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Abstract
We consider the problem of wrapping around an object, of

which two views are available, a reference surface and recov-
ering the resulting parametric flow using direct computations
(via spatio-temporal derivatives). The well known examples
are affine flow models and 8-parameter flow models — both
describing a flow field of a planar reference surface. We extend
those classic flow models to deal with a Quadric reference sur-
face and work out the explicit parametric form of the flow field.
As a result we derive a simple warping algorithm that maps be-
tween two views and leaves a residual flow proportional to the
3D deviation of the surface from a virtual quadric surface. The
applications include image morphing, model building, image
stabilization, and disparate view correspondence.

1 Introduction
The image flow field induced by the camera (or scene) mo-

tion is a product of the 3D structure of the scene, the 3D cam-
era motion parameters and its intrinsic parameters. While ef-
ficient factorization of the flow into structure and motion is an
active area of research, in many cases an implicit parametric
form of the optic flow is sufficient, say for motion segmen-
tation, image stabilization, coarse correspondence for model
building, and for establishing reference surfaces for 3D scene
representation. To that end, a hierarchy of parametric flow
models have been developed in the past (whose most elegant
description can be found in [3]) starting from pure global trans-
lation, image plane rotation, 2D affine, and 2D homography
(8-parameter flow, also known as quadratic flow). These mod-
els have been used extensively and have been estimated di-
rectly from image spatio-temporal derivatives (known asdi-
rect estimation) using coarse-to-fine estimation via Laplacian
(or Gaussian, or wavelets) pyramids. These methods search
for the best (parametric) flow model out of the family of con-
strained flows (described above) that minimizes the square of
change of image intensities (SSD) over the whole image —
thus gaining robustness due to very highly over-constrained
linear systems (each pixel contributes a linear constraint).

However, these models are applicable to scenes that are ap-
proximately planar or have small variations in depth, relative
to the distance from the camera. The residual flow, followed by

the nominal planar warp, is proportional to the depth variation
from the scene to the virtual planar surface. In other words,
the virtual surface plays a role of areference surfaceand the
residual flow represents the scene structure relative to the refer-
ence surface. In many of the applications mentioned above one
would like the reference surface to approximate the structure
of the scene. For example, a planar scene with a small number
of objects protruding from the plane (such as a moving vehi-
cle) is ideal for an affine or homography flow that will stabilize
the plane and thereby enhance the position of the protruding
objects. Small residual flow is also convenient for establishing
correspondence (alignment) between disparate views. Since
the nominal flow (corresponding to the parametric flow model)
is highly over-constrained large image distances can be toler-
ated, and if the residual flow is small then a second round of
optic flow (now unconstrained) can handle the remaining dis-
placements.

These examples naturally suggest considering higher-order
parametric flows in order to account for non-planar virtual ref-
erence surfaces. For example, by placing a virtual quadric sur-
face (allowing for all degenerate forms including a plane) on
the object would give rise to a smaller residual flow and in
more general circumstances. Consider for example Fig. 2 dis-
playing two widely separated views of a face. Notice the effect
of a planar warp field, compared to the effect of a Quadric-
based flow field. The image warped by the nominal flow is
much less distorted and the residual flow is much smaller.

The idea of extending the planar models to quadric models
was originally suggested in [13] but in the context of discrete
motion. The quadric reference surface was recovered using ex-
plicit point matches, including the computation of the epipolar
geometry, whereas here we wish to establish a “quadric warp
field” using infinitesimal motion models and direct estimation.
In [13] special attention was payed on how to overcome the
multiple solution problem since a general ray from the camera
meets a quadric twice, thus for every pixel in the first image
there would be two candidate projections in the second im-
age. Also special attention was payed to the type of image
measurements that are sufficient for a solution (point matches
only, points and an outline conic, see also [6]).



In this paper we introduce the derivation of a quadric-based
nominal flow field, we callQ-warping, using the infinitesi-
mal motion model and direct estimation. The multiple solu-
tion problem addressed by [13] via “opacity” constraint is ap-
proached differently here. Instead of using an opacity assump-
tion, which is problematic to enforce in a parametric flow rep-
resentation, we enforce the family of quadrics to include the
center of projection of the first camera. We show that the as-
sumption does not reduce the generality of the approach due to
existence of hyperboloids of two-sheet (one sheet includes the
camera center and the other wraps around the object), and that
planar surfaces are included in this model in a general manner,
i.e., the plane may be generally located in space. Therefore,
our model extends the hierarchy of direct estimation paramet-
ric models of [3] without sacrificing “backward compatibil-
ity”.

