previous tourna-
ment games.

The next stage makes high-level decisions about long-term pro-
duction scheduling. The projected production schedule approxi-
mately optimizes the agent’s expected profit margin with respect
to the market predictions, subject to constraints on factory capac-
ity and component arrival. The schedule is heuristically optimized
using a greedy algorithm that orders production according to profit
margin per factory cycle. This high-level optimization considers
prices in both markets and the important global constraints, but ig-
nores many of the details of actually interacting with suppliers and
customers. For example, it does not decide which customer re-
quests to bid on, which suppliers to purchase from, or how far in
advance to purchase components. The final stage is a set of op-
timizations that make specific low-level decisions about customer
sales and component purchases. Figure 4 shows the difference in
scope between the high- and low-level decisions. The high-level
optimization encompasses all of the decisions pictured, out to a

horizon many days in the future.> In contrast, the shaded boxes
represent the low-level sales and purchasing decisions the agent
makes each day.

Procurement

Factory

Sales

Figure 4: High-level (unshaded) and low-level (shaded) deci-
sions in Deep Maize.

The key question is how to coordinate the low-level decisions
with the overall production plan. We accomplish this by deriving
values for PCs and components from the production plan and in-
corporating them into the objective functions for the low-level de-
cisions. Instead of optimizing the overall profit margin, the sales
decision optimizes the margin between expected revenue and the
value of the PCs sold. Similarly, the purchasing decision optimizes
the margin between the value of the components purchased and the
total cost. The values condense all of the information contained
in the projected production schedule into a form that can be used
directly for making low-level decisions.

This design is modular, which offers practical engineering ben-
efits in addition to the computational advantages. The high-level
optimization, low-level decisions, and various prediction tasks are
all relatively independent, so they can be developed in parallel. The
modules are also free to use whatever methods are best suited to the
individual structure of the problem, without concern for the specific
methods used in the other modules. This is particularly relevant for
TAC SCM because the decision structure and available information
are very different in the supplier and customer markets.

5. AGENT DESCRIPTION
5.1 Market Predictions

As shown in Figure 3, Deep Maize starts its decision cycle by
assessing and forecasting the customer and supplier markets. We
sketch the market prediction methods employed for each in turn.
Additional details can be found in [17].

For the customer market Deep Maize predicts the effective de-
mand curve it will face on each future day. This curve gives the
marginal revenue the agent expects to get for each additional PC
sold for delivery on the particular day. The exact set of requests is
known for the current day, so this amounts to predicting the proba-
bility of winning each order given a bid. For future days the curve

"During the tournament, Deep Maize projected the production
schedule out to a horizon of 34 days.

also reflects predictions about the customer requests that will be
generated. Deep Maize estimates the underlying level of demand
and the trend using a Bayesian model of the stochastic demand pro-
cess (see [14]). It employs machine learning techniques based on
k-Nearest Neighbors to predict the effective demand curves from
historical data, data from self-play games, and information from
the current game. The features it uses to find similar situations
include indicators of recent market activity, estimates of the under-
lying customer demand and supplier capacities, and estimates of
the aggregate inventory state in the supply chain. The agent scores
its predictions during a game and finds affine transformations to
correct for systematic errors.

For the supply market Deep Maize predicts the current capac-
ity of each supplier product line and current price each supplier
would offer for a component due on any day in the future.® The
production capacity of each product line follows a mean-reverting
random walk; the current capacity is unobservable by the manufac-
turers. However, agents receive periodic market reports that contain
the average capacity for each line over the previous period. Deep
Maize adjusts this average to account for the mean-reversion and
uses this as a prediction of the capacity of the line. To predict prices
the agent uses a weighted average of the prices it was offered over
the previous three days. Since the agent can make a limited number
of requests each day, the offers do not cover all possible due dates.
Between data points the agent predicts using a linear interpolation,
and after the last data point prices are decayed to the minimum
possible value.

5.2 Projecting Production

Each day Deep Maize projects a future production schedule us-
ing a greedy algorithm to quickly approximate an optimal solu-
tion. The algorithm orders PC types according to marginal profit
per factory cycle. The marginal profit for producing and delivering
an additional PC is the difference between the expected marginal
revenue and marginal replacement costs. Both of these factors are
updated continually during the scheduling process. The expected
marginal revenue R4 for delivering an additional PC of a given type
on day d is provided directly by the customer market predictor. For
component purchases, we account for the agent’s existing inventory
commitments in addition to the predicted availability and prices for
additional purchases. The replacement cost Cy for a component
used for production on day d is defined to be the minimum cost
(including holding costs) to acquire an additional component be-
fore the day when the projected inventory would fall below a de-
sired buffer level B4. To determine when a replacement compo-
nent is needed we maintain a projection of the cumulative number
of components expected to be on hand for each future day, denoted
I4. I accounts for current inventory, expected future deliveries of
components, and components scheduled for production.

