Cutting to the Chase

Solving Linear Integer Arithmetic

Dejan Jovanovié! and Leonardo de Moura?

! New York University
2 Microsoft Research

Abstract. We describe a new algorithm for solving linear integer pro-
gramming problems. The algorithm performs a DPLL style search for a
feasible assignment, while using a novel cut procedure to guide the search
away from the conflicting states.

1 Introduction

One of the most impressive success stories of computer science in industrial
applications was the advent of linear programming algorithms. Linear program-
ming (LP) became feasible with the introduction of Dantzig simplex algorithm.
Although the original simplex algorithm targets problems over the rational num-
bers, in 1958 Gomory [12] introduced an elegant extension to the integer case
(1ILP). He noticed that, whenever the simplex algorithm encounters a non-integer
solution, one can eliminate this solution by deriving a plane, that is implied by
the original problem, but does not satisfy the current assignment. Incrementally
adding these cutting planes, until an integer solution is found, yields an algo-
rithm for solving linear programs over the integers. Cutting planes have been
studied thoroughly both as an abstract proof system [4], and as a practical pre-
processing step for hard structured problems. For such problems, one can exploit
the structure by adding cuts tailored for the problem, such as the clique cuts,
or the covering cuts [20], which can reduce the search space dramatically.

The main idea behind the algorithm of Gomory, i.e to combine a model
searching procedure, with a conflict resolution procedure — a procedure that can
derive new facts in order to eliminate a conflicting candidate solution — is in fact
quite general. Somewhat later, for example, in the field of automated reasoning,
there was a similar development with equally impressive end results. Solvers
for the Boolean satisfiability problem (SAT), although a canonical NP-complete
problem, have seen a steady improvement over the years, culminating in thrilling
advances in the last 10 years. It has become a matter of routine to use a SAT
solver on problems with millions of variables and constraints. Of course, there
are many ingredients that make a modern SAT solver efficient, but one of the
most appealing ones, is the combination of two different approaches to solving a
problem. One is a backtracking search for a satisfying assignment, in the style of
DPLL [7]. The other, is a search for a resolution refutation of the problem, as in
the DP algorithm [8]. To combine these two [19] first noticed that, once a conflict

2 Dejan Jovanovi¢ and Leonardo de Moura

has been encountered, we can derive a clause that explains the conflict, i.e. the
search is guiding the resolution. As with the Gomory cuts, the explanation clause
eliminates the current assignment, forcing a backtrack, and eliminating an (often
substantial) part of the search tree. In the other direction, [17] introduced the
so called vsiDS heuristic that adjusts the variable selection heuristic so that it
prefers the variables involved in the resolution of conflicts, i.e. the resolution is
guiding the search. This approach to solving SAT problems is commonly called
Conflict-Directed Clause Learning (cDCL) and is employed by most modern SAT
solvers. Apart from CDCL, there are many other important techniques that have
become standard such as fast restarts[17], and fast indexing schemes for unit
propagation [17].

In this paper, we propose a new CDCL-like procedure for solving arbitrary
ILP problems. Our procedure, inspired by recent algorithms for solving linear
real arithmetic [16, 14, 6], has all the important theoretical and practical ingre-
dients that have made CDCL based SAT solvers so successful, including: model
search complemented with the generation of resolvents explaining the conflicts;
propagation rules enabling reduction of the search space and early detection of
conflicts; resolvents learned during analysis of conflicts enable non-chronological
backtracking; all resolvents generated during the search are valid, i.e. implied by
the input formula, and not conditioned by any decisions; decisions (case-splits)
are not based on a fixed variable order, thus enabling dynamic reordering heuris-
tics; and cutting-plane inequalities (resolvents) learned during the search can be
removed, allowing for flexible memory management by keeping the constraint
database limited.

Another contribution of our paper is a that our procedure guarantees termi-
nation. We describe two arguments that imply termination. First, we propose a
simple heuristic for deciding when a cutting-planes based approach does not ter-
minate, recognizing variables contributing to the divergence. Then, we show that,
in such a case, one can isolate a finite number of small cores that are inconsis-
tent with the corresponding current partial models. These cores comprise of two
inequalities and at most one divisibility constraint. Finally, we apply Cooper’s
quantifier elimination procedure to derive a resolvent that will block a particular
core from ever happening again, which in turn implies termination. And, as a
matter of practical importance, our resolvents do not involve disjunctions and
are expressed only with valid inequalities and divisibility constraints.

