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Abstract— We present a platform for human-machine in-
terfaces that provides functionality for robust, unencumbered
interaction: the 4D Touchpad (4DT). The goal is direct in-
teraction with interface components through intuitive actions
and gestures.

The 4DT is based on the 3D-2D Projection-based mode of
the VICs framework. The fundamental idea behind VICs is
that expensive global image processing with user modeling
and tracking is not necessary in general vision-based HCI.
Instead, interface components operating under simple-to-
complex rules in local image regions provide more robust
and less costly functionality with 3 spatial dimensions and
1 temporal dimension. A prototype realization of the 4DT
platform is presented; it operates through a set of planar
homographies with uncalibrated cameras.

I. INTRODUCTION

In typical human-machine interfaces, we find many
components — icons, buttons, scrollbars, etc. — with
which we can interact. A conventional interface usually
requires additional hardware devices to represent user’s
actions in a form comprehensible to a computer system.
These devices restrict the pool of possible interactions to
a subset that can be registered by the specific hardware
device, e.g. two-dimensional movements of a computer
mouse. The user does not interact directly with the visu-
alized interface, but he/she observes a representation of
his/her actions on the screen instead.

The goal of the 4D Touchpad (4DT) is the direct
interaction with interface components through intuitive
actions and gestures without any artificial tools or features.
In our approach, a vision system passively monitors the
scene while the user interacts directly with the inter-
face. The vision system monitors the video-stream for
a sequence of visual interaction cues (VICs): simple
metrics when sequenced together provide more complex
interaction capabilities (Sections Il and I1I). A typical
VICs-based HCI interface can be implemented as a 2D,
2.5D or 3D device [19]; in this paper, we demonstrate a
3D-2D Projection-based system.

A. Related Work

There exist many novel attempts to integrate computer
vision into interface design. There has been a large effort
to employ the tracking of human body motion, faces,

Fig. 1. A picture of our first prototype 4DT.

and gestures with the general goal of supporting human-
computer interaction [1], [2], [5], [11], [12], [16]. The
Pfinder system [18] is a commonly cited example of
a vision-based interface based on human-body tracking.
These approaches typically require intensive computation
that prohibits their use in a general interface setting.

There is also a broad range of table/board based sys-
tems that attempt to augment traditional physical envi-
ronments with electronic means. The ZombiBoard [9]
and BrightBoard [13] are examples of extensions of
classical 2D “point-and-click” style user interfaces to
desktop/blackboard style interactions. [4], [8], [17] are
also examples of projects motivated by natural interaction
with digital environments. Zhang et al’s Visual Panel [21]
enables the use of arbitrary planar surfaces as 3D input de-
vices. In their work, they track the plane and a tip pointer
(e.g. a fingertip) enabling its use in both conventional
and new interaction modi. Kjeldsen et al’s work on the
Everywhere Display project [7] is similar to this work; it
can also be considered a 3D-2D Projection-based system.
They have developed an approach that allows dynamic
reconfiguration of vision-based interfaces.

In this paper we present a platform for human-machine
interfaces that provides functionality for robust, unencum-
bered interaction. Our approach has similar goals to [17]:
to integrate a desktop computer with unencumbered, intu-
itive interaction techniques (e.g. finger pointing). We call
this platform the 4D Touchpad because it supplements 3D
physical interaction with an additional temporal dimen-



sion. A picture of the first prototype system is shown in
Figure 1.

In Sections Il and Il we review the VICs framework
and introduce the stratified nature of robust interface
design based on the VICs paradigm. In Section 1V we
present the 4DT and demonstrate an application built on
this framework. Section V concludes and discusses possi-
ble extensions and enhancements to the VICs framework.