To determine the minimum cost to acquire an additional compo-
nent by day d we compute the projected purchase price from raw
predictions of supplier prices and holding costs. The supplier price
predictor provides estimates of the price to purchase a component
from a given supplier on a given day, Py 5. The projected price P
is the price from the best supplier on the best day, including holding
costs:

/ . . /
Pd o sEsﬁlprlliers }}%%(Pd’,s +HC- (d —d))
The daily holding cost HC' accounts for both storage costs (ex-
actly) and interest rates (approximately). The exact interest rate

31t also predicts late deliveries and potential changes in prices, but
we do not describe these predictions here.

cost depends on the purchase price, but we simplify using a conser-
vative lower bound. In the case where our supplier predictions indi-
cate that there is very little uncommitted supplier capacity available
before the desired day we define P; = oo to represent this as a hard
constraint.

The replacement cost for a component used on day d, Cy, is
defined for three cases:

o If the component needs to be replaced but there is a hard
constraint on supplier capacity, the price is infinite. If I <
0 for any day d’ > d and P}, = oo, then Cyq = oo.

e If the component never needs to be replaced, the replacement
cost is the negative of the holding costs until the end of the
game. If I;y > By forall d > d, then C; = —HC -
(diast — d).

e If the component needs to be replaced and can be replaced,
the replacement cost is the projected purchase price for the
day it is needed, less holding costs until that day.* Let d’ > d
be the first day when Ix < By and P, < oo. Then Cyq =
P, — HC - (d —d).

Deep Maize uses a greedy ordering to schedule production,
tracking the factory cycles utilized on each possible production day.
On each iteration it selects the delivery day dgeiiver and PC type
with the maximum marginal profit per factory cycle. The marginal
profit for a potential delivery day Mg, ., is defined to be —oco
if factory cycles are not available to produce the PC in time for
delivery. Otherwise, Mg, ., is the difference between marginal
revenue for the delivery day and the sum of marginal component
replacement costs on the latest feasible production day, dproduce,
less holding costs from production to delivery:

Ma,ier = Rdgerier — E Cdpraduca — HC - (daetiver — dproduce)-

Once delivery and production days have been selected, Deep
Maize updates its state description to prepare for the next itera-
tion. Factory cycles are reserved for manufacturing. The marginal
revenue 24 is updated to reflect the additional quantity scheduled
to be sold. The inventory trajectory is updated to reflect the com-
ponents scheduled for manufacturing and any replacement compo-
nents scheduled for purchase. Component replacement costs are
updated to reflect the new inventory trajectory. Deep Maize is
now ready to select another PC type and delivery day.

Since marginal revenue is monotone decreasing on each itera-
tion and marginal replacement costs are monotone increasing, the
total margin is monotone decreasing on successive iterations. The
algorithm terminates when the profit margin per cycle falls below a
threshold.

Before initiating the main scheduling algorithm, Deep Maize
accounts for outstanding customer orders and current PC inven-
tory. Resources necessary to fill outstanding customer orders are
reserved first, using finished PC inventory if possible and factory
cycles and components otherwise. The orders are sorted first by
due date and then base price per cycle. Scheduling for existing
orders first reflects an assumption that it would never be more prof-
itable to leave these orders unfilled in favor of new orders. In TAC
SCM this is unlikely because agents must pay relatively high penal-
ties on late or unfilled orders and the additional revenue from a new
order is unlikely to outweigh this penalty. Inventory of PCs that is
not allocated to fill existing outstanding orders is scheduled for use

*Holding costs are subtracted because they would need to be paid
if the current component were held instead of being replaced later.

after the primary scheduling algorithm, using the highest remaining
marginal revenues from any future day.’

Deep Maize uses the first day of the projected manufacturing
schedule as the manufacturing decisions for the current day. The
shipping decision is made separately using simple heuristics. As
many outstanding orders as possible are filled using available PC
inventory. The ordering is first by due date and then penalty per
factory cycle.

