
Comparison of Wavelet and FFT Based Single Channel Speech 
Signal Noise Reduction Techniques 

 

Ningping Fan, Radu Balan, Justinian Rosca 
Siemens Corporate Research Inc. 

{Ningping.Fan, Radu.Balan, Justinian.Rosca}@scr.siemens.com 
 
 

ABSTRACT 
 
This paper compares wavelet and short time Fourier transform based techniques for single channel speech 
signal noise reduction. Despite success of wavelet denoising of images, it has not yet been widely used for 
removal of noise in speech signals. We explored how to extend this technique to speech denoising, and 
discovered some problems in this endeavor. Experimental comparison with large amount test data has been 
performed. Our results have shown that although the Fourier domain methods still has the superiority, 
wavelet based alternatives can be very close, and enormous different configurations can still be tried out for 
possible better solutions.  
 
Keywords: DWT, DWPT, wavelet, wavelet packet, FFT, noise control, speech enhancement, noise 
cancellation filter 
 

1. INTRODUCTION 
 
This paper compares techniques for single channel speech signal noise reduction based on different 
transformation techniques, namely discrete wavelet transform (DWT), discrete wavelet packet transform 
(DWPT), and short time Fourier transform (STFT). State of the art wavelet denoising techniques [1] have 
been very successfully applied to image noise reduction. However it has not yet been widely used to solve 
the speech signal noise reduction problem, as few publications in wavelet in comparison to enormous STFT 
papers. Because both Fourier and wavelet transforms are linear and noises are additive, the STFT solutions 
should applicable to the wavelet domain.  
 
The motivation to use wavelet as a possible alternative for speech noise reduction is to explore new ways to 
reduce computational complexity and to achieve better noise reduction performance. Firstly, because the 
wavelet transform may not require overlapped windows due to the localization property, the same filter 
could process less data. Secondly, wavelet filter does not correspond to time domain convolution, so that 
shift-invariant is not preserved. However, the Fourier domain filters can still be extended to the wavelet 
domain, because they are derived according to the statistical properties of spectral components. The Martin 
minimum statistics noise estimator, the Wiener, the spectral subtraction, the Wolfe-Godsill, and the 
Ephraim-Malah filters can be extended in the wavelet domain as well. These filters are similar to the 
modern soft, hard, or shrinking threshold methods of wavelet denoising that both operate on spectral 
magnitude and retain the sign of wavelet transform coefficients (which equivalent to the phase in STFT). 
Thirdly, there are many different wavelets and various wavelet transform combinations. Therefore, 
possibilities for a better wavelet and a particular transform are great. 
 
Our comparison uses the same algorithms but in different domains. A speech database containing male and 
female speakers mixed with common office noises, like fan, printer, and open window near street, are used 
for the test. Objective speech qualities are measured for comparison. DWT and DWPT based on seven 
different wavelets have been tried to compare with STFT. Generally speaking, DWPT is better then DWT 
and STFT is the best. We have not yet tried the un-decimated wavelet to preserving shift invariant [2], 
perceptual wavelet transforms [3] [4] [5], and various incomplete DWPT transforms [6]. The computational 
complexity of DWT is less than DWPT, and it varies depending on the wavelet and the levels used in the 
transform, as well as implementation efficiency. It can be much less or much more than STFT. For 
example, the Daubechies-4 DWT is 0.085 times of STFT, but the Battle-Lemarie DWT is 2.46 times, and 
the Battle-Lemarie DWPT is about 10.3 times. 



 

2. SHORT-TIME FOURIER AND WAVELET TRANSFORMS 
 
Short time Fourier transform (STFT) is the main approach used in current speech noise removal methods. 

The input signal )(nx  is first segmented into consecutive overlapping block sequences with zero padding 

),( imx , where m is a sample index within a block, and i is a block index. Each block is then transformed 

into frequency domain ),( ikX , as shown in figure 1. 