2 Background: Small Motion and Parametric
Flow

The parametric flow models are based on combining three
elements: (i) infinitesimal motion model, (ii) planar surface
assumption being substituted into the motion model, and (iii)
the parametric flow is integrated with the “constant brightness
constraint”. We will describe these elements in detail below.
2.1 Small Motion Model

We describe below a compact form of the Longuett-Higgins
and Prazdny motion model [10]. Letp = [x; y]t =
[X=Z; Y=Z]t whereP = [X; Y; Z]t is a world point in the co-
ordinate system of the first (calibrated) camera andp is it’s cor-
responding image point. LetP 0 be the coordinates of the same
world point in the second camera coordinate frame. Since the
camera motion is rigid, we haveP 0 = RP + t whereR and t
are the rotation and translation between the coordinate frames.

The rotation matrixR can be written as

R = I � cos� + (1 � cos�)wwt + sin� � [!]�

where! is a unit vector representing the screw axis,[!]x is the
skew-symmetric matrix of vector products, i.e.,[!]xv = !�v
for all vectorsv, and� is the angle of rotation around the screw
axis. When� is small,cos� ! 1 andsin� ! �, and in turn
R = I+[!]� where the magnitude of! is the angle of rotation.
Given the instantaneous rotation, the instantaneous motion of
P is:

_P =
dP

dt
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Let [u; v]tdenote the image velocity fromp to p0. We use _X
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is similarly derived. To summarize we have,
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wheres1 = [1; 0;�x]t ands2 = [0; 1;�y]t.
2.2 Direct Estimation Equation

Assume the brightness constancy assumption,

I0(x; y) = I(x � u; y � v);

where I(x; y); I 0(x; y) are the observed grey-scale images
at two successive time frames. Since the displacementu; v
are assumed to be small (infinitesimal motion assumption),
then the equation above can be simplified through the trun-
cated (first-order) Taylor series expansion ofI(x; y) to what is
known as the ”constant brightness equation” [8]:

uIx + vIy + It = 0

whereIx; Iy are thex; y spatial derivatives, respectively, and
It = I0(x; y) � I(x; y) is the temporal image derivative. By
substitutingu; v with equations 2 we obtain a linear constraint
on the flowu; v as a function of the spatio-temporal deriva-
tives, the camera motion parameters!; t and the depth variable
Z:

1

Z
(I�s1 + Iys2)

tt+ (Ixs1 + Iys2)
t[!]�p+ It = 0;

which after simplification becomes [9]:

1

Z
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2.3 Parametric Model: Planar Case
One can eliminate the parameterZ from equation 3 by as-

suming that the scene is planar [1], i.e., there exist scalars
A,B,C such thatAX+BY +CZ = 1 for all points[X; Y; Z]t.
By definition ofp we haveX = xZ, Y = yZ and so we can
rewrite it as1

Z
= Ax+By+C. Substituting this in (2) yields:

u = (Ax+By +C)st
1
t+ st

1
[!]�p

v = (Ax+By +C)st
2
t+ st

2
[!]�p

Written more explicitly, let t = [�1; �2; �3]
t and ! =

[�; �; 
]t we get:

u = (A�1 �C�3)x+ (B�1 � 
)y + C�1 + � �

(B�3 + �)xy + (� �A�3)x
2

v = (A�2 + 
)x + (B�2 � C�3)y + C�2 � �+

(� � A�3)xy � (B�3 + �)y2
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Figure 1. Q-warping fits a quadric around a general object,
however the family of quadrics must contain the origin (the
first camera center). A hyperboloid of two sheets meets this
requirement by having one sheet coincide with the origin and
the other sheet wrap around the object. All rays from the first
camera intersect the quadric uniquely and the projection of the
intersection point onto the second view is the result of the Q-
warping flow. The residual flow is thus proportional to the
deviation of the physical surface from the virtual quadric.

The terms above can be collected to give the 8-parameter
flow model used for estimating the instantaneous motion of a
plane:

u = ax+ by + c+ gxy + hx2

v = dx+ ey + f + hxy + gy2 (4)

The direct estimation readily follows by substituting the above
in uIx + vIy + It = 0 we obtain a linear constraint on the pa-
rametersa; b; :::; h. Every pixel with a non-vanishing gradient
contributes one linear constraint for 8 unknowns, thus, making
a highly over-constraint least-squares system for solving the
warping function 4.

3 The Quadric Flow: Q-warping
Consider the family of quadric surfaces that contains the

origin [0; 0; 0], i.e., the center of projection of the first camera:

AX + BY + Z +DXY + EXZ + FY Z +

+GX2 +HY 2 +KZ2 = 0 (5)

Note that we have normalized the coefficients assuming that
the coefficient ofZ is non-vanishing, one could choose other
forms of normalization.

