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A Region Ensemble for 3-D Face Recognition
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Abstract—In this paper, we introduce a new system for 3-D face
recognition based on the fusion of results from a committee of re-
gions that have been independently matched. Experimental results
demonstrate that using 28 small regions on the face allow for the
highest level of 3-D face recognition. Score-based fusion is per-
formed on the individual region match scores and experimental
results show that the Borda count and consensus voting methods
yield higher performance than the standard sum, product, and min
fusion rules. In addition, results are reported that demonstrate the
robustness of our algorithm by simulating large holes and arti-
facts in images. To our knowledge, no other work has been pub-
lished that uses a large number of 3-D face regions for high-per-
formance face matching. Rank one recognition rates of 97.2% and
verification rates of 93.2% at a 0.1% false accept rate are reported
and compared to other methods published on the face recognition
grand challenge v2 data set.

Index Terms—Biometric, expression variation, fusion methods,
multiinstance, range image, 3-D face recognition.

I. INTRODUCTION

FACE recognition in 3-D has been addressed using a variety
of methods, including alignment, subregion matching,

mapping, and principal component analysis (PCA). The Face
Recognition Grand Challenge (FRGC) v2 data set [1] is the
largest publicly available data set for 3-D face recognition
research. This set contains images exhibiting substantial
expression variation, which can cause problems for many
recognition algorithms. Our approach exploits subregions on
the face that remain relatively consistent in the presence of
expressions and uses a committee of classifiers based on these
regions to improve performance in the presence of expression
variation. This concept is called region ensemble for face
recognition (REFER). This paper extends the work in [2]
by increasing the number of facial regions considered to 38,
selecting the best-performing subset of size 28, and discussing
results achieved through the use of additional fusion methods
found in the literature [3], [4]. Each region matches indepen-
dently to a gallery surface using the iterative closest point (ICP)
algorithm [5], resulting in a committee of error distances for a
single probe-to-gallery comparison. Based on a threshold for
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each match, regions are selected to vote for a given identity.
The results presented in this paper significantly outperform
those in our previous work [2].

The FRGC v2 [1] data set includes a 3-D shape for each
of 4007 face scans of 466 unique subjects. This data set has
been distributed to organizations across the world to promote
consistency in experimental evaluation of face recognition sys-
tems [6]. The FRGC program sought to document an increase
in face recognition performance by an order of magnitude from
the previous face recognition vendor test (FRVT 2002) [7]. The
top FRVT 2002 performance on 2-D face recognition was an
80% verification rate at a false accept rate (FAR) of 0.1%. The
goal of the FRGC program was to increase the verification rate
to 98% at a fixed FAR of 0.1%. For all verification experi-
ments in this paper, we report results using an operating point of

. We show improved 3-D face recognition perfor-
mance over previously published papers [8]–[12] on the FRGC
v2 data set, using the same experiments as defined in those
papers.

This paper is organized as follows. Section II gives an
overview of related work in the area of face recognition.
Section III discusses experimental materials and methods.
Next, the REFER method for increasing face recognition per-
formance in the presence of nonneutral facial expressions is
introduced in Section IV. Section V discuses our experimental
results and compares them to other published results on the
FRGC v2 data set [1]. Finally, Section VI provides conclusions
and discussion.

II. RELATED WORK

A recent broad survey of face recognition research is given
in [13] and a survey focusing specifically on face recognition
using 3-D data is given in [14]. This section focuses on selected
prior work that is most closely related to our current work.

Chang et al. [8] use multiple overlapping nose regions and ob-
tain increased performance relative to using one whole-frontal-
face region. These regions include a nose circle, nose ellipse,
and a region composed of just the nose itself. This method uses
the ICP algorithm to perform image matching and reports re-
sults on a superset of the FRGC v2 data set containing 4485 3-D
face images. Two-dimensional skin detection is performed for
automated removal of hair and other nonskin-based artifacts on
the 3-D scan. They report results of 97.1% rank one recognition
on a neutral probe matched to neutral gallery images and 87.1%
rank one recognition on nonneutral probes matched to a neutral
gallery. The product rule was used to process the results from
multiple regions. When the neutral probe was matched to the
neutral gallery set, maximum performance was reported when
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only two of the three regions were combined. The authors men-
tion that increased performance may be gained by using addi-
tional regions, but they did not explore anything beyond three
overlapping nose regions.