5.3 Customer Sales

The customer sales decision for the current day requires the agent
to decide which customer requests to bid on and how much to bid
on each one. We use a gradient descent search algorithm (with ran-
dom restarts) to find a set of bids that approximately optimizes the
expected value of the resulting set of orders. The expected value of
a single order is given by

E[o] = po(bo — v0)qo,

where b, is the bid level, p, the probability of win given bid b,, go
the quantity of PCs demanded, and v, the value of PCs requested
in o. The total expected value over all orders O is

E[0] = ZE[Oi] = Zpi(bi = Vi)

The value of PCs term in the customer sales optimization represents
the marginal value of the PCs necessary to fill the order, given the
projected production schedule and expected orders from the rest of
the bid schedule. This value functions as a lower bound on the price
the agent will bid on the request.

We approximate the value of PCs as follows. First, note that the
projected production schedule explicitly accounts only for future
sales, and does not consider potential orders from the current day.
Any orders from the current day must either be produced in addi-
tion to this production schedule or replace future sales. If the agent
produces additional PCs, the effective cost is the replacement cost
for the components. If the agent must forgo future sales, the ef-
fective cost is the expected revenue from the sale. We define the
marginal value of a PC to be the lesser of these two costs. The
value of a PC used in the optimization is taken to be the value af-
ter scheduling all other PCs in the current set of expected orders.
We recompute the values for each day/PC type combination many
times during the search process as the current set of expected orders
changes.

Information from the projected production schedule is used to
determine the costs of additional production and expected revenue
from foregone sales. The replacement costs for additional produc-
tion are determined exactly as they are in the creation of the pro-
jected production schedule. The state to perform these calculations
(replacement costs, inventory trajectories, factory cycles, etc.) is
saved and restored as necessary. To compute the effective cost of
replacing future sales we store the marginal revenue from all fu-
ture sales during the creation of the projected production schedule,
as well as the day the PC was produced (or the current day, if the
sale is from existing PC inventory). The effective cost is the mini-
mum of these values that meets the constraint that the PC must be
produced before the order due date.

5.4 Purchasing Components

>This was done to ensure that the lowest values were the most flex-
ible in the PC value calculation. Unfortunately, scheduling these
values last ignores the profit margin threshold and may lead to over-
production in some cases. We intend to change how we account for
PC inventory in future versions of Deep Maize.

Purchasing components requires action in two stages: RFQ gen-
eration and offer acceptance. Both stages attempt to maximize the
total value of components ordered less the total purchase price, with
component values subject to arrival constraints. We estimate com-
ponent values from the projected production schedule by storing a
value for each replacement component required. This value is de-
termined by dividing the marginal revenue between the necessary
components in the same ratio as their expected contribution to the
total cost. The values are stored in a structure that encodes the ar-
rival constraints on the values. We can determine the total value
for a set of components arriving on different days by finding the
maximum set of marginal values that can be achieved without vi-
olating arrival constraints. A similar representation was used for
procurement in earlier versions of Deep Maize [15].

To generate its set of RFQs, Deep Maize first creates potential
RFQs for each future day that maximize the total value of compo-
nents purchased less the predicted price for the given day. These
RFQs are heuristically merged to meet the limit of five requests
per supplier per product line. For offer acceptance, the agent de-
termines an initial order set by considering each potential offer in-
dividually and ordering those with positive values (or the greatest
value, if more than one offer was received for a single request).
From this starting point the agent performs a hill-climbing search
to improve the value of the order set. This is essentially the same
approach employed in prior versions [15].

6. DISCUSSION

The value-based decomposition approach evolved from earlier
versions of Deep Maize that used a distributed feedback control
mechanism to coordinate decisions between sales and procurement
modules [14]. The feedback design defined a reference inventory
trajectory based on a desired buffer inventory, current PC orders,
and projected future PC orders. Separate sales and procurement
modules implemented feedback mechanisms to maintain the actual
inventory trajectory within the desired region. The feedback mech-
anism for the procurement module assigned values to the compo-
nents in the desired inventory trajectory and optimized purchasing
decisions based on these values [15]. The value-based design of
Deep Maize 2005 extends this idea to all of the decisions made
by the agent. It also replaces the reference trajectory and feedback
mechanisms with more precise concepts derived from a principled
optimization. The projected production schedule is analogous to
the reference inventory trajectory. The PC and component values
fill the role of the feedback mechanism; they provide an explicit
measure of how much each possible deviation from the reference
would cost the agent, allowing for better decision-making over a
broader range of conditions.

