Efficient Two-Party Secure Computation
on Committed Inputs

Stanistaw Jarecki and Vitaly Shmatikov

1 University of California, Irvine
2 The University of Texas at Austin

Abstract. We present an efficient construction of Yao’s “garbled distiproto-
col for securely computing any two-party circuit on commetinputs. The pro-
tocol is secure in a universally composable way in the prEseri malicious
adversaries under the decisional composite residuosiBR)Dand strong RSA
assumptions, in the common reference string model. The@obtequires a con-
stant nhumber of rounds (four-five in the standard model, ttwee in the ran-
dom oracle model, depending on whether both parties retieveutput) O(|C|)
modular exponentiations per player, and a bandwidt®@€'|) group elements,
where|C| is the size of the computed circuit.

Our technical tools are of independent interest. We propdsemomorphic, se-
mantically secure variant of the Camenisch-Shoup ver#iablptosystem, which
uses shorter keys, isnambiguougit is infeasible to generate two keys which
successfully decrypt the same ciphertext), and allowsieffiproofs that a com-
mitted plaintext is encrypted undecammitted key

Our second tool is a practical four-round (two-round in Rgitocol forcom-
mitted oblivious transfer orstrings (string-COT) secure against malicious par-
ticipants. The string-COT protocol takes a few exponeiatigst per player, and
is UC-secure under the DCR assumption in the common refergmiog model.
Previous protocols of comparable efficiency achieved eitoenmitted OT on
bits, or standard (non-committed) OT on strings.

1 Introduction

Informally, a two-party protocol for computing a circuitsscuref participants do not
learn anything from the protocol execution beyond whatveaéed by the output of the
circuit. In a seminal paper, Andrew Yao showed a “garbleduiit' protocol [Yao86]
for secure two-party computation (2PC) of any circuit in geni-honesinodel,i.e.,
assuming that participants faithfully follow the protoapecification. Yao’s protocol
requiresO(|C|) symmetric-key operations, and its bandwidt®i§C'|) symmetric-key
ciphertexts, in addition to the costofinstances of an oblivious transfer (OT) protocaol,
wheren is the size of the circuit’s inputs. Using a 2-round OT pratip¥ao’s protocol
takes only two communication rounds (assuming only onegplegceives the output).
The main contribution of this paper is a new variant of Yaa'stpcol, which re-
placesO(|C|) symmetric-key operations with(|C|) public-key operations, and at this
cost achieves security agaimsgliciousparticipants in the common reference string
(CRS) model. Specifically, our protocol operates on a miidégive groupZ: . where



n is a safe RSA modulus which satisfies DCR and strong RSA agsumspThe proto-
col requiresD(|C|) modular exponentiations, its bandwidthO¢|C|) elements it ,,

and it takes four rounds in the standard model and two in RObtddver, our protocol
is universally composable, and securely computes anyitsroncommittednputs.

A fundamental primitive in Yao’s protocol igblivious transfer(OT). Informally,
OT is a two-party protocol in which the receiver (a.k.a. tbhdoser”) receives a value
of his choice from among several values sent by the sendéle Vaarning nothing
about the other values. The sender does not learn anytrongtfie protocol, and in
particular he does not learn which of the values he sent waeved by the chooser.
Committed oblivious transfgCOT) is a variant of oblivious transfer, introduced by
Crépeau [Cré89] as a “verifiable OT,” in which both the semadnd the chooser are
committed to their inputs, and the oblivious transfer peateon the committed val-
ues. The second contribution of our paper is a hew protoecatdonmitted oblivious
transfer orstrings(“string-COT"). The protocol require®(1) exponentiations and has
the bandwidth ofO(1) elements irZ}., which is comparable to the cost of previous
protocols for standard (non-committed) OT on strings ovijmgs COT protocols that
operated only on bits. This new string-COT protocol is aleversally composable in
the CRS model.

A committedOT protocol secure against malicious players is a much meeéul
tool in a security protocol than a standard OT. For examplkeas the OT protocol runs
on committed inputs, it is fundamentally non-robust agametwork failures because
re-running the protocol after a failure allows the cheatiecgiver to learn both of the
sender’s values. Similarly, secutemmitted 2P@rotocol is a much more useful tool
than a standard 2PC protocol. In general, universally caaiple string-OT and general
2PCon committed datenakes it easy to ensure that multiple instances of theseqist
are executed on consistent inputs, for example as preddsijpsome larger protocol.

Technical roadmap.Both protocols we present in this paper, the protocol fousec
two-party computation on committed inputs (“committed 2P&nd the string-COT
protocol, rely on a modification of the verifiable encryptigimen by Camenisch and
Shoup [CSO03]. The efficiency of these two protocols is esaiyntiue to the very strong
properties that this encryption offers. We will refer to thiéginal scheme of [CS03]
asCS encryptionand we call our modificatiosCS encryptionwhere “s” stands for
both “short” and “simplified,” because the modification cists of (1) stripping off
the chosen-ciphertext security check in the CS encrypéaod,(2) using significantly
shorter private keys. Below we explain how several inténgsproperties of this en-
cryption enable the efficient string-COT and committed 2P&qzols.

The sCS encryption schemeaslditively homomorphid.e., given ciphertexts of
two values, one can obtain a ciphertext of their sum with@atrgpting the ciphertexts,
and it isverifiable i.e. there is a very efficient ZK proof system due to [CS03] for
showing that the encrypted message corresponds to a psivammmitted one. These
two features together enable an efficient string-COT pultdeirst, we use additive
homomorphism of the sCS encryption to build an efficient@eot for OT on strings in
a way that is similar to how Aiellet al.[AIR01] build a standardi(e., non-committed)
OT on strings from the multiplicatively homomaorphic EIGdmeacryption. Then, by
adapting the ZK proof systems given for the CS encryptior€ig(3], we add efficient



ZK proofs for showing that the parties run this string-OT tpml on the previously
committed inputs.

The sCS encryption has further useful properties whichmalisto extend the string-
COT protocol to an efficient committed 2PC protocol. Firstsiunambiguousin the
sense that it is committing not only to the plaintext, bubais the encryption key:
it is infeasible to produce a ciphertext that can be sucaéigsfecrypted, even to the
same plaintext, under two different decryption keys. Thégerty is crucial in the mali-
ciously secure version of Yao’s protocol. Otherwise, treypt who creates the garbled
circuit could embed all sorts of faults into the circuit.hitcircuit evaluator encounters
a fault which causes him to stop, the malicious player wékfeinformation about the
evaluator’s inputs that he is not supposed to learn.