2 Preliminaries

As usual, we denote the set of integers as Z. We assume a finite set of variables
X ranging over Z. We use z, y, z, k to denote variables in X, a, b, ¢, d to
denote coefficients in Z, and p, g, r and s for linear polynomials over X with
coefficients in Z. In the work that follows, all polynomials are assumed to be
in sum-of-monomials normal form a;x; + -+ - 4+ apx, + ¢. Given a polynomial
p=air1+...+apxy+c, and a coefficient b, we use bp to denote the polynomial
(a1b)z1 + ... + (anb)zy, + (be).

Cutting to the Chase - Solving Linear Integer Arithmetic 3

Inequalities. We use I and J to denote inequalities a,x, + - -+ a1x1 + ¢ < 0.
We rewrite p<Oasp+1<0,and p=0asp <0A—p <0. We use coeff(p,)
(coeff(I, z)) to denote the coefficient of z in the linear polynomial p (inequality
I), where coeff(p, z) = 0 if « does not occur in p (I). We say an inequality I is
tightly-propagating for a variable x if coeff(I,x) € {—1,1}.

Divisibility Constraints. In addition to inequalities, we also consider divisibility
constraints of the form d | ajz1+---+ a2z, +c¢ , where d is a non-zero integer
constant. We denote divisibility constraints with the (possibly subscripted) letter
D.

Finally, given a set of constraints C' and a constraint I, we use C Fz I to
denote that I is implied by C' in the theory of linear integer arithmetic.

3 The Abstract Search Procedure

We describe our procedure as an abstract transition system in the spirit of
Abstract DPLL [18,15]. The states are pairs of the form (M, C), where M is
a sequence of bound refinements, and C is a set of constraints. We use [] to
denote the empty sequence. In this section we assume that all constraints in C
are inequalities. Bound refinements can be either decisions or implied bounds.
Decided lower and upper bounds are decisions we make during the search, and
we represent them in M as x > b and x < b. On the other hand, lower and upper
bounds that are implied in the current state by an inequality I, are represented as
x >7 band z <; b. We say a sequence M is non-redundant if, for all variables x,
the bound refinements in M are monotone, i.e. all the lower (upper) bounds are
increasing (decreasing), and M does not contain the same bound for z, decided
or implied.

Let lower(x, M) and upper(z, M) denote the best, either decided or implied,
lower and upper bounds for z in M, where we assume the usual values of —oo
and oo, when the corresponding bounds do not exist. A sequence M is con-
sistent if there is no x such that lower(a, M) > upper(xz, M). We lift the best
lower and upper bound functions to linear polynomials using identities such as:
lower(p+q, M) is lower(p, M)+lower(q, M) when variables in p and ¢ are disjoint?,
lower(b, M) = b, and lower(ax, M) is a(lower(x, M)) if a > 0, and a(upper(z, M))
otherwise.

Definition 1. We say a sequence M is well-formed (wf) with respect to a set of
constraints C when M is non-redundant, consistent and M is either an empty
sequence or it starts with a wf prefic M', i.e. M = [M’,~], where the bound
refinement vy is either

—x>2rbwithl =(—x+¢<0),Ctg I, and b < lower(q, M'); or

3 In general, when estimating bounds of polynomials, for a consistent sequence M
it holds that, if lower(p, M) and lower(g, M) are defined, then lower(p + q, M) >
lower(p, M) + lower(q, M).

4 Dejan Jovanovi¢ and Leonardo de Moura

—x<yb,withl =(x—q<0),Ctyz I, and b> upper(q,M'); or
— x> b, where M’ contains x <; b for some I; or
— x < b, where M’ contains v >1 b for some I.

Intuitively, in a well-formed sequence, every decision x > b (z < b) amounts
to deciding a value for = that is equal to the best upper (lower) bound. We say
that a state (M, C) is well-formed if M is well-formed with respect to C. Note
that, when refining a bound, we allow a bound b that is not necessarily the most
precise one with respect to I. Although going against intuition, the reason for
this flexibility will become apparent later.