 

Figure 1 - Illustration of shot time DFT and IDFT 

The first reason for success of STFT lies in the nature of the Fourier transform. It converts a time domain 
randomly fluctuating white noise signal into stationary frequency components, so that they can be detected 
and removed. The second reason is due to the block sequence mechanism and speech signal properties. In a 
speech signal, a vowel takes about .0.8 ~ 0.2 sec in average. Using the GSM mobile phone standard, one 
frame is about 0.02 sec, and there are about 10 ~ 40 frames per vowel. Even when a person continuously 
speaks, the speech signal is not continuous because there are unvoiced sections between vowels. This 
property has been exploited to estimate background noise, and to improve filter performance.  
 
The wavelet transform is performed via a pair of filters h and g, which convolve input signal then decimate 
it into smooth half and detail half signals at the first level. The process then continuously operates on the 
smooth half until a final level reached, as shown in figure 2. 

 

Figure 2 - Illustrations of DWT and IDWT in time-frequency presentation 



For 8 input samples, it generates 4 frequency components (k=0,.., 3), with 4 samples in k=3, 2 samples in 
k=2, and 1 sample in k=1 and k=0 respectively, which is known as the time-frequency or time-scale 
presentation. Because it is difficult to visualize, a pseudo spectral presentation shown in figure 2 is used for 
the spectrum display. DWPT is shown in figure 4, which is same as DWT in the first level, but then it 
continuously operates on both smooth half and detail half until a final level reached. It has the full spectral 
components (k=0,…, 7), similar as FFT.  

 

Figure 3 - Illustration of DWT and IDWT in pseudo frequency presentation 

 

 

Figure 4 - Illustration of DWPT and IDWPT in full frequency presentation 

Because the localization property of wavelet, operating on entire signal once or block by block sequentially 
generates the same wavelet transform as long as the same final level is used. However, because the filtering 
algorithm utilizes the block sequence mechanism to match discontinuity of speech and to perform noise 
estimation, the same block size is used for both wavelet and FFT for easier comparison. Actually the same 



notation such as ),( ikX  will be used to indicate both domains. A spectral component is complex in the 

Fourier domain and real in the Wavelet domain. A conjugate of a complex number is of the same real part 
plus the negative imaginary part, and a conjugate of a real number is the same number. 
 
Figure 5 shows the power spectral density (Psd) of FFT, DWT, and DWPT for a same waveform, which 
starts with a fan noise section, then a clear speech section, and ended with a noisy speech section. 
 

 
(a) Psd of FFT 

 
(b) Psd of DWT in pseudo spectral presentation 

 
(c) Psd of DWPT 

Figure 5 - Power spectral densities of FFT, DWT, and DWPT for a signal starting with a noise 
section, then a clean speech section, and ended with a noisy speech section which is the summation of 
first two sections in time domain. 

 

3. NOISE REDUCTION FILTERS 
 
Using filters in transformed domains is the main approach in modern noise reduction techniques, because 
the noise magnitude can be estimated more accurately in those domains. As shown in figure 6, it is 
performed with a transfer function, 1),(0 ≤≤ ikH , to produce the output ),(*),(),( ikXikHikY = .  

 

Figure 6 – The entire workflow of noise reduction operation 



The ),( ikH  is a function of noise-to-input ratio (NIR). For low NIR, the H is large to maintain the signal 

component, while for high NIR, the H is small to reduce the noisy component. The phase in the Fourier 

domain or sign in the Wavelet domain of ),( ikX  is maintained intact. Following, we present rules widely 

used in the noise reduction algorithms, namely the Wiener, the spectral subtraction, the Wolfe-Godsill, and 
the Ephraim-Malah filters for both Fourier and wavelet domains. 

3.1 The Wiener Filter 

Because all the operations in the analysis stage are linear, ),( ikX  is consists of a signal component ),( ikS  

plus a noise component ),( ikN . 

KkikNikSikX <≤+= 0),(),(),(  (1) 

Where i is the block time index, k is transformed spectral components index, and K is the total number of 
transformed spectral components. We want to find a filter ),( ikH , so that the filtered output signal 

),(),(),( ikXikHikY =  will minimize the following objective function. 