Second, we extend the Camenisch-Shoup ZK proof system ftffieieret ZK proof
thata ciphertext encrypts a committed plaintext under a conachikiey (Technically,
this proof system is defined for a symmetric-key version efs8S encryption, where
the key is both an encryption and a decryption key.) This fsgstem is a crucial com-
ponent of proving that Yao's “garbled circuit” is formed cectly. Yao's construction
of the garbled circuit involves encrypting, for every ciitqyate, the keys corresponding
to the output wires under the keys corresponding to the infingts. In our version of
Yao’s protocol, the sender commits to the keys he createdvery circuit wire. For
the wires corresponding to the receiver’s inputs, the segeeds to the receiver the
appropriate key values using our efficient string-COT prot@perating on these com-
mitments. Furthermore, the sender must prove, for eachtbatehe ciphertexts that are
supposed to encrypt the appropriate output-wire keys uth@esppropriate input-wire
keys are formed correctly. This is accomplished precisglyhle above proof system,
because the input-wire keys appeakagsin these ciphertexts, while the output-wires
keys appear gslaintexts

Giving an efficient ZK proof system for this statement for gonersion of the CS
encryption scheme is an interesting technical challenggase in the CS cryptosystem
plaintexts and keys “live” in different groups (and are daton by different moduli).
It is not immediately obvious how to encrypt one CS encrypkey under another CS
encryption key and have an efficient proof of correctnessHisrencryption, because
the efficient proof systems given for the CS encryption regjthat the plaintext be
significantly smaller than the encryption key. One solutirio extend these proof
systems to handle larger plaintexts (hamely, plaintextthefsame size as the key),
using proofs of equality of elements of two different grouggsresented as integeesd,
[Bou00]). We propose a simpler solution based on the obsenvtnat, from the results
of Hastad, Schrift and Shamir [HSS93] on simultaneousdsitisity of exponentiation
in groups of unknown order, it follows that one can shortem phivate keys used in
the CS encryption tég—‘ bits. This significantly speeds up the CS encryption, buteno
importantly, this modification allows for a very efficient Zproof that a ciphertext
encrypts a&ommitted plaintextnder acommitted key

Organization of the paper. In Section 2 we discuss related work. In Section 3, we
describe our cryptographic toolkit. In Section 4, we présba string-COT protocol,
and in Section 5, the protocol for general two-party secorapgutation on committed
inputs. All proofs have been delegated to the full versiothefpaper.



2 Related Work on Constant-Round 2PC and Committed OT

2PC protocols. The first constructions for secure two-party computatios 4a0’s
“garbled circuits” protocol [Yao86] and the protocol of [GMB7]. Of the two, only
Yao’s protocol is constant-round, but secure only in theidemnest model. Most sub-
sequent constant-round protocols for secure computatitimei malicious model, such
as [Kil88,Lin03,K004], employ generic zero knowledge @of.e., proofs for any NP
statement). The overhead of this approach is likely to rarpabhibitive for practical
applications.

There are secure 2PC protocols that avoid generic zerolkdge proofs €.g,
see [JJO0,GMYO04] and references therein), but the rounchtexity of these proto-
cols is linear in the (boolean or arithmetic) circuit deg®m the other hand, Damgard
and Ishai [DI05] showed the first constant-roundlti-party protocol withO(|C|n2k)
bandwidth and computation (hereis the number of partieg; is the security param-
eter), assuming a trusted preprocessing stage, but thiscotds secure only with an
honest majority, and its techniquesd, verifiable secret sharing) do not seem applica-
ble to two-party computation.

2PC using verifiable encryption.Like our protocol, the constant-round 2PC protocol
of Cachin and Camenisch [CCO00] uses a verifiable public-keyyption scheme, but
unlike in our scheme, their zero-knowledge proofs requirat-and-choose repetitions
wheres is the statistical security parameter. Hence their 2P@pmdtequires(s|C|)
group elements in bandwidth and the same number of expatient (vs.O(|C|) in
our construction). It is worth mentioning, however, that oiphertexts are elements of
7y ,, for n satisfying the DCR and strong RSA assumptions, while [C@a0]use any
group where the Diffie-Hellman assumption holds.

2PC using cut-and-choose approachA recent series of works on efficient constant-
round 2PC protocols [Pin03,MF06,LP07,Wo007] shows thatisg in the malicious
model can be achieved by cut-and-choose verification ofritieeegarbled circuit, at the
cost of O(s|C| + s?n) [LPO7] or O(s|C|) [Woo07] symmetric-key operations, where
s is the statistical security parameter of cut-and-chooskrais the input size. These
cut-and-choose constructions probably require less ctatipo than our protocol to
achieve similar levels of security based on common assomgtbut our protocol may
require less bandwidth, especially for small circuits whsize is comparable to the
input size. Also, our protocol can be made non-interactihé random oracle model
at no extra cost, while the security parameterthe cut-and-choose solutions increases
if they are made non-interactive using the Fiat-Shamirils&ar

COT. Committed OT (COT) was introduced by Crépeau [Cré89], wliewas used to
construct a general 2PC protocol (but not constant-rousifetiowing the approach of
[GMW87]. Crépeau constructed COT using black-box invimees of 2(n?) OTs. This
was improved by [CvdGT95] t®)(n) OT’'s andO(n?) bit commitments. Both COT
protocols, however, operate on bits rather than stringse@an the concrete assump-
tions of Computational or Decisional Diffie-Hellman, Cranaad Damgéard [CD97]
and then Garagt al. [GMY04] give COT protocols which requir@(1) exponentia-
tions but still operate only on bits, while Camenisch andidafCCO00] give a string-



COT protocol, but it require® (k) modular exponentiations whefeis the security
parameter.

Lipmaa [Lip03] proposed to extend the (non-committed)ngv©OT protocol of
Aiello et al. [AIR01] to a committed OT protocol on strings at the cost(fl) ex-
ponentiations. While this protocol does ensure thatrdemivedstring is consistent
with the sender’s commitment, the sender can successtdigton the string that has
not been transferred during the OT. This can be used to breakseherivacy in
any application (such as 2PC) where the sender can obseethavtthe chooser suc-
cesfully completed the protocol. Stronger verifiabilityngaotentially be achieved by
extending this protocol with zero-knowledge proofs, b tesulting protocol would
not beat theD (k) modular exponentiations bound because the commitmentrezhe
(e.g, [CGHGNO1]) suggested in [Lip03] seem to have only cut-ahdese ZK proofs.

3 Cryptographic Tools

3.1 Camenisch-Shoup (CS) encryption scheme [CS03]

Common reference string A trusted third party generates a safe RSA modulaspq,
wherep = 2p'+1,q = 2¢'+1, |p| = |q|, p # ¢, andp, ¢, p’, ¢’ are all primes, a random
elementy’ in Z}, and an element = (¢’)?". The common reference string(s, g),
which also implicitly defines element = 1 + n. For standalone applications of CS
encryption, pain(n, g) can be thought of as part of the public key. However, placing
(n, g) inthe CRS enables soundness of some very useful proof systesnciated with
this encryption scheme,g, those used in our COT and 2PC protocols.

The grougZ?, defined by the safe RSA modulugan be decomposed into a cross-
product of four subgroup&: ., = G, x G,» x Go x T', where groug+,,, generated by
a = n + 1, has orden, groupG,,- has ordern’ = p'q¢’, andG, andT are subgroups
of order2. As one consequence of this structuréZgf , the above procedure of picking
g as a2n-power of a random element implies that, with an overwhegngrobability,

g is a generator of subgrou@, . In the following we treat all multiplications and
exponentiations as operationg4r)., unless stated otherwise.

