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Abstract

We extend the scope of analysis for linesearch optimization algorithms on (possibly infinite-
dimensional) Riemannian manifolds to the convergence analysis of the BFGS quasi-Newton scheme
and the Fletcher–Reeves conjugate gradient iteration. Numerical implementations for exemplary
problems in shape spaces show the practical applicability of these methods.

1 Introduction

There are a number of problems that can be expressed as a minimization of a function f :M→ R over
a smooth Riemannian manifold M. Applications range from linear algebra (e. g. principal component
analysis or singular value decomposition, [1, 11]) to the analysis of shape spaces (e. g. computation of
shape geodesics, [24]), see also the references in [3].

If the manifold M can be embedded in a higher-dimensional space or if it is defined via equality
constraints, then there is the option to employ the very advanced tools of constrained optimization
(see [16] for an introduction). Often, however, such an embedding is not at hand, and one has to
resort to optimization methods designed for Riemannian manifolds. Even if an embedding is known,
one might hope that a Riemannian optimization method performs more efficiently since it exploits the
underlying geometric structure of the manifold. For this purpose, various methods have been devised,
from simple gradient descent on manifolds [25] to sophisticated trust region methods [5]. The aim of
this article is to extend the scope of analysis for these methods, concentrating on linesearch methods.
In particular, we will consider the convergence of BFGS quasi-Newton methods and Fletcher–Reeves
nonlinear conjugate gradient iterations on (possibly infinite-dimensional) manifolds, thereby filling a gap
in the existing analysis. Furthermore, we apply the proposed methods to exemplary problems, showing
their applicability to manifolds of practical interest such as shape spaces.

Early attempts to adapt standard optimization methods to problems on manifolds were presented
by Gabay [9] who introduced a steepest descent, a Newton, and a quasi-Newton algorithm, also stating
their global and local convergence properties (however, without giving details of the analysis for the
quasi-Newton case). Udrişte [23] also stated a steepest descent and a Newton algorithm on Riemannian
manifolds and proved (linear) convergence of the former under the assumption of exact linesearch. Fairly
recently, Yang took up these methods and analysed convergence and convergence rate of steepest descent
and Newton’s method for Armijo step-size control [25].

In comparison to standard linesearch methods in vector spaces, the above approaches all substitute
the linear step in the search direction by a step along a geodesic. However, geodesics may be difficult to
obtain. In alternative approaches, the geodesics are thus often replaced by more general paths, based on
so-called retractions (a retraction Rx is a mapping from the tangent space TxM to the manifold M at
x onto M). For example, Hüper and Trumpf find quadratic convergence for Newton’s method without
step-size control [11], even if the Hessian is computed for a different retraction than the one defining the
path along which the Newton step is taken. In the sequel, more advanced trust region Newton methods
have been developed and analysed in a series of papers [6, 1, 5]. The analysis requires some type of
uniform Lipschitz continuity for the gradient and the Hessian of the concatenations f ◦ Rx, which we
will also make use of. The global and local convergence analysis of gradient descent, Newton’s method,
and trust region methods on manifolds with general retractions is summarized in [2].

In [2], the authors also present a way to implement a quasi-Newton as well as a nonlinear conjugate
gradient iteration, however, without analysis. Riemannian BFGS quasi-Newton methods, which gener-
alize Gabay’s original approach, have been devised in [18]. Like the above schemes, they do not rely on
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geodesics but allow more general retractions. Furthermore, the vector transport between the tangent
spaces TxkM and Txk+1

M at two subsequent iterates (which is needed for the BFGS update of the Hes-
sian approximation) is no longer restricted to parallel transport. A similar approach is taken in [7], where
a specific, non-parallel vector transport is considered for a linear algebra application. A corresponding
global convergence analysis of a quasi-Newton scheme has been performed by Ji [12]. However, to obtain
a superlinear convergence rate, specific conditions on the compatibility between the vector transports
and the retractions are required (cf. section 3.1) which are not imposed (at least explicitly) in the above
work.

In this paper, we pursue several objectives. First, we extend the convergence analysis of standard
Riemannian optimization methods (such as steepest descent and Newton’s method) to the case of opti-
mization on infinite-dimensional manifolds. Second, we analyze the convergence rate of the Riemannian
BFGS quasi-Newton method as well as the convergence of a Riemannian Fletcher–Reeves conjugate
gradient iteration (as two representative higher order gradient-based optimization methods), which to
the authors’ knowledge has not been attempted before (neither in the finite- nor the infinite-dimensional
case). The analysis is performed in the unifying framework of step-size controlled linesearch methods,
which allows for rather streamlined proofs. Finally, we demonstrate the feasibility of these Riemannian
optimization methods by applying them to problems in state-of-the-art shape spaces.

The outline of this article is as follows. Section 2 summarizes the required basic notions. Section 3 then
introduces linesearch optimization methods on Riemannian manifolds, following the standard procedure
for finite-dimensional vector spaces [16, 17] and giving the analysis of basic steepest descent and Newton’s
method as a prerequisite for the ensuing analysis of the BFGS scheme in section 3.1 and the nonlinear
CG iteration in section 3.2. Finally, numerical examples on shape spaces are provided in section 4.

2 Notations

Let M denote a geodesically complete (finite- or infinite-dimensional) Riemannian manifold. In partic-
ular, we assumeM to be locally homeomorphic to some separable Hilbert space H [14, Sec. 1.1], that is,
for each x ∈ M there is some neighborhood x ∈ Ux ⊂M and a homeomorphism φx from Ux into some
open subset of H. Let C∞(M) denote the vector space of smooth real functions onM (in the sense that
for any f ∈ C∞(M) and any chart (Ux, φx), f ◦ φ−1x is smooth). For any smooth curve γ : [0, 1] →M
we define the tangent vector to γ at t0 ∈ (0, 1) as the linear operator γ̇(t0) : C∞(M)→ R such that

γ̇(t0)f =

(
d

dt
f ◦ γ

)
(t0) ∀f ∈ C∞(M) .

The tangent space TxM to M in x ∈ M is the set of tangent vectors γ̇(t0) to all smooth curves
γ : [0, 1] → M with γ(t0) = x. It is a vector space, and it is equipped with an inner product gx(·, ·) :
TxM× TxM→ R, the so-called Riemannian metric, which smoothly depends on x. The corresponding
induced norm will be denoted ‖·‖x, and we will employ the same notation for the associated dual norm.

Let V(M) denote the set of smooth tangent vector fields on M, then we define a connection ∇ :
V(M)× V(M)→ V(M) as a map such that

∇fX+gY Z = f∇XZ + g∇Y Z ∀X,Y, Z ∈ V(M) and f, g ∈ C∞(M) ,

∇Z(aX + bY ) = a∇ZX + b∇ZY ∀X,Y, Z ∈ V(M) and a, b ∈ R ,
∇Z(fX) = (Zf)X + f∇ZX ∀X,Z ∈ V(M) and f ∈ C∞(M) .

In particular, we will consider the Levi-Civita connection, which additionally satisfies the properties of
absence of torsion and preservation of the metric,

[X,Y ] = ∇XY −∇YX ∀X,Y ∈ V(M) ,

Xg(Y,Z) = g(∇XY,Z) + g(Y,∇XZ) ∀X,Y, Z ∈ V(M) ,

where [X,Y ] = XY − Y X denotes the Lie bracket and g(X,Y ) :M3 x 7→ gx(X,Y ).
Any connection is paired with a notion of parallel transport. Given a smooth curve γ : [0, 1] →M,

the initial value problem
∇γ̇(t)v = 0, v(0) = v0
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defines a way of transporting a vector v0 ∈ Tγ(0)M to a vector v(t) ∈ Tγ(t)M. For the Levi-Civita
connection considered here this implies constancy of the inner product gγ(t)(v(t), w(t)) for any two
vectors v(t), w(t), transported parallel along γ. For x = γ(0), y = γ(t), we will denote the parallel

transport of v(0) ∈ TxM to v(t) ∈ TyM by v(t) = T
Pγ
x,yv(0) (if there is more than one t with y = γ(t),

the correct interpretation will become clear from the context). As detailed further below, T
Pγ
x,y can be

interpreted as the derivative of a specific mapping Pγ : TxM→M.
We assume that any two points x, y ∈ M can be connected by a shortest curve γ : [0, 1] →M with

x = γ(0), y = γ(1), where the curve length is measured as

L[γ] =

∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t)) dt .

Such a curve is denoted a geodesic, and the length of geodesics induces a metric distance on M,

dist(x, y) = min
γ:[0,1]→M

γ(0)=x,γ(1)=y

L[γ] .

If the geodesic γ connecting x and y is unique, then γ̇(0) ∈ TxM is denoted the logarithmic map of
y with respect to x, logx y = γ̇(0). It satisfies dist(x, y) = ‖logx y‖x. Geodesics can be computed via
the zero acceleration condition ∇γ̇(t)γ̇(t) = 0. The exponential map expx : TxM→M, v 7→ expx v, is
defined as expx v = γ(1), where γ solves the above ordinary differential equation with initial conditions
γ(0) = x, γ̇(0) = v. It is a diffeomorphism of a neighborhood of 0 ∈ TxM into a neighborhood of x ∈M
with inverse logx. We shall denote the geodesic between x and y by γ[x; y], assuming that it is unique.

The exponential map expx obviously provides a (local) parametrization ofM via TxM. We will also
consider more general parameterizations, so-called retractions. Given x ∈ M, a retraction is a smooth
mapping Rx : TxM → M with Rx(0) = x and DRx(0) = idTxM, where DRx denotes the derivative
of Rx. The inverse function theorem then implies that Rx is a local homeomorphism. Besides expx,
there are various possibilities to define retractions. For example, consider a geodesic γ : R → M with
γ(0) = x, parameterized by arc length, and define the retraction

Pγ : TxM→M , v 7→ exppγ(v)

(
T
Pγ
x,pγ(v)

[v − πγ(v)]
)
,

where pγ(v) = expx(πγ(v)) and πγ denotes the orthogonal projection onto span{γ̇(0)}. This retraction
corresponds to running along the geodesic γ according to the component of v parallel to γ̇(0) and then
following a new geodesic into the direction of the parallel transported component of v orthogonal to γ̇(0).

We will later have to consider the transport of a vector from one tangent space TxM into another
one TyM, that is, we will consider isomorphisms Tx,y : TxM→ TyM. We are particularly interested in

operators TRxx,y which represent the derivative DRx(v) of a retraction Rx at v ∈ TxM with Rx(v) = y
(where in case of multiple v with Rx(v) = y it will be clear from the context which v is meant). In that

sense, the parallel transport T
Pγ
x,y along a geodesic γ connecting x and y belongs to the retraction Pγ .

Another possible vector transport is defined by the variation of the exponential map, evaluated at the
representative of y in TxM,

T expx
x,y = D expx(logx y) ,

which maps each v0 ∈ TxM onto the tangent vector γ̇(0) to the curve γ : t 7→ expx(logx y + tv0). Also

the adjoints (T
Pγ
y,x)∗, (T

expy
y,x )∗ (defined by gy(v, T ∗y,xw) = gx(Ty,xv, w) ∀v ∈ TyM, w ∈ TxM) or inverses

(T
Pγ
y,x)−1, (T

expy
y,x )−1 can be considered for vector transport Tx,y. Note that T

Pγ
x,y is an isometry with

T
Pγ
x,y = (T

Pγ̃
y,x)∗ = (T

Pγ̃
y,x)−1, where γ is the geodesic connecting x with y and γ̃(·) = γ(−·). Furthermore,

logx y is transported onto the same vector Tx,y logx y = γ̇(1) by T
Pγ
x,y, T

expx
x,y and their adjoints and

inverses.
Given a smooth function f :M→ R, we define its (Fréchet-)derivative Df(x) at a point x ∈ M as

an element of the dual space to TxM via Df(x)v = vf . The Riesz representation theorem then implies
the existence of a ∇f(x) ∈ TxM such that Df(x)v = gx(∇f(x), v) for all v ∈ TxM, which we denote
the gradient of f at x. On TxM, define

fRx = f ◦Rx
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for a retraction Rx. Due to DRx(0) = id we have DfRx(0) = Df(x). Furthermore, fRx = fRy ◦R−1y ◦Rx
where R−1y exists and thus for y = Rx(v),

DfRx(v) = DfRy (0)DRx(v) = Df(y)TRxx,y , ∇fRx(v) = (TRxx,y )∗∇f(y) .