Lu et al. [15] combined multiple 2.5-D scans to create a single
3-D image for gallery enrollment. For their experiments, they
employed 598 2.5-D probe models of various poses and ex-
pressions that were matched to 200 gallery models. They found
that by using the full 3-D image of a subject in the gallery
and implementations of the ICP and linear discriminant anal-
ysis (LDA) algorithms, they were able to achieve a 90% rank
one recognition rate using a probe data set consisting of ar-
bitrary poses. The authors report that nearly all of the errors
in recognition were caused by a change in expression between
the probe and the gallery images. In [16], Lu and Jain present
an algorithm for matching 2.5-D scans in the presence of ex-
pressions and pose variation using deformable face models. A
small control set is used to synthesize a unique deformation
template for a desired expression class (smile, surprise, etc.).
A thin-plate-spline (TPS) mapping technique drives the defor-
mation process. The deformation template is then applied to a
neutral gallery image to generate a subject-specific 3-D defor-
mation model. The model is then matched to a given test scan
using the ICP algorithm. The authors report results on three dif-
ferent types of experiments. The first data set contains ten sub-
jects with three different poses and seven different expressions.
Rank one results of 92.1% are reported when deformation mod-
eling is used compared to 87.6% when it is not. The second data
set consists of 90 subjects in the gallery and 533 2.5-D test scans
and similar results are reported. Data for the first two exper-
iments were gathered at the authors’ institution. The data for
the final experiment were taken from the FRGC v2 data set and
consisted of 50 randomly chosen subjects in the gallery and 150
2.5-D test scans. When deformation modeling is employed, a
rank one recognition rate of 97% is reported compared to 81%
when it is not.

Martinez [17] uses multiple local region patches to perform
2-D face recognition in the presence of expressions and occlu-
sion. The motivation for this is that different facial expressions
influence different parts of the face more than others. His algo-
rithm addresses this belief by weighting areas that are less af-
fected by the current displayed emotion more heavily. Reported
results show that up to one-sixth of the face can be occluded
without a loss in recognition, and one-third of the face can be
occluded with minimal loss. This work used the well-known AR
database of 2-D images.

Heisele and Koshizen [18] demonstrate a novel approach for
face recognition that combines the techniques of 3-D morphable
models and component-based recognition. The authors use three
2-D face images to generate a 3-D head model of each sub-
ject. That subject is then rendered under varying illumination
and pose conditions to build a large gallery of synthetic images.
Recognition is performed on a single global image as well as
35 individual facial components. Results show that when fused,
the individual facial components perform better than the single
global image. For this experiment, results were reported on 2000

images (ten subjects, 200 images per subject) and were collected
at the authors’ institution.

Gökberk and Akarun [3] perform a comparative evaluation
of five face-shape representations (point clouds, surface nor-
mals, facial profiles, PCA, and LDA) using the well-known
3-D-RMA data set [19] of 571 images from 106 subjects. They
find that the ICP and LDA approaches offer the best average
performance. They also perform various fusion techniques for
combining the results from different shape representations to
achieve a rank-one recognition rate of 99.0%.

As with Chang [8] and Lu et al. [15], we are specifically inter-
ested in 3-D face recognition in the presence of varying facial
expression between gallery and probe images. Since Martinez
[17] and Heisele and Koshizen [18] found good performance
in 2-D face recognition by matching a large number of face re-
gions, we consider something similar for 3-D. Whereas Chang
considered just three regions, all overlapping the nose area, we
initially consider 38 regions, representing various areas of the
face. We consider a variety of approaches for fusion of the com-
mittee results, and find that different methods than previously
used [8], [18] give the best results. We also find better perfor-
mance than a number of previous papers that also use the FRGC
v2 data set.

III. EXPERIMENTAL MATERIALS AND METHODS

A. FRGC v2 3D Data Set

The data used in our experiments come from the FRGC v2
data set. This data set includes 4007 3-D face images of 466
distinct persons, with as many as 22 images per subject. The
images were acquired with a Minolta Vivid 910 [20]. The Mi-
nolta 910 scanner uses triangulation with a laser stripe projector
to build a 3-D model of the face. Both color and 3-D
location coordinates are captured, but not perfectly si-
multaneous, and the laser stripe requires a few seconds to cross
the face. The resolution on the Minolta camera is 640 480,
yielding approximately 300 000 possible sample points. The
number of 3-D points on a frontal image of the face taken by the
Minolta camera is around 112 000, and depends on the lens used
as well as standoff. Additional vertices arise from hair, clothing,
and background objects. A limitation of this data set is that only
minor lighting and pose variations are present. Sample images
from this sensor can be seen in Fig. 1.