Given an implied lower (upper) bound refinement x >; b (z <; b) and
an inequality axz + p < 0, the function resolve combines (if possible) the tight
inequality I = +x + ¢ < 0 with az + p < 0. If the combination is not applicable,
resolve just returns p < 0. It is defined as

resolve(z >; byax +p <0) _ [Jlalg+p <0 if a x coeff(l,z) <0,
resolve(x <y b,azx +p < 0) ar+p<0 otherwise .

We also define the function bound(I, z, M) that, given an inequality I and a
sequence M returns the bound that I implies on x, with respect to M, i.e

,[MW ifa>0,
bound(a$+p§07$,M)={_L'°Wer(WJ ifa<0

a

Lemma 1. Given* a well-formed state (M,C), with M = [M’,~], such that v
is an implied bound, p < 0 an inequality, and ¢ < 0 = resolve(~y,p < 0) then

Ctz (p<0) implies Ctyz(q<0),
lower(q, M'") > lower(p, M) .

Ezample 1. In the statement of Lemma 1, we only get to keep lower(q, M) >
lower(p, M) because all of the implied bounds were justified by tightly-
propagating inequalities. If we would allow non-tight justifications, this might
not hold. Consider, for example, a state (M, C) where

I J
C={-2<0, 3y+z2+2<0}, M=[z>70,y>;1] ,

and the inequality 1 4 6y < 0. Then, we have that
lower(1 + 6y, M) =7 and resolve(y >; 1, 14+ 6y <0)=2x+5<0 .

So, after performing resolution on y using a non-tight inequality J, the inequality
became weaker since i.e lower(2z + 5,z >70]) =5 2 7.

4 The proofs of all lemmas and theorems are included in a separate technical report.

Cutting to the Chase - Solving Linear Integer Arithmetic 5

The predicate improves(I,z, M) is true if the inequality I = az +p < 0
implies a better bound for = in M, but does not make M inconsistent. It is
defined as

lower(z, M) < bound(I,z, M) < upper(z, M), ifa <0,
improves(I,z, M) = < lower(z, M) < bound(I,x, M) < upper(xz, M), ifa >0,
false, otherwise.

3.1 Deriving tight inequalities

Since we require that all the implied bound refinements in M are justified by
tightly propagating inequalities, we now show, given an inequality +az +p <0
such that improves(+az+p < 0, x, M) holds, how to deduce a tightly propagating
inequality that can justify the bound implied by £ax + p < 0.

The deduction is described using an auxiliary transition system. The states
of this system are tuples of the form

(M', *ax +as®r)

where a > 0, s and r are polynomials, M’ is a prefix of the initial M, and we
keep the invariant that

Cty +ax+as+r <0, lower(as+r, M) > lower(p, M) .

The initial state for tightening tax +p < 0 is (M, tax @ p) and the transition
rules are as follows.

Consume
(M, +ax + as @ aky +r) = (M,tax+as+akydr)
where x # y.

Resolve-Implied
(IM,~]), £ax + as & p) = (M,tax+asDq)

where ~y is an implied bound and ¢ < 0 = resolve(y,p < 0)

Decided-Lower
(IM,y > b, tax+as®cy +r) = (M, +azx + as+ aky @ r + (ak — ¢)q)
where y <; bin M, with I =y+¢ <0, and k = [¢/a].

Decided-Lower-Neg
(IM,y > b, rax+as®cy +r) = (M,+ax+as®cq+r)
where y <y bin M, with I =y —¢q <0, and ¢ < 0.

Decided-Upper
(M,y <V, ax+as®cy+r) = (M,+ax+ as+ aky®r+ (c— ak)q)
where y > bin M, with I = —y+¢ <0, and k = |c/a].

Decided-Upper-Pos
(M,y <b),xax+as®cy+r) = (M,>ax+as®cq+r)
where y >7 bin M, with I = —y+ ¢ <0, and ¢ > 0.

Round (and terminate)
(M, tazx + as @ b) = tx+s+[b/a] <0

6 Dejan Jovanovi¢ and Leonardo de Moura
We use tight(I, 2, M) to denote the tightly propagating inequalities derived using
some strategy for applying the transition rules above.