We define the Hessian D2f(x) of a smooth f at x as the symmetric bilinear form D2f(x) : TxM×
TxM→ R, (v, w) 7→ gx(∇v∇f(x), w), which is equivalent to D2f(x) = D2fexpx(0). By ∇2f(x) : TxM→
TxM we denote the linear operator mapping v ∈ TxM onto the Riesz representation of D2f(x)(v, ·).
Note that if M is embedded into a vector space X and f = f̃ |M for a smooth f̃ : X → R, we usually

have D2f(x) 6= D2f̃(x)|TxM×TxM (which is easily seen from the example X = Rn, f̃(x) = ‖x‖2X ,
M = {x ∈ X : ‖x‖X = 1}). For a smooth retraction Rx we do not necessarily have D2fRx(0) = D2f(x),
however, this holds at stationary points of f [1, 2].

Let T n(TxM) denote the vector space of n-linear forms T : (TxM)n → R together with the norm

‖T‖x = supv1,...,vn∈TxM
T (v1,...,vn)
‖v1‖x...‖vn‖x . We call a function g : M →

⋃
x∈M T n(TxM), x 7→ g(x) ∈

T n(TxM), (Lipschitz) continuous at x̂ ∈M if x 7→ g(x)◦(TPγ[x̂;x]x̂,x )n ∈ T n(Tx̂M) is (Lipschitz) continuous

at x̂ (with Lipschitz constant lim supx→x̂

∥∥∥g(x) ◦ (T
Pγ[x̂;x]
x̂,x )n − g(x̂)

∥∥∥
x̂
/dist(x, x̂)). Here, γ[x̂;x] denotes

the shortest geodesic, which is unique in the neighborhood of x̂. (Lipschitz) continuity on U ⊂M means
(Lipschitz) continuity at every x ∈ U (with uniform Lipschitz constant). A function f :M→ R is called
n times (Lipschitz) continuously differentiable, if Dlf :M→

⋃
x∈M T l(TxM) is (Lipschitz) continuous

for 0 ≤ l ≤ n.

3 Iterative minimization via geodesic linesearch methods

In classical optimization on vector spaces, linesearch methods are widely used. They are based on
updating the iterate by choosing a search direction and then adding a multiple of this direction to the
old iterate. Adding a multiple of the search direction obviously requires the structure of a vector space
and is not possible on general manifolds. The natural extension to manifolds is to follow the search
direction along a path. We will consider iterative algorithms of the following generic form.

Algorithm 1 (Linesearch minimization on manifolds).

Input: f :M→ R, x0 ∈M, k = 0
repeat

choose a descent direction pk ∈ TxkM
choose a retraction Rxk : TxkM→M
choose a step length αk ∈ R
set xk+1 = Rxk(αkpk)
k ← k + 1

until xk+1 sufficiently minimizes f

Here, a descent direction denotes a direction pk with Df(xk)pk < 0. This property ensures that the
objective function f indeed decreases along the search direction.

For the choice of the step length, various approaches are possible. In general, the chosen αk has to
fulfill a certain quality requirement. We will here concentrate on the so-called Wolfe conditions, that is,
for a given descent direction p ∈ TxM, the chosen step length α has to satisfy

f(Rx(αp)) ≤ f(x) + c1αDf(x)p , (1a)

Df(Rx(αp))TRxx,Rx(αp)p ≥ c2Df(x)p , (1b)

where 0 < c1 < c2 < 1. Note that both conditions can be rewritten as fRx(αp) ≤ fRx(0) + c1αDfRx(0)p
and DfRx(αp)p ≥ c2DfRx(0)p, the classical Wolfe conditions for minimization of fRx . If the second
condition is replaced by

|Df(Rx(αp))TRxx,Rx(αp)p| ≤ −c2Df(x)p , (2)

we obtain the so-called strong Wolfe conditions. Most optimization algorithms also work properly if just
the so-called Armijo condition (1a) is satisfied. In fact, the stronger Wolfe conditions are only needed
for the later analysis of a quasi-Newton scheme. Given a descent direction p, a feasible step length can
always be found.
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Proposition 1 (Feasible step length, e. g. [16, Lem. 3.1]). Let x ∈ M, p ∈ TxM be a descent direction
and fRx : span{p} → R continuously differentiable. Then there exists α > 0 satisfying (1) and (2).

Proof. Rewriting the Wolfe conditions as fRx(αp) ≤ fRx(0)+c1αDfRx(0)p and DfRx(αp)p ≥ c2DfRx(0)p
(|DfRx(αp)p| ≤ −c2DfRx(0)p, respectively), the standard argument for Wolfe conditions in vector spaces
can be applied.

Besides the quality of the step length, the convergence of linesearch algorithms naturally depends on
the quality of the search direction. Let us introduce the angle θk between the search direction pk and
the negative gradient −∇f(xk),

cos θk =
−Df(xk)pk

‖Df(xk)‖xk ‖pk‖xk
.

There is a classical link between the convergence of an algorithm and the quality of its search direction.

Theorem 2 (Zoutendijk’s theorem). Given f : M → R bounded below and differentiable, assume the
αk in Algorithm 1 to satisfy (1). If the fRxk are Lipschitz continuously differentiable on span{pk} with
uniform Lipschitz constant L, then ∑

k∈N
cos2 θk ‖Df(xk)‖2xk <∞ .

Proof. The proof for optimization on vector spaces also applies here: Lipschitz continuity and (1b) imply

αkL ‖pk‖2xk ≥ (DfRxk (αkpk)−DfRxk (0))pk ≥ (c2 − 1)Df(xk)pk ,

from which we obtain αk ≥ (c2 − 1)Df(xk)pk/(L ‖pk‖2xk). Then (1a) implies

f(xk+1) ≤ f(xk)− c1
1− c2
L

cos2 θk ‖Df(xk)‖2xk

so that the result follows from the boundedness of f by summing over all k.

Corollary 3 (Convergence of generalized steepest descent). Let the search direction in Algorithm 1 be
the solution to Bk(pk, v) = −Df(xk)v ∀v ∈ TxkM, where the Bk are uniformly coercive and bounded
bilinear forms on TxkM (the case Bk(·, ·) = gxk(·, ·) yields the steepest descent direction). Under the
conditions of Theorem 2, ‖Df(xk)‖xk → 0.

Proof. Obviously, cos θk = Bk(pk,pk)
‖Bk(pk,·)‖xk‖pk‖xk

is uniformly bounded above zero so that the convergence

follows from Zoutendijk’s theorem.

For continuous Df , the previous corollary implies that any limit point x∗ of the sequence xk is a
stationary point of f . Hence, on finite-dimensional manifolds, if {x ∈M : f(x) ≤ f(x0)} is bounded, xk
can be decomposed into subsequences each of which converges against a stationary point. On infinite-
dimensional manifolds, where only a weak convergence of subsequences can be expected, this is not true
in general (which is not surprising given that not even existence of stationary points is granted without
stronger conditions on f such as sequential weak lower semi-continuity). Moreover, the limit points may
be non-unique. However, in the case of (locally) strictly convex functions we have (local) convergence
against the unique minimizer by the following classical estimate.

Proposition 4. Let U ⊂ M be a geodesically star-convex neighborhood around x∗ ∈ M (i. e. for any
x ∈ U the shortest geodesics from x∗ to x lie inside U), and define

V (U) = {v ∈ exp−1x∗ (U) : ‖v‖x∗ ≤ ‖w‖x∗ ∀w ∈ exp−1x∗ (expx∗(v))} .

Let f be twice differentiable on U with x∗ being a stationary point. If D2fexpx∗ is uniformly coercive on
V (U) ⊂ Tx∗M, then there exists m > 0 such that for all x ∈ U ,

dist(x, x∗) ≤ 1

m
‖Df(x)‖x .
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Proof. By hypothesis, there is m > 0 with D2fexpx∗ (x)(v, v) ≥ m ‖v‖2x∗ for all x ∈ exp−1x∗ (U), v ∈ Tx∗M.

Thus, for v = logx∗ x we have ‖Df(x)‖x ≥
|Df(x) logx x

∗|
‖logx x∗‖x

=
|Dfexpx∗ (v)v|
‖v‖x∗

=
|∫ 1

0
D2fexpx∗ (tv)(v,v) dt|

‖v‖x∗
≥

m ‖v‖x = mdist(x, x∗). (Note that coercivity along γ[x;x∗] would actually suffice.)

Hence, if f is smooth with Df(x∗) = 0 and D2f(x∗) = D2fexpx∗ (0) coercive (so that there exists
a neighborhood U ⊂ M of x∗ such that D2fexpx∗ is uniformly coercive on V (U)), then by the above
proposition and Corollary 3 we thus have xk → x∗ if {x ∈M : f(x) ≤ f(x0)} ⊂ U .

Remark 1. Note the difference between steepest descent and an approximation of the so-called gradient
flow, the solution to the ODE

dx

dt
= −∇f(x) .

While the gradient flow aims at a smooth curve along which the direction at each point is the steepest
descent direction, the steepest descent linesearch tries to move into a fixed direction as long as possible
and only changes its direction to be the one of steepest descent if the old direction does no longer yield
sufficient decrease. Therefore, the steepest descent typically takes longer steps in one direction.

Remark 2. The condition on fRxk in Theorems 1 and 2 may be untangled into conditions on f and Rxk .

For example, one might require f to be Lipschitz continuously differentiable and T
Rxk
xk,xk+1 |span{pk} to be

uniformly bounded, which is the case for Rxk = expxk or Rxk = Pγ[xk;xk+1], for example.

As a method with only linear convergence, steepest descent requires many iterations. Improvement
can be obtained by choosing in each iteration the Newton direction pNk as search direction, that is, the
solution to

D2fRxk (0)(pNk , v) = −Df(xk)v ∀v ∈ TxkM . (3)

Note that the Newton direction is obtained with regard to the retraction Rxk . The fact that D2fRx∗ (0) =
D2f(x∗) at a stationary point x∗ and the later result that the Hessian only needs to be approximated
(Proposition 8) suggests that D2f(xk) or a different approximation could be used as well to obtain fast
convergence. In contrast to steepest descent, Newton’s method is invariant with respect to a rescaling
of f and in the limit allows a constant step size and quadratic convergence as shown in the following
sequence of propositions which can be transferred from standard results (e. g. [16, Sec. 3.3]).

Proposition 5 (Newton step length). Let f be twice differentiable and D2fRx(0) continuous in x.
Consider Algorithm 1 and assume the αk to satisfy (1) with c1 ≤ 1

2 and the pk to satisfy

lim
k→∞

∥∥∥Df(xk) + D2fRxk (0)(pk, ·)
∥∥∥
xk

‖pk‖xk
= 0 . (4)

Furthermore, let the fRxk be twice Lipschitz continuously differentiable on span{pk} with uniform Lip-

schitz constant L. If x∗ with Df(x∗) = 0 and D2f(x∗) bounded and coercive is a limit point of xk so
that xk →k∈I x

∗ for some I ⊂ N, then αk = 1 would also satisfy (1) (independent of whether αk = 1 is
actually chosen) for sufficiently large k ∈ I.

Proof. Let m > 0 be the lowest eigenvalue belonging to D2f(x∗) = D2fRx∗ (0). The continuity of the

second derivative implies the uniform coercivity D2fRxk(0)(v, v) ≥ m
2 ‖v‖

2
xk

for all k ∈ I sufficiently

large. From D2fRxk (0)(pk − pNk , ·) = Df(xk) + D2fRxk (0)(pk, ·) we then obtain pk − pNk = o(‖pk‖xk).