Key generation. The private key is a random triple, z2, 25 chosen in[0, "TZ]. The
public key isPK = (n, g, g, b, f, hk) whereg = g™, h = ¢*2, f = ¢®3, andhk is a key
of a collision-resistant keyed hash functitn

Encryption. Consider plaintextn as an integer ifi—, 5]. (Note that one can encode
elementsn’ in Z, in this range asn = m' rem n, i.e, m = m’ if m" < % and

m = m’ —nif m" > §. Observe thain = m’ mod n.) A CS encryption ofim

under keyPK with label L, denotedCSenck . (m), is a tuple(u, e, v) whereu = g",
e = a™g", andv = abs((hf"t(weL))) for a randomly chosen € [0, 2]. Operation
abs(a) returnsa fora < 3 andn —a fora > 3.

Decryption. Given a ciphertextu, e, v), checkabs(v) = v andu?(@2+Hw(we,L)zs) —
v2. If this holds, computeh = (e/u®')2. Note thate/u® = o™ for correctly formed
ciphertexts. Ifin & («), i.e, if n does not dividen— 1, reject. Otherwise, set’ = mT‘l
(over the integers)p’ = m’/2 mod n, andm = m’ rem n.



This encryption is CCA secure under the DCR assumption anR&A moduli [CS03]:

Assumption 1 (DCR)[Pai99]: Given RSA modulus, random elements ¢f;, are
computationally indistinguishable from elements of a sabg formed byn-th powers
of elements iz, 3

3.2 Simplified Camenisch-Shoup (sCS) encryption scheme

The group settingn, g) is the same. Denote’ = @ and letk, k' be parameters that
control the quality of soundness and zero-knowledge of fggstems associated with
the sCS encryption. We require thdt + k' < k" andk < p’, ¢’. For 80-bit security,
one can také&” = 512 andk = k' = 80.

Key generation.The private key is: € [0,2%"]. The public key iy = ¢*.

Encryption. The sCS encryption under keyof m, an integer in[—%, 5], denoted

sCSenc, (m), is (u, e) s.t.e = a™y" mod n? andu = ¢ for a randonmr in [0, Z].
Decryption. Proceeds exactly like CS decryption, but omitting the CCAakts onv
(since there’s n@ here), and using instead ofr; in decrypting(u, e).

Apart from stripping the CCA check, the only difference beén CS and sCS encryp-
tion is the shortened private key. The fact that the schemaires semantically secure
with such modification follows from adapting the results HSS93] on simultaneous
bit security of exponentiation modulo a Blum integer (andi@ RSA modulus is Blum
integer) to exponentiation i’ ,.* It follows that under the factoring assumption, the
entire upper half of the bits of exponentis simultaneously hidden under the expo-
nentiation functiony = ¢* mod n?, and therefore key = ¢* for  random inZ,, is
indistinguishable frony = ¢* for  random in[0, @]. 5

Theorem 1. sCS encryption is semantically secure under DCR assumptisafe RSA
moduli.

Symmetric-key version of sCS encryption schemelhe sCS cryptosystem can also
be used as a symmetric encryption scheme if the private keyo, 2’“”] is treated as a
symmetric key. Encryption of. under keyz is a pair(e, u), wheree = a™u® mod n?,

u = g" for randomr € [0, %]. The decryption procedure does not change, nor does the
security of the encryption scheme.

Unambiguity of sCS encryption. We introduce a very strong notion ahambiguous
encryption which applies to both public-key and symmetric schemesays that a ci-
phertext that passes a certain proof system, derigifé¢hEnc, cannot decrypt to two
different plaintexts under two different private keys. Mover, no two distinct decryp-
tion keys can decrypt a ciphertext even to the same plainidadrefore, in an unam-
biguous encryption scheme, the ciphertext is committingomdy to the plaintext, but
also to the decryption key. This notion of encryption unaguliy is essential for our

% For the safe RSA moduli, the subgroup ofi-th residues iz » is the subgroufgs,,s x G2 x T'.
4 Cf. similar observation in [CGHGO01] for Paillier encrypticon which CS encryption is based.
5 Note that in this way one can also shorten keyszs in CS encryption and the randomness



version of Yao’s 2PC protocol, because otherwise a malicireator of the garbled
circuit could introduce errors in this circuit, and thenrleaomething extra about the
receiver’s inputs by observing whether the receiver siugfallg completes his compu-
tation on this circuit.

Definition 1. An encryption scheme isnambiguousf there exists a zero-knowledge
proof systenZKUnEnc s.t. for every efficient probabilistic algorithm, the following
event has only negligible probability: (13 outputs tupl€c, x1, x2) S.t.z1 # z2, (2) A
passes th&KUnEnc proof system on ciphertext(3) 1, x- are valid private keys,e.,
they are accepted by the decryption procedure, and (4) Bath,, (¢) and Dec,, (c)
output a valid message (or messages). In the CRS model,dbalplity is also taken
over the randomness of the common reference string geaprati

Theorem 2. sCS encryption is unambiguous under the factoring assomutn safe
RSA moduli, in the CRS model.

The ZK proof systenZKUnENnc for the sCS encryption is the proof that belongs
to the group generated hyi.e., ZKUnEnc(u, e) = ZKDL(g,u). (See section 3.4.)

3.3 CS commitments and sCS commitments

Our COT and 2PC protocols could be adapted to work with staHéedersen-like com-
mitment schemes of [Ped91,FO97,DF02] at the cost of additimappings, via range
proofs [CM99,Bou00,DF02], between commitments with difet ranges of plaintexts.
Instead, we use the full.é., adaptive chosen-ciphertext secure) CS encryption as a com
mitment scheme, because it operates on the same group axctigpteon we use, and
hence is well-suited for both the COT and 2PC protocols ofiGes 4 and 5. More-
over, using a CCA-secure encryption as a commitment helpsawing that the COT
and 2PC schemes are secure in the strong sense of univargzbsability.

An instance of a CS commitment scheme is a CS encryptionublf PK =
(n,g,9,b,f, hk). The public key is chosen by a trusted third party, and sgcafithis
commitment scheme requires the CRS model. The CS commimnemessage:, an
integer in rangé— %, %] (with an obvious mapping t@,,), with labelZ, is the ciphertext
Com = CSenck (m). For notational convenience of the COT and 2PC protocols, we
denote the tuple forming commitmefibm as (u,C,v), i.e, u = ¢g", C = a™g",
andv = abs((hf"(=CL))") The decommitment is the-, m, L) tuple. In the COT
and 2PC protocols, we often treat valgein the CS commitment as a commitment
to m by itself. This shortened commitment is used very heavilthim 2PC protocol,
thus we refer to valu€’ = o™ g" by itself as arsCS commitmenThe corresponding
decommitmentigm, r).

3.4 Efficient concurrently secure ZK proof systems in the CRSnodel

All proof systems used in our COT and Committed 2PC protoasconcurrently se-
cure ZK proofs in the CRS model. Specifically, each proofesysis computationally

& Note that instances of other commitment schemes can be mhappieis one using the verifi-
able encryption proof system that accompanies the CanteSikoup encryption [CSO03].



sound and statistical zero-knowledge with a straight-imeulator. The latter is im-
portant for showing that the protocols are universally cosgble. Each of these proof
systems is built from efficient HVZK proof systems for thedaiages listed below by a
series of compilations which preserve the efficiency of thearlying HVZK protocols.