Our decomposition techniques are related to the price-directive
decompositions discussed in Section 3, but it is instructive to con-
sider some ways in which our methods depart from the classic ap-
proach. The first is that we do not iterate the process of finding
solutions to the individual optimizations to improve the overall re-
sults. Our high-level optimization is solved only once each day,
using estimates of the outcomes of low-level decisions (i.e., market
predictions). We solve the low-level decisions that are needed for
taking actions only on the current day. Neglecting to consider fu-
ture decisions at the detailed level represents a very large simplifi-
cation of the actual problem. However, we expect that the benefits
of explicitly optimizing the future subproblems and iterating the
solution procedure would be relatively low due to the significant
uncertainty present in projections of future market conditions.

Another departure is that the values we use are not shadow prices
and do not have the same theoretical guarantees. Part of the is-

sue here is that our formulation is an integer programming prob-
lem, and the concept of shadow prices from linear programming
does not translate easily to integer programming [8]. However, we
also introduce a further approximation by defining the values based
on marginal values with respect to incomplete production sched-
ules. This definition leaves us with values that are most meaningful
for small deviations from the final projected production schedule,
which is exactly where we expect most of the decisions to be made.
Intuitively, some decisions are obvious and do not need careful con-
sideration, whereas the decisions on the margin (close variants of
the final projected schedule) are more difficult.

These departures represent potential ways to improve our meth-
ods, if we are willing to pay the additional costs of model complex-
ity and computation time. For instance, we could likely improve
our solutions by introducing some form of iteration between the
high- and low-level solutions. There has also been recent work
investigating new pricing concepts for integer programs that have
many of the same properties as shadow price in linear programs (for
example, average shadow prices [5]). Using one of these pricing
concepts could potential improve our value estimates. Finally, we
directly solve the nonlinear optimization problem using a heuristic
optimization. An alternative approach that would allow application
of linear programming solution techniques is to approximate the
objective function with a linearizion (this is the approach taken by
Botticelli [2]).

7. EVALUATION

Evaluating trading agent designs in TAC SCM is challenging be-
cause there are many factors that contribute to the performance of
each agent. We must also rely on comparisons with other agents
as benchmarks in the absence of a known optimal strategy. The
primary measure agent performance is average profit. However,
we can improve our understanding of more specific differences be-
tween the agents by considering additional metrics. Here we focus
on measures that relate to to central feature of our design, the abil-
ity to coordinate decisions through resource valuations. We con-
sider only data from the tournament, but note that the addition of
a repository of agent binaries offers interesting opportunities for
future controlled studies [24].

7.1 Average Profits

The TAC SCM tournament is played in a series of rounds. Quali-
fying and seeding rounds (used for debugging) last two weeks each.
The final three rounds were held on three successive days in con-
junction with IJCAI-05. The qualifying round started 32 teams,
and 24 qualified for the quarter-finals. Agents played in heats of
6, with the bottom three from each heat eliminated in each round
(leaving 12 for the semi-finals and 6 for the finals). The quarter
and semi-final rounds had 8 games for each heat; the finals had 16
games.

Deep Maize advanced to the final round. The results from each
heat it competed in are in Table 1. In the quarter-final heat one agent
did not participate in any games and another missed two games.
This distorts the game significantly, so we omit further analysis
of this round. In the final round, the University of Michigan ex-
perienced network problems that caused Deep Maize to miss a
substantial part of two games.® The “adjusted” column for the fi-
nals shows the scores and standings recomputed without these two
games. All of the additional analysis of the finals presented in this
section is done excluding these two games, since they were flawed
for known reasons unrelated to agent strategy.

%Games number 3718 and 4259.

Table 1: Scores and rankings from the rounds Deep Maize played in during the 2005 SCM tournament. All scores are in millions of

dollars.
Quarter-Finals D Semi-Finals 2 Finals Finals (adjusted)
Deep Maize 17.49 | Deep Maize 3.68 | TacTex-05 4.74 | TacTex-05 5.18
CMieux 15.03 | TacTex-05 3.57 | SouthamptonSCM | 1.60 | Deep Maize 2.06
RationalSCM 14.61 | MinneTAC 2.27 | Mertacor 0.55 | SouthamptonSCM | 1.55
CrocodileAgent | 11.64 | RationalSCM | -2.28 | Deep Maize -0.22 | Mertacor 0.53
Cylinder 5.79 | CMieux -2.33 | MinneTAC -0.31 | MinneTAC 0.33
optimiSCM 0 | PhantAgent -6.64 | Maxon -1.99 | Maxon -1.74

Deep Maize performed very well overall. It made the final
round and placed fourth overall, out of 32 original teams. Unof-
ficially, Deep Maize did even better and placed second, disregard-
ing games with network problems. Deep Maize also demonstrated
strong performance in earlier rounds, placing first in both of them.
This provides some evidence that Deep Maize performs well in a
variety of competitive environments.