Furthermore, condition (4) implies limk→∞ |Df(xk)pk + D2fRxk(0)(pk, pk)|/ ‖pk‖2xk = 0 and thus

0 = lim sup
k→∞

Df(xk)pk

‖pk‖2xk
+

D2fRxk(0)(pk, pk)

‖pk‖2xk
≥ lim sup
k→∞,k∈I

Df(xk)pk

‖pk‖2xk
+
m

2
⇒ −Df(xk)pk/ ‖pk‖2xk ≥

m

4

(5)
for k ∈ I sufficiently large. Due to ‖Df(xk)‖xk →k∈I 0 we deduce ‖pk‖xk →k∈I 0.
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By Taylor’s theorem, fRxk(pk)=fRxk(0)+DfRxk(0)pk+
1
2D2fRxk(qk)(pk, pk) for some qk∈[0, pk] so that

fRxk(pk)− f(xk)− 1

2
Df(xk)pk =

1

2
(Df(xk)pk + D2fRxk(qk)(pk, pk))

=
1

2

[ (
Df(xk)pk + D2fRxk(0)(pNk , pk)

)
+ D2fRxk(0)(pk − pNk , pk)

+
(

D2fRxk(qk)−D2fRxk(0)
)

(pk, pk)
]

≤ o(‖pk‖2xk)

which implies feasibility of αk = 1 with respect to (1a) for k ∈ I sufficiently large. Also,

|DfRxk(pk)pk| =
∣∣∣∣Df(xk)pk + D2fRxk(0)(pk, pk) +

∫ 1

0

(
D2fRxk(tpk)−D2fRxk(0)

)
(pk, pk) dt

∣∣∣∣ = o(‖pk‖2xk)

which together with (5) implies DfRxk(pk)pk ≥ c2Df(xk)pk for sufficiently large k ∈ I, that is, (1b) for
αk = 1.

Lemma 6. Let U ⊂M be open and retractions Rx : TxM→M, x ∈ U , have equicontinuous derivatives
at x in the sense

∀ε > 0∃δ > 0∀x ∈ U : ‖v‖x < δ ⇒
∥∥∥TPγ[x;Rx(v)]

x,Rx(v)
DRx(0)−DRx(v)

∥∥∥ < ε .

Then for any ε > 0 there is an ε′ > 0 such that for all x ∈ U and v, w ∈ TxM with ‖v‖x , ‖w‖x < ε′,

(1− ε) ‖w − v‖x ≤ dist(Rx(v), Rx(w)) ≤ (1 + ε) ‖w − v‖x .

Proof. For ε > 0 there is δ > 0 such that for any x̃ ∈ U , ‖v‖x̃ < δ implies
∥∥∥TPγ[x̃;Rx̃(v)]

x̃,Rx̃(v)
−DRx̃(v)

∥∥∥ < ε.

From this we obtain for v, w ∈ TxM with ‖v‖x , ‖w‖x < δ that

dist(Rx(v), Rx(w)) ≤
∫ 1

0

‖DRx(v + t(w − v))(w − v)‖Rx(v+t(w−v)) dt

≤ ‖w − v‖x +

∫ 1

0

∥∥∥[DRx(v + t(w − v))− TPγ[x;Rx(v+t(w−v))]
x,Rx(v+t(w−v))

]
(w − v)

∥∥∥
Rx(v+t(w−v))

dt

≤ (1 + ε) ‖w − v‖x .

Furthermore, for δ small enough, the shortest geodesic path between Rx(v) and Rx(w) can be expressed as
t 7→ Rx(p(t)), where p : [0, 1]→ TxM with p(0) = v and p(1) = w. Then, for ‖v‖x , ‖w‖x < (1−ε) δ2 =: ε′,

dist(Rx(v), Rx(w)) =

∫ 1

0

∥∥∥∥DRx(p(t))
dp(t)

dt

∥∥∥∥
Rx(p(t))

dt

≥
∫ 1

0

∥∥∥∥dp(t)

dt

∥∥∥∥
x

dt−
∫ 1

0

∥∥∥∥[DRx(p(t))− TPγ[x;Rx(p(t))]

x,Rx(p(t))

] dp(t)

dt

∥∥∥∥
Rx(p(t))

dt

≥ (1− ε)
∫ 1

0

∥∥∥∥dp(t)

dt

∥∥∥∥
x

dt ≥ (1− ε) ‖w − v‖x ,

where we have used ‖p(t)‖x < δ for all t ∈ [0, 1], since otherwise one could apply the above estimate to
the segments [0, t1) and (t2, 1] with t1 = inf{t : ‖p(t)‖x ≥ δ}, t2 = sup{t : ‖p(t)‖x ≥ δ}, which yields

dist(Rx(v), Rx(w)) ≥ (1 − ε)
∫
[0,t1)∪(t2,1]

∥∥∥dp(t)
dt

∥∥∥
x

dt ≥ (1 − ε)2(δ − ε′) = (1 − ε2)δ > (1 + ε) ‖w − v‖x,

contradicting the first estimate.

Proposition 7 (Convergence of Newton’s method). Let f be twice differentiable and D2fRx(0) continu-
ous in x. Consider Algorithm 1 where pk = pNk as defined in (3), αk satisfies (1) with c1 ≤ 1

2 , and αk = 1
whenever possible. Assume xk has a limit point x∗ with Df(x∗) = 0 and D2f(x∗) bounded and coercive.
Furthermore, assume that in a neighborhood U of x∗, the DRxk are equicontinuous in the above sense
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and that the fRxk with xk ∈ U are twice Lipschitz continuously differentiable on R−1xk (U) with uniform
Lipschitz constant L. Then xk → x∗ with

lim
k→∞

dist(xk+1, x
∗)

dist2(xk, x∗)
≤ C

for some C > 0.

Proof. There is a subsequence (xk)k∈I , I ⊂ N, with xk →k∈I x∗. By Proposition 5, αk = 1 for
k ∈ I sufficiently large. Furthermore, by the previous lemma there is ε > 0 such that 1

2 ‖w − v‖xk ≤
dist(Rxk(v), Rxk(w)) ≤ 3

2 ‖w − v‖xk for all w, v ∈ TxkM with ‖v‖xk , ‖w‖xk < ε. Hence, for k ∈ I large

enough such that dist(xk, x
∗) < ε

4 , there exists R−1xk (x∗), and∥∥∥D2fRxk(0)(pk −R−1xk (x∗), ·)
∥∥∥
xk

=
∥∥∥(DfRxk(R

−1
xk

(x∗))−Df(xk))−D2fRxk(0)(R−1xk (x∗), ·)
∥∥∥
xk

=

∥∥∥∥∫ 1

0

(
D2fRxk(tR

−1
xk

(x∗))−D2fRxk(0)
)

(R−1xk (x∗), ·) dt

∥∥∥∥
xk

≤ L
∥∥R−1xk (x∗)

∥∥2
xk

which implies
∥∥pk −R−1xk (x∗)

∥∥
xk
≤ 2 Lm

∥∥R−1xk (x∗)
∥∥2
xk

for the smallest eigenvalue m of D2f(x∗) (using the

same argument as in the proof of Proposition 5). The previous lemma then yields the desired convergence
rate (note from the proof of Proposition 5 that pk tends to zero) and thus also convergence of the whole
sequence.

The Riemannian Newton method was already proposed by Gabay in 1982 [9]. Smith proved quadratic
convergence for the more general case of applying Newton’s method to find a zero of a one-form on a
manifold with the Levi-Civita connection [21] (the method is stated for an unspecified affine connection
in [4]), using geodesic steps. Yang rephrased the proof within a broader framework for optimization
algorithms, however, restricting to the case of minimizing a function (which corresponds to the method
introduced above, only with geodesic retractions) [25]. Hüper and Trumpf show quadratic convergence
even if the retraction used for taking the step is different from the retraction used for computing the
Newton direction [11]. A more detailed overview is provided in [2, Sec. 6.6]. While all these approaches
were restricted to finite-dimensional manifolds, we here explicitly include the case of infinite-dimensional
manifolds.

A superlinear convergence rate can also be achieved if the Hessian in each step is only approximated,
which is particularly interesting with regard to our aim of also analyzing a quasi-Newton minimization
approach.

Proposition 8 (Convergence of approximated Newton’s method). Let the assumptions of the previous
proposition hold, but instead of the Newton direction pNk consider directions pk which only satisfy (4).
Then we have superlinear convergence,

lim
k→∞

dist(xk+1, x
∗)

dist(xk, x∗)
= 0 .

Proof. From the proof of Proposition 5 we know
∥∥pk − pNk ∥∥xk = o(‖pk‖xk). Also, the proof of Proposi-

tion 7 shows
∥∥pNk −R−1xk (x∗)

∥∥
xk
≤ 2 Lm

∥∥R−1xk (x∗)
∥∥2
xk

. Thus we obtain

∥∥pk −R−1xk (x∗)
∥∥
xk
≤
∥∥pk − pNk ∥∥xk +

∥∥pNk −R−1xk (x∗)
∥∥
xk
≤ o(‖pk‖xk) + 2

L

m

∥∥R−1xk (x∗)
∥∥2
xk
.

This inequality first implies ‖pk‖xk = O(
∥∥R−1xk (x∗)

∥∥
xk

) and then
∥∥pk −R−1xk (x∗)

∥∥
xk

= o(
∥∥R−1xk (x∗)

∥∥
xk

)

so that the result follows as in the proof of Proposition 7.

Remark 3. Of course, again the conditions on fRxk in the previous analysis can be untangled into
separate conditions on f and the retractions. For example, one might require f to be twice Lipschitz
continuously differentiable and the retractions Rx to have uniformly bounded second derivatives for x
in a neighborhood of x∗ and arguments in a neighborhood of 0 ∈ TxM. For example, Rxk = expxk
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or Rxk = Pγ[xk;xk+1] satisfy these requirements if the manifold M is well-behaved near x∗. (On a two-
dimensional manifold, the second derivative of the exponential map deviates the stronger from zero, the
larger the Gaussian curvature is in absolute value. On higher-dimensional manifolds, to compute the
directional second derivative of the exponential map in two given directions, it suffices to consider only the
two-dimensional submanifold which is spanned by the two directions, so the value of the directional second
derivative depends on the sectional curvature belonging to these directions. If all sectional curvatures of
M are uniformly bounded near x∗—which is not necessarily the case for infinite-dimensional manifolds,
this implies also the boundedness of the second derivatives of the exponential map so that Rxk = expxk
or Rxk = Pγ[xk;xk+1] indeed satisfy the requirements.)

3.1 BFGS quasi-Newton scheme

A classical way to retain superlinear convergence without computing the Hessian at every iterate consists
in the use of quasi-Newton methods, where the objective function Hessian is approximated via the
gradient information at the past iterates. The most popular method, which we would like to transfer to
the manifold setting here, is the BFGS rank-2-update formula. Here, the search direction pk is chosen
as the solution to

Bk(pk, ·) = −Df(xk) , (6)

where the bilinear forms Bk : (TxkM)2 → R are updated according to

sk = αkpk = R−1xk (xk+1)

yk = DfRxk(sk)−DfRxk(0)

Bk+1(Tkv, Tkw) = Bk(v, w)− Bk(sk, v)Bk(sk, w)

Bk(sk, sk)
+

(ykv)(ykw)

yksk
∀v, w ∈ TxkM .

Here, Tk ≡ Txk,xk+1
denotes some linear map from TxkM to Txk+1

M, which we obviously require to be
invertible to make Bk+1 well-defined.

Remark 4. There are more possibilities to define the BFGS update, for example, using sk = −R−1xk+1
(xk),

yk = DfRxk+1
(0)−DfRxk+1

(−sk), and a corresponding update formula for Bk+1 (which looks as above,

only with the vector transport at different places). The analysis works analogously, and the above choice
only allows the most elegant notation.

Actually, the formulation from the above remark was already introduced by Gabay [9] (for geodesic
retractions and parallel transport) and resumed by Absil et al. [2, 18] (for general retractions and vector
transport). A slightly different variant, which ignores any kind of vector transport, was provided in
[12], together with a proof of convergence. In contrast to these approaches, we also consider infinite-
dimensional manifolds and prove convergence as well as superlinear convergence rate.

Lemma 9. Consider Algorithm 1 with the above BFGS search direction and Wolfe step size control,
where ‖Tk‖ and

∥∥T−1k

∥∥ are uniformly bounded and the fRxk are assumed smooth. If B0 is bounded and
coercive, then

yksk > 0

and Bk is bounded and coercive for all k ∈ N.

Proof. Assume Bk to be bounded and coercive. Then pk is a descent direction, and (1b) implies the
curvature condition yksk ≥ (c2 − 1)αkDfRxk(0)pk > 0 so that Bk+1 is well-defined.