The compilations start from 3-round HVZK proof systems wiitle properties of
special honest-verifier zero-knowledged (weak) special sounde¢ae discuss these
below). First, with the techniques of Crametr al. [CDS94], HVZK systems of this
class can be combined, at no extra cost, into HVZK proof systef the same class
for any (monotonic) disjunctive and/or conjuctive formaizer statements proved in
the component proof systems. Then, using Damgard [DaniB&]resulting HVZK
proof system can be compiled into a three-round concugrertiure ZK proof systems
with statistical zero-knowledge, computational soundnasd a straight-line simulator
in the CRS model. This latter technique requires statibfitading trapdoor commit-
ments, and using Pedersen’s commitment scheme it incursputational overhead of
just one extra exponentiation per player. The computatiemandness of the resulting
ZK proof system is subject to the same assumption as the datignal binding of the
commitment scheme, which can be Strong RSA if Pedersepddi@ commitment is
adapted to the’*. setting,e.g, as in Damgard-Fujisaki commitments [DF02]. Note
that in ROM, using the Fiat-Shamir heuristic, the HVZK prayktems of this class
can be converted at no extra costrton-interactiveZKs with the same properties of
computational soundness and statistical zero-knowledlipesivaight-line simulation.

We denote the statements being proveX a¥, Z, and the corresponding “atomic”
HVZK proof systems a$lVZKX, HVZKY, HVZKZ. We use a notation derived from
boolean formulas for the ZK proof systems resulting frons #eries of compilations.
For example, the resulting ZK proof system for languXge (Y Vv Z) will be denoted
ZKXA (ZKY vV ZKZ). We catalog the proof systems used in the COT and 2PC pratocol
by the statements they prove, namely, membership in theiegegDL, DLEQ, NotEq,
Cot, Com, andPlainEq. Each of these is parameterized by tuple g, g, b, f, hk),
which forms an instance of the CS commitment scheme. T(ip)g, g) also defines
an instance of the sCS commitment. Parameéteks k' are as in Section 3.2.

DL = {(g, X) | there exist s.t. X? = ¢g>*}.
DLEQ = {(g, X, §, X) | there existy: s.t. X2 = g2 X2 = 2=},

NotEq = {(C,,C) | there exista,b,rq, 7 S.t.a # bmodn, C, = a%g™, and
Cy = abg™}. In other words(C, andC;, are SCS commitments to two different values.

Cot = {(i,e/,u/,e,u,y,C) | there existn,w, s,r s.t.C? = a?mg?v,

e? = e25a?m=252r "andu’? = u?*g?"}. In other wordsm rem n is committed in
sCS commitment', and(u’,¢’) is a correct “re-encryption” ofn performed by the
sender in the COT protocol, given thg u, e) tuple sent by the receiver.

Com = {(Com,ids) | there existm,r s.t. Com = (u,C,v) whereu = ¢", C =
a™g”, andv = abs((hf7tm(-C-d)y™)1 In other wordsCom is a properly formed CS
commitment to some messagewith labelids.



PlainEq = {((e, u),Cy,Cy,) | there existc,m,r,,r,, st.e = a™u®, C, = ag"=,
andC,, = a™g"™}. In other words,e, u) is an sCS encryption of the plaintext
committed in (sCS commitment),, under the key: committed inC,.

All of the above languages have efficient 3-round HVZK progftsmsHVZKDL,
HVZKDLEQ, etc, which unconditionally satisfy the two properties we ne@dd:spe-
cial HVZK, and (2) weak special soundness. The only exceptiblVZKPlainEq, for
which we show that weak special soundness holds under thegsRSA assumption.
All systems are efficient: the players make only a few exptingons (between one
and four) modulon?, and communication complexity ranges fraim| in HVZKDL
to at most20|n| bits in HYZKPlainEg. We show theHVZKPlainEq proof system in
Appendix A, because it has the most novelty. We delegate tther @roof systems to
the full version of the paper, but most of them are eitherddiath, or simple modifica-
tions of the proofs that appear in [CS03]. TH¥ZKPlainEq proof system shown in
Appendix A gives a good idea of how all of these HVZKs work.

Special HVZK and (weak) special soundness.et (P, P»,V) be a specification
of a 3-round public coin proof system for languafieThe prover's message in the
first round on instance, withessw for x € L, and randomness is computed as
a = Py(x,w,r), itsresponse in the third round is computed as P (x, w, r, ¢) where

e is the verifier's challenge, and the verifier accepts if any @nV (z,a, e, z) = 1.
We call this proof systenspecial (statistical) HVZKf there exists a simulato$' s.t.
for every challenge: and every witnessgx, w) for x € L, the tuple(a, z) output
by S(z,e) is distributed statistically close to tuple, z) wherea = P (x,w,r) and

z = Py(x,w,r,e). The probability is over the coins &f and overr. We say that
this proof system hagwnveak) special soundnesisfor every z ¢ L, and for every
PPT algorithmP, the probability thatP(z) outputs(a, e, z, ¢, 2') st.e # ¢ and
V(z,a,e,z) = V(z,a,€¢',2") = 1, is negligible. Since the HVZK proof systems we
use are parametrized by a reference string, the advefstaites the CRS as an input
and the probability is taken over the choice of the CRS andtiversary’s coins. This
notion of (weak) special soundnessweaker than thepecial soundnessssumed by
the compilers of [CDS94,Dam02], but it's easy to see thas#tmee compilers still apply
to this weaker class of HVZKs.

4 UC-Secure Committed Oblivious Transfer on Strings

Our protocolP. for 1-out-of-2 committed oblivious transfer (COT) on sg#is sim-
ilar to the 1-out-of-2 non-committed string-OT protocolAitllo et al. [AIR01], but
instead of multiplicatively homomorphic EIGamal encrgptjP... usesadditivelyho-
momorphic andrerifiablesCS encryption, which enables succinct (constant number of
exponentiations) proofs that receiver’s and sender’stgjptio OT match their previous
commitments. MoreoveR.. is universally composable in the CRS model.

We define the ideal functionalitfFcor for a COT scheme, and show thBt.
securely realizes it. In contrast to the ideal COT functiiiypgroposed by Garagt
al. [GMY04], our functionalityFcoT runs onstringsrather than bits. Howevefcor
is more restricted than the functionality of [GMY04] in th@)) the obliviously trans-
ferred values are the plaintexts of commitments, not futlksemitments; and (2ZFcor



Ideal functionality Fcor for committed oblivious transfer on strings (COT)

Commit: Upon receiving 8 ComMsg, (P;, cid), m) message fron;, Fcor records
the ((P;, cid), m) pair and broadcast€ommitted, (P;, cid)). Herem can be ei-
ther a message in the prescribed message space or a spetal sy

StartCOT: Upon receivingmsg = (StartCOT, (Ps, P, sid, cidr, cids,o, cids,1))
from Pgr, Fcor Vverifies that it has records ((Pr,cidr), mr),
((Ps,cids,o),ms,o), and ((Ps,cids’l),msJ), and thatmgr #L1. If this
fails, Fcor ignores this message; otherwis&: ot recordsmsg and forwards it
to Ps.