7.2 Inventory Management

If the sales and purchasing strategies are not well coordinated in-
ventory can quickly become unbalanced, leading to over- or under-
supply of certain components. We look at three specific inventory
management issues. The first is how well agents sold out inventory
at the end of the game. Unsold inventory is worthless, and large
unsold inventories are an indication of overstocking. We also look
at the storage cost incurred by the agents, which correspond exactly
to the average daily value of inventory held during the game. Fi-
nally, we look for instances where agents had very low inventory of
a component. These are undesirable because they may lead to late
deliveries or missed sales opportunities.

Tables 2 and 3 give the average value (base price) of unsold in-
ventory for each agent in the semi-final and final rounds, respec-
tively. Average revenue and material cost figures for each agent are
also provided for calibration. Deep Maize had the lowest levels of
unsold inventory in both rounds; TacTex-05 was also very good at
selling off inventory. The tables also give the average storage costs
paid by each agent. It is desirable to minimize these costs, but
lower levels of inventory carry an increased risk that the agent will
run out of components or need to pay high prices to acquire com-
ponents that are in short supply. Deep Maize attempts to maintain
a fairly large buffer inventory during the game, and we have not
carefully tuned the size of this buffer to balance the risks against
the storage costs. Deep Maize paid storage costs that were on
the high side, but not excessive. TacTex-05 and MinneTAC main-
tained noticeably lower inventories than the other finalists.

Finally, we consider instances where agents had very low inven-
tory of a component during the middle portion of the game. We
count the number of instances between days 20 and 200 where each
agents had less than 100 total components of any type in stock (in-
cluding components PC inventory). We exclude the start and end
of the game because these are regions where agents will naturally
have instances of very low inventory. Deep Maize had the lowest
number of instances of low inventory in both rounds, with Maxon
and TacTex-05 very close in the finals.

7.3 Market Selection

Agents should direct their production activities to more prof-
itable markets (i.e., to PC types with higher margins). Determining
which markets are most profitable requires the agent to synthesize
information about prices in both the component and PC markets.
Altering the distribution of PCs produced requires significant co-

ordination between the purchasing and sales decisions; adjusting
customer prices to alter the sales distribution does not make sense
unless the agent also purchases the right combination of extra com-
ponents (at relatively high prices, if need be).

To measure how well agents were able to adjust their product
mix to more profitable activities we looked at the correlation be-
tween margins in a particular PC market and the fraction of an
agent’s sales devoted to the market. We calculate margins from
average selling prices (ASPs) over 5-day periods in the customer
and supplier markets. Since supply purchases typically lead cus-
tomer sales, we also consider a second measure of the margin that
uses the supplier ASPs over a 20 day period up to and including
the 5-day customer sales period. We calculate the fraction of an
agent’s total sales (by quantity) that are made in the given market
over the same 5-day period. The distribution question is particu-
larly interesting when agents are constrained by limited factory cy-
cles since there are stronger interactions between PC types in this
case. Component availability can also be a constraint, but our ex-
perience suggests that this is less common (the data about instances
of low inventory presented in section 7.2 support this). To empha-
size the effect of factory cycles, we also present the results for the
margin per factory cycle.

Tables 4 and 5 show the correlations between production frac-
tion and the different measures of profit margin for each of the
agents in the semi-final and final rounds. In computing these corre-
lations, we disregard any instances where no PCs of any type were
sold by the agent over the 5-day period. Higher correlations corre-
spond to more PCs being sold in markets with higher margins, and
are therefore desirable. There is a natural negative correlation due
to the demand curve; as an agent sells larger quantities customer
prices fall and supplier prices rise, decreasing the margin. In both
rounds, Deep Maize had the highest correlation, regardless of the
particular margin calculation. Deep Maize also appears to have
the strongest bias towards per cycle margins over of raw margins.
This is likely a result of using the margin per cycle as a heuristic
for the greedy optimization algorithm instead of the raw margin. In
addition to the production fraction results presented here we also
looked at correlations with raw quantities and market share. The
general pattern of results is the same in both cases.