Let us denote by ŷk = ∇fRxk(sk) − ∇fRxk(0) the Riesz representation of yk. Furthermore, by the

Lax–Milgram lemma, there is B̂k : TxkM → TxkM with Bk(v, w) = gxk(v, B̂kw) for all v, w ∈ TxkM.
Obviously,

B̂k+1 = T−∗k

[
B̂k −

Bk(sk, ·)B̂ksk
Bk(sk, sk)

+
yk(·)ŷk
yksk

]
T−1k

If Hk = B̂−1k , then by the Sherman–Morrison formula,

Hk+1 = Tk

[
J∗HkJ +

gxk(sk, ·)sk
yksk

]
T ∗k , J =

(
id− gxk(sk, ·)ŷk

yksk

)
, (7)
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is the inverse of B̂k+1. Its boundedness is obvious. Furthermore, Hk+1 is coercive. Indeed, let M =
∥∥∥B̂k∥∥∥,

then for any v ∈ TxkM with ‖v‖xk = 1 and w = v − gxk (sk,v)

yksk
ŷk we have

gxk+1
(T−∗k v,Hk+1T

−∗
k v) = gxk(w,Hkw) +

gxk(sk, v)2

yksk
≥ 1

M
‖w‖2xk +

gxk(sk, v)2

yksk

which is strictly greater than zero since the second summand being zero implies the first one being greater
than or equal to 1

M . In finite dimensions this already yields the desired coercivity, in infinite dimensions
it still remains to show that the right-hand side is uniformly bounded away from zero for all unit vectors
v ∈ TxkM. Indeed,

1

M
‖w‖2xk +

gxk(sk, v)2

yksk
=

1

M

[
1− 2

gxk(sk, v)

yksk
gxk(ŷk, v) +

(
gxk(sk, v)

yksk

)2

‖ŷk‖2xk

]
+
gxk(sk, v)2

yksk

is a continuous function in (gxk(sk, v), gxk(ŷk, v)) which by Weierstrass’ theorem takes its minimum on
[−‖sk‖xk , ‖sk‖xk ]× [−‖yk‖xk , ‖yk‖xk ]. This minimum is the smallest eigenvalue of Hk+1 and must be
greater than zero.

Both the boundedness and coercivity of T−1k Hk+1T
−∗
k imply boundedness and coercivity of B̂k+1 and

thus of Bk+1.

By virtue of the above theorem, the BFGS search direction is well-defined for all iterates. It satisfies
the all-important secant condition

Bk+1(Tksk, ·) = ykT
−1
k

which basically has the interpretation that Bk+1◦(Tk)2 is supposed to be an approximation to D2fRxk(sk).

Since we also aim at Bk+1 ≈ D2fRxk+1
(0), the choice Tk = T

Rxk
xk,xk+1 seems natural in view of the fact

D2fRx(R−1x (x∗)) = D2fRx∗ (0)◦(TRxx,x∗)2 for a stationary point x∗. However, we were only able to establish
the method’s convergence for isometric Tk (see Proposition 10).

For the actual implementation, instead of solving (6) one applies Hk to −∇f(xk). By (7), this entails
computing the transported vectors T ∗k−1∇f(xk), T ∗k−2T

∗
k−1∇f(xk), . . . , T ∗0 T

∗
1 . . . T

∗
k−1∇f(xk) and their

scalar products with the si and yi, i = 0, . . . , k−1, as well as the transports of the si and yi. The conver-
gence analysis of the scheme can be transferred from standard analyses (e. g. [17, Prop. 1.6.17-Thm. 1.6.19]
or [16, Thm. 6.5] and [12] for slightly weaker results). Due to their technicality, the corresponding proofs
are deferred to the appendix.

Proposition 10 (Convergence of BFGS descent). Consider Algorithm 1 with BFGS search direction and
Wolfe step size control, where the Tk are isometries. Assume the fRxk to be uniformly convex on the
f(x0)-sublevel set of f , that is, there are 0 < m < M <∞ such that

m ‖v‖2xk ≤ D2fRxk(p)(v, v) ≤M ‖v‖2xk ∀v ∈ TxkM

for p ∈ R−1xk ({x ∈ M : f(x) ≤ f(x0)}). If B0 is symmetric, bounded and coercive, then there exists a
constant 0 < µ < 1 such that

f(xk)− f(x∗) ≤ µk+1(f(x0)− f(x∗))

for the minimizer x∗ ∈M of f .

Corollary 11. Under the conditions of the previous proposition and if fexpx∗ is uniformly convex in the
sense

m ‖v‖2x∗ ≤ D2fexpx∗ (p)(v, v) ≤M ‖v‖2x∗ ∀v ∈ Tx∗M

if fexpx∗ (p) ≤ f(x0), then

dist(xk, x
∗) ≤

√
M

m

√
µ
k+1

dist(x0, x
∗) ∀k ∈ N .
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Proof. From f(x)−f(x∗) = 1
2D2fexpx∗ (t logx∗ x)(logx∗ x, logx∗ x) for some t ∈ [0, 1] we obtain m

2 dist2(x, x∗) ≤
f(x)− f(x∗) ≤ M

2 dist2(x, x∗).

Remark 5. The isometry condition on Tk is for example satisfied for the parallel transport from xk
to xk+1. The Riesz representation of yk can be computed as (T

Rxk
xk,xk+1)∗∇f(xk+1) − ∇f(xk). For

Rxk = Pγ[xk;xk+1], this means simple parallel transport of ∇f(xk+1).

For a superlinear convergence rate, it is well-known that in infinite dimensions one needs particular
conditions on the initial Hessian approximation B0 (it has to be an approximation to the true Hessian
in the nuclear norm, see e. g. [19]). On manifolds we furthermore require a certain type of consistency
between the vector transports as shown in the following proposition, which modifies the analysis from

[16, Thm. 6.6]. For ease of notation, define the averaged Hessian Gk =
∫ 1

0
D2fRxk(tsk) dt and let the hat

in Ĝk denote the Lax–Milgram representation of Gk. The proof of the following is given in the appendix.

Proposition 12 (BFGS approximation of Newton direction). Consider Algorithm 1 with BFGS search
direction and Wolfe step size control. Let x∗ be a stationary point of f with bounded and coercive
D2f(x∗). For k large enough, assume R−1xk (x∗) to be defined and assume the existence of isomorphisms

T∗,k : Tx∗M→ TxkM with ‖T∗,k‖ ,
∥∥∥T−1∗,k∥∥∥ < C uniformly for some C > 0 and∥∥∥TRxkxk,x∗

T∗,k − id
∥∥∥ −→
k→∞

0 ,
∥∥∥T−1∗,k+1TkT∗,k − id

∥∥∥
1
< bβk

for some b > 0, 0 < β < 1, where ‖·‖1 denotes the nuclear norm (the sum of all singular values,

‖T‖1 = tr
√
T ∗T ). Finally, assume

∥∥∥T ∗∗,0B̂0T∗,0 −∇2f(x∗)
∥∥∥
1
<∞ for a symmetric, bounded and coercive

B0 and let

∞∑
k=0

∥∥∥T ∗∗,kĜkT∗,k −∇2f(x∗)
∥∥∥ <∞ and

∥∥∥∇2fRxk(R
−1
xk

(x∗))−∇2fRxk(0)
∥∥∥ −→
k→∞

0 .

Then

lim
k→∞

∥∥∥Df(xk) + D2fRxk (0)(pk, ·)
∥∥∥
xk

‖pk‖xk
= 0

so that Proposition 8 can be applied.

Corollary 13 (Convergence rate of BFGS descent). Consider Algorithm 1 with BFGS search direction
and Wolfe step size control, where c1 ≤ 1

2 , αk = 1 whenever possible, and the Tk are isometries. Let x∗

be a stationary point of f with bounded and coercive D2f(x∗), where we assume fexpx∗ to be uniformly
convex on its f(x0)-sublevel set. Assume that in a neighborhood U of x∗, the DRxk are equicontinuous
(in the sense of Lemma 6) and that the fRxk with xk ∈ U are twice Lipschitz continuously differentiable

on R−1xk (U) with uniform Lipschitz constant L and uniformly convex on the f(x0)-sublevel set of f .

Furthermore, assume the existence of isomorphisms T∗,k : Tx∗M → TxkM with ‖T∗,k‖ and
∥∥∥T−1∗,k∥∥∥

uniformly bounded and∥∥∥TRxkxk,x∗
T∗,k − id

∥∥∥ ,∥∥∥T−1∗,k+1TkT∗,k − id
∥∥∥
1
≤ cmax{dist(xk, x

∗),dist(xk+1, x
∗)}

for some c > 0. If B̂0 is bounded and coercive with
∥∥∥T ∗∗,0B̂0T∗,0 −∇2f(x∗)

∥∥∥
1
<∞, then xk → x∗ with

lim
k→∞

dist(xk+1, x
∗)

dist(xk, x∗)
= 0 .

Proof. The conditions of Corollary 11 are satisfied so that we have dist(xk, x
∗) < bβk for some b > 0,

0 < β < 1. As in the proof of Proposition 7, the equicontinuity of the retraction variations then implies
the well-definedness of R−1xk (x∗) for k large enough. Also,∥∥∥TRxkxk,x∗

T∗,k − id
∥∥∥ , ∥∥∥T−1∗,k+1TkT∗,k − id

∥∥∥
1
< cbβk −→

k→∞
0 .
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Furthermore,
∥∥∥∇2fRxk(R

−1
xk

(x∗))−∇2fRxk(0)
∥∥∥ ≤ L‖R−1xk (x∗)‖xk = O(dist(xk, x

∗))−→
k→∞

0 follows from

the uniform Lipschitz continuity of ∇2fRxk and Lemma 6. Likewise,∥∥Gk ◦ (T∗,k)2 −D2f(x∗)
∥∥ ≤ ∥∥∥T ∗∗,k∇2fRxk(0)T∗,k −∇2f(x∗)

∥∥∥ + ‖T∗,k‖2
∥∥∥Gk −D2fRxk(0)

∥∥∥ .
The second term is bounded by ‖T∗,k‖2 L

∥∥R−1xk (xk+1)
∥∥
xk

and thus by some constant times βk due to

the equivalence between the retractions and the exponential map near x∗ (Lemma 6). The first term on
the right-hand side can be bounded as in the proof of Proposition 12 which also yields a constant times
βk so that Proposition 12 can be applied. Proposition 8 then implies the result.

On finite-dimensional manifolds, the operator norm ‖·‖ is equivalent to the nuclear norm ‖·‖1, and
the condition on B0 reduces to B0 being bounded and coercive. In that case, if the manifold M has
bounded sectional curvatures near x∗, fexpx∗ is uniformly convex, and f twice Lipschitz continuously
differentiable, then the above conditions are for instance satisfied with Rxk = expxk or Rxk = Pγ[xk;xk+1]

and Tk as well as T∗,k being standard parallel transport.
Note that the nuclear norm bound on T−1∗,k+1TkT∗,k− id is quite a strong condition, and it is not clear

whether it could perhaps be relaxed. If for illustration we imagine Tk and T∗,k to be simple parallel
transport, then the bound implies that the manifold behaves almost like a hyperplane (except for a finite
number of dimensions).

3.2 Fletcher–Reeves nonlinear conjugate gradient scheme

Other gradient-based minimization methods with good convergence properties in practice include non-
linear conjugate gradient schemes. Here, in each step the search direction is chosen conjugate to the
old search direction in a certain sense. Such methods often enjoy superlinear convergence rates. For
example, Luenberger has shown

‖xk+n − x∗‖ = O(‖xk − x∗‖2)

for the Fletcher–Reeves nonlinear conjugate gradient iteration on flat n-dimensional manifolds. However,
such analyses seem quite special and intricate, and the understanding of these methods seems not yet
as advanced as of the quasi-Newton approaches, for example. Hence, we will only briefly transfer the
convergence analysis for the standard Fletcher–Reeves approach to the manifold case. Here, the search
direction is chosen according to

pk = −∇f(xk) + βkT
Rxk−1
xk−1,xkpk−1 ,

βk =
‖Df(xk)‖2xk
‖Df(xk−1)‖2xk−1

,

(with β0 = 0) and the step length αk satisfies the strong Wolfe condition.

Remark 6. If (as is typically done) the nonlinear conjugate gradient iteration is restarted every K steps
with piK = −∇f(xiK), i ∈ N, then Theorem 2 directly implies lim infk→∞ ‖Df(xk)‖xk = 0. Hence, if f
is strictly convex in the sense of Proposition 4, we obtain convergence of xk against the minimizer.