CompleteCOT: Upon receiving{CompleteCOT, (Ps, Pk, sid, cidr, cids,o, cids,1))

from Ps, Fcor verifies that it has a recordStartCOT,ids), whereids =
(Ps, Pr, sid, cidg, cids,o, cids,1). Fcor looks up record$(Ps, cids,0), ms,0)
and((Ps, cids,1), ms,1), and checks ifns,o #.L andms,1 #L. If anything fails,
Fcor ignores this message.
Otherwise Fcor looks up the record ((Pg,cidr), mr) (Observe that
such a record must exist). lfimrg ¢ {0,1}, Fcor sends a spe-
cial message (COTFailed, Ps, Pr, sid) to Pr. Otherwise Fcor sends
(CompleteCOT, ids, (ms,, b)) to Pr for b = mg.

Note Additionally, FcoT screens outs duplicates in commitment identifigdsfor ev-
ery P;, and in COT instance identifiessd for every(Ps, Pr) pair.

Fig. 1. Fcor ideal functionality

does not support opening of the committed values. Nevassgfcor can ensure that
any combination of COT instances is executed on same coaunitputs, and thus
it can ensure that whenever COT is used as paangfsecurity protocol, the parties’
inputs into COT are consistent across multiple COT instance

The COT protocolP., is given in fig. 2. It assumes a common reference string
picked by the trusted third party, which defines an instafégof the CS commitment
scheme. The message space for this COT schefnejis |, the message space of the
CS commitment scheme. The commitment, identifiedidsof player P; on message
m is a CS commitmen€om = CSenc'®S, (m) with labelids = (P;, cid). As we will
argue,P.. is a secure realization ofgo; in particular, the receiver either outputs
messagen, committed inComg ,, Of rejects.

The two proof systems used .. involve conjunctions o€Com, DLEQ, andCot
statements. As explained in Section 3.4, such proofs areutationally sound ZK
proofs which are concurrently secure in the CRS model. Ealobstonly a few expo-
nentiations and three communication rounds. Moreoverpthesages in both proofs
(Pr to Ps and Ps to Pr) can be piggy-backed, with the statements proved by the two
players delayed to the last messages, which results in ardiarotocol. In the random
oracle model these proofs are non-interactive and the pobtakes only 2 rounds.

Theorem 3. Under the DCR assumption, protocBl, is a UC-secure realization of
the Committed-OT functionalitfcor in the CRS model, if the proof systems involved



Protocol P.. for committed oblivious transfer on strings

Common Reference String CS commitment instancBK = (n, g, g, b, f, hk).

Commit: For playerP;, on commitment instanceid and messagen: Player P; sets
ids = (P, cid), Com = CSenc'® (m), and broadcast&ComMsg, ids, Com).

Receiver Pr executes a COT instanceid with sender Ps. Pr’s bit o is com-
mitted in Comg, Ps’S messagesng, m; are committed inComg,o, Coms,1. Let
cidr, cids,o, cids,1 be the identifiers for these commitments.

COT Step 1: Pr setsids = (Ps, Pr, sid, cidg, cids,o, cids,1), retrievesComp =
(w, C,v) and its decommitment € [0, £]. Note thatC' = a”g". Pr picksz € [0, %],
and computes

y=g" u=g", e=a’y
Pr sends(COTMsgl, ids, (u,e,y)) to Ps, and performs as the prover in the proof
systemZKDLEQ(g, u, g/y, C/e) A ZKCom(PK, Comg, (Pr, cidr)) with Ps.

COT Step 2: Upon receiving(COTMsgl, ids, (u, e,y)) from Pr, Ps retrieves mes-
sagesng, m; committed inComs, = (to, Co, %) andComs, = (u1,C1, 01). Note
thatC; = o™?g"™: for somer,,. Ps creates two “COT-encryptions” far= 0, 1:

M —1i*5;

e; = e’ y't and wu; = u'ig™

for randomevenvaluess; € [0, 2n] andr; € [0, &]. If Pr passed its proof in Step Ps
sends message&cOTMsg?2, ids, (uo, €0, u1, 1)) to Ps, and performs withPr as the
verifier a proof systenrZKCot(0, e, uo, €, u,y, Co) A ZKCot(1, e1,u1,e,u,y,C1) A
ZKCom(Comg,o, (Ps, C’idso)) A ZKCom(Comg, 1, (Ps7 cids, ))

COT Step 3: Pr decrypts the sCS ciphertei., e;) and obtainsn,. If Ps passed its
proof in step 2, thePr outputsm,; otherwisePr rejects.

Note: Either player rejects if the values he receivesasily not inZ; ., i.e, they are
outside the1, n?] range or are divisible by.

Fig. 2. ProtocolP... for committed OT on strings

are computationally sound and statistically zero-knowtedvith straight-line simula-
tors in the CRS model.

Due to lack of space, we present only the crucial aspectsegtbhof.

Verifiability of inputs. By computational soundness of the proof systems, the play-
ers cannot, except with negligible probability, entereliéint values, mg, m, into the

OT protocol than those they previously committed. This isye@ see for the cheat-
ing receiverPg. For the cheating sendéts, by soundness afKCot, if Pg accepts,
then, with overwhelming probability, for eaclihere exists a tuplén;, r.,,,, i, ;) S.t.
(01)2 — a2mi927'mi’ 612 — eriQQmifi*2siy2ri’ andu? — u2sig2ri’ WhereComi —

(us, C;, ;) is Pg's commitment whose id isidgs ;. In particular,m; is the message
committed inCom;. Since for honesPg, ¢ = ay"” andu = g", it follows that for



i = o we havee2 = o?moy?" andu = ¢>" wherer” = s,r + r,. Therefore,
messagen, decrypted byPr from the ciphertextu,, e, ) is the message committed
in Com,,.

Receiver’s and sender’s privacyReceiver’s privacy follows from semantic security
of CS encryption, while the sender’s privacy relies on thet faat if Pz's commit-
mentComp = (@,C,?) and the tuplgu,e,y) in Pr's COT message are correctly
formed (and they are, except for negligible probabilityP§ acceptsPgr’s ZKCom
andZKDLEQ proofs, and if the factoring assumption holds), and it a value that
satisfiese? = a?7¢*" for somer (there exists such for everye € Z*,), then the
pairs (eg, ug) and (e1,u1) sent by Ps revealm,, but information-theoretically hide
m; for i # o. Observe first that if tuplesi, C, ¢) and (u,e,y) are accepted by the
verifier (.e., each element is if,2, but is not a multiple of:), then under the fac-
toring assumption, which is implied by the DCR assumptidhtheese elements are
also inZ? ,, except for negligible probability. Second, Atz passes th&KCom proof
on Comp and theZKDLEQ proof on(u, e, y), then except for negligible probability
we havee = wpa”g", u = wig”, andy = wog” for some(o,r,z) and some ele-
mentswo, w1, wy Of order2 in Z*,. Therefore, valuesgu;, e;) sent by Ps are equal
toe; = amitsile—tysirtri gandy; = ¢%71" because, is even. Note that for any
o, ged(o — i,n) = 1 for eitheri = 0 or¢ = 1 (or for both). Since the order af
is n, and(s; mod n) is distributed uniformly inZ,,, valuea™:**:(°=9) is distributed
uniformly in the subgroup generated byin Z7,. Because (1) the orders gfandy
are both divisors on’, (2) s;r + r; is even, and (3}r; mod n') is distributed statis-
tically close to uniform ovefZ,,, it follows that pair(g%"+":, y%"+"i) is distributed
statistically close tdg2"', 42" for  uniform in Z,.. Taken together, it follows that
pair (e;,u;), for i # o, is distributed statistically close t@™ 2", g2") for random
(m!,r") € (Zy, x Zy ), and thus it is statistically independentof.