7.4 Market Timing

Another interesting aspect of agent performance is market tim-
ing. Ideally, agents should buy, sell, and produce at the most prof-
itable times during the game. For instance, if customer market
prices are currently high and predicted to weaken, the agent should
sell any excess inventory quickly to take advantage of the current
market. Conversely, improving prices may make it advantageous to
build extra inventory. We develop a measure of agent efficiency in
timing customer sales, holding the agent’s purchasing and produc-
tion activities fixed. The measure compares the agent’s achieved
ASPs with the optimal ASPs the agent could have achieved with

Table 2: Statistics from 2005 tournament, semi-final round heat 1. Unsold is the average total base price of inventory unsold at the
end of the game, and low inventory is the average number of instances where inventory for a component was less that 100 during the
middle 180 days of the simulation (out of 1800 possible). All numbers except low inventory are in millions of dollars.

Agent Revenue | Material | Storage | Unsold | Low Inv.
Deep Maize 1104 102.7 2.38 0.81 25
TacTex-05 96.3 89.8 1.59 1.56 76
MinneTAC 77.7 73.3 1.59 2.86 224
RationalSCM 78.8 77.1 2.68 1.48 77
CMieux 93.6 91.5 2.98 2.64 211
PhantAgent 65.4 67.6 3.22 5.06 62

Table 3: Statistics from 2005 tournament, final round. Unsold is the average total base price of inventory unsold at the end of the
game, and low inv is the number of instances where inventory for a component was less that 100 during the middle 180 days of the
simulation (out of 1800 possible). All numbers except low inventory are in millions of dollars.

Agent Revenue | Material | Storage | Unsold | Low Inv.
TacTex-05 109.3 100.8 2.08 1.00 40
Deep Maize 110.3 103.5 2.82 0.82 24
SouthamptonSCM 108.9 103.0 291 4.16 177
Mertacor 74.2 71.2 1.97 2.67 242
MinneTAC 83.2 80.4 1.76 5.18 121
Maxon 68.8 68.7 3.53 3.84 25

Table 4: Correlations between prevailing margins for a particular PC type and the fraction of each agent’s sales devoted to the
market. Semi-Final round, heat 1.

Agent Margin (5) | Margin/cycles (5) | Margin (20) | Margin/cycles (20)
Deep Maize -0.056 -0.013 -0.059 -0.008
TacTex-05 -0.160 -0.147 -0.156 -0.141
MinneTAC -0.111 -0.134 -0.099 -0.094
Rational SCM -0.096 -0.091 -0.099 -0.094
CMieux -0.175 -0.159 -0.196 -0.178
PhantAgent -0.125 -0.113 -0.104 -0.090

Table 5: Correlations between prevailing margins for a particular PC type and the fraction of each agent’s sales devoted to the
market. Final round.

Agent Margin (5) | Margin/cycles (5) | Margin (20) | Margin/cycles (20)
TacTex-05 -0.118 -0.112 -0.121 -0.111
Deep Maize -0.091 -0.059 -0.105 -0.067
SouthamptonSCM -0.120 -0.125 -0.138 -0.141
Mertacor -0.168 -0.159 -0.162 -0.148
MinneTAC -0.116 -0.129 -0.142 -0.156
Maxon -0.101 -0.077 -0.124 -0.095

-=- Deep Maize

----- TacTex-05
MinneTAC

- - RationalSCM

-+~ CMieux
PhantAgent

Efficiency

0.84

Figure 5: Average market timing efficiencies for the semi-final
round. The x-axis represents varying degrees of freedom to
change the timing of sales.

b
©
3
%

o
©
-3

o TacTex-05
2 0.94 4 T -+- Deep Maize
8 " LN -- - SouthamptonSCM
% N 5 DA Mertacor
w 052 “a = MinneTAC
N T el — = Maxon
0.9 'Y e PR

Figure 6: Average market timing efficiencies for the final
round. The x-axis represents varying degrees of freedom to
change the timing of sales.

perfect information of market prices, under varying degrees of flex-
ibility to alter the sales schedule.

Define optimal same day selling price (OSDSP) to be the high-
est ASP an agent could have achieved by selling the same number
of PCs for each due date as it actually sold in a game, but possi-
bly for higher prices or in response to different requests with the
same due date. We allow partial fulfillment of customer requests so
that it is possible for agents to switch to different requests without
violating the constraint on the quantity sold. Next, we define the
optimal t-variable day selling price (t-OVDSP) to be the highest
ASP the agent could have achieved selling each PC for delivery
at most ¢ days after the day it was actually delivered in the game
and no earlier than it could have been delivered under the actual
production schedule. PCs are labeled according to a FIFO queu-
ing policy. For simplicity, we also disregard changes in the storage
and interest costs from changing the sales schedule (the effects are
typically small). Finally, we define the t-day timing efficiency to be
the ratio of OSDSP and ¢t-OVDSP. Normalizing by the same-day
optimal value factors out the effects of bidding policy (pricing and
RFQ selection), leaving the effects of deciding which day to sell
on. The parameter ¢ allows us to investigate a range of schedules
with different levels of flexibility.

