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Abstract: Voltage collapse is an undesired phenomenon that occurs due to voltage instability 
and is generally associated with weak or stressed system (heavily loaded lines), long lines, 
radial networks, faults and/or reactive power shortages. Its occurrence is not frequent in 
developed countries despite their large and complex networks but its frequency is high in 
Egypt. Voltage collapses are highly catastrophic anytime they occur. On the Egyptian 
Interconnected Electrical Grid EIEG, the system collapse phenomenon is frequently 
experienced and often leads to either partial or total system collapse blackout, which greatly 
impairs the nation’s socio-economic development and industrialization. This high rate is due to 
the fact that the EIEG is weak, highly stressed, long and radial in nature hence lacking 
flexibility. The analysis is performed for EIEG power system. Modern advances in technology 
are changing the way utility industry increase the transmission of power throughout the 
country. Distributed energy resources are constantly improving their reliability and power 
capabilities. The model analysis technique is performed for system using the constant load 
model. The simulation results are Q-V curves on weak voltages by Power World Simulator 
PWS Software and Matlab Program.  
 
Keywords: Voltage collapse, Egyptian Interconnected Electrical Grid EIEG, Distributed 
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1. Introduction 
 Power system stability has been recognized as an important problem for secure system 
operation since the 1920s [1-5]. Many major blackouts caused by power system instability 
have illustrated the importance of this phenomenon [6-10]. Voltage collapse may be total or 
partial blackout. Many major blackouts throughout the world have been directly associated to 
this phenomenon, e.g. in France, Italy, Japan, Great Britain, USA, etc. The analysis of this 
problem shows that the major causes is the system’s inability to meet the reactive power 
demands [11-16].The world has witnessed several voltage collapse incidences in the last 
decades, prominent incidents that attracted much attention happened at Belgium (August 
1982), Sweden (December 1983), Tokyo (July1987), Tennessee (August. 1987), Hydro 
Quebec (March 1989) and the recent major blackout incidence that happened in 2003 in North 
America and some parts of Europe [17-20]. A comprehensive list comprising the time frame is 
summarized in Table (1) [10].  
 Voltage instability has been observed in several forms, which was reached to complete 
blackouts of power systems in several countries [21]. Power systems institutes such as IEEE, 
CIGRE, IEE and EPRI have turned great attention to the subject [22]. An IEEE subcommittee 
was formed in 1986 for its studies[10-12]. In future the subject will have a direct access to 
other interests such as power system security, reliability, planning, control methods and power 
system harmonics suppression. The excessive use of power electronic devices will augment the 
chances of occurrence of the phenomena. Electronic static VAR compensators, flexible AC 
transmission systems and HVDC systems will be widely used to counteract the effect of such 
devices and to improve the voltage stability situation of large systems [23-25]. Power quality is  
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a recent subject appeared with complication of power systems [26]. It concerns several 
subjects, which are treated in detail in this research [27-29]. 
 

Table 1. Analysis real collapses involves 
No. Occurrence of Disturbance Year 
1 New York State Pool disturbance 1970 
2 Jacksonville Florida system disturbance 1977 
3 Zealand Denmark system disturbance 1979 
4 Central Oregon system disturbance 1981 
 
5 

Belgium system disturbance, Florida system disturbance, and Northern 
Belgium system disturbance 

 
1982 

 
6 

Northern California system disturbance, Japanese system disturbance, and 
Swedish system disturbance 

 
1983 

7 Northeast United States system disturbance 1984 
8 England system disturbance, and Miles City HVDC links 1986 
9 Western French system disturbance, Tokyo system disturbance, Indiana 

system disturbance, and Mississippi system disturbance 
 
1987 

10 South Carolina system disturbance 1989 
11 Western France system disturbance, and Baltimore and Washington DC 

system disturbance 
1990 

12 Sri Lanka power system disturbance 1995 
13 Western System Co-ordination Council system disturbance, and North 

Indian Grid system disturbance 
1996 
 

14 North American power system disturbance 2003 
15 National Grid system of Pakistan disturbances 2006 

  
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Classification of power system stability [5]. 
 
Based on the size of the disturbance, voltage stability can be further classified into the 
following two subcategories as shown in Figure (1):  
• The study period of interest is in the order of several seconds.  
• Long-term voltage stability involves slower acting equipment such as tap-changing 

transformers, thermostatically 
 
In general, the research aim agreed about the weakest buses that contribute to voltage collapse 
for the following points [8]: 
• The EIEG power system has been simulated and tested in this research to illustrate the 

proposed analysis methods.  
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• The method computes the smallest eigen value and the associated eigenvectors of the 
reduced Jacobian matrix using the steady state system model.  

• Then, the participating factor can be used to identify the weakest node or bus in the system 
associated to the minimum eigen value. 

• Using the Q-V curves, the stability margin or the distance to voltage collapse is identified 
based on voltage and reactive power variation.  

 
2. Voltage Collapse Problem 
A. Identification of the Weak Load Buses 
 The minimum eigen values, which become close to instability, need to be observed more 
closely. The appropriate definition and determination as to which node or load bus participates 
in the selected modes become very important. This necessitates a tool, called the participation 
factor, for identifying the weakest nodes or load buses that are making significant contribution 
to the selected modes [27]. If Φi and Γi represent the right and left hand eigenvectors, 
respectively, for the eigen value λi of the matrix JR, then the participation factor measuring the 
participation of the kth bus in ith mode is defined as: 
 

kikikiP ΓΦ=  (1)
  

 Note that for all the small eigen values, bus participation factors determine the area close to 
voltage instability. Equation (1) implies that Pki shows the participation of the ith eigen value to 
the V-Q sensitivity at bus k. The node or bus k with highest Pki is the most contributing factor 
in determining the V-Q sensitivity at ith mode. Therefore, the bus participation factor 
determines the area close to voltage instability provided by the smallest eigen value of JR. A 
MATLAB m-file is developed to compute the participating factor at ith mode [21]. 
 