Construction of the straight-line simulator. The proof that protocdP.., UC-realizes
the COT functionalityFcoT involves construction of a straight-line simulator, which
pretends to follow the protocol on behalf of the uncorruptedties by executing it
on some fixed values unrelated to the real inputs of theseepadnd simulates their
proof systems using their straight-line simulators. Meegpthe simulator straight-
line extracts the effective inputs contributed by the cpted players by choosing the
Camenisch-Shoup public kef K embedded in the CRS and decrypting these play-
ers’ inputs from their commitments. The simulator subntiese extracted inputs to the
ideal functionality if the corrupted players pass the agded ZK proofs. CCA security
of Camenisch-Shoup encryption implies that the ciphestegntained in the commit-
ments and COT messages created by the simulator remaitirigdishable from the
corresponding ciphertexts created in the real protoc@nef/the simulator accesses
the decryption oracle (to extract the values committed leyctbrrupt players). Finally,
the proof systems performed by the corrupted players anedseven if the simulator
picks the CRS because as long as the adversary passes fts gmbyoon correct state-
ments, the simulation is distributed statistically clogehe real execution. Hence, by
the standard soundness of the proof systems involved, trexsaty has only negligible
probability of passing some proof on an incorrect stateriretite simulation.



5 UC-Secure Two-Party Computation on Committed Inputs

We present an efficient version of Yao’s “garbled circuitsbtpcol for secure two-
party computation (2PC). The protocol operates on comditieuts and is universally
composable (in the CRS model). In addition to any two-pagiguse computation in
the malicious model, our protocol can be used, for examplensure that multiple
instances of secure computation are executed on consispens.

The ideal functionalityF>pc for secure two-party computation on committed in-
puts in shown in fig. 3. Abstracting from the bookkeeping deteFopc is a simple
generalization of the standard secure computation fumality where two players send
their respective inputs andy to the trusted third party®, who returns the result of
evaluating some circui'(z, y) to one or both players.

Thecommitted 2PQunctionality Fopc accepts any number of commitments from
partiesPy, ..., P,, which are intended to represent the commitments to thebied-
ing these parties’ inputs into some two-party computatiarqzols. For every commit-
ment,F2pc records the committed bit. If some pam, requests secure computation
of some circuitC' with another partyPs, the request specifigs and a vector of com-
mitments toPg’s and Ps’s inputs into this circuit. If partyPs accedes to this request,
Fapc Sends toPg the output of circuitC' computed on the inputs committed in the
specified commitments. Note that afisp sends the output only tBg, but since this
is acommitted?PC functionality, the players can simply reverse the raled request
that the samé&' be computed on the same vector of commitments, in order tblena
Pg to receive the output. (Our actual 2PC protocol allawsto receive the output with
no computational overhead and one extra communicatiordrpun

We assume that the circuitconsists of binary two-input gat€s = {g1,..., 9.}
with unbounded fan-out but no cycles, connected by wites- {ws, ..., w,,}. Some
subsefils of n, input wires are designated &s's inputs, ands,. input wires form the
setWWr of Pr’s inputs. Some subsét’, of the output wires is designed as outputs for
Pgr. (Optionally, some output wires can also be designated gmitafor Pg.)

The Committed 2PC protocol is in fig. 4. It is similar to the C@rbtocol of Sec-
tion 4, and uses the same commitments and same messaga,pateiring 4 rounds
in CRS and 2 rounds in ROM. In the first message, the receives the proof sys-
tems of theP,, protocol and an additional proof syste#iBit(C') = (ZKDL(g, C') V
ZKDL(g,C/a)) for proving that the CS commitmeriom = (u,C,v) or the sCS
commitmentC are commitments to a bit. In the second message, the semd¢esthe
garbled circuit and uses therrectYao proof system to prove that it has been formed
correctly. This step encompasses the entire Yao’s corigiruand is discussed below.
In the following, we denote sendély assS and receivelPr asRk.

Wire keys and commitments: S picks two random (symmetric) sCS private keys
xy, zy for every wirew € W, and for eachr)’ computes an sCS commitmegif’ to
zi’. Also, S makes a set of wire keys corresponding to his inp{it§, }.cws, where
by IS S's input bit onw € Wg.

COTs on receiver’'s wire keys: S completesn, instances of the COT protocol on
the wire keys corresponding to receiver’s wires: for each 1,..,n,, S enters keys
(zy, 2}") as a sender in the COT protocol, wheredesignates the receivei’é input



Ideal functionality F2pc for two-party secure computation on committed inputs

Commit: Upon receiving & ComMsg, (P;, cid), m) message fronP;, Fopc verifies
that thiscid has not been used by, before, records th§(P;, cid), m) pair and broad-
casts a(Committed, (P;, cid)) message. Message is either a message in the pre-
scribed message space, or a special synihol

Start2PC: Upon receiving
msg = (Start2PC, (Ps, P, sid, cids1, . . ., cidsn,, Cidri, . . ., Cidgn,,C))

from Pg, F2pc Verifies that (i) thissid has not been used s and Pr before; (ii) for
every indexk such thatl < k& < ng, Fapc has a unique recorf{ Ps, cidsk), msk)

(these commitments correspondRe’s inputs into the protocol); (iii) for every indek
such thatl < [ < n,, Fopc has a unique recor( Pg, cidr:), mr;) and thatmp, €

{0, 1} (these commitments correspondf@’s inputs into the protocol), and (i)' is a
description of a circuit that takes, + n, bits as inputs. If this failsF.pc ignores this
message; otherwise, it recordss g and forwards it taPs.

Complete2PC:Upon receiving
msg = (Complete2PC, (Ps, Pr, sid, cids1, . . ., c¢idsn,, cidra, . . ., ¢idrn,., C))

from Ps, Fopc verifies that it has a recordStart2PC,ids), where ids =
(Ps, Pr, sid, cids1, ..., cidg1,...,C). If not, Fopc ignores this message.

Fopc looks up the records((Ps,cidsi), ms1),...,((Ps,cidsn,), msn,) and
((I‘_’R7 Cide),le), ey ((I‘_’R7 CZ'anT), mRnT). If msk ¢ {O, 1} for some indexk,
Fapc ignores this instance of the 2PC protocol.

Otherwise, Fopc evaluates circui€ on inputsmsi, ..., msn,, MR1, - -« , Mrn,.. ForC
sends{Complete2PC, ids, b)) to Pr, whereb is the output of the circuit.

Note This is a functionality forone-directionaltwo-party computation, where only the
receiver Py learns the output. Because both parties are committed itoitipeits, they
can run another instance of the same protocol with the rdlé% @nd Pr reversed.