})(){(

})(){(),(

NXHXNXHXE

SYSYEikJ

+−+−=

−−=
 (2) 

To minimize J, we make its partial derivative with respect to H, and let the results equal to zero. The k and i 
indexes are dropped, because these derivation apply to all the k and i values. 
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Then, we have the Wiener filter H to be 
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Where 0}{ =SNE  because signal and noise components are uncorrelated. The quantity XN RR /  is called 

as noise to input ratio (NIR) in this paper, which satisfies the following constraints.  
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Therefore, purely as a result of optimization, 10 ≤≤ WienerH . 

 

Because the speech signal is pseudo stationary, the XR  is estimated via a first order linear predictor along 

the time index i. Because the noise is generally assumed to be stationary, NR  is also being improved via a 

first order linear predictor along the time index over the original noise estimator’s output NR̂ . 
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Because the errors in XR  and NR  estimation, the ideal Wiener’s rule (4) will cause a music tone and 

speech distortions. To overcome those problems, a parametric Wiener filter is generally applied  
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where γ is a scaling factor for NIR, and h is a floating floor for the transfer function. The γ and h can be 
constants [7], or even better be adaptive to the noise estimation as follows.  
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Intuitively (8) reflects the following ideas. When noise level is low, the γ will decrease and h will increase, 
so as to reduce the filtering operation and resulted speech distortion that cannot masked by the low noise. 
When noise is high, the reverse will happen, so as to increase filtering operation to reduce more noise while 
the speech distortion can be masked by the high noise [8]. 

3.2 The Spectral Subtraction Filter 

The most widely alternative to the Wiener filter is the spectral subtraction filter. It is not derived from 
optimization of some cost function, but from an intuitive idea - to remove the noise magnitude [9].  
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Thus the spectral subtraction filter H, is given by 
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Similarly, we have 10 ≤≤ SSH . 

 
To overcome the distortion problem, its adaptive parametric form is actually applied. 
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The spectral subtraction is widely used in multiple microphone settings, where one microphone to pickup 
noisy speech signals and other microphones to pickup noise only sources. After proper delay and 
attenuation, the spectral noise magnitude is subtracted from the input spectral magnitude to produce a clean 
speech output, which is typically used in helicopters.  

3.3 The Wolfe-Godsill Filter  

Assuming Gaussian distribution of both speech and noise spectral components as follows: 

)),(,0(~),(),),(,0(~),( Iik
N

ikNIik
S

ikS λλ ΝΝ  (12) 

The Wolfe-Godsill filter is the maximum a posteriori (MAP) estimation of jointly spectral amplitude and 
phase [10]. The filter is given as 
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Replacing  ξ  with γ , we can have 
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Similarly, the transfer function satisfies 10 , ≤≤ MAPWGH .  

 
Because of the pseudo stationary property, the first order linear prediction along the time index i is used to 
improve the accuracy as follows.  
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To overcome the distortion problem, a floating floor is used in its parametric form. 























+

+++
= ),(,

)),(
~

1(2

),(~
),(

~

)),(
~

1(2),(
~

),(
~

max),(

2

, ikh
ik

ik

ik
ikikik

ikH MAPPWG ξ
γ
ξξξξ

 (16) 

3.3 The Ephraim-Malah Filter  

One popular filter is the Ephraim-Malah filter [11], which is the minimum mean-square error spectral 
amplitude estimator, assuming the same Gaussian distribution as in (12). The filter is given by  
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Because (18) requires to calculate the exponential and modified Bessel functions I0 and I1, it is difficult to 
implement the filter accurately unless using Matlab. The C code implementation of the Bessel functions 

such as the Numerical Recipes has a very limited working range, but ∞≤≤ υ0 . Since the Wolfe-Godsill 
filter has the similar transfer function as shown in figure 6, we decided to evaluate that filter instead. 
 
To summarize, four filter transfer functions are plotted as variables of the noise-to-input ratio using Matlab.  

 

Figure 7 – The transfer functions of the Wiener, Spectral Subtraction, Wolfe-Godsill, and Ephraim-
Malah Filters 



The figure 6 shows that the spectral subtraction has the most noise reduction power, and then the Wiener 
filter, and the least is the Wolfe-Godsill’s rule. However in practice the over noise reduction of former two 
filters will cause speech distortion due to inaccuracy in noise estimation, the scaling parameter is used to 
control the degree of noise reduction without sever distortions. The advantage in the Wolfe-Godsill’s rule is 
to drop a scaling parameter, so that only one floor parameter needs to be optimized. 