Il. THE VICS FRAMEWORK

The fundamental idea behind VICs is that expensive
global image processing with user modeling and tracking
is not necessary in general vision-based HCI settings. The
basic interface component in the VIC framework is the
VICon. A VICon is bound to a specific region in the
interface and is restricted to process the image-stream in
this local region; it has no knowledge of any information
outside of its local region-of-interest (ROI). Additionally,
each VICon defines a function-specific set of image pro-
cessing components. The components are ordered in a
simple-to-complex fashion such that each consecutive level
of processing introduces a higher detection precision that
is accompanied by an increased computational cost. Each
level is only executed if the previous levels have validated
the probable existence of an expected object in this ROI.

A. The VICon

We define a VICs-based interface component (VICon)
to be composed of three parts. First, it contains a visual
processing engine. This engine is the core of the VICon
as it defines the set of possible interaction behaviors
associated with this VICon. Second, it has the ability to
display itself to the user, and last, it generates some output
triggers which are passed to higher level applications that
use this interface.

The VICon does not rely on global tracking algorithms
to monitor the user and detect actions. Instead, the VICon
watches a region-of-interest (ROI) in the video stream
and waits for recognizable user-input; i.e. interaction is
site-centric. For instance, if we model a simple push-
button, the VICon might watch for the sequence of cues
the precede a button-push: motion, color-blob, and shape
verification. This sequence of cues, ordered from simple-
to-complex, is used to facilitate efficient, accurate user-
input detection.

We define a selector to be a vision component that
computes some measure on a local region of an image,
and returns either nothing, indicating the absence of a cue
or feature, or values describing a detected feature [6]. For
example, a motion selector might return nothing if there
is no apparent image motion or a description of the size
and magnitude of a region of detected motion.

We define a parser specification to be a sequence of se-
lector actions. Multiple parsers may exist for similar user-
actions, but each may operate optimally under different

circumstances: for example, in the presence of abundant
lighting, a button-press parser may be defined as above:
motion, color-blob, and shape verification. Yet, if the
lighting is inadequate, a second button-press parser may
be defined as motion, coarse edges, and shape verifica-
tion. Thus, these two parsers provide similar functionality
under different conditions thereby increasing the overall
robustness of the system.

At its core, the visual processing engine of a VICon is
a set of parsers. The composition of VICon’s parsers is
described in Section IlI.
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Fig. 2. The state model for a VICs-based interface component.

B. Parser Modeling

Formally, we define a parser. It is modeled by a state
machine with the following structure (Figure 2):

1 A finite set of discrete states sq, s, ...5,

2 A distinguished initial state s; representing the idle
condition.

3 Associated with each state s;, a function f; com-
prised of a bank of selectors b; that defines a state
variable x.

4 For each state s;, a set of transition rules that
associate an event e; j, j =1...m <n (informally,
the output of one or more selectors in the bank b;)
with either a state of a different index, or s; (the null-
transition). By convention, the first transition event to
fire defines the transition for that state.

We explain the parser modeling with the example of
a button press VICon from above. We create a possible
sequence of selectors: (1) a simple motion selector defines
the trigger condition to switch from the distinguished
initial state s;, (2) a coarse color and motion selector,
(3) a selector for color and cessation of motion, and (4)
gesture recognition. It is easy to see that processing under
this framework is efficient because of the selector ordering
from simple-to-complex wherein parsing halts as soon as
one selector in the sequence is not satisfied. We discuss
the possibility of employing powerful parsing models in
Section V.

C. Modeling of Dynamics in VICons
The intent of the framework is that a parser will not

only accept certain input, but it may return other relevant
information: duration, location, etc. We define a VICon



history as a set {ho...hn}, where the set length m
implicitly represents the duration of the current interaction
and hjcq1..my is @ snapshot of the behavior’s current
state and any additional relevant information. When a
behavior enters its distinguished initial state, its history
is reset: m < 0. The history begins to track user’s actions
when the behavior leaves its initial state. A snapshot is
created for every subsequent frame and concatenated into
the history thereby adding another dimension that can be
employed by the VICon during parsing.