Fig. 3. F2pc ideal functionality

wire. This way, for everyv € W, the receiver obtains the wire keyf whereb,, is his

input bit on wirew. Technically,S computes tupléug (), eq(¥), uy (@) e (W) by

following the sender’s algorithm in Step 2 #.,; on tuple(u(?, e, y(?)) and a pair
of messageéry*i, z1*), and their corresponding sCS commitmefdts”, C;,"").

Receiver’s output wires: For every receiver’s output wire € Wy, S creates a pair of
ciphertextsEg’, E1° that enablesR to interpret the corresponding wire keys. Namely,
Eg = sCSenc,w (0) and B}’ = sCSenc,w (1).

Forming the garbled truth tables: The following process is repeated for every gate
g € G.Let A andB be the input wires of, andC the output wire. LeC¢',, CF,, C,

be the six sSCS commitments to the respective wire keys (twavpe). These commit-
ments form the truth table for the gatén which the input bit 4, b and the output bit



Committed 2PC Protocol

Common Reference String CS commitment instancBK = (n, g, g, b, f, hk).

Commit: As in Peot 0f fig. 2, playerP; on commitment instanceid and message:
broadcast¢ComMsg, ids, Com) whereCom = CSenc'& (m) for ids = (P;, cid).

2PC Step 1:To trigger instanceid of the protocol in order to compute circditon com-
mitment instancesidsi, . . ., cids,, made byPs and commitmentsidri, . . ., cidrn,.
made byPg, thereceiverPr prepares:, messages, each computed as in StepR.of
(fig. 2): for eachi = 1, .., n,,, Ps computes a tupléy™, vV, () on bito; committed
in Comciay, = (a”,C™, ") and its decommitment”. Ps sends taPr message

(Start2PC, ids, C, {ym, um, e(i)}izlunﬁ

whereids is the above vector of commitment id8z then performs the ZK proof system
ZKRzpc, which is a conjunction ofi, instances of th& KDLEQ(...) A ZKCom(. . .)
proof system used in Step 1 Bf.:, one per each tuplg?, CV, 4y @ ¢®), andn,
instances of th&KBit(C'") proof.

2PC Step 2:On receiving the(Start2PC,ids, C, ...) message and verifying the ZK
proofs, Ps retrieves its commitment€omciqag, , ..., Comcidsns specified in theids
string, and sends tBr a garbled version of circuif’ computed on these inputs:
Complete2PC( ids, {Cy’ }oe (0,1}, wew s { B2 5} ape00,01,10,11}, geGs
{xlbliu }'WEWS ’ {Eglv Eiu}wewm {u(()w)7 e(()w) ) qu)7 egw) }WEWR >
These values are defined in Sectior’s.also performs the ZK prodorrectYao.

2PC Step 3: Pr verifies the ZK proofCorrectYao, evaluates the garbled circuit and
outputs its result. (OptionallyPr can send back t&@s the wire keys corresponding to
Ps’s output wires.)

Fig. 4. Committed 2PC Protocol

be = g(ba, bp) are replaced by commitments to the corresponding wire ey the
original Yao’s protocolS creates a ciphertext for each row of the truth table, enerypt
ing the output-wire key corresponding to this row’s outpititinder the two input-wire
keys corresponding to this row’s input bits. The cipherdentst be randomly shuffled
to preventR from learning which rowb 4, bg, g(ba, b)) of the truth table he succeeds
in decrypting.S picks two random bitsy 4 ando g, which determine, intuitively, if the
values corresponding to thé and B wires are “switched” or not. (liv is S’s input
wire, thano,, is equal toS’s input bit on that wire.) If the rows are denoted in binary
as00, 01, 10, 11, then the first ciphertext received Wiy corresponds to row 4o, the

second to rows 4o g, the third to rows 455, and the fourth to row 45 5.

S creates the ciphertext li$Foo, Eo1, F10, and E11) using a two-key encryption
schemeE, 3 = 2KEnc,, 4, (x), where for eachy, 8, z1 = xf@m’ Ty = xg@oB, and
. For example, ib4 = op = 0, then eaclE, 3 is a two-key en-

_ ,.C
T = Toagoa,B008)



cryption under keys?} and:cBB of the output-wire key:gc(a - Ifoa =1,0 =0,then
eachE, g is a two-key encryption under keyg andmg of keya:g’(a gy and so on. Note

that tuple(o 4, o5, o, 5) uniquely defines the commitments, Cs, C that correspond

to the above keys;, xo, 2: C1 = CQ@UA, Cy = C[,@GB andC = Cg(a@m B@os)"

The two-key encryptio@KEnc,, ., (z) is created as follows. The keye [0, 2F"]
is split in two parts,;, and, by choosingz at random in[—2*"+% 2k"+F] (re-
call thatk”, k are security parameters, wheré = @ andk can be 80), and setting
xh = x — x| (over integers)S also computes an sCS commitmédnto = . Observe
that if C' is an sCS commitment to, thenC/D is an sCS commitment to},. The
ciphertextF is a triple (D, F") | F()), whereF() = sCSenc,, (z}). Let E, 5 denote

(Dag, FY E2)).

Proving circuit correctness: CorrectYao is a (concurrent ZK, with straight-line simu-
lator) proof system formed bgonjunctionof the following proof systems:

Ngeg CorrectGarble; A A, oy, GoodKeys,, A A\, ey, Correctinput,,
A Nwewy, ZKSw A Nwew,, CorrectOutput,,

where
GoodKeys,, = ZKNotEq(C{', Cy)
Correctinput,, = (ZKDL(g, C¥ /o) A ZKDL(g, Cy)) V
(ZKDL(g, CY* /a®sw) A ZKDL(g, Cy/cv)), whereC is the
sCS commitment insid€om.;q, if w is thei'™ input wire ofS
CorrectOutput,, = ZKPlainEqQ2(EY, CY,0) A ZKPlainEq2(E}Y, C, 1)

HereZKS,, refers to the proof performed by the sender in the instantieeo€OT
protocol that corresponds to receiver’s wiree Wg. ZKPlainEg2(E, Ci,m) is the
proof system for showing thdf is an sCS encryption of plaintext under keyk com-
mitted inCy,, and is a trivial simplification of th@KPlainEq(FE, Cy, C,,) proof system
for proving the same about commitmeTi, to m. Finally, CorrectGarble, proves that
the ciphertext tabld:yg, Fo1, E10, F11 corresponding to garbled gagds formed cor-

1 2
rectly, whereE,3 = (DQB,FOE[},F( ))

CorrectGarble, = CorrectShuffle(0,0) V CorrectShuffle(0,1) V
CorrectShuffle(1,0) Vv CorrectShuffle(1, 1)

CorrectShuffle(, 8) = CorrectCipher(0,0, o, 3) A CorrectCipher(0,1, o, ) A
CorrectCipher(1,0,«, 8) A CorrectCipher(1,1, o, 3)

CorrectCipher(ca, 05, a, 3) = ZKPIainEq(F(i},,C;‘@UA, Dag) A

ZKPIAINEQ(FLY , CBrs (CS s oo/ Do)
Circuit evaluation: R obtains his input-wire keys via COT and evaluates the entire
circuit gate by gate. Unambiguity of sCS encryption and simess of the proof systems
ensures that for each gat,decrypts exactly one of the four ciphertexts forming that
gate’s garbled truth table and obtains the key correspgrtdithe gate’s output wire.