The reason we include the origin is to have a single in-
tersection between the optical rays emanating from the first
camera and the quadric surface. A single intersection is a
necessary condition for obtaining a warping function. It is
important to note that the inclusion of the origin does not
limit the generality of the quadric because quadrics can break
apart into two pieces, known as thehyperboloid of two sheets.
Thus, one sheet will include the origin and the other sheet
will wrap around the object. The location and shape of the
sheet (parabolic, elliptic, and degenerate forms like cylinders

and cones) will be determined by the image measurements of
spatio-temporal derivatives (see Fig. 1). What is also impor-
tant to show is that the inclusion of the origin is not a con-
straint that is carried to the degenerate form of a planar sur-
face. In other words, a planar warping function, corresponding
to any general position of a plane, should be a particular case
of the Q-warping function — otherwise we will not be able
to include Q-warping in the hierarchy of parametric models.
We will show later that in case of planar objects, the quadric
breaks down into two planes, one coincides with the physical
plane in the scene and the other is the planeZ = 0. Taken
together, there is no loss of generality by having the origin live
inside the family of quadrics.

UsingX = xZ, Y = yZ and dividing byZ2 and rearrang-
ing terms, we get:

1

Z
=

Dxy +Ex+ Fy + Gx2 +Hy2 +K

Ax+ By + 1

By substitutingZ in equations 2 we obtain a parametric flow
model (with 17 distinct parameters), which is our Q-warping
function:

u =
�(x; y; a; :::; p)

Ax+ By + 1
(6)

v =
�(x; y; a; :::; p)

Ax+By + 1
(7)

where,
�(�) = ax+ by+ c+ dxy+ ex2+ fy2 + gyx2+hxy2+ px3

�(�) = jx+ky+ l+mxy+nx2+oy2 +pyx2+gxy2+hy3

And:

a = �A �K�3 +E�1 b = �B � 
 + F�1
c = K�1 + � d = �� �D�1 � 
A � F�3
e = � + G�1 � E�3 f = H�1 � 
B
g = �B �D�3 �A� h = �H�3 �B�
j = 
 � A�+E�2 k = F�2 �K�3 �B�
l = K�2 � � m = B
 + � +D�2 � E�3
n = G�2 + A
 o = H�2 � �� F�3
p = �A �G�3

Before we continue to the direct estimation equation, con-
sider the case of a planar object. We would like to show the
following:

Proposition 1 The Q-warping flow model includes as a par-
ticular case the planar parametric model of equations 4.

Proof: Consider the quadric:EXZ+FY Z+KZ2+Z = 0.
By dividing byZ2 followed by substitution in equations 2, we
obtain:

u = ax+ by + c+ dxy + ex2

v = jx + ky + l +mxy + oy2

whered = o = ��� F�3 ande = m = � � E�3.



(a) First view (b) Second view (c) Edge overlay for Compar-
ison.

(d) Optical flow induced by
the Quadric surface.

(e) The Q-warped image (f) Edges of warped image
overlayedon top of the second
view.

(g) Enlarged section of (f)

(h) Optical flow induced by
the planar surface.

(i) The warped image. (j) Edges of warped image
overlayedon top of the second
view.

(k) Enlarged section of (j)

(l) Optical flow (m) matches on 1st image (n) Warped image
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Figure 2. Application of Q-warping on general objects.Row 1displays the original two views and the edge overlay in order to appreciate
the distance between matching features.Row 2displays the Q-warping results. Note that the features are aligned up-to a few pixels. The
alignment is not expected to be accurate because the object is not a quadric, but the small residual flow suggests that the fitted quadric was
wrapped closely around the object.Row 3compares the results with a direct estimation planar flow (eqn. 4).Bottom Rowcompares the
results with a planar flow recovered from discrete 4 point matches from the center of the face.



In order to obtain a direct estimation using spatio-temporal
derivatives, we multiply both sides of the Q-warping equations
byAx+By + 1 and obtain:

�(x; y; a; :::; p)Ix+�(x; y; a; :::; p)Iy+(Ax+By+1)It = 0:
(8)

This is a linear equation inA;B; a; b; :::; p per pixel with non-
vanishing gradients. The least-squares estimation requires
some care which will be described next. Also note that the
motion model has 17 parameters, yet the minimal number of
parameters required for describing a moving quadric passing
through the camera center is14 = 6 + 8, where6 comes
from parameters of rotation and translation and8 comes from
the number of parameters representing the quadric (passing
through the origin). Therefore, the 17 parameters must sat-
isfy algebraic constraints, i.e., not every set of 17 numbers is
admissible. However, this is a topic which will not be covered
in the scope of this paper.

4 Iterative Refinement
The parametric flow models are only first-order approxima-

tions, and therefore, the implementation framework must in-
clude a Newton iterative refinement, of the style suggested in
[2, 3, 4, 11]. The iterative refinement process gradually brings
the two original images closer to each other, such that in the
ideal case of constant brightness and a quadric surface,It ! 0
at the limit. Considering the estimation equation 8, the dimin-
ishing It is a serious problem because the coefficientsA;B
become under-determined. In other words, as we get closer to
the solution, our system of equations gets increasingly unsta-
ble numerically.