Our experiment uses all 4007 3-D face images in the valida-
tion partition of the FRGC v2 data set. One-thousand five-hun-
dred thirty-eight of the 4007 images have nonneutral expres-
sions (e.g., disgust, happiness, surprise). Examples of images
displaying neutral and nonneutral expressions can be seen in
Fig. 2. A source of complications is found in images containing
shape artifacts due to subject motion during scanning. Examples
of these images containing artifacts can be seen in Fig. 3. Visual
inspection of the FRGC v2 data set found a total of 13 images
that contain significant shape artifacts. Texture misregistration
can also occur but it is not relevant to this work.

Maurer et al. manually separated the FRGC v2 data set into
three different categories [21] based on the subject’s expression.
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Fig. 1. (a), (c) Samples of images captured with the Vivid 910 by Minolta. (b),
(d) 2-D data for two different subjects associated with 3-D shape information.
(a) 04831d152. (b) 04831d152. (c) 04701d157. (d) 04701d157.

Fig. 2. Examples of image categories manually labeled by Geometrix. (a)
Neutral image. (b) Small expression. (c) Large expression. (a) 02463d550. (b)
02463d560. (c) 02463d666.

These categories were based on visual inspection of each image
for the amount of expression present. They classified 2469 im-
ages as “neutral,” 796 images as “small expressions,” and 742
images as “large expressions.” They report results [9] based on
these three image categories.

B. Data Preprocessing

Fig. 4 shows a diagram of the REFER algorithm when it is
used in a verification scenario. Specific details of the algorithm
will be given. Table I shows the running time of the REFER
algorithm in a verification scenario. From preprocessing to
final decision, the verification process takes less than 10 s on
a 2.4-GHz Pentium IV processor with 1 GB of memory. This
suggests that a feasible execution time may be achieved for
use at airport checkpoints (X-rays or check in), bank ATMs, or
building security scenarios, where the user may expect a slight
authentication delay.

Our algorithm operates automatically by using only the 3-D
shape from a frontal view of the face. First, small holes in the

Fig. 3. Examples of images that contain artifacts in the FRGC v2 data set. (a)
04475d114. (b) 04749d72. (c) 04760d76. (d) 04812d42.

range image are filled by locating “missing” points that are sur-
rounded by four or more “good” points. The x, y, and z co-
ordinates of the missing point are interpolated from its valid
neighbors. Boundary points are initially determined by a sweep
through the range image, row by row, to find the first and last
valid 3-D point. This process is repeated until no additional
points are created.

Once hole filling is complete, a final pass over the range
image with a 3 3 median filter smoothes the data, removing
spikes in the z-coordinate.

Finally, the nose tip point is detected using a consensus of
two or three methods previously discussed [2]. The first method
calculates the curvature and shape index [22] at each point on
the face in the range image to find possible nose tip candidates
labeled . The second method aligns the input image to a tem-
plate using the ICP algorithm. The position of the nose tip is the
highest Z value in the image after alignment and is labeled . If
the candidate nose tip points found in these methods are within
20 mm of one another, then we report the final nose tip location

as the average of and . Otherwise, a tiebreaker step is
performed. The position of the nose tip is known on the tem-
plate image and when properly aligned, this point should be the
nose tip of the input image as well and is labeled . Distances
between , , and are calculated and the pair with the
smallest distance is averaged and reported as , the best nose
tip. The majority of images causing this algorithm to fail were
due to scanner misregistration and hair artifacts. Visual analysis
of this algorithm applied to the 4007 images in the FRGC v2
data set determined that 3935 of the nose tips were less than 10
mm away from the manually marked nose tips.
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Fig. 4. Diagram representing the required operations for the REFER algorithm.

TABLE I
RUNNING TIMES OF THE REFER ALGORITHM

IV. REGION COMMITTEE VOTING APPROACH

A. Region Extraction

Once the nose tip is successfully found in the preprocessing
step, we translate the incoming image to the origin and crop a
gallery region, which is defined by a sphere radius of 100 mm
centered at the nose tip. To find the best committee of local re-
gions for maximum results, we consider 38 regions on the face,
some of which overlap, whose centroids are shown in Fig. 5. Ex-
amples of the relative radius sizes used in our experiments are
seen in Fig. 6. Together, this collection of regions densely covers
the face. We experimented with additional regions surrounding
the mouth; however, none led to additional performance gains.