We immediately have the following classical bound (e. g. [16, Lem. 5.6]).

Lemma 14. Consider Algorithm 1 with Fletcher–Reeves search direction and strong Wolfe step size
control with c2 <

1
2 . Then

− 1

1− c2
≤ Df(xk)pk

‖Df(xk)‖2xk
≤ 2c2 − 1

1− c2
∀k ∈ N .

Proof. The result is obvious for k = 0. In order to perform an induction, note

Df(xk+1)pk+1

‖Df(xk+1)‖2xk+1

= −1 + βk+1
Df(xk+1)T

Rxk
xk,xk+1pk

‖Df(xk+1)‖2xk+1

= −1 +
DfRxk(αkpk)pk

‖Df(xk)‖2xk
.
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The strong Wolfe condition (2) thus implies

−1 + c2
Df(xk)pk

‖Df(xk)‖2xk
≤ Df(xk+1)pk+1

‖Df(xk+1)‖2xk+1

≤ −1− c2
Df(xk)pk

‖Df(xk)‖2xk
from which the result follows by the induction hypothesis.

This bound allows the application of a standard argument (e. g. [16, Thm. 5.7]) to obtain lim infk→∞ ‖Df(xk)‖xk =
0. Thus, as before, if f is strictly convex in the sense of Proposition 4, the sequence xk converges against
the minimizer.

Proposition 15 (Convergence of Fletcher–Reeves CG iteration). Under the conditions of the previous

lemma and if
∥∥∥TRxkxk,xk+1pk

∥∥∥
xk+1

≤ ‖pk‖xk for all k ∈ N, then lim infk→∞ ‖Df(xk)‖xk = 0.

Proof. The inequality of the previous lemma can be multiplied by
‖Df(xk)‖xk
‖pk‖xk

to yield

1− 2c2
1− c2

‖Df(xk)‖xk
‖pk‖xk

≤ cos θk ≤
1

1− c2
‖Df(xk)‖xk
‖pk‖xk

.

Theorem 2 then implies
∑∞
k=0

‖Df(xk)‖4xk
‖pk‖2xk

<∞. Furthermore, by (2) and the previous lemma, |Df(xk)T
Rxk−1
xk−1,xkpk−1| ≤

−c2Df(xk−1)pk−1 ≤ c2
1−c2 ‖Df(xk−1)‖2xk−1

so that

‖pk‖2xk = ‖∇f(xk)‖2xk + 2βkDf(xk)T
Rxk−1
xk−1,xkpk−1 + β2

k

∥∥∥TRxk−1
xk−1,xkpk−1

∥∥∥2
xk

≤ ‖∇f(xk)‖2xk +
2c2

1− c2
βk ‖Df(xk−1)‖2xk−1

+ β2
k ‖pk−1‖

2
xk−1

=
1 + c2
1− c2

‖∇f(xk)‖2xk +
‖Df(xk)‖4xk
‖Df(xk−1)‖4xk−1

‖pk−1‖2xk−1
≤ 1 + c2

1− c2
‖Df(xk)‖4xk

k∑
j=0

‖Df(xj)‖−2xj ,

where the last step follows from induction and p0 = −∇f(x0). However, if we now assume ‖Df(xk)‖xk ≥

γ for some γ > 0 and all k ∈ N, then this implies ‖pk‖2xk ≤
1+c2
1−c2 ‖Df(xk)‖4xk

k
γ2 so that

∑∞
k=0

‖Df(xk)‖4xk
‖pk‖2xk

≥
1−c2
1+c2

γ2
∑∞
k=0

1
k =∞, contradicting Zoutendijk’s theorem.

Remark 7. Rxk = expxk and Rxk = Pγ[xk;xk+1] both satisfy the conditions required for convergence (the
iterations for both retractions coincide). If the vector transport associated with the retraction increases
the norm of the transported vector, convergence can no longer be guaranteed.

Remark 8. If in the iteration we instead use

βk =
Df(xk)(∇f(xk)−∇fRxk (R−1xk (xk−1)))

‖Df(xk−1)‖2xk−1

or βk+1 =
DfRxk (αkpk)(∇fRxk (αkpk)−∇f(xk))

‖Df(xk)‖2xk
we obtain a Polak–Ribière variant of a nonlinear CG iteration. If there are 0 < m < M <∞ such that

m ‖v‖2xk ≤ D2fRxk(p)(v, v) ≤M ‖v‖2xk ∀v ∈ TxkM

whenever f(Rxk(p)) ≤ f(x0), if
∥∥∥(T

Rxk
xk,xk+1)−1

∥∥∥ (respectively
∥∥∥TRxkxk,xk+1

∥∥∥) is uniformly bounded, and if

αk is obtained by exact linesearch, then for all k ∈ N one can show cos θk ≥ 1

1+M
m

∥∥∥(TRxkxk,xk+1
)−1
∥∥∥ =: ρ

(respectively cos θk ≥ 1

1+M
m

∥∥∥TRxkxk,xk+1

∥∥∥ ) which implies at least linear convergence,

dist(xk, x
∗) ≤

√
2

m
[f(x0)− f(x∗)]

√
1− m

M
ρ2
k

.

Here, the proofs of 1.5.8 and 1.5.9 from [17] can be directly transferred with λi := αi, hi := pi,
gi := ∇f(xi), H(xi + sλihi) := ∇2fRxi (sαipi) and replacing gi+1 by Dfxi(αipi) in (19a), 〈gi, hi−1〉
by DfRxi−1

(αi−1pi−1)pi−1, and 〈Hihi, gi+1〉 by either 〈(TRxixi,xi+1)−∗Hihi, gi+1〉 or 〈Hihi,DfRxi (αipi)〉 in

the denominator of (19d). 1.5.8(b) follows from Theorem 2 similarly to the proof of Proposition 10.
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Figure 1: Minimization of f1 (left) and f2 (right) on the torus via the Fletcher–Reeves algorithm. The
top row performs the optimization in the parametrization domain, the bottom row shows the result for
the Riemannian optimization. For each case the optimization path is shown on the torus and in the
parametrization domain (the color-coding from blue to red indicates the function value) as well as the
evolution of the function values. Obviously, optimization in the parametrization domain is more suitable
for f1, whereas Riemannian optimization with the torus metric is more suitable for f2.

4 Numerical examples

In this section we will first consider simple optimization problems on the two-dimensional torus to
illustrate the influence of the Riemannian metric on the optimization progress. Afterwards we turn
to an active contour model and a simulation of truss shape deformations as exemplary optimization
problems to prove the efficiency of Riemannian optimization methods also in the more complex setting
of Riemannian shape spaces.

4.1 The rôle of metric and vector transport

The minimum of a functional on a manifold is independent of the manifold metric and the chosen
retractions. Consequently, exploiting the metric structure does not necessarily aid the optimization
process, and one could certainly impose different metrics on the same manifold of which some are more
beneficial for the optimization problem at hand than others. The optimal pair of a metric and a
retraction would be such that one single gradient descent step already hits the minimum. However, the
design of such pairs requires far more effort than solving the optimization problem in a suboptimal way.

Often, a certain metric and retraction fit naturally to the optimization problem at hand. For illus-
tration, consider the two-dimensional torus, parameterized by

(ϕ,ψ) 7→ y(ϕ,ψ) = ((r1 + r2 cosϕ) cosψ, (r1 + r2 cosϕ) sinψ, r2 sinϕ) , ϕ, ψ ∈ [−π, π] ,

r1 = 2, r2 = 3
5 . The corresponding metric shall be induced by the Euclidean embedding. As objective

functions let us consider the following, both expressed as functions on the parametrization domain,

f1(ϕ,ψ) = a(1− cosϕ) + b[(ψ + π/2) mod (2π)− π]2 ,

f2(ϕ,ψ) = a(1− cosϕ) + bdist(ϕ,Φψ)2 ,

where we use (a, b) = (1, 40) and for all ψ ∈ [−π, π], Φψ is a discrete set such that {(ϕ,ψ) ∈ [−π, π]2 : ϕ ∈
Φψ} describes a shortest curve winding five times around the torus and passing through (ϕ,ψ) = (0, 0)
(compare Figure 1, right). Both functions may be slightly altered so that they are smooth all over the
torus.

f1 exhibits a narrow valley that is aligned with geodesics of the parametrization domain, while the
valleys of f2 follow a geodesic path on the torus. Obviously, an optimization based on the (Euclidean)
metric and (straight line) geodesic retractions of the parametrization domain is much better in following
the valley of f1 than an optimization based on the actual torus metric (Figure 1). For f2 the situation
is reverse. This phenomenon is also reflected in the iteration numbers until convergence (Table 1). It
is not very pronounced for methods which converge after only few iterations, but it is very noticeable
especially for gradient descent and nonlinear conjugate gradient iterations.
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objective f1 objective f2
parametr. metric torus metric parametr. metric torus metric

gradient descent 213 890 9537 2212
Newton descent 22 28 38 29
BFGS quasi-Newton 16 28 55 69
Fletcher–Reeves NCG 34 120 98 29

Table 1: Iteration numbers for minimization of f1 and f2 with different methods. The iteration is stopped
as soon as ‖(∂fi∂ϕ ,

∂fi
∂ψ )‖`2 < 10−3. As retractions we use the exponential maps with respect to the metric

of the parametrization domain and of the torus, respectively. The BFGS and NCG method employ the
corresponding parallel transport.

0 50 100 150

10
−6

10
−4

10
−2

10
0

iteration number

Figure 2: Evolution of distance d to the global minimizer (ϕ,ψ) = (0, 0) of f2 for different methods,
starting from (ϕ,ψ) = ( 1

10 ,
1
10 ). The thick dashed and solid line belongs to Riemannian gradient descent

and Riemannian BFGS descent (with Tk being parallel transport), respectively. The thin lines show the
evolution for Riemannian BFGS descent, where Tk is parallel transport concatenated with a rotation by
ω for ω = 1

100 (solid), ω = d
10 (dashed), ω = 2

5

√
d (dotted), and ω = 1

5 log(− log d) (dot-dashed).

Of course, the qualitative convergence behavior stays the same (such as linear convergence for gradient
descent or superlinear convergence for the BFGS method), independent of the employed retractions.
Therefore it sometimes pays off to choose rapidly computable retractions over retractions that minimize
the number of optimization steps. We might for example minimize f1 or f2 using the torus metric but non-
geodesic retractions Rx : TxM → M, v 7→ y(y−1(x) + Dy−1v) (a straight step in the parametrization
domain, where y was the parameterization). The resulting optimization will behave similarly to the
optimization based on the (Euclidean) metric of the parametrization domain, and indeed, the Fletcher–
Reeves algorithm requires 47 minimization steps for f1 and 83 for f2.

As a final discussion based on the illustrative torus example, consider the conditions on the vector
transport Tk for the BFGS method. It is an open question whether the isometry of Tk is really needed
for global convergence in Proposition 10. On compact manifolds such as the torus this condition is not
needed since the sequence of iterates will always contain a converging subsequence so that global con-
vergence follows from Proposition 12 instead of Proposition 10. A counterexample, showing the necessity
of isometric transport, will likely be difficult to obtain. On the other hand, we can numerically validate
the conditions on Tk to obtain superlinear convergence. Figure 2 shows the evolution of the distance
between the current iterate xk and x∗ = arg min f2 for the BFGS method with varying Tk. In partic-
ular, we take Tk to be parallel transport concatenated with a rotation by some angle ω that depends
on dist(xk, x

∗). The term ‖T−1∗,k+1TkT∗,k − id‖ in Proposition 12 and Corollary 13 then scales (at least)
like ω. Apparently, the superlinear convergence seems to be retained for ω ∼ dist(xk, x

∗) as well as
ω ∼

√
dist(xk, x∗), which is better than predicted by Corollary 13. (This is not surprising, though,

since ‖T−1∗,k+1TkT∗,k − id‖ ∼
√

dist(xk, x∗) combined with superlinear convergence of xk can still satisfy

the conditions of Proposition 12.) However, for constant ω and ω ∼ 1
log(− log(dist(xk,x∗)))

, convergence is

indeed only linear. Nevertheless, convergence is still much faster than for gradient descent.
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4.2 Riemannian optimization in the space of smooth closed curves

Riemannian optimization on the Stiefel manifold has been applied successfully and efficiently to several
linear algebra problems, from low rank approximation [7] to eigenvalue computation [18]. The same
concepts can be transferred to efficient optimization methods in the space of closed smooth curves, using
the shape space and description of curves introduced by Younes et al. [26]. They represent a curve
c : [0, 1]→ C ≡ R2 by two functions e, g : [0, 1]→ R via

c(θ) = c(0) +
1

2

∫ θ

0

(e+ ig)2 dϑ .