3.4 The Martin Noise Estimator  

The power of a spectral component magnitude (PS) tracked along the time index i is known as the 
periodogram. In a periodogram, the noise behaves like a slow fluctuating background with a few grouped 
sparks due to the speech, as the speech is not continuous but noise is. This observation has been exploited 
to estimate the noise spectral magnitude. One particular method is based on the minimum statistics, and 
known as the Martin noise estimator [12].  
 
After adaptively smoothing the periodogram, the method tracks the minimum within a moving window of 
fixed length. Then the minimum is statistically bias corrected, and is taken as the noise magnitude power 
estimation. Essentially the method is to track a slow varying baseline due to noise and cut through a few 
sparks due to speech. Figure 4 shows examples of noise tracking in both STFT and DWT periodograms of 
a sample wave file. The first half is clean speech and last half is noise corrupted.  

 

Figure 8 - Examples of noise magnitude tracking in periodograms of STFT and DWT 

 
 

4. EXPERIMENTATION 
 
Experiment data were taken in an ordinary office room using a modified Siemens Optipoint500 phone unit. 
Four clean speech signals, three in conference mode and one in handset mode, were recorded first. Seven 
noise signals from an air-conditioned room background, table fan, laser printer and opening window near 
street were then recorded separately. Speech and noise sources were positioned at different locations in the 



room. The clean speech signals were then mixed with the noise signals at four different ratios. The noisy 
signals were then processed using three filtering algorithms, the spectral subtraction, the Wiener filter, and 
the Wolfe-Godsill filter. The Martin’s noise estimator was used in all cases. 

All testing signals are sampled at 16 KHz and stored as 16 bits per sample. Spectral analysis and synthesis 
modules in the Fourier domain are implemented according to the GSM mobile phone standard. 160 
samples of input data block are prefixed with last 40 samples of previous block, and multiplied by a cosine 
windowing function and padded 56 zeros at end for 256 samples FFT. After spectral filtering, IFFT is 
performed and then overlap-added to produce 160 samples of output data.  

Table 1 - Average objective quality scores for comparison of different noise reduction filters at FFT 
and various DWT domains 

qm gSNR (dB) sSNR (dB) fwsSNR (dB) isD WSS 
org -0.1 2.31 5.9 10.31 -3.12 -0.71 2.95 7.44 1.51 4.85 9.64 15.18 0.46 0.32 0.2 0.12 43.3 34 24.56 16.03

spectral subtraction 
fft 1.44 4.63 7.96 11.01 -0.7 2.16 5.24 8.2 3.9 6.75 9.63 12.4 0.41 0.29 0.2 0.13 41.64 32.31 23.63 15.96