Table II shows the cropping parameters used to generate each
region. OffsetX and OffsetY determine the new sphere center in
relation to the origin. SphereRadius determines the new sphere
radius. By selecting multiple small regions on the face, any er-
rors caused by a single region can be compensated for when
combining the matching scores from the other regions making
the system more robust to image artifacts, wrinkles, facial hair,
or expression variations.

B. Individual Region Matching

Once all of the regions have been cropped and the ICP al-
gorithm is run on each probe-to-gallery combination, we deter-
mined how well each individual region performed in a verifica-
tion experiment with the FAR fixed at 0.1% (the FRGC perfor-
mance point [1]) and an identification experiment reporting the

Fig. 5. Image of probe sphere centroids used in this experiment labeled by
region number. Multiple region numbers at a centroid indicate that more than
one radius was used for cropping, yielding multiple region probes with the same
centroid. (a) 04514d324.

rank-one recognition rate. A baseline region (a sphere cropped
at 100 mm from the nose tip) is also included to show the ef-
fects of matching the entire face to the gallery rather than using
smaller regions. The results in Table III show that no individual
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TABLE II
ICP PROBE REGION INFORMATION

Fig. 6. Radius size examples (25 mm, 35 mm, 45 mm).

region is able to demonstrate performance greater than 84.8%
TAR at 0.1% FAR, or 90.2% rank-one recognition. This moti-
vates the use of fusion to further increase performance.

C. Combining Results From a Committee of Regions

Choosing the best fusion method when processing a large
number of regions is a challenging task. In this paper, we have
experimented with many of the fusion techniques described by
Gökberk and Akarun [3] and Jain et al. [4].

The sum rule computes the final fusion score based on the
formula , , where is the number
of regions and is the number of images to process. Simi-
larly, the product rule is based on the formula ,

. These methods can result in a large score range
depending on the input values. Chang et al. [8] uses the product
rule to generate their results. The min rule simply finds the
smallest value in each of the regions and reports it as the
final score. This method is highly dependent on data normal-
ization. Without this step, the regions with overall smaller sim-
ilarity values will dominate the final scores. The consensus-
voting (CV) method returns a vote for the closest match in the
gallery for each region . The image with the highest number
of votes is declared the match. The Borda count (BC) technique
[3], [4], [23]–[25] sorts all of the similarity scores in the gallery
and adds the rank for each region; the image with the lowest sum
of ranks is declared a match. The CV and BC methods both re-
quire knowledge of similarity scores from other individuals in
the gallery to make a decision. Hence, the standard implementa-
tions of these two methods are unacceptable for use with a veri-
fication experiment, since only the match score(s) of the current
subject are known.

In this paper, we use a modified version of the BC method.
Unlike the standard BC method that provides a rank score (first
place, second place, third place, , th place) to each probe-to-
gallery similarity score entry in the set from , where
is the number of gallery images, we only give a rank score to
the first (in our experiments, ) entries in the gallery.
A limitation of the BC method is that a probe region must be
matched to each gallery image before the first entries can be
awarded a score. The traditional BC method takes the sum of the
ranks to determine a final score. Our version distributes points
such that the first place gets points, the second gets
points, until the number of points is equal to 0. This modification
yielded experimentally higher results than the traditional BC
method. We believe this result is due to the larger weight given to
rank-one matches. In our modification, a rank-one match and a
rank three match outperform two rank two matches. An example
of this method can be seen in Fig. 7. In this example, G1 is
the gallery image that is a match to the incoming probe image.
Regions R1, R2, and R3 are individual regions that are matched
to each gallery. After distributing the points using the method
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TABLE III
INDIVIDUAL REGION MATCHING PERFORMANCE

Fig. 7. Example of the BC algorithm on a sample set of data.

TABLE IV
FUSION RULE RESULTS

TABLE V
ALL VERSUS ALL REFER ROC VALUES

AT INCREASING CONFIDENCE LEVELS

described before, the final fusion ranks are displayed in the last
row in bold.

For verification experiments, we train the set of region-spe-
cific thresholds by using images from the FRGC

v1 data set. The FRGC v1 data set consists of 943 images con-
taining neutral expressions and is completely disjoint from the
FRGC v2 data set. We believe that verification results presented
in this paper could be further increased by using a more repre-
sentative training set (that contains expressions).