Ezample 2. Given a well-formed state (M4, C), where

C={-y<0,—24+2<0,—y+7+2<0,-32z+2y— 5z <0}
———
I I I3 Iy
My=[y>10, 2>,2, y>,9 2<2]

We denote with My, Ms, M3 the prefixes of My. In My, we have that
bound(1ly, z, My) = 3, that is, I is implying a lower bound of z in the current
state. We now derive a tight inequality that justifies this lower bound.

(My, —32z ® 2y — 5x)
—> Decided-Upper-Pos
x < 2 is a decided bound, M contains implied bound z >, 2.
We make the coefficient of x divisible by 3 by adding —z 4+ 2 < 0.
(M3, -3z — 6z & 2y + 2)
—> Resolve-Implied
We eliminate y by adding two times —y + 7+ < 0.
(M, —3%z — 6z @ 2z + 16)
= Resolve-Implied
We eliminate = in 2z 4+ 16 by adding two times —x + 2 < 0.
(M, -3z — 6x @ 20)
—> Round
—2z—2x4+7<0

The tightly propagating inequality —z—2x+7 < 0 implies the same lower bound
bound(—z — 22+ 7 < 0,2, M) = 3 for 2.

Lemma 2. Given a well-formed state (M,C) and an implied inequality I, i.e.
such that (M,C) bz I, and improves(I,x, M) the procedure for deriving tightly-
propagating inequalities terminates with a tight-inequality J such that (M, C) by
J and

— if I improves the lower bound on x, then bound(I,x, M) < bound(J,z, M),
— if I improves the upper bound on x, then bound(I,x, M) > bound(J,x, M).

Note that in the statement above, it is does not necessarily hold that
improves(J, z, M), as the improves predicate requires the new bound to be con-
sistent, and the derived inequality might in fact imply a stronger bound.

3.2 Main procedure

We are now ready to define our main transition system: Cutting to the Chase.
In the following system of rules, if a propagation rule can derive a new implied
bound =z >; b or z <; b, the tightly propagating inequality [is computed

Cutting to the Chase - Solving Linear Integer Arithmetic 7

eagerly. This simplification clarifies the presentation but, due to the allowance
of Definition 1, we can use them as just placeholders and compute them on
demand, which is what we do in our implementation.

Decide
(M, C) = ([M,z >1],C) if lower(x, M) < b = upper(xz, M)
(M, C) = ([M,z <],C) if lower(x, M) = b < upper(x, M)
Propagate

improves(J, z, M),
(M, CU{J})= ([M,x >;b],CU{J})if < I =tight(J,z, M),
b = bound(J,z, M).

improves(J, z, M),
(M,CU{J})= ([M,z <;b],CU{J})if < I =tight(J,z, M),
b = bound(J, x, M).
Forget
(M,CuU{J})= (M,C) if Cky J,and J € C
Conflict
(M, C) = (M,C)Fp<0 if p<0eC, lower(p, M) >0
Learn
M,CYFT = (M,CUDFIT if 1¢C
Resolve
([M,~],C)+ I = (M,C)t resolve(y,I) if -~ is an implied bound.
Unsat
([M,~],C)Fb<0 = unsat if b>0
Backjump
v is a decided bound
improves(J, x, M),
I = tight(J, 2z, M),
b = bound(J,z, M).

(IM,, M'],C) - J = ([M,z > b],C) if

v is a decided bound
improves(J, x, M),
I = tight(J, z, M),
b = bound(J, z, M).

(IM,, M'],C) - J = ([M,z <; b],C) if

Theorem 1 (Soundness). For any derivation sequence ([],Co) = S1 =
<o = S, If S, is of the form (My,,C,), then Cy and C,, are equisatisfiable.
If S, is of the form (M,,C,) + I, then Cy implies I, and Cy and C, are
equisatisfiable. Moreover, (M, C,,) is well-formed.

Ezxample 3. Consider the set of inequalities C
{—2<0, 620 —-3y—2<0, —6x+3y+1<0}
———

Il 12 13

Now we show C' to be unsatisfiable using our abstract transition system.