wp0 1.03 4.05 6.61 9.52 -1.51 1.37 3.9 6.93 3.12 6.83 8.04 10.62 0.47 0.32 0.25 0.14 41.56 32.46 24.61 16.68
wp1 0.84 3.79 7.64 11.29 -1.76 1.04 4.78 8.3 2.83 6.43 10.25 13.39 0.51 0.34 0.2 0.11 42.39 33.27 23.65 15.84
wp2 1.01 4 7.68 11.54 -1.54 1.31 4.91 8.63 3.09 6.77 11.18 15 0.48 0.32 0.19 0.11 41.67 32.63 23.81 15.91
wp3 1.02 4.04 6.29 9.25 -1.5 1.36 3.56 6.69 3.12 6.82 7.91 10.6 0.48 0.32 0.27 0.15 41.42 32.44 25.53 17.43
wp4 0.84 3.77 7.35 11.01 -1.8 1.01 4.46 8.03 2.79 6.38 9.89 13.06 0.56 0.37 0.21 0.12 42.4 33.43 24.28 16.29
wp5 0.96 3.93 7.43 11.31 -1.6 1.22 4.62 8.39 3 6.69 10.82 14.7 0.49 0.33 0.2 0.11 41.51 32.59 24.3 16.24
wp6 0.94 3.9 6.56 9.47 -1.71 1.13 3.85 6.88 2.86 6.63 8.03 10.61 0.46 0.31 0.25 0.14 42.22 33.05 24.75 16.76
wt0 0.81 3.71 7.23 10.86 -1.82 0.96 4.37 7.91 2.74 6.28 9.76 12.89 0.5 0.34 0.21 0.12 42.35 33.41 24.38 16.3
wt1 0.67 3.51 7.05 10.74 -2 0.74 4.18 7.78 2.55 6.06 9.64 12.83 0.52 0.35 0.22 0.12 42.44 33.57 24.58 16.49
wt2 0.78 3.66 7.19 10.85 -1.87 0.91 4.34 7.9 2.72 6.29 9.8 12.93 0.5 0.34 0.21 0.12 42.32 33.37 24.38 16.29
wt3 0.79 3.71 7.27 10.93 -1.84 0.97 4.41 7.98 2.76 6.37 9.88 13.04 0.5 0.34 0.21 0.12 42.4 33.4 24.35 16.24
wt4 0.65 3.51 7.06 10.76 -2.02 0.74 4.19 7.79 2.51 6.02 9.66 12.88 0.57 0.37 0.23 0.13 42.68 33.75 24.72 16.61
wt5 0.79 3.65 7.12 10.72 -1.83 0.91 4.28 7.79 2.73 6.28 9.75 12.84 0.51 0.35 0.22 0.12 42.21 33.43 24.51 16.51
wt6 0.61 3.39 6.92 10.6 -2.11 0.61 4.05 7.65 2.34 5.82 9.44 12.61 0.49 0.33 0.21 0.12 42.95 34.04 25.05 16.93

Wiener filter 
fft 1.6 4.78 8.17 11.47 -0.35 2.47 5.55 8.69 4.12 7.17 10.41 13.74 0.43 0.3 0.2 0.13 42.03 32.82 24.03 16.19

wp0 1.09 4.09 7.59 11.24 -1.37 1.47 4.73 8.25 3.17 6.98 10.19 13.32 0.47 0.31 0.2 0.12 42.27 32.84 23.76 15.89
wp1 0.9 3.84 7.64 11.49 -1.62 1.17 4.86 8.59 2.87 6.62 11.14 14.98 0.52 0.33 0.19 0.11 42.81 33.45 23.88 15.94
wp2 1.07 4.04 6.58 9.47 -1.4 1.42 3.88 6.89 3.14 6.93 8.03 10.58 0.48 0.32 0.25 0.14 42.25 32.93 24.55 16.63
wp3 1.08 4.07 7.62 11.25 -1.36 1.47 4.77 8.27 3.18 7 10.21 13.31 0.48 0.31 0.2 0.12 42.03 32.78 23.61 15.81
wp4 0.9 3.83 7.67 11.52 -1.66 1.13 4.9 8.61 2.83 6.55 11.18 14.98 0.57 0.37 0.19 0.11 42.81 33.61 23.75 15.87
wp5 1.02 3.96 6.33 9.28 -1.46 1.32 3.58 6.69 3.05 6.82 8.12 10.78 0.48 0.32 0.31 0.18 41.96 32.83 25.96 17.9
wp6 0.98 3.9 7.31 10.94 -1.59 1.2 4.42 7.96 2.88 6.66 9.91 13.05 0.45 0.3 0.22 0.13 42.49 33.1 24.48 16.5
wt0 0.87 3.76 7.32 11.16 -1.66 1.1 4.54 8.27 2.8 6.44 10.61 14.43 0.5 0.33 0.2 0.11 42.22 33.36 24.31 16.24
wt1 0.73 3.58 7.15 11.06 -1.84 0.89 4.36 8.16 2.6 6.21 10.44 14.33 0.54 0.35 0.21 0.12 42.34 33.51 24.5 16.4
wt2 0.84 3.73 7.28 11.15 -1.69 1.07 4.51 8.27 2.78 6.46 10.67 14.51 0.51 0.33 0.2 0.12 42.15 33.29 24.31 16.23
wt3 0.86 3.79 7.36 11.23 -1.65 1.14 4.6 8.36 2.84 6.57 10.77 14.63 0.51 0.33 0.2 0.11 42.25 33.34 24.26 16.16
wt4 0.73 3.61 7.18 11.07 -1.85 0.92 4.38 8.16 2.57 6.19 10.4 14.3 0.6 0.38 0.22 0.12 42.67 33.77 24.67 16.53