B. Q-V Curve 
 V-Q or voltage reactive power curves are generated by series of power flow simulation. 
They plot the voltage at a test bus or critical bus versus reactive power at the same bus. The bus 
is considered to be a PV bus, where the reactive output power is plotted versus scheduled 
voltage. Most of the time these curves are termed Q-V curves rather than V-Q curves. 
Scheduling reactive load rather than voltage produces Q-V curves. These curves are a more 
general method of assessing voltage stability. They are used by utilities as a workhorse for 
voltage stability analysis to determine the proximity to voltage collapse and to establish system 
design criteria based on Q and V margins determined from the curves. Operators may use the 
curves to check whether the voltage stability of the system can be maintained or not and take 
suitable control actions. The sensitivity and variation of bus voltages with respect to the 
reactive power injection can be observed clearly. The main drawback with Q-V curves is that it 
is generally not known previously at which buses the curves should be generated [22].  
 As a traditional solution in system planning and operation, the voltage level is used as an 
index of system voltage instability. If it exceeds the limit, reactive support is installed to 
improve voltage profiles. With such action, voltage level can be maintained within acceptable 
limits under a wide range of MW loadings. In reality, voltage level may never decline below 
that limit as the system approaches its steady state stability limits. Consequently, voltage levels 
should not be used as a voltage collapse warning index [23].  
 
 In this research, the voltage collapse problem is studied. Figure (2) shows a typical Q-V 
curve, and the following can be anticipated results: 
• The magnitude of the smallest eigen value gives us a measure of how close the system is to 

the voltage collapse.  
• The participating factor can be used to identify the weakest node or bus in the system 

associated to the minimum eigen value. 
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• The Q-V curves, the stability margin or the distance to voltage collapse is identified based 
on voltage and reactive power variation. Furthermore, the result can be used to evaluate the 
reactive power compensation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Typical Q-V curve for voltage collapse 
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4. Results
  

 

Figure 6.
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shown in Figure (6). The result shows that, the buses 11 (Naj-Hammadi), 19 (Qena) and 20 
(Sohag) have the highest participation factors for the critical mode. The largest participation 
factor value (0.2294) at bus # 20 indicates the highest contribution of this bus to the voltage 
collapse.  
  

 
Figure 7. The Q-V curves at weakest buses of the critical mode of the EIEG power system 

  
 The Q-V curves were computed for the weakest buses of the critical mode in the Egyptian 
32 bus system as expected by the modal analysis method. The curves are shown in Figure (7), 
and Figure (8). Q-V curves, verifies the results obtained previously by modal analysis method. 
It can be seen clearly that bus # 20 (Sohag) is the most critical bus compared the other buses, 
where any more increase in the reactive power demand in that bus will cause a voltage collapse 
as shown in Figure (7). Also, for interconnected or linked buses with Jordan, and Libya as 
shown in Figure (8). 
 

 
Figure 8. The Q-V curves at Labya and Jordan interconnect of the EIEG power system 
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 Table (2) shows evaluation of the buses 11, 19, and 20 Q-V curves. These results can be 
used effectively in planning or operation of this system. Since there are 32 buses among which 
there is one swing bus and 8 PV buses, then the total number of eigenvalues of the reduced 
Jacobian matrix JRis expected to be 23 as shown in Table (3). Note that all the eigenvalues are 
positive which means that the system voltage is stable. From Table (3), it can be noticed that 
the minimum eigenvalue (λ=22.46) is the most critical mode. 
 

Table 2. Voltage and reactive power margins for the EIEG power system 

 Operating Point Maximum withstand 
V in (p.u) Q in (p.u) V in (p.u) Q in (p.u) 

Bus # 11 0.929 2.20 0.622 20 
Bus # 19 0.943 2.39 0.638 20 
Bus # 20 0.943 2.39 0.605 15 

 
 

Table 3.EIEG power systemeigenvalues sorted by ascending values 
Bus # Eigenvalues Bus # Eigenvalues Bus # Eigenvalues 

10 9155.56 18 1253.00 26 258.27 
11 2811.79 19 1315.11 27 82.05 
12 2251.95 20 912.74 28 94.64 
13 1695.28 21 717.18 29 118.97 
14 1658.75 22 511.90 30 194.03 
15 1552.26 23 356.01 31 186.73 
16 1360.59 24 22.46 32 157.65 
17 1217.23 25 47.13   

 
5. Conclusion                                                          
 The modal analysis technique is applied to investigate the EIEG power system simulated 
power flow by PWS program, and stability, these method computes the smallest eigen value 
and the associated eigenvectors of the reduced Jacobian matrix using the steady state system 
model. The magnitude of the smallest eigen value gives us a measure of how close the system 
is to the voltage collapse. Then, the participating factor can be used to identify the weakest 
node or bus in the system associated to the minimum eigen value. The Q-V curves are used 
successfully to confirm the result obtained by model analysis technique, where the same buses 
are found to be the weakest and contributing to voltage collapse. Using the Q-V curves, the 
stability margin or the distance to voltage collapse is identified based on voltage and reactive 
power variation. Furthermore, the result can be used to evaluate the reactive power 
compensation in EIEG power system. 
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