Our committee-based algorithm is similar to the consensus
voting method. There is a set of region-specific thresholds
that are independently tuned to optimize performance on each
region. The for each region is fixed once the desired operating
point of 0.1% FAR is reached (by the tuning procedure). For
each probe-to-gallery face match, we have matching scores.
We compare each matching score to its corresponding re-
gion threshold . If any matching score is below the threshold,
we report this region as a correct match (1). If the distance is
above the eligibility threshold, then we output this match as in-
correct (0). If we wish to decrease the FAR, we simply increase
the vote threshold required for a match to be considered correct.
The number of votes for a particular match can be seen as a rel-
ative measure of confidence (the more votes an image receives,
the greater confidence in our final decision).

V. EXPERIMENTAL RESULTS

In this paper, we perform two types of experiments. The first
is a verification experiment, in which the system’s performance
is quoted as a true accept rate (TAR) at a given FAR. The second
type of experiment is an identification experiment for which per-
formance is quoted as a rank-one recognition rate.
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TABLE VI
FUSION RECOGNITION RATE AS THE NUMBER OF REGIONS INCLUDED IN THE COMMITTEE

INCREASES ONE BY ONE STARTING WITH THE HIGHEST INDIVIDUAL RECOGNITION RATE

TABLE VII
EXPERIMENT 1: VERIFICATION RESULTS

The FRGC v2 [1] protocol defines a set of standard verifica-
tion experiments for face recognition. For pure 3-D face recog-
nition, Experiment 3 is most applicable. In the “ROC III” experi-
ment, the gallery images come from the Fall 2003 semester and
the probe entries come from the Spring 2004 semester. Thus,
gallery images are guaranteed to have been taken before probe
images and there is at least a month of time lapse between the
gallery and the probe. The result of this experiment is a receiver
operating characteristic (ROC) curve.

The second experiment (“All versus All”) employs the entire
FRGC v2 data set. All images appear in both the gallery and the
probe sets. For this setup, we perform both verification and iden-
tification experiments. In the identification experiment, we take
the earliest image of every participant and use it as the gallery
image for that subject. All subsequent images for each subject
are used as probes. The result is a cumulative match character-
istic (CMC) curve. For the verification experiment, we match
all 4007 images in the FRGC v2 data set to all 4007 images re-
gardless of expression, which can be summarized in an ROC
curve. Unlike the identification experiment, the gallery images
in the all versus all experiment may not have been taken before
the probe images.

In order to accurately compare the performance between the
methods and experiments described in this section, a standard
z-test [26] is performed on the respective results to determine
if there is a statistically significance difference. The rank-one
recognition and verification rate comparisons can be viewed as
a binomial distribution problem. We denote the probability of
a correct match (either correctly identifying or verifying a sub-
ject) by and the probability of an incorrect match by .

With a sufficiently large sample size , the binomial distribu-
tion converges to a normal distribution. For identification result
comparisons, is the probability that a subject is correctly iden-
tified from a gallery set. For verification result comparisons,
is the probability that a probe-to-gallery match results in a true
accept at a given false accept rate (i.e., 93.2% at a 0.1% FAR
would result in for that comparison). In general, ver-
ification experiments will have a significantly higher as each
comparison is included in the total number of samples. Identi-
fication experiments only contribute to a single sample for each
probe-to-gallery set match. This causes experimental verifica-
tion results to require a much smaller difference than identifi-
cation results to be statistically significant. Given two results,
with sample sizes and , and the percentage of observed
correct matches as and , the test statistic using a 0.05 level
of significance is

To test the performance of each fusion method presented in
the previous section, we created an experiment where the first
image of each participant is in the gallery set, and all subse-
quent images are in the probe set. This yields 466 images in the
gallery set and 3541 in the probe set. This ensures that every
image in the probe set will have a possible correct match in the
gallery. The rank-one recognition results of the fusion methods
discussed in the previous section are listed in Table IV.
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TABLE VIII
EXPERIMENT 2: IDENTIFICATION RESULTS

TABLE IX
EXPERIMENT 3: ROC III RESULTS

To demonstrate how the number and quality of regions affects
the different fusion rules, the rank-one recognition rates of the
individual regions (seen in Table III) are initially sorted from
best to worst. Each fusion rule is then performed until all of the
sorted regions have been included. Table IV shows each fusion
method, its best rank-one recognition rate achieved, associated
committee size, and overall recognition rate when all 38 regions
are employed. The sum, product, and min rules each show high
recognition with a limited number of regions; however, as the
quality (based on the individual rank-one recognition rate) of
additional regions decreases, so does the recognition rate. The
fusion rules are effective only if the individual regions are pre-
screened for quality and contribution to the final match. Un-
like the modified BC method, the traditional BC method can be
strongly affected by regions that perform poorly. For example,
if five regions each report a rank-one match for a given subject,
and a sixth region is occluded and reports a 200th rank, the total
score is 205 which is likely to result in a mismatch. The modi-
fied BC method avoids this problem by rewarding only the top

matches (maximum performance was achieved for our exper-
iments when ) with scores.