The key factor differentiating the VICs paradigm from
traditional interfaces is that there may be multiple exit
conditions for a given VICon determined by different
parsing streams each triggering a different output signal.
The lexicon of possible output signals is an order of
magnitude larger than WIMP! [15] and super-WIMP
interfaces. We call a super-WIMP interface any interface
that extends the traditional functionality of the mouse to
include multi-button input or mouse-gesture input. One
such example is the SKETCH framework [20].

I1l. STRATIFIED VICS

The components of human-machine interfaces typically
require varying complexity in their specification. In the
VICs framework, a VICon’s parsing may be dependent
on conditions exclusive to its own selectors’ output. For
instance, in a calculator type application, there may exist
a function key that changes the parser of every VICon
when triggered, or there may be a VICon measuring light
conditions in the environment whose output affects the
visual processing of other VICons.

Theoretically, these additional conditions could be in-
corporated into the parsers of a VICon, but this would
increase the complexity of the state machines and render
them difficult to create and maintain. We mentioned in
Section II-A that a specific VICon may have several pos-
sible implementations with differing degrees of robustness
that may respond to different conditions in the interface
or the surrounding environment. Instead of overloading
a VICon with these extra conditions, we extrapolate a
stratification of VICons.

Such a stratification is realized through a control layer
of VICons that manage system-wide variables like light-
conditions and function-button type VICons. This does not
exclude the application itself from setting conditions by
which lower level VICons will be affected: for example,
if a conventional keyboard is used, VICon processing may
be affected by the state of the CAPS-LOCK key but the
control layer VICons are not responsible for this.

In our approach, each VICon is comprised of a set of
parsers (shown in gray in Figure 3), only one of which
is on at any given instance, and each parser is modeled

IWIMP is an acronym that means Windows, lcons, Menus, and
Pointers.
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Fig. 3. Control hierarchy in a VICs system: parser specification of
application VICons is switched based on conditions in higher layers.

as described in Section 11-B. The interface in Figure 3
consists of two application VICons (VICon2, VICon3) im-
plemented with two alternative behaviors that are selected
by the control-VICon (VIConl) or the application itself.
The difference between a control VICon and an applica-
tion VICon is how the output signals are used. While the
output signals of the application VICons are returned to
the application that uses the interface, the signals from
the control VICons are used directly to switch parsers
of the application VICons (gray ellipses in Figure 3).
This functionality encapsulates the visual processing from
the application: in normal situations, the application itself
does not care about the light-conditions of the environ-
ment, but the application VICons do. Thus, this additional
control layer simplifies the implementation of the top-
level application by moving standard functionality, like
adaptation to light condition, within the interface.

IV. THE 4D ToOUCHPAD: A VICS PLATFORM

In this section, we introduce a VICs platform that has
been constructed based on the 3D-2D Projection-based
interaction mode [19]. Here, a pair of cameras with a
wide-baseline and a projector are directed at a table.
The projector is placed underneath the table while the
cameras are positioned above to remove user-occlusion
in the projected images. This setup is shown in Figures 1

and 4.
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Fig. 4. The schematics of the 4DT.

A. Image Rectification

In order for the visual processing and the graphical
rendering of the interface to be simplified, the cameras



and the projector must be calibrated relative to the table.
Since each VICon is processing only input in its local ROI,
the optimal placement of a camera is parallel to the plane
of the interface above the center of the table, while the
projector is placed ideally below the table (removing all
keystone distortion) to project exactly the same extent as
the cameras are capturing. In practice, this is not possible
because of physical imperfections and misalignments.