wt5 0.85 3.69 7.19 11.02 -1.68 1.05 4.44 8.15 2.79 6.44 10.61 14.42 0.52 0.34 0.21 0.12 42.05 33.38 24.48 16.45

wt6 0.59 3.37 6.96 10.88 -2.04 0.67 4.17 7.99 2.27 5.82 10.16 14.1 0.51 0.33 0.2 0.11 42.96 34.05 25.02 16.82
Wolfe-Godsill 

fft 1.5 4.67 7.8 10.66 -0.48 2.31 5.18 7.96 3.78 6.31 9.07 11.86 0.44 0.32 0.23 0.15 42.22 32.98 24.39 16.62
wp0 0.79 3.55 7.39 11.23 -1.69 0.9 4.58 8.31 2.77 5.35 10.74 14.59 0.59 0.41 0.21 0.12 41.61 33.2 24.49 16.45
wp1 0.59 3.24 6.47 9.3 -2.01 0.52 3.73 6.7 2.49 5.1 7.92 10.43 0.65 0.44 0.25 0.15 43 34.4 24.98 17.23
wp2 0.77 3.51 7.49 11.11 -1.74 0.83 4.63 8.13 2.73 5.32 10.14 13.24 0.59 0.41 0.2 0.12 41.91 33.47 23.85 16.07
wp3 0.79 3.55 7.52 11.35 -1.7 0.89 4.74 8.45 2.78 5.35 11.04 14.85 0.59 0.41 0.2 0.11 41.6 33.2 23.95 16.09
wp4 0.65 3.3 6.57 9.59 -2.02 0.53 3.71 6.83 2.56 5.25 8.06 10.66 0.74 0.51 0.23 0.13 42.9 34.71 25.59 17.71

wp5 0.72 3.45 7.49 11.21 -1.82 0.74 4.59 8.2 2.63 5.23 10.25 13.42 0.6 0.41 0.2 0.11 41.76 33.5 24.12 16.21

wp6 0.78 3.46 7.5 11.41 -1.9 0.63 4.69 8.49 2.51 5.24 11.05 14.95 0.52 0.36 0.19 0.11 43.36 34.51 24.1 16.16
wt0 0.58 3.17 6.16 9.07 -2.13 0.41 3.46 6.59 2.51 5.13 7.94 10.59 0.61 0.43 0.26 0.15 43.1 34.21 25.27 17.13
wt1 0.45 2.98 6.02 9.04 -2.29 0.21 3.31 6.55 2.39 5.06 8.03 10.82 0.64 0.44 0.27 0.16 43.22 34.42 25.53 17.48
wt2 0.56 3.15 6.15 9.1 -2.16 0.38 3.46 6.61 2.52 5.17 8.01 10.68 0.61 0.43 0.27 0.15 43.04 34.11 25.2 17.1
wt3 0.54 3.17 6.21 9.18 -2.17 0.41 3.51 6.67 2.51 5.18 8.04 10.74 0.62 0.43 0.26 0.15 43.11 34.17 25.23 17.02
wt4 0.43 3 6.09 9.16 -2.33 0.21 3.37 6.63 2.38 5.17 8.26 11.1 0.72 0.5 0.31 0.18 43.44 34.87 25.96 17.79
wt5 0.57 3.11 6 8.79 -2.12 0.37 3.34 6.34 2.49 5.11 7.84 10.41 0.63 0.44 0.27 0.16 42.99 34.27 25.51 17.65
wt6 0.47 2.91 5.91 8.94 -2.26 0.16 3.21 6.43 2.36 5.03 7.98 10.7 0.57 0.39 0.25 0.14 43.64 34.85 26.12 18.07