8 Dejan Jovanovi¢ and Leonardo de Moura

(.o

= Propagate x using I
([e =1, 0,0)
= Decide =
(l# 21, 0, 2 < 0], C)
= Propagate y using I3
([t >1, 0, 2 <0, y <; —1],C), where J = tight(I3,y, [z >, 0,z < 0])
([x >1, 0, = < 0],3y ® =6+ 1)
= Consume
([x 21, 0, 2 <0],3y — 6z 1)
— Round
J=y—-2x+1<0
= Conflict using I
([t 21,0, 2<0, y<; -1],C) F 6z -3y —2<0
= Resolve resolve(y <; —1,60 —3y —2<0)=3(—2z+1)+62—-2<0)
([M,z <0],C)F1<0
=— Unsat
unsat

Slack Introduction. Given a state S = (M, C'), we say variable x is unbounded
at S if lower(x, M) = —o0, upper(z, M) = co. We also say x is stuck at S if it is
unbounded and Propagate cannot be used to deduce a lower or upper bound for
x. A state S is stuck if all unbounded variables in S are stuck, and no inequality
in C' is false in M. That is, there is no possible transition for a stuck state .S.
Before we describe how we avoid stuck states, we make the observation that for
every finite set of inequalities C, there is an equisatisfiable set C’ such that every
variable z in C’, (—z < 0) € C’. The idea is to replace every occurrence of x in
C with 2t — 27, and add the inequalities —z+t < 0 and —2z~ < 0. Instead of
using this eager preprocessing step, we use a lazy approach, where slack variables
are dynamically introduced. Suppose, we are in a stuck state (M, C), then we
simply select an unbounded variable x, add a fresh slack variable s > 0, and
add new inequalities to C' that “bound” z in the interval [—x5, z,]. This idea is
captured by the following rule:

Slack-Intro

(M,C) = (M,CU{z—2,<0,—x —xz; <0,—x5 <0}) if { (M, C) is stuck

T, is fresh

Note that it is sound to reuse a slack variable x, used for “bounding” x, to
bound y, and we actually do that in our implementation.

3.3 Termination

We say a set of inequalities C' is a finite problem if for every variable z in C,
there are two integer constants a and b such that {x —a <0,—2z+b <0} C C.
We say a set of inequalities C' is an infinite problem if it is not finite. That

Cutting to the Chase - Solving Linear Integer Arithmetic 9

is, there is a variable z in C such that there are no values a and b such that
{r —a<0,—2z+b<0} CC. We say an inequality is simple if it is of the form
x—a<0or —x+b<0. Let Propagate-Simple be a rule such as Propagate, but
with an extra condition requiring J to be a simple inequality. We say a strategy
for applying the Cutting to the Chase rules is reasonable if a rule R different from
Propagate-Simple is applied only if Propagate-Simple is not applicable. Informally,
a reasonable strategy is preventing the generation of derivations where simple
inequalities {z — a < 0,—x 4+ b < 0} are ingored and C' is essentialy treated as
an infinite problem.

Theorem 2 (Termination). Given a finite problem C, and a reasonable strat-
eqy, there is no infinite derivation sequence starting from ([], Co).

3.4 Relevant propagations

Unlike in SAT and Pseudo-Boolean solvers, Propagate rules cannot be applied
to exhaustion for infinite problems. If C' is unsatisfiable, the propagation rules
may remain applicable indefinitely.

Ezample 4. Consider the followin set of (unsatisfiable) constraints

I J K
—
C={-z+y+1<0,—-y+2<0,—y<0}.

Starting from the initial state ([y > 0], C), it is possible to generate the following
infinite sequence of states by only applying the Propagate rule.

(I.€) = (ly 2x 0. C) = ([y 2k 0,2z 2, 1], C)
= (ly 2k 0,2 > 1,y >, 1],C) =
<|Iy ZK vaZI]-ay ZJ 171'21 2H70> = ...

Let nb(xz, M) denote the number of lower and upper bounds for = in M.
Given a state S = (M, C), we say a new lower bound = > b is d-relevant at S if

1. upper(z, M) # 400, or
2. lower(x, M) = —o0, or
3. lower(x, M) + d|lower(z, M)| < b and nb(z, M) < Max.

If x has a upper bound, then any lower bound is d-relevant because x becomes
bounded, and termination is not an issue