The solution to this problem lies in the use of a well
known homography that maps points on a plane to their
image [3]. Similar to [14], the assumptions made in the
system are that the intrinsic and extrinsic parameters of the
cameras are unknown and that the camera and projector
optics can be modeled by perspective projection. The
projection of a point in space on the image can be modeled
with standard perspective projection:

wx a b ¢ d ‘;(
wy | =|e [ g h 7 (1)
w it g k1 1

Without loss of generality, we can say that the plane
lies at Z = 0 yielding the following homography:

wx a b d X
wy | =1e f h Y |. 2
w T 1 1

Numerous techniques exist for recovering this homogra-
phy from points [14], lines [10], and other image features.
The homography is used to solve the three problems
mentioned above: (i) rectification of the two image streams
thereby virtually placing the cameras directly above the
table, (ii) keystone correction of the projected image, and
(iii) projector-camera imaging area alignment. Thus, we
have a two-step process that is how formalized; problems
(i) and (ii) are solved in a manner that also satisfies (iii).

Fig. 5. (left) The original image from one of the cameras. Calibration
points are shown as highlighted dots around the active area. (right) The
same image after it has been rectified by H;.

First, we compute H;cq; ) that rectifies a camera
image into model space (Figure 5). Let pjc(i..,) be an
imaged point (shown as dots around the active area in
Figure 5-left) and let b; be the corresponding model point
in rectified space. In our context, we assume that the

model is constructed by a set of known points that form
a rectangle atop the table. For each camera, we can write

bj:HZﬁj7 ZE{LQ}/\]G{ITL} (3)

Then, we compute the projector homography H,, that
will keystone-correct the projected image and ensure
projector-camera alignment. Let g;c(1 ..., be a pointin the
projector image, and ¢; be the corresponding point after
it has been projected onto the table, imaged by camera i,
and rectified by H;. Thus, we define H,, in a way that it
maps §; to the corresponding model point b;.

bj = Hpg:, i€{l,2}Anje{l...n} 4

This homography corrects any keystone distortion and
aligns the projected image with the rectified camera im-
ages:

Hyq, =bj =Hp;, ic€{l,2lAje{l...n} (5)

Fig. 6. (left) The projected image with the keystone correction applied
(the distorted one is Figure 5-right). (right) The pre-warped image with
the keystone correction applied before it has been projected.

B. Stereo Properties

The vision system is responsible for the correct de-
tection of press actions on the table and other gestures
related to the VICons. Since the projection onto a camera
plane results in the loss of one dimension, we use two
cameras to verify the contact of the object with the
surface of the table. The rectification process described
in Section IV-A corrects both camera images in a way
that all points in the plane of the table appear at the
same position in both camera images. This can be used
for simple stereo calculation. In practice, a small region
above the surface is considered (Figure 7). Because of the
rectification, a simple button press detector can be built
just by segmenting color regions with a color skin detector
and subtracting the resulting color blobs in both cameras
from each other. The common region between the two
images represents the part of the object that has actual
contact with the plane of the interface. In Figure 9 we
show a graph of the depth resolution of our system. The
high depth discrimination is due to the wide baseline of
the stereo system.



Fig. 7. Simple contact detection based on disparity.
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Fig. 8. Disparity for a typical press action: (left) rectified image 1,
(middle) rectified image 2, (right) overlayed images of the finger.

Segmentation of objects above the plane is even easier.
For both cameras, we can subtract the current frame from
a stored background frame vyielding mask of modified
regions. Then, we can take the difference between two
modified masks to find all pixels not on the plane and
use it in more intensive computations like 3D gesture
recognition. This method reduces also the influence of
shadows that appear as part of the interface plane and
get removed.
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Fig. 9. Graph showing the depth resolution of the system.

C. Experiments

To demonstrate the effectiveness of the VICs framework
in our implementation of the 4DT, we include some
experiments. The system runs on a LinuxPC with two
CPUs operating at 1.4Ghz and 1GB of memory. The
cameras are IEEE1394 Sony X-700; they are limited to
15Hz. However, we run the system in an asynchronous
mode such that the VICons repeatedly process the same
image until a new one is available. This allows multiple
state transitions through the behaviors during one image-
frame. Thus, our average processing rate is much higher
than the input rate of the video-stream.