We adopt the line of approach described in [7, 15] which is
to rewrite the direct estimation equation 8 as a function of the
final output flow instead of the incremental flow, shown next.
Let u(x; y); v(x; y) be the final flow (describing the displace-
ment field between the original two imagesI(x; y); I 0(x; y)
as a function of a quadric model) described parametrically in
eqns. 6 and 7.

Let ~u(x; y); ~v(x; y) be the flow field established in the last
iteration (the initial guess for the current iteration). The incre-
mental flow is defined by�u = u�~u and�v = v�~v satisfies
the constant brightness equation:�uIx+�vIy + It = 0. Af-
ter substitution we obtain the new direct estimation equation
for the parametersA;B; a; :::; p below:

�(�)Ix+ �(�)Iy + (Ax+By + 1)(It� ~uIx � ~vIy) = 0: (9)

Initially, ~u = ~v = 0. As the iterations proceed~u; ~v approach
the desired flowu; v (eqns. 6,7). In each iteration, the sys-
tem of equations for the parametersa; :::; p; A;B is defined by
minimizing the least squared error:

Err =
X
x;y

= [�(�)Ix + �(�)Iy

+ (Ax+ By + 1)(It � ~uIx � ~vIy)]
2 (10)

where the sum is over the entire image. The system of linear
equations is obtained by setting the partial derivatives of ( 10)
with respect to each of the parametersa; :::; p; A;B to zero.

The above estimation algorithm is meaningful only when
the frame-to-frame displacements are a fraction of a pixel so
that the first-order order term of the Taylor series is dominant.
The range of displacements can be extended to large displace-
ments by implementing the procedure within a multiresolution
(pyramid) structure [5, 12]. Further details on the iterative re-
finement, warping, and coarse-to-fine implementation can be
found in [14].

5 Experiments
We have conducted a number of experiments both on

quadrics and general objects. In our first example we have
wrapped a poster on an approximately cylindrical surface.
Here we expect the parametric flow recovered from the Q-
warping function to match closely the true flow. Fig. 3 dis-
plays the results: the edges of the second view are overlayed
on the first view in order to visualize the magnitude of dis-
placements. The flow field recovered by our algorithm is dis-
played in Fig. 3c and the edges of the warped image overlayed
on the second view shown in Fig. 3d match their true position
up to sub-pixel accuracy. Note that this also demonstrates that
the real surface need not contain the center of projection of the
first camera because the Q-warping function can feet ahyper-
boloid of two sheets with one of the sheets wrapping around
the physical surface.

The next example is on a general object. Fig. 2 shows two
disparate views of a face. One can see from the edge overlay
that the distance between the views is fairly significant. Note
the difference between the Q-warping and the planar warping.
We have applied to versions of a planar warping. First, in the
bottom row 4 matching points were selected (coming from an
approximately planar configuration in space) and the 2D pro-
jective transformation determined by 4 matching points) was
recovered. Note that the edges on the center of the face are
closely aligned at the expense of the boundary curves (as the
boundary curves away from the plane determined by the 4
matching points). Second, we applied the infinitesimal pla-
nar motion model (eqn. 4) in a direct estimation framework
(row 3). Note that the planar warping has chosen a plane fit-
ting the center of the face (where most of the strong gradients
are) rotated around the vertical axis — the result is a distorted
warped image due to the large deviation of the object from a
planar surface. The Q-warping on the other hand has aligned
the warped image with the second view, up-to a few pixels dis-
tance.

Additional experiments can be found in [14]. Taken to-
gether, the Q-warping algorithm generates a parametric flow
field that performs well on general objects as well as on
quadric surfaces (in the latter case the flow field is exact).

6 Summary
We have extended the parametric flow hierarchy to include

flows induced by a virtual quadric. We have shown that the
extension can be made feasible in the sense that the warping
function is unique and includes planar warping as a particular
case, when the family of quadrics contain the center of pro-
jection of the first camera. We have shown that containing the
origin does not limit the generality of the quadric fitting and



(a) The first view. (b) Edges of the second view
overlayed on the first.

(c) Optical flow induced by
the quadric surface

(d) Edges of the warped (first)
view overlayedon the second.

Figure 3. A poster was wrapped around a cylindrical surface. The recovered flow matches the true flow to sub-pixel accuracy.

have proven that the planar case is included within the model.
Experiments on real images of general objects illustrate the ap-
plicability of our method. Q-warping provides more flexibility
in fitting flow fields to the scene than existing planar models,
yet reduces to planar warping when the scene requires so.
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