The conditions that the curve be closed, c(1) = c(0), and of unit length, 1 =
∫ 1

0
|c′(θ)|dθ, result in the

fact that e and g are orthonormal in L2([0, 1]), thus (e, g) forms an element of the Stiefel manifold

St(2, L2([0, 1])) =
{

(e, g) ∈ L2([0, 1]) : ‖e‖L2([0,1]) = ‖g‖L2([0,1]) = 1, (e, g)L2([0,1]) = 0
}
.

The Riemannian metric of the Stiefel manifold can now be imposed on the the space of smooth closed
curves with unit length and fixed base point, which was shown to be equivalent to endowing this shape
space with a Sobolev-type metric [26].

For general closed curves we follow Sundaramoorthi et al. [22] and represent a curve c by an element
(c0, ρ, (e, g)) of R2 × R× St(2, L2([0, 1])) via

c(θ) = c0 +
exp ρ

2

∫ θ

0

(e+ ig)2 dϑ .

c0 describes the curve base point and exp ρ its length. (Note that Sundaramoorthi et al. choose c0 as
the curve centroid. Choosing the base point instead simplifies the notation a little and yields the same
qualitative behavior.) Sundaramoorthi et al. have shown the corresponding Riemannian metric to be
equivalent to the very natural metric

g[c](h, k) = ht · kt + λlh
lkl + λd

∫
[c]

dhd

ds
· dkd

ds
ds

on the tangent space of curve variations h, k : [c] → R2, where [c] is the image of c : [0, 1] → R2, s
denotes arclength, and λl, λd > 0. Here, ht and hl are the Gâteaux derivatives of the curve centroid (in
our case the base point) and the logarithm of the curve length for curve variation in direction h, and
hd = ht + hl(c− c0) (analogous for k). By [10] this yields a geodesically complete shape space in which
there is a closed formula for the exponential map [22], lending itself for Riemannian optimization. (Note
that simple L2-type metrics in the space of curves can in general not be used since the resulting spaces
usually are degenerate [15]: They exhibit paths of arbitrarily small length between any two curves.)

To illustrate the efficiency of Riemannian optimization in this context we consider the task of image
segmentation via active contours without edges as proposed by Chan and Vese [8]. For a given gray scale
image u : [0, 1]2 → R we would like to minimize the objective functional

f([c]) = a1

(∫
int[c]

(ui − u)2 dx+

∫
ext[c]

(ue − u)2 dx

)
+ a2

∫
[c]

ds ,

where a1, a2 > 0, ui and ue are given gray values, and int[c] and ext[c] denote the interior and exterior
of [c]. The first two terms indicate that [c] should enclose the image region where u is close to ui and far
from ue, while the third term acts as a regularizer and measures the curve length.

We interpret the curve c as an element of the above Riemannian manifold R2 × R× St(2, L2([0, 1]))
and add an additional term to the objective functional that prefers a uniform curve parametrization.
The objective functional then reads

f(c0, ρ, (e, g)) = a1

(∫
int[(c0,ρ,(e,g))]

(ui − u)2 dx+

∫
ext[(c0,ρ,(e,g))]

(ue − u)2 dx

)
+a2 exp(ρ)+a3

∫ 1

0

(e2+g2)2 dϑ ,
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Figure 3: Curve evolution during BFGS minimization of f . The curve is depicted at steps 0, 1, 2, 3, 4,
7, and after convergence. Additionally we show the evolution of the function value f(ck)−minc f(c).

non-geodesic retr. geodesic retr.
gradient flow 4207 4207
gradient descent 1076 1064
BFGS quasi-Newton 44 45
Fletcher–Reeves NCG 134 220

Table 2: Iteration numbers for minimization of f with different methods. The iteration is stopped as
soon as the derivative of the discretized functional f has `2-norm less than 10−3. For the gradient flow
discretization we employ a stepsize of 0.001, which is roughly the largest stepsize for which the curve
stays within the image domain during the whole iteration.

where we choose (a1, a2, a3) = (50, 1, 1). For numerical implementation, e and g are discretized as
piecewise constant functions on an equispaced grid over [0, 1], and the image u is given as pixel values
on a uniform quadrilateral grid, where we interpolate bilinearly between the nodes.

Figure 3 shows the curve evolution for a particular example. Obviously, the natural metric ensures
that the correct curve positioning, scaling, and deformation take place quite independently. Correspond-
ing iteration numbers are shown in Table 2. In one case we employed geodesic retractions with parallel
transport (simple formulae for which are based on the matrix exponential [22]), in the other case we used

R(c0,ρ,(e,g))(δc0, δρ, (δe, δg)) = (c0 + δc0, ρ+ δρ,ΠSt(2,L2([0,1]))(e+ δe, g + δg) ,

T(c10,ρ1,(e1,g1)),(c20,ρ2,(e2,g2))
(δc0, δρ, (δe, δg)) = (δc0, δρ,ΠT(e2,g2)St(2,L

2([0,1]))(δe, δg)) ,

where ΠS denotes the orthogonal projection onto S ⊂ (L2([0, 1]))2. Due to the closed-form solution
of the exponential map there is hardly any difference in computational costs. Riemannian BFGS and
nonlinear conjugate gradient iteration yield much faster convergence than gradient descent. Gradient
descent with step size control in turn is faster than gradient flow (which in numerical implementations
corresponds to gradient descent with a fixed small step size), which is the method employed in [22], so
that the use of higher order methods such as BFGS or NCG will yield a substantial gain in computation
time.

Figure 4 shows experiments for different weights inside the metric. We vary λd and the ratio λd
λl

by
the factor 16. Obviously, a larger λd ensures a good curve positioning and scaling before starting major
deformations. Small λd has the reverse effect. The ratio between λd and λd

λl
decides whether first the

scaling or the positioning is adjusted.
To close this example, Figure 5 shows the active contour segmentation on the widely used cameraman

image. Since the image contains rather sharp discontinuities, the derivatives of the objective functional
exhibit regions of steep variations. Nevertheless, the NCG and BFGS method stay superior to gradient
descent: While for the top example in Figure 5 the BFGS method needed 46 steps, the NCG iteration
needed 2539 and the gradient descent 8325 steps (the iteration was stopped as soon as the derivative of
the discretized objective functional reached an `2-norm less than 10−2). The cameraman example also
shows the limitations of the above shape space in the context of segmentation problems. Since we only
consider closed curves with a well-defined interior and exterior, we can only segment simply connected
regions. As soon as the curve self-intersects, we thus have to stop the optimization (compare Figure 5
bottom).
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Figure 4: Steps 0, 1, 3, 5 of the BFGS optimization, using different weights in the shape space metric
(top row: λd = 16; bottom row: λd = 1; left column: λd

λl
= 16; right column: λd

λl
= 1).

Figure 5: Segmentation of the cameraman image with different parameters (using the BFGS iter-
ation and λl = λd = 1). Top: (a1, a2, a3) = (50, 3 · 10−1, 10−3), steps 0, 1, 5, 10, 20, 46 are
shown. Middle: (a1, a2, a3) = (50, 8 · 10−2, 10−3), steps 0, 10, 20, 40, 60, 116 are shown. Bottom:
(a1, a2, a3) = (50, 10−2, 10−3), steps 0, 50, 100, 150, 200, 250 are shown. The curves were reparameter-
ized every 70 steps. The bottom iteration was stopped as soon as the curve self-intersected.
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4.3 Riemannian optimization in the space of truss shapes

Kilian et al. introduced a Riemannian shape space in [13], in which shapes are represented by meshes
with fixed connectivity. Each mesh consist of a number of vertices connected by thin rods (e. g. the edges
in a triangulated surface). The number of nodes as well as their connectivity stay the same throughout
the shape space so that each shape can be identified with an n-tuple S ∈ (R3)n of node positions in R3.

Let us denote the set of mesh edges by E , i. e., for two node indices p, q ∈ N, let (p, q) ∈ E express the
fact that the corresponding nodes are connected by a rod. Their positions in a shape S will be denoted
Sp and Sq. As already mentioned, (R3)n is interpreted as the manifoldM of shapes so that the tangent
space toM at a shape S is given by TSM = (R3)n, the vector space of all node position variations. For
S ∈ M, Kilian et al. introduce the Riemannian metric

gS(·, ·) : TSM× TSM→ R, gS(v, w) = v · w + β
∑

(p,q)∈E

((vp − vq) · (Sp − Sq)) ((wp − wq) · (Sp − Sq)) ,

where the dot denotes the Euclidean inner product and vp, vq, wp, wq are the displacements of nodes p
and q, respectively. The weight β > 0 specifies the penalization of isometry violations: For a curve
t 7→ S(t) ∈ M, (Ṡp − Ṡq) · (Sp − Sq) is the rate at which the squared distance between node p and q
changes. Hence, the above sum over E vanishes for v or w being the velocity of a curve inM along which
the shapes stay isometric to each other (i. e. all edges keep their initial length).

Given an objective function f , one can choose whether to neglect the Riemannian structure and
perform a standard optimization in Euclidean space (R3)n or whether to perform a truly Riemannian
optimization onM as proposed in this article. Of course, as discussed in Section 4.1, using the Rieman-
nian structure of M does only make sense if it is sufficiently compatible with the objective function.
Here, let us consider the following exemplary energy: Assume a meshed cuboid to be given such as the
top left shape in Figure 6, and assume its rods to be elastic. If both ends are rotated relative to each
other, all rods deform, which costs elastic energy. As objective functional, we choose this elastic energy
plus a potential that causes the twisting,

f(S) =
∑

(p,q)∈E

(|Sp − Sq| − |S0p − S0q |)2 + α
∑
p∈N

(Sp,23 − (xp2, x
p
3))2 ,

where S0 is the initial cuboid, N is the set of nodes at both cuboid ends, Sp,23 denotes the second and
third coordinate of the point Sp, and xpi are prescribed coordinate values. In our experiments we employ
α = 104. This energy models the situation that for a given shape we seek a deformed version which
satisfies certain constraints but is as isometric to the original as possible.

Note that the above energy is not necessarily suited for optimization in a Riemannian metric. It is
an elastic energy which compares each shape S with a reference configuration S0, independent of any
path in M connecting S with S0. Nevertheless, the optimization benefits considerably from exploiting
the above Riemannian metric, as can be seen in Figure 6. The Euclidean gradient descent in (R3)n

completely ignores that we are looking for a near-isometric deformation of the initial shape, while the
Riemannian gradient descent with geodesic retractions produces only near-isometric shapes right from
the start. The energy decrease of the purely Euclidean method is so slow that it definitely pays off
to employ the Riemannian method, despite the additional costs for computing a geodesic in each step
(without code optimization, each step of the Riemannian method takes about 60 times as long as a
Euclidean step). The runtime is considerably improved if we use a Riemannian gradient descent with
non-geodesic retractions RS(δS) = S + δS, however, the intermediate shapes are visually less appealing
(since infinitesimal rotations are extended linearly in each step, producing an upscaling of shape parts
which can hardly be remedied based on gradients with respect to the isometry-enforcing metric).

Without additional cost we can perform a geodesic nonlinear conjugate gradient iteration, which
strongly outperforms the gradient descent. (From Figure 6 one can also see that it outperforms the
non-Riemannian NCG- or BFGS-method in terms of iterations, though one has to admit that with non-
optimized code, each step of the Riemannian method takes roughly 60 times longer due to the higher
computational costs per step.) However, the use of a BFGS quasi-Newton method is quite restricted due
to the additional costs of computing vector transports. Thus, for experiments with the BFGS method
let us restrict to a two-dimensional example. This time, the potential part in the objective energy shall
induce a bending deformation (Figure 7). Table 3 shows iteration numbers for different shape discretiza-
tions. Newton’s method seems rather independent of the shape resolution. Likewise, if the Hessian
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Figure 6: Left: Objective function f (top) and elastic energy (bottom) during minimization of f via
geodesic gradient descent on M (thick solid), Euclidean gradient descent in (R3)n (solid), gradient
descent on M with non-geodesic retractions RS(δS) = S + δS (dotted), geodesic and non-Riemannian
NCG (thick and thin dashed), and geodesic and non-Riemannian BFGS iteration (thick and thin dash-
dotted). In the top graph, the energy values have been shifted by −min f . In the bottom graph, the
curve for the NCG method lies on top of the curve for geodesic gradient descent. Note that the BFGS
method ends up in a local minimum and thus does not achieve the least elastic energy. Right: First
to third and 200th shape of the geodesic (top), the Euclidean (middle), and the non-geodesic gradient
descent (bottom). Only for the first shape all involved edges are displayed.