While the peak performance of the CV method is similar to
the modified BC method, a statistically significant difference in
recognition rates still exists. The difference between 97.1% and
96.2% is statistically significant at the 0.05 level of significance.
Unlike the modified BC method, the CV method does not re-
ward a region if it is not the best match in the set. This distinction
is likely the result of the discrepancy in best reported rank-one
recognition rates. Based on the results shown in Table IV, we are
able to conclude that maximum performance for our REFER al-
gorithm is achieved when using the modified BC fusion method.

Table V shows the tradeoff between confidence (number of
votes for a particular match) and the number of false accepts.
These results show the number of false accepts divided by the
total number of matches performed in this experiment. The total
number of votes for an individual probe-to-gallery match will
range from 0 to , where is equal to the number of regions that
are employed in the fusion technique. The votes are calculated

Fig. 8. Experiment 2 CMC curve for the first versus all gallery and probe con-
figuration.

TABLE X
EXPERIMENT 4: EXPRESSION VARIATION RESULTS

using the CV method, where a vote is awarded if a region match
score is below the predetermined region match threshold .

Table VI shows how the number (and quality) of regions
included in the fusion affects the rank-one performance when
using the modified BC method. The bold value in Table VI
signifies that there is no statistically significant difference
between the performance of that experiment and the peak
rank one recognition rate for the table. The results show that
although the peak recognition rate is 97.5% when employing
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Fig. 9. Experiment 4 CMC curves. (a) Neutral versus neutral. (b) Neutral versus nonneutral. (c) Neutral versus all. (d) Nonneutral versus neutral. (e) Nonneutral
versus nonneutral. (f) Nonneutral versus all.

29 regions, there is no statistically significant difference in the
score achieved by using 28 regions (97.2%). There is, how-
ever, a statistically significant difference between 29 regions
(97.5%) and the score achieved when using 27 regions (96.8%)
and fewer. These results allow us to conclude that maximum
performance can be achieved in future experiments by creating
a 28-region ensemble.

A. Experiment 1: Verification

Our first experiment is the “All versus All” verification ex-
periment previously reported on by others [9], [11], [12]. Our

REFER algorithm using 28 regions and the consensus voting
fusion approach of matching multiple 3-D regions of the face
was able to achieve a verification rate of 93.2% at an FAR of
0.1%, as shown in Table VII.

B. Experiment 2: Identification

Our second experiment is an identification experiment also
performed by other authors. Mian et al. [11] and Cook et al. [12]
use a gallery comprised of the first image of each subject (466)
and set the remaining images as probes (3581). Chang et al. [8]
report results using a gallery comprised of the first neutral image
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of each subject and set the remaining as probes. In this paper,
we reproduce both experiments using the BC fusion method and
the results can be seen in Table VIII and the corresponding CMC
curve can be seen in Fig. 8.

C. Experiment 3: FRGC ROC III

Our third experiment described in the FRGC program [1] as
“Experiment 3” was also reported on previously by others [10],
[28]. In this verification experiment, the gallery images come
from one semester and the probe entries come from the fol-
lowing semester. This ensures that the time sequence between
gallery and probe is maintained, and the average time lapse is
increased over the “All versus All” experiment. An increased
time lapse between gallery and probe is generally considered
to make the experiment more difficult. Since this experiment
was designed to determine the verification rate at 0.1%, we em-
ployed the CV fusion method technique to produce results. Our
algorithm was able to achieve a verification rate of 94.8% at an
FAR of 0.1% as shown in Table IX.

D. Experiment 4: Expression Variation

Experiment 4 examines the performance of our algorithm in
the presence of nonneutral facial expressions. For this test, we
create two gallery sets—one containing the first neutral image
of each subject and one containing the first nonneutral image
of each subject. Only subjects with at least one neutral and one
nonneutral expression are considered for this experiment. Three
probe sets are formed in a similar manner: one containing only
the remaining neutral images, one containing only the remaining
nonneutral images, and one containing all remaining images.
This experiment uses the expression classification data provided
with the FRGC v2 [1] data set to determine the probe and gallery
image separation.