 



For the wavelet domain, 160 samples of input data block are prefixed with last 96 samples of previous 
block for 256 samples DWT (wt) and DWPT (wp). The levels of DWT are to the highest possible value 8. 
After filtering in the wavelet domain, the inverse wavelet transform is performed and the last 160 samples 
are taken to resemble an output data stream. Seven different wavelet bases were tested. They are Battle-
Lemarie (0), Burt-Adelson (1), Coiflet-6 (2), Daubechies-D20 (3), Haar (4), Pseudo-coiflet-4 (5), and 
Spline-3-7 (6).  

The enhanced results were compared with the original clean speech signals to obtain objective quality 
measurements. The global SNR (gSNR), segmental SNR (sSNR), frequency-weighted segmental SNR 
(fwsSNR) were used to measure the improvements, while the Itakura-Saito distance (isD), and weighted 
spectral slope (WSS) were used to measure the distortions. The average scores for various algorithms using 
the Fourier and wavelet transforms are shown in Table 1.   

The results show that the Fourier transform (fft) is still the best in terms of noise reduction quality. The 
next is the wavelet packet transform (wp), and last is the wavelet transform (wt). Among the wavelet bases, 
the Battle-Lemarie (0) and Daubechies_20 (3) are better than the others at low SNR signals. All the 
methods have achieved noise reduction in terms of improving three SNR indexes, except few cases at 
highest input SNR. Many wavelet packets (wp) have less distortion and better SNR than the FFT at high 
SNR signals. However the wavelet transforms (wt) are worse, and even worse than the original noisy input 
in many cases.  

Table 2 shows a CPU time comparison for the transforms with respect to the STFT as one unit.  

Table 2 - Computer CPU times for various transforms in reference to STFT time 

Abr. transforms Implementation CPU Time (time of STFT) 
fft Shot time Fourier transform Custom implementation of FFT 1 

wp0 Battle-Lemarie wavelet packet UBC Imager Wavelet Package [13] 10.304 
wp1 Burt-Adelson wavelet packet UBC Imager Wavelet Package  3.016 
wp2 Coiflet-6 wavelet packet UBC Imager Wavelet Package  7.779 
wp3 Daubechies-D20 wavelet packet UBC Imager Wavelet Package  8.608 
wp4 Haar wavelet packet UBC Imager Wavelet Package  0.949 

wp5 Pseudo-coiflet-4 wavelet packet UBC Imager Wavelet Package  4.745 

wp6 Spline-3-7 wavelet packet UBC Imager Wavelet Package  4.356 
wt0 Battle-Lemarie wavelet transform UBC Imager Wavelet Package  2.458 
wt1 Burt-Adelson wavelet transform UBC Imager Wavelet Package  0.882 
wt2 Coiflet-6 wavelet transform UBC Imager Wavelet Package  1.898 
wt3 Daubechies-D20 wavelet transform UBC Imager Wavelet  Package 2.084 
wt4 Haar wavelet transform UBC Imager Wavelet Package  0.390 
wt5 Pseudo-coiflet-4 wavelet transform UBC Imager Wavelet Package  1.255 
wt6 Spline-3-7 wavelet transform UBC Imager Wavelet Package  1.153 
wt7 Haar wavelet transform Custom implementation 0.067 
wt8 Daubechies-D4 wavelet transform Custom implementation 0.085 

The UBC image wavelet package is used for comparison of wavelet bases (0 - 6). Because it is not 
optimized for speed, wt7 and wt8 of custom implementations are added for a better computer time 
reference. 

 
 

CONCLUSION 
 
Noise reduction filters are formulated for both Fourier and wavelet domains. Experiments using real-world 
noise speech data have shown that the Fourier transform, the wavelet packet transform, and the wavelet 
transform are the best, second, and last respectively in general SNR sense. The wavelet packet transform 
can achieve less distortion and is better for high SNR signals. There are still many incomplete wavelet and 
wavelet packet transforms not being tested. Therefore, a better solution in wavelet domain is still possible. 
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