Figures 5 and 6 show the results of applying this measure to the
semi-final and final round data. Deep Maize performs well on this
measure of market timing in both rounds, and particularly for larger
values of ¢. This is encouraging, but we must be careful not to draw
too much from these comparisons. In particular, fixing the produc-
tion and purchasing decisions introduces a bias into the measure;
we would expect some methods of production to inherently allow
more flexibility in sales than others (e.g. a strict make-to-stock
strategy versus a make-to-order strategy). This bias is not as prob-
lematic when comparing different versions of the same agent with
identical purchasing and production strategies, or when using the
timing efficiency to look for specific instances where an agent was
selling too early or too late. In the future we hope to augment this
measure with additional measures that allow modifications to the
production and purchasing schedules; this should provide a more
complete means of assessing agent performance in timing markets.

7.5 Simulation Results

We present some final evidence that our decision-making archi-
tecture has the ability to exploit better predictions about market
conditions. Table 6 gives simulation results for different versions
of Deep Maize that use less accurate predictors. All results are
based on approximately 30 simulation games, and contain two in-
stances of TacTex-05, two instances of MinneTAC, and two dif-
ferent versions of Deep Maize. One version of Deep Maize uses
the standard predictor, and the other uses the variation listed in the
table. Results are presented as the difference in the scores between
the two variations of Deep Maize. The “Noisy” predictors add uni-
form random noise to the base predictions. The supplier noise is an
additive fraction of the base price, while the customer noise is an
exponential mapping of the predicted distribution. This results in
approximately a 10% distortion in predictions for the setting of 25.
The details of these predictors are not crucial; the important point
we wish to make is that reductions in prediction accuracy have a
substantial negative impact on Deep Maize’s overall performance.
More detailed analysis can be found in [17].

8. CONCLUSION

We have presented and evaluated the design of our entry in the
2005 TAC SCM competition, Deep Maize. Our design is based
on a unified approach to coordinating decisions across the supply

Table 6: Simulation results using different predictors.

Predictor Score Difference
Heuristic Customer -9.1M
Noisy (supplier 0, customer 25) -1.8 M
Noisy (supplier 0, customer 50) -45M
Noisy (supplier 10, customer 0) -0.5M
Noisy (supplier 10, customer 25) -1.8 M
Noisy (supplier 20, customer 0) -1.9M
Noisy (supllier 20, customer 25) -43M

chain using estimated resource valuations. These valuations allow
us to decompose the problem into manageable subproblems, while
retaining the ability to do high-level planning. The approach is
grounded in similar theoretical decompositions used to solve linear
programs, but the demands of the TAC SCM scenario force us to
use approximations to achieve computationally feasible models.

Deep Maize performed very well in the TAC SCM tournament,
making the final round and placing 4th overall (2nd if we disregard
two games with network connectivity problems). We also consid-
ered several additional measures of agent performance that relate
more specifically to the ability of agents to coordinate decisions
across markets over time. Deep Maize performed strongly on all
of the measures we considered. We believe that estimating resource
values and using these values to coordinate decisions is a powerful
design paradigm for building agents that act in complex environ-
ments. Our success with Deep Maize shows that the values do not
need to be perfect to transmit useful information; even approxima-
tions exhibit strong performance compared to other methods.

9. ACKNOWLEDGMENTS

We would like to thank the TAC SCM organizers for their efforts
in running a successful tournament, and the SCM participants for
providing a strong field of competitors. We would also like to thank
Kevin O’Malley for his role in the development of Deep Maize.
This research was supported in part by the U.S. National Science
Foundation under IGERT grant 0114368 and grant 1IS-0205435,
and also by the DARPA REAL strategic reasoning program.

10. REFERENCES

[1] R. Arunachalam and N. M. Sadeh. The supply chain trading
agent competition. Electronic Commerce Research and
Applications, 4:63-81, 2005.

[2] M. Benisch, A. Greenwald, I. Grypari, R. Lederman,

V. Naroditskiy, and M. Tschantz. Botticelli: A supply chain
management agent. In Third International Conference on
Autonomous Agents and Multiagent Systems, pages
1174-1181, New York, 2004.