For this experiment, we run a standard identification test (em-
ploying the BC fusion method) on each of six possible sce-
narios. The results from this experiment are seen in Table X
and their associated CMC curves can be seen in Fig. 9. The
results show only a minimal difference in the recognition rate
between the gallery subsets. Our algorithm is able to perform
well when matching a neutral expression probe to the neutral ex-
pression gallery. In neutral-to-neutral matching, there is a min-
imal change in the 3-D shape of the face. Our algorithm per-
formed less well when matching the gallery and probe across
different facial expressions. This is primarily due to the fact that
the selected region of the face is not perfectly rigid across facial
expressions.

E. Experiment 5: Missing Data

Finally, Experiment 5 explores how the performance of our
algorithm is affected when limited to only using certain regions
on the face. This experiment uses a gallery containing the first
image of each subject (regardless of expression) and a probe
set containing the remaining images. We simulate missing data
on the face by manually excluding regions of interest. Table XI
lists the regions of the face segmented into different categories
based on the location of the probe centroid and their individual
rank-one recognition rates achieved for each subset. This exper-
iment employs the BC method for score-based fusion. The best

TABLE XI
EXPERIMENT 5: SIMULATED MISSING DATA RESULTS

locality performance (95.2%) is found using only the regions lo-
cated in the center of the face. This recognition rate is similar to
the overall performance that resulted when using the best 28 re-
gions. The results also show that both the “left only” and “right
only” sets are able to perform well (88.0% and 89.2%, respec-
tively) even though they only contain regions on the side of the
face. In the future, we plan to further investigate the robustness
of the REFER algorithm on nonfrontal 3-D pose data.

F. Comparison to Results Published on the FRGC v2 Data Set

Although Phillips et al. [1] defined a set of standard exper-
iments for FRGC v2, researchers are free to define their own
experiments and use the FRGC data set. Using the recognition
and image refinement methods previously discussed, we repli-
cated the experiments from recent publications. Results can be
seen in Tables VII–IX. Using the standard z-test previously dis-
cussed [26], we are able to confirm that the results achieved by
our algorithm statistically significantly outperform each method
presented except for that of Kakadiaris et al. [28].

Kakadiaris et al. [28] present an algorithm for 3-D face recog-
nition that uses an annotated face model (AFM) to create a
unique representation of a human face. This algorithm consists
of five steps. First, a preprocessing step constructs a 3-D mesh
of the geometry of the face from the data. Second, an AFM
is fitted to the mesh. Third, a 2-D parameterization is used on
the AFM to generate a three-channel deformation image en-
coding of the shape information. Fourth, the deformation data
are processed with two different wavelet transforms (Pyramid
and Haar) to extract a signature of the participant. Finally, the
signature is matched to other signatures by using an L1 distance
metric (for the Haar wavelet) and a complex wavelet structural
similarity index algorithm [29] (for the Pyramid wavelet). They
reported a 97.0% verification rate at an FAR of 0.1% on ex-
periment 3 from the FRGC v2 program [1]. These results were
achieved by fusing the individual scores from the Pyramid and
Haar wavelets. The results of our algorithm are similar to those
reported by Kakadiaris et al. [28]. Relative to Kakadiaris’ algo-
rithm, we use a simpler approach that does not require an anno-
tated face model. While the results reported by the author out-
perform those presented in this paper by a small margin, our al-
gorithm shows the additional potential of being capable to deal
with large holes and missing data in images, which is typical in
realistic biometric applications.
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Maurer et al. [9] created an algorithm that uses fusion of 2-D
and 3-D face data for multimodal face recognition. Their algo-
rithm first cleans each mesh, extracts relevant face data, and then
performs ICP on the 3-D set to generate a distance map between
the two aligned meshes, which allows a score to be generated
from the results. The 2-D component of their algorithm uses the
recognition system created by Neven Vision [30] and fuses the
results with those of the 3-D matcher based on the quality of
each match. If the 3-D match was very good, then the match
is considered correct and the 2-D score is not used. If this is
not the case, then the results are fused together to return a com-
bined score. They report results on their 3-D algorithm, as well
as reporting the 2-D component’s contribution to the 3-D per-
formance. They achieved an 87.0% verification rate at an FAR
of 0.1% using 3-D face information, based on the complete 4007

4007 matrix of matching scores compiled from the images in
the FRGC v2 data set.

Husken et al. [10] created an algorithm that operates pri-
marily on 2-D face data. Their approach uses a version of hi-
erarchal graph matching (HGM) created by Wiskott et al. [31].
It is based on creating an elastic graph that holds texture infor-
mation and position of facial landmarks on an image. Distances
are then taken between graphs to determine the similarity be-
tween models. When using 3-D shape data alone, they reported
an 86.9% verification rate at an FAR of 0.1% on experiment 3
that is defined in the FRGC v2 program [1] to match images
across academic semesters.