Theorem 4. Under the strong RSA and DCR assumptions, the 2PC proto6igl. df is
a UC-secure realization of the Committed 2PC functiondhity in the CRS model.



References

[AIRO1]
[Bou0O]
[CCo0]
[CD97]

[CDS94]

[CGHGO1]

W. Aiello, Y. Ishai, and O. Reingold. Priced obliwis transfer: How to sell digital
goods. InProc. EUROCRYP;lpages 119-135, 2001.

F. Boudot. Efficient proofs that a committed numbes lin an interval. IrProc.
EUROCRYPTpages 431-444, 2000.

J. Camenisch and C. Cachin. Optimistic fair securemaation. InProc. CRYPTQ
pages 93-111, 2000.

R. Cramer and |. Damgard. Linear zero-knowledge -ote ron efficient zero-
knowledge proofs and arguments.Rroc. STOCpages 436—445, 1997.

R. Cramer, |. Damgard, and B. Schoenmakers. Prfof@rtial knowledge and
simplified design of witness hiding protocols. Bmoc. CRYPTQpages 174-187,
1994.

D. Catalano, R. Gennaro, and N. Howgrave-Grahahe it security of Paillier’s
encryption scheme and its applications. Rroc. EUROCRYP;Tpages 229-243,
2001.

[CGHGNO1] D. Catalano, R. Gennaro, N. Howgrave-Graham,Rridguyen. Paillier's cryp-

[CM99]
[Cresg]
[CS03]
[CvdGT95]
[Dam02]
[DF02]
[DIOS]
[FO97]
[GMW87]
[GMY04]
[HSS93]
[3300]
[Kil8s]
[KO04]
[Lin03]

[Lip03]

tosystem revisited. IRProc. CCS pages 206—214, 2001.

J. Camenisch and M. Michels. Proving in zero-knowjethat a number is a product
of two safe primes. IfProc. EUROCRYP;pages 107-122, 1999.

C. Crépeau. Verifiable disclosure of secrets gmglieations. InProc. EURO-
CRYPTpages 181-191, 1989.

J. Camenisch and V. Shoup. Practical verifiable guimy and decryption of dis-
crete logarithms. IfProc. CRYPTQpages 126-144, 2003.

C. Crépeau, J. van de Graaf, and A. Tapp. Comchithdivious transfer and private
multiparty computation. IfProc. CRYPTQOpages 110-123, 1995.

I. Damgard. Efficient concurrent zero-knowledgetie auxiliary string model. In
Proc. EUROCRYP,lpages 418-430, 2002.

I. Damgard and E. Fujisaki. A statistically hiding@ger commitment scheme based
on groups with hidden order. Proc. ASIACRYP;lpages 125-142, 2002.

I. Damgard and Y. Ishai. Constant-round multipasgmputation using a black-box
pseudorandom generator. Pnoc. CRYPTQpages 378-394, 2005.

E. Fujisaki and T. Okamoto. Statistical zero knowgegbrotocols to prove modular
polynomial relations. IProc. CRYPTQOpages 16-30, 1997.

O. Goldreich, S. Micali, and A. Wigderson. How to plany mental game. IRroc.
STOC pages 218-229. ACM, 1987.

J. Garay, P. MacKenzie, and K. Yang. Efficient andvensally composable oblivi-
ous transfer and applications. Bioc. TCG pages 297-316, 2004.

J. Hastad, A. Schrift, and A. Shamir. The discregatithm modulo a composite
hideso(n) bits. J. Comput. Syst. S¢47:850-864, 1993.

M. Jakobsson and A. Juels. Mix and match: Secureifimevaluation via cipher-
texts. InProc. ASIACRYP,Ipages 162-177, 2000.
J. Kilian. Founding cryptography on oblivious trsfier. InProc. STOCpages 20—
31, 1988.

J. Katz and R. Ostrovsky. Rount-optimal secure tvaokp computation. IrProc.
CRYPTQpages 335-354, 2004.

Y. Lindell. Parallel coin-tossing and constantir@ secure two-party computation.
J. Cryptology 16(3):143-184, 2003.

H. Lipmaa. Verifiable homomorphic oblivious traesfand private equality test. In
Proc. ASIACRYP;Jpages 416-433, 2003.



[LPOT7] Y. Lindell and B. Pinkas. An efficient protocol for sge two-party computation in
the presence of malicious adversariesPinc. EUROCRYP;12007.

[MFO06] P. Mohassel and M. Franklin. Efficiency tradeoffs foalicious two-party compu-
tation. InProc. PKC pages 458-473, 2006.

[Pai99] P. Paillier. Public-key cryptosystems based onpusite degree residuosity classes.
In Proc. EUROCRYP;Tpages 223-238, 1999.

[Ped91] T. P. Pedersen. Non-interactive and informatimotetic secure verifiable secret
sharing. InProc. CRYPTQpages 129-140, 1991.

[Pin03] B. Pinkas. Fair secure two-party computation.Ploc. EUROCRYP,Tpages 87—

105, 2003.

[Wo007] D. Woodruff. Revisiting the efficiency of maliciotwo-party computation. IRroc.
EUROCRYPT2007.

[Yao86] A. Yao. How to generate and exchange secretPréc. FOCS pages 162-167,
1986.

A HVZK Proof System for Statement PlainEq

This is an HVZK proof system for languaddlainEq = {((e,u),Cy,Cy,) | there
existz, m,r;,ry Stoe = a™u®, C, = o®g"™=, andC,, = a™g"™ }, i.e, for the
language of tuple§(e, u), Cy, Cp,) S.t. (e, u) is an sCS encryption of the plaintext
committed in sCS commitment,,, under the key: committed in sCS commitment,.
Itis special HVZK with weak special soundness under thegti®SA assumption. All
the parameters are as in section 3.4, except for two addit@dements~, H which are
assumed to be randomj . and can be included in the CRS.

1. The private inputs of the prover are

m € [—2F+k ok +k) e [0,25"], o, 7 € [0, %]

2. The prover picks, € [0, 3] and send§’, = G*H'= to the verifier. He also picks

. / N
m/ 7“/ w/ 7“/ t/. c [072k+k +2k ]

Yimoy Ty Y

and sends the following commitments to the verifier:

/ 2m’ | 2z’ / 2z’ _2r! / 2m’ 27/ / "rrt!
e=a""u", C,=a"g, C,=a""g"m, T =G"H'™

3. Verifier responds with a random challenge {0, 1}*
4. Prover sends the following responses, all computed ovegeérs:

m=m —cm, Fm:T;nfcrm, =1 —cx, fx:r;fcrz, fz:t’wfctx
5. Verifies accepts if € [-%, 7] and if the following equations hold:
¢ = 22y 2T
C;n — (Cm)QCO[QTﬁngm’ C; — (Cfm)QcoéQng'FI7
T, = (T,,)°G*H'*