[3] M. Benisch, A. Greenwald, V. Naroditskiy, and M. Tschantz.
A stochastic programming approach to scheduling in TAC
SCM. In Fifth ACM Conference on Electronic Commerce,
pages 152-159, New York, 2004.

[4] J. Collins, R. Arunachalam, N. Sadeh, J. Eriksson, N. Finne,
and S. Janson. The supply chain management game for the
2005 trading agent competition. Technical Report
CMU-ISRI-04-139, Carnegie Mellon University, 2004.

[5] A. Crema. Average shadow price in a mixed integer linear
programming problem. European Journal of Operational
Research, 85:625-635, 1995.

[6] G. B. Dantzig. Linear Programming and Extensions.
Princeton University Press, 1963.

[7] J. Eriksson, N. Finne, and S. Janson. Evolution of a supply
chain management game for the Trading Agent Competition.
Al Communications, 9:1-12, 2006.

[8] R. E. Gomory and W. J. Baumol. Integer programming and
pricing. Econometrica, 28(3):521-550, 1960.

[9]1 M. He, A. Rogers, E. David, and N. R. Jennings. Designing
and evaluating an adaptive trading agent for supply chain
management applications. In IJCAI-05 Workshop on Trading
Agent Design and Analysis, 2005.

[10] K. Holmberg. Primal and dual decomposition as
organizational design: price and/or resource directive
decomposition. Technical report, Linkoping Institute of
Technology, Sweden, 1996.

[11] P. Keller, F.-O. Duguay, and D. Precup. RedAgent-2003: An
autonomous market-based supply-chain management agent.
In Third International Conference on Autonomous Agents
and Multiagent Systems, pages 1182—1189, New York, 2004.

[12] P. W. Keller, F.-O. Duguay, and D. Precup. RedAgent:
Winner of TAC SCM 2003. SIGecom Exchanges, 4(3):1-8,
2004.

[13] W. Ketter, J. Collins, M. Gini, A. Gupta, and P. Schrater.
Identifying and forecasting economic regimes in TAC SCM.
In IJCAI-05 Workshop on Trading Agent Design and
Analysis, 2005.

[14] C. Kiekintveld, M. P. Wellman, S. Singh, J. Estelle,

Y. Vorobeychik, V. Soni, and M. Rudary. Distributed
feedback control for decision making on supply chains. In
Fourteenth International Conference on Automated Planning
and Scheduling, pages 384-392, Whistler, BC, 2004.

[15] C. Kiekintveld, M. P. Wellman, S. Singh, and V. Soni.
Value-driven procurement in the TAC supply chain game.
SIGecom Exchanges, 4(3):9-18, 2004.

[16] R. C. Leachman, R. F. Benson, C. Liu, and D. J. Raar.
IMPReSS: An automated production planning and delivery
quotation system at Harris Corporation — semicondutor
sector. Interfaces, 26:6-37, 1996.

[17] J. Miller, C. Kiekintveld, P. R. Jordan, and M. P. Wellman.
Forecasting market prices in a supply chain game. Technical
report, University of Michigan, 2006.

[18] D. Pardoe and P. Stone. TacTex-03: A supply chain
management agent. SIGecom Exchanges, 4(3):19-28, 2004.

[19] D. Pardoe and P. Stone. Predictive planning for supply chain
management. In Proceedings of the International Conference
on Automated Planning and Scheduling, June 2006.

[20] J. F. Shapiro. Modeling the Supply Chain. Duxbury, 2001.

[21] J. E. Shapiro and D. E. White. A hybrid decomposition
method for integrating coal supply and demand models.
Operations Research, 30(5):887-906, 1982.

[22] S. Sun, V. Avasarala, T. Mullen, and J. Yen. PSUTAC: A
trading agent designed from heuristics to knowledge. In
AAMAS-04 Workshop on Trading Agent Design and
Analysis, 2004.

[23] M. P. Wellman, J. Estelle, S. Singh, Y. Vorobeychik,

C. Kiekintveld, and V. Soni. Strategic interactions in a supply
chain game. Computational Intelligence, 21:1-26, 2005.

[24] M. P. Wellman, P. R. Jordan, C. Kiekintveld, J. Miller, and
D. M. Reeves. Empirical game-theoretic analysis of the TAC
market games. In AAMAS-06 Workshop on Game-Theoretic
and Decision-Theoretic Agents, 2006.