Mian et al. [11] automatically detect the nose, perform pose
correction and normalization in both 2-D and 3-D, create a
rejection classifier to reduce the overall processing time, and
finally segment the 3-D images into two regions (nose and
eye/forehead) and match them independently to increase the
overall recognition rate. They report verification of 98.5% at
0.1% FAR and rank-one identification of 96.2%, based on a
neutral gallery and a probe set comprising the remaining images
using their R3D algorithm. In addition, the authors report that
the eye/forehead and nose regions of the face contain maximum
discriminating features necessary for expression-invariant face
recognition.

Cook et al. [12] present a novel method based on Log-Gabor
Templates for handling expression variation in 3-D face recog-
nition. The authors apply 18 Log-Gabor filters on 49 square win-
dows to generate 147 feature vectors comprising 100 dimen-
sions. After matching is performed, they report results using the
FRGC v2 data set. When the 4007 4007 similarity matrix is
calculated, they report a 92.31% verification rate at 0.1% FAR.
In the identification scenario, the authors employ the first image
of a subject in the gallery set (466 images) and the remainder in
the probe set (3581) for a rank-one recognition rate of 92.93%.
They also discuss how the best performance is achieved when
using windows surrounding the upper nose area while the inclu-
sion of outer areas adversely affects the accuracy of the system.

Bowyer et al. [27] perform four experiments on a superset
of the FRGC v2 experiment 3 data containing 4485 total scans,
2798 neutral image sets (449 subjects), and 1590 nonneutral
expression sets (355 subjects). The authors’ first experiment
examines the change in rank-one recognition rate when ob-
serving a time lapse between gallery and probe images. The

second looks at the change in the rank-one rate when the
images are separated by expression. The third experiment
shows how their adaptive rigid multiregion selection (ARMS)
algorithm performs when presented with an increasing set
of data to demonstrate scalability. Chang et al. also report
results [8] on two neutral gallery experiments on the same data
superset. When the probe set contains only neutral expressions,
a rank-one recognition rate of 97.1% is achieved. When the
probe set is restricted to only images containing nonneutral ex-
pressions, the best reported rank-one recognition rate drops to
87.1%. Table X shows that the REFER algorithm significantly
outperforms the results reported by Chang et al. and shows a
99.2% rank-one recognition rate for a neutral gallery matched
to a neutral probe set and a 96.3% rank-one recognition rate
for a neutral gallery matched to a nonneutral probe set for the
same experiments.

While the concept of independently matching multiple re-
gions mentioned by Chang et al. is similar to the technique men-
tioned in this paper, our work has many differences that extend
the approach. Chang et al. limit their experiments to three re-
gions overlapping the nose area. In this paper, we explore the
efficacy of including additional regions (38 total) that overlap
the entire face rather than simply the center. Chang et al. found
that maximum performance occurred when only two of the three
regions were combined. We believe this is a result of region satu-
ration. When there is too much overlap on a selected region (the
nose in this case), the descriptiveness will begin to drop. When
we add a region from an alternate location (the forehead for ex-
ample), the addition of independent results boosted the overall
performance. Finally, the authors found that using the product
rule for fusion provided the highest results. Our results suggest
that this method is inferior to the fusion techniques used in this
paper (BC and CV) especially when a large number of regions
are used.

VI. CONCLUSION AND FUTURE WORK

We have presented the results of an approach to 3-D face
recognition designed to handle variations in facial expression
between gallery and probe images. Our approach automatically
finds the nose tip and selects 28 different regions around the
face. The algorithm has been evaluated on the FRGC v2 data set
containing 4007 3-D face scans from 466 unique subjects, rep-
resenting a variety of facial expressions. For the identification
experiment, we achieve a rank-one recognition rate of 97.2%.
The results of our algorithm using only the single 3-D shape
modality outperform those reported by many other published
organizations [8]–[12] on the same data set.

Incomplete facial data and artifacts are still a major issue in
realistic biometric experiments. We have performed an exten-
sive study on how individual regions across the face affect the
recognizability of a subject, and how manually removing cer-
tain regions simulates large amounts of missing data or facial
pose variation. In the presence of both obstacles, our REFER
algorithm still provides a high level of recognition due to its
piecewise robustness. In addition, we found that variants of the
BC and CV techniques provide maximum performance when
fusing results from multiple 3-D face regions.
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