Figure 7: Initial and final shape of the optimization for different discretization resolutions.

approximation in the BFGS method is initialized with the true Hessian, the iteration numbers of the
geodesic BFGS method stay also roughly constant. However, if the Hessian approximation is initialized
with the Riemannian metric, then the iteration numbers increase with refined discretizations. This is
related to the condition on the initial Hessian approximation B̂0 for superlinear convergence (Proposi-
tion 12). While the norm of ∇2f(x∗) − T ∗∗,0B̂0T∗,0 stays roughly the same for different discretizations,
its nuclear norm increases with the number of degrees of freedom.

5 Conclusion

We analysed the convergence of the BFGS quasi-Newton method and the Fletcher–Reeves conjugate
gradient iteration on Riemannian manifolds. These methods compute a search direction based on the
search directions at past iterates. Since these previous search directions lie in different tangent spaces, the
methods require a vector transport between the different tangent spaces. The BFGS method converges
superlinearly, if this vector transport is isometric and the transport along a triangle is sufficiently close
to the identity (more precisely, near the optimum, the vector transport between two consecutive iterates
must be sufficiently approximable by a vector transport from one iterate to the optimum and back from
the optimum to the other iterate). On compact manifolds, the isometry condition can be dropped, but
it is unclear whether it might also be unnecessary on non-compact manifolds.

The Riemannian optimization methods were applied to example problems in the context of Rieman-
nian shape spaces, where they proved to be appropriate optimization tools. To the authors’ knowledge,
such applications have not been considered before, and it seems that there is some potential to be ex-
ploited in this area by using Riemannian linesearch algorithms instead of for instance the commonly
used gradient flow. Of course, there is still much room to improve the computational efficiency of the
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node number Newton descent BFGS with Hessian BFGS without Hessian
10 3 4 57
27 3 5 70
52 7 6 102
85 7 6 118

Table 3: Steps until convergence for the different discretizations from Figure 7, using Newton’s method,
the BFGS iteration with B0 being the true Hessian, and the BFGS iteration with B0 being the metric.
The last method was not started from the initial shape depicted in Figure 7, but rather from a shape close
to the final one. Iterations were stopped as soon as the `2-norm of ∇f decreased below a fixed threshold.
To make the iteration numbers comparable, the terms inside the objective function were rescaled so as
to be independent of the discretization.

algorithms even in the rather simple shape spaces considered here. In particular, arising questions are
how to most efficiently approximate geodesics and parallel transport or how to devise rapidly computable
retractions which fit to the given optimization problems. Furthermore, it will be interesting to test the
methods on a greater variety of (perhaps more elaborate and diverse) shape spaces.
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A Proofs of BFGS convergence and convergence rate

Proof of Proposition 10. The eigenvalue estimates of Corollary 3 are replaced by estimates on the trace
and determinant of the B̂k (the Lax–Milgram representations of the Bk). Define the angle θk, the
Rayleigh quotient qk, and an averaged Hessian Gk as

cos θk =
Bk(sk, sk)

‖sk‖xk ‖Bk(sk, ·)‖xk
, qk =

Bk(sk, sk)

‖sk‖2xk
, Gk =

∫ 1

0

D2fRxk(tsk) dt .

Obviously, Gk(sk, ·) = yk and m ‖v‖2xk ≤ Gk(v, v) ≤ M ‖v‖2xk for all v ∈ TxkM. Let Ĝk be the Lax–
Milgram representation of Gk, then

‖yk‖2xk
yksk

=
Gk(

√
Ĝksk,

√
Ĝksk)∥∥∥√Ĝksk∥∥∥2
xk

≤M ,
yksk

‖sk‖2xk
=
Gk(sk, sk)

‖sk‖2xk
≥ m.

Furthermore, let ŷk be the Riesz representation of yk and define Ak+1 = Tk · · ·T0
√
B̂−10 T ∗0 · · ·T ∗k , then

A0B̂0A0 = id and thus, by induction, AkB̂kAk−id is of trace class for all k. In particular, tr(AkB̂kAk−id)
and det(AkB̂kAk) are well-defined with

tr(Ak+1B̂k+1Ak+1 − id) = tr

(
Ak

[
B̂k −

Bk(sk, ·)B̂ksk
Bk(sk, sk)

+
yk(·)ŷk
yksk

]
Ak − id

)

= tr(AkB̂kAk − id)−

∥∥∥AkB̂ksk∥∥∥2
xk

Bk(sk, sk)
+
‖Akŷk‖2xk
yksk

≤ tr(AkB̂kAk − id)− qk

‖B̂0‖ cos2 θk
+
∥∥∥B̂−10

∥∥∥M ,
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det(Ak+1B̂k+1Ak+1) = det

(
Ak

[
B̂k −

Bk(sk, ·)B̂ksk
Bk(sk, sk)

+
yk(·)ŷk
yksk

]
Ak

)

= det

(
Ak

√
B̂k[I − s⊗ s + y⊗ y]

√
B̂kAk

)
= det(AkB̂kAk) det(I − s⊗ s + y⊗ y)

= det(AkB̂kAk)(1+λ1)(1+λ2) = det(AkB̂kAk)
yksk

Bk(sk, sk)
= det(AkB̂kAk)

yksk

qk ‖sk‖2xk
≥ m

qk
det(AkB̂kAk) .

where we have used the abbreviations s =
√
B̂ksk/

√
Bk(sk, sk), y = B̂

− 1
2

k yk
√
yksk, λ1,2 = gxk(s, s) +

gxk(y, y)±
√

(gxk(s, s) + gxk(y, y))2 − gxk(s, y)2 (the two nonzero eigenvalues of−s⊗s+y⊗y) as well as the
fact that isometries leave the determinant and trace unchanged, the definition det(I+B) = Πi(1+λi(B))
for trace class operators B [20, Chp. 3] (where λi(B) are the corresponding eigenvalues), and the product
rule for determinants [20, Thm. 3.5]. Next, define Ψ(B̂) = tr(B̂ − id)− log det B̂, which is non-negative
for positive definite B̂ by Lidskii’s theorem [20, Thm. 3.7]. By induction,

0 ≤ Ψ(Ak+1B̂k+1Ak+1) ≤ Ψ(A0B̂0A0)

+

k∑
i=0

(
(
∥∥∥B̂−10

∥∥∥M − logm− 1) + log(‖B̂0‖ cos2 θi) +

[
1− qi

‖B̂0‖ cos2 θi
+ log

qi

‖B̂0‖ cos2 θi

])
.

We now show that for any 0 < r < 1 there are constants κ, ρ, σ > 0 such that for any k ∈ N there are at
least br(k + 1)c indices i in {0, . . . , k} with cos θi ≥ κ and ρ ≤ qi

cos θi
≤ σ. Let us abbreviate

ηi = − log(‖B̂0‖ cos2 θi)− li = − log(‖B̂0‖ cos2 θi)−

[
1− qi

‖B̂0‖ cos2 θi
+ log

qi

‖B̂0‖ cos2 θi

]
and denote the br(k + 1)cth smallest among η0, . . . , ηk by ηk. Now let I = {i ∈ {0, . . . , k} : ηi > ηk}.
For all br(k + 1)c indices i ∈ {0, . . . , k} \ I we have

ηi ≤ ηk ≤
1

|I|
∑
j∈I

ηj ≤
1

1− r
1

k + 1

k∑
j=0

ηj ≤
1

1− r

(
Ψ(id)

k + 1
+ (
∥∥∥B̂−10

∥∥∥M − logm− 1)

)
≤ c

for some constant c, where the second last inequality comes from the estimate for Ψ(Ak+1B̂k+1Ak+1)
above. Hence, log(‖B̂0‖ cos2 θi) and li must be bounded from below for these indices i, from which we

first obtain

√
‖B̂0‖ ≥

√
‖B̂0‖ cos θi ≥ exp −c2 =:

√
‖B̂0‖κ and then also boundedness of qi

cos θi
above and

below by some σ and ρ (due to the concavity and continuity of g(x) = 1−x+ log x with g(x)→ −∞ for
x→ 0 and x→∞). Furthermore, for the same indices i, (1b) implies −c2Df(xi)pi ≥ −DfRxi (αipi)pi =

−Df(xi)pi − αi
∫ 1

0
D2fRxi (tαipi)(pi, pi) dt ≥ −Df(xi)pi − αiM ‖pi‖2xi so that

αi ≥ −
Df(xi)pi

‖pi‖2xi

1− c2
M

=
1− c2
M

qi ≥
1− c2
M

κρ .

Equation (1a) then implies

f(xi)− f(xi+1) ≥ −αic1Df(xi)pi ≥
1− c2
M

κρc1
cos2 θi
qi

‖Df(xi)‖2xi ≥
1− c2
M

κρc1
κ

σ
2m(f(xi)− f(x∗)) ,

where in the last step we used f(x) − f(x∗) ≤ 1
2m ‖Df(x)‖2x, which follows from separately minimizing

for x̂ ∈M the right-hand and the left-hand side of the inequality

f(x̂)− f(x) = Df(x)R−1x (x̂) +
1

2
D2fRx(tR−1x (x̂))(R−1x (x̂), R−1x (x̂)) ≥ Df(x)R−1x (x̂) +

m

2

∥∥R−1x (x̂)
∥∥2
x

with some t ∈ [0, 1]. Due to the monotonicity of the f(xk) and the above estimates for the br(k + 1)c
indices i with ηi ≤ ηk, we arrive at

f(xk)− f(x∗) ≤
(

1− 1− c2
M

c1
κ2ρ

σ
2m

)br(k+1)c

(f(x0)− f(x∗)) ∀k ∈ N .
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(From the non-negativity of f(xk)− f(x∗) and f(x0)− f(x∗) we additionally see that the bounds σ and
ρ satisfy σ

ρ ≥
1−c2
M c1κ

22m.)

Proof of Proposition 12. Let us define G = ∇2f(x∗) as well as

s̃k = G
1
2T−1∗,ksk , ỹk = G−

1
2T ∗∗,kŷk , B̃k = G−

1
2T ∗∗,kB̂kT∗,kG

− 1
2 , TG,k = G

1
2T−1∗,kT

−1
k T∗,k+1G

− 1
2 ,

where (as before) ŷk and B̂k are the Riesz and Lax–Milgram representation of yk and Bk. Note

B̃k+1 = T ∗G,k

[
B̃k −

gx∗(B̃ks̃k, ·)B̃ks̃k
gx∗(B̃ks̃k, s̃k)

+
gx∗(ỹk, ·)ỹk
gx∗(ỹk, s̃k)

]
TG,k

as well as tr(T ∗G,kBTG,k) = trB + tr((T ∗G,k − id)B) + tr(B(TG,k − id)) + tr((T ∗G,k − id)B(TG,k − id)) for
any trace class operator B : Tx∗M→ Tx∗M so that

tr(T ∗G,kBTG,k) ≤ trB + ‖B‖1
(

2
∥∥∥G 1

2

∥∥∥ ∥∥∥G− 1
2

∥∥∥ δk + ‖G‖
∥∥G−1∥∥ δ2k) ≤ trB + C ‖B‖1 δk (8)

with δk =
∥∥∥T−1∗,kT−1k T∗,k+1 − id

∥∥∥, where C is chosen large enough so that the above holds for all k. In

the above we have used that trace and nuclear norm can be expressed as trB =
∑
i gx∗(ei, Bei) and

‖B‖1 =
∑
i |gx∗(ei, Bei)| for any orthonormal basis (ei)i of Tx∗M so that trB ≤ ‖B‖1 and ‖AB‖1 =∑

i |gx∗(ei, ABei)| ≤ ‖A‖
∑
i |gx∗(ei, Bei)| = ‖A‖ ‖B‖1 for any bounded operator A : Tx∗M → Tx∗M.