As discussed in Section 1I-A, each VICon processes a
local region of the image in a simple-to-complex fashion.
This efficient manner of processing allows many VICons

to be incorporated into the interface without using too
much computation. Table | shows the processor utilization
for selectors of differing complexity (in this experiment,
each selector was run independently and given full system
resources).

Complexity Type Rate [HZ]
Coarse Motion Detection 8300
Medium Hue Segmentation 1000
Fine Hue Blob Intersection 530
Fine Shape Template 525
TABLE | — Simple-to-complex processing minimizes unnecessary

computation. Rates for a 75x75 pixel region.

We built a virtual piano-keyboard application to demon-
strate the capabilities of the 4DT and the VICs framework.
Figure 10-left shows the system in use. We include 8
keys in the piano that are green while off and blue when
pressed. When the system is set to a camera image size of
320x240, the asynchronous visual processing operates at a
mean rate of about 250 Hz with nearly 100% processor uti-
lization and it operates at a rate of about 45 Hz with 100%
utilization when using 640x480 images. Experimentation
showed that 320x240 images were sufficient for robust
interaction detection.

£

Fig. 10. (left) The 8 key VICs piano-keyboard. The user is pressing-
down the 3 blue keys. (right)The 8 key VICs piano-keyboard employs a
fingertip shape matcher at its finest detection resolution.*

The piano key VVICons were modeled with the following
4 states: (1) motion detection in both images, (2) hue-
blob presence in both image, (3) stereo shape-template
matching, and (4) hue-blob presence. The piano key is
considered pressed from the transition between states 3
and 4 until the transition from 4 to 1. Table Il shows the
accuracy rates of the system in usage; an informal exper-
iment was performed with an unbiased onlooker judging
user intention versus system response. Figure 10-right
demonstrates the successful reduction of false-positives
resulting from the implemented parser specification —
the processing does not pass the shape-template stage (a
fingertip pressing the key).

*The dots in the center of the work-surface are artifacts of the piece
of Plexiglas used for the first prototype-they are in no way intended or
used by the system.



Percent
Correct 86.5

False Negative 11.45

False Positive 2.05

TABLE Il — Accuracy of the piano keys to normal user input. Each
figure is the mean of a set of users playing for a half minute. The
camera image size was 640x480.

V. CONCLUSION

We presented a new interface platform based on our pre-
viously proposed VICs framework [19]: the 4D Touchpad.
The robustness of the processing and the marginal load
on the host system for the idle processing of the VICs
interface proves the usefulness of the simple-to-complex
processing in a local ROl of each VICon. The framework
is designed to maximize processing efficiency in order to
allow the incorporation of vision-based HCI components
into general interface designs.

The newly developed hardware setup with the projec-
tion from beneath the table-surface opens a variety of
possible interfaces that would provide robust interaction
without encumbering the user with equipment of any sort.
A re-implementation of conventional interfaces like the
keyboard and graphical tools would come first and move
to new classes of interfaces exploiting the full capabilities
of a true 4D interface framework. The advantage of
the platform is obvious: the user directly interacts with
the interface in an intuitive manner instead of indirectly
interacting with the interface through their projection on
the screen (e.g. a mouse pointer).

We intend to extend our work on behavior modeling
to include more complex gestures not only in the plane
of the surface but in the layers above: e.g. throwing
an object into the trashcan by a simple movement of
the hand above the VICon. We are also investigating
more complex statistical-based methods to improve the
robustness of the state-transitions in VVICons. One possible
technique is to train a Hidden Markov Model. In [19]
we demonstrated a VICs-based system that employed an
HMM to learn gesture dynamics. However, the basic tenet
of HMM s is that the entire input vector is available for
processing — i.e. the entire set of selectors in a VICon is
processing every frame. This is completely opposite the
simple-to-complex processing formulation of VICs. We
are investigating some HMM modifications that would
incorporate feedback from the current state to determine
what processing must be performed.
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