Furthermore, let Ĝk be the Lax–Milgram representation of Gk from the proof of Proposition 10, then

‖ỹk − s̃k‖x∗ =
∥∥∥G− 1

2 (T ∗∗,kĜkT∗,k −G)G−
1
2 s̃k

∥∥∥
x∗
≤ cεk ‖s̃k‖x∗

with c =
∥∥G−1∥∥ and εk =

∥∥∥T ∗∗,kĜkT∗,k −G∥∥∥. We deduce

m̃k :=
gx∗(ỹk, s̃k)

‖s̃k‖2x∗
≥ 1− cεk , M̃k :=

‖ỹk‖2x∗
gx∗(ỹk, s̃k)

≤ 1 + cεk

for k large enough, which follows from ‖ỹk‖2x∗−2gx∗(ỹk, s̃k)+‖s̃k‖2x∗ = ‖ỹk − s̃k‖2x∗ ≤ c2ε2k ‖s̃k‖
2
x∗ as well

as |‖ỹk‖x∗ − ‖s̃k‖x∗ | ≤ ‖ỹk − s̃k‖x∗ ≤ cεk ‖s̃k‖x∗ so that (1− cεk) ‖s̃k‖x∗ ≤ ‖ỹk‖x∗ ≤ (1 + cεk) ‖s̃k‖x∗ .
Next, let us introduce

q̃k =
gx∗(s̃k, B̃ks̃k)

‖s̃k‖2x∗
, cos θ̃k =

gx∗(s̃k, B̃ks̃k)

‖s̃k‖x∗
∥∥∥B̃ks̃k∥∥∥

x∗

.

Using
∥∥∥T ∗G,kBTG,k∥∥∥

1
=
∥∥∥B+(T ∗G,k−id)B+B(TG,k−id)+(T ∗G,k−id)B(TG,k−id)

∥∥∥
1
≤‖B‖1+

∥∥∥(T ∗G,k−id)B
∥∥∥
1
+

‖B(TG,k − id)‖1 +
∥∥∥(T ∗G,k − id)B(TG,k − id)

∥∥∥
1
≤ ‖B‖1 + ‖B‖1

(
2
∥∥∥G 1

2

∥∥∥ ∥∥∥G− 1
2

∥∥∥ δk + ‖G‖
∥∥G−1∥∥ δ2k) ≤

‖B‖1 + C ‖B‖1 δk for any trace class operator B, the nuclear norm of B̃k+1 − id can be bounded as
follows,∥∥∥B̃k+1 − id

∥∥∥
1

=

∥∥∥∥∥T ∗G,k
[
B̃k − id− gx∗(B̃ks̃k, ·)B̃ks̃k

gx∗(B̃ks̃k, s̃k)
+
gx∗(ỹk, ·)ỹk
gx∗(ỹk, s̃k)

]
TG,k + T ∗G,kTG,k − id

∥∥∥∥∥
1

≤
∥∥T ∗G,kTG,k − id

∥∥
1

+ (1 + Cδk)

(∥∥∥B̃k − id
∥∥∥
1

+
q̃k

cos2 θ̃k
+ M̃k

)
≤
∥∥∥B̃0 − id

∥∥∥
1

k∏
i=0

(1 + Cδi) +

k∑
j=0

[∥∥T ∗G,jTG,j − id
∥∥
1

+ (1 + Cδj)

(
q̃j

cos2 θ̃j
+ M̃j

)]
k∏

i=j+1

(1 + Cδi) .

Now use
∏k
i=j(1 + Cδi) ≤

∏∞
i=0(1 + Cδi) = exp(

∑∞
i=0 log(1 + Cδi)) ≤ exp(C

∑∞
i=0 δi) < ∞ as well as∥∥∥T ∗G,kTG,k − id

∥∥∥
1

=
∥∥∥G− 1

2 (T ∗GT −G)G−
1
2

∥∥∥
1
≤
∥∥G−1∥∥ ‖(T − id)∗G(T − id) +G(T − id) + (T − id)∗G‖1
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≤ ‖G‖
∥∥G−1∥∥ ‖T‖ (2 + bβk)bβk for T ≡ T−1∗,kT

−1
k T∗,k+1 to obtain

∥∥∥B̃k+1 − id
∥∥∥
1
≤ ζ

1 +

k∑
j=0

(
q̃j

cos2 θ̃j
+ M̃j

)
for some ζ > 0. We now bound the trace and determinant of B̃k+1, similarly to the proof of Proposi-
tion 10. By (8) and induction,

tr(B̃k+1 − id) = tr

[
T ∗G,kTG,k − id + T ∗G,k

[
B̃k − id− gx∗(B̃ks̃k, ·)B̃ks̃k

gx∗(B̃ks̃k, s̃k)
+
gx∗(ỹk, ·)ỹk
gx∗(ỹk, s̃k)

]
TG,k

]

≤ tr(T ∗G,kTG,k − id) +

(
tr(B̃k − id)− q̃k

cos2 θ̃k
+ M̃k

)
+ Cδk

(∥∥∥B̃k − id
∥∥∥
1

+
q̃k

cos2 θ̃k
+ M̃k

)
≤ tr(B̃0−id)+

k∑
j=0

[∥∥T ∗G,jTG,j−id
∥∥
1
− q̃j

cos2 θ̃j
(1−Cδj)+M̃j(1+Cδj)+Cδjζ

(
1+

j−1∑
i=0

(
q̃i

cos2 θ̃i
+M̃i

))]

≤ η +

k∑
j=0

− q̃j

cos2 θ̃j

1− Cδj − Cζ
k∑

i=j+1

δi

+ M̃j

1 + Cδj + Cζ

k∑
i=j+1

δi

 ,
log det B̃k+1 = log det(T ∗G,kTG,k) + log

[
det B̃k

m̃k

q̃k

]
= log det B̃0 +

k∑
j=0

(
log det(T ∗G,jTG,j) + log

m̃j

q̃j

)
,

where η is a constant. Thus, for Ψ(B̃k+1) = tr(B̃k+1 − id)− log det B̃k+1 ≥ 0 we obtain

0 ≤ Ψ(B̃k+1) ≤ η − log det B̃0 +

k∑
j=0

(
log cos2 θ̃j − log det(T ∗G,jTG,j)

)

+

k∑
j=0

(1− q̃j

cos2 θ̃j

)1− Cζ
k∑
i=j

δi

+ log
q̃j

cos2 θ̃j


+

k∑
j=0

(M̃j − 1)

1 + Cζ

k∑
i=j

δi

+ 2Cζ

k∑
i=j

δi − log m̃j


≤ ϑ+

k∑
j=K

(
cεjλ+ 2Cζ sup

i≥j

∥∥T−1∗,i T−1i T∗,i+1

∥∥ b βj

1− β
+ 2cεj +

∥∥∥T−1G,jT
−∗
G,j

∥∥∥ ∥∥T ∗G,jTG,j − id
∥∥
1

)

+

k∑
j=K

(1− q̃j

cos2 θ̃j

)1− Cζ
k∑
i=j

δi

+ log
q̃j

cos2 θ̃j

+

k∑
j=K

log cos2 θ̃j ,

where ϑ > 0 is some constant (depending on K ∈ N),
∑k
i=j δi ≤

∑k
i=j

∥∥T−1∗,i T−1i T∗,i+1

∥∥ bβi ≤
b supi≥j

∥∥T−1∗,i T−1i T∗,i+1

∥∥ βj

1−β , λ = 1 + Cζ
∑∞
i=0 δi, and we have used the above estimates on m̃j

and M̃j , detT = (detT−1)−1 ≥ exp(−
∥∥T−1 − id

∥∥
1
) ≥ exp(−

∥∥T−1∥∥ ‖T − id‖1) for T ≡ T ∗G,jTG,j
[20, Lem. 3.3], as well as −2a ≤ log(1 − a) for small a > 0. The first row of the right-hand side
is uniformly bounded above for all k by some constant γ due to

∑∞
j=0 εj < ∞,

∑∞
j=0 β

j < ∞,

and
∥∥∥T−1G,jT

−∗
G,j

∥∥∥ ≤ ∥∥∥T−1G,j

∥∥∥2 ≤ ‖G‖ ∥∥G−1∥∥ (1 + bβj). Denote by K the set of indices k ∈ N for

which the square-bracketed term is negative. The above inequality then can be transformed (using
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α(1− a) + log a ≤ α− 1− logα for all α, a > 0) into

−
∑

j∈K∩{K,...,k}

(1− q̃j

cos2 θ̃j

)1− Cζ
k∑
i=j

δi

+ log
q̃j

cos2 θ̃j

− k∑
j=K

log cos2 θ̃j

≤ γ+
∑

j∈{K,...,k}\K

(1− q̃j

cos2 θ̃j

)1− Cζ
k∑
i=j

δi

+ log
q̃j

cos2 θ̃j

 ≤ γ+

k∑
j=K

−Cζ k∑
i=j

δi − log

1− Cζ
k∑
i=j

δi


≤ γ +

∞∑
j=K

Cζ ∞∑
i=j

δi

2

≤ γ +

(
Cζb

1− β

)2 ∞∑
j=K

∥∥T−1∗,j T−1j T∗,j+1

∥∥2 β2j <∞ (9)

for K large enough and γ the constant introduced above. Here, we have used

−Cζ
k∑
i=j

δi−log

1− Cζ
k∑
i=j

δi

 ≤ −Cζ ∞∑
i=j

δi−log

1− Cζ
∞∑
i=j

δi

 =
1

2

Cζ ∞∑
i=j

δi

2+O

Cζ ∞∑

i=j

δi

3


where the last equality derives from Taylor expansion of x 7→ −x − log(1 − x) around x = 0. From the
limit k →∞ in (9) we deduce

cos2 θ̃k −→
k→∞

1 , q̃k −→
k→∞
k∈K

1 .

The limit
∑∞
i=j δi →j→∞ 0 and the definition of K furthermore imply

q̃k −→
k→∞
k/∈K

1 .

We now obtain∥∥∥Df(xk) + D2fRxk (0)(pk, ·)
∥∥∥
xk

‖pk‖xk
=

∥∥∥(D2fRxk (0)−Bk)(sk, ·)
∥∥∥
xk

‖sk‖xk
≤

∥∥∥(T−∗∗,kGT
−1
∗,k −∇2fRxk(0))sk

∥∥∥
xk

‖sk‖xk

+

∥∥∥T−∗∗,kG 1
2 (id− B̃k)s̃k

∥∥∥
xk∥∥∥T∗,kG− 1

2 s̃k

∥∥∥
xk

≤
∥∥∥T−∗∗,kGT−1∗,k −∇2fRxk(0)

∥∥∥ +
∥∥∥T−1∗,k∥∥∥2 ‖G‖

∥∥∥(id− B̃k)s̃k

∥∥∥
x∗

‖s̃k‖x∗
.

The last fraction equals
√

q̃2k
cos2 θ̃k

− 2q̃k + 1 and thus converges to zero for k →∞. The first term on the

right-hand side can be bounded above by∥∥∥∇2fRxk(R
−1
xk

(x∗))−∇2fRxk(0)
∥∥∥+

∥∥∥∇2fRxk(R
−1
xk

(x∗))− (T∗,kT
Rxk
xk,x∗

)−∗∇2fRxk(R
−1
xk

(x∗))(T∗,kT
Rxk
xk,x∗

)−1
∥∥∥

of which the first term converges to zero and the second can be rewritten as∥∥∥(T
Rxk
xk,x∗

)∗GT
Rxk
xk,x∗

− T−∗∗,kGT
−1
∗,k

∥∥∥ ≤ ∥∥∥T−1∗,k∥∥∥2 ∥∥∥(T
Rxk
xk,x∗

T∗,k)∗G(T
Rxk
xk,x∗

T∗,k)−G
∥∥∥

≤
∥∥∥T−1∗,k∥∥∥2 ∥∥∥TRxkxk,x∗

T∗,k − id
∥∥∥ ‖G‖ (2 +

∥∥∥id− TRxkxk,x∗
T∗,k

∥∥∥) −→
k→∞

0 ,

where we have used A∗GA−G = (id−A)∗G(id−A)−G(id−A)− (id−A)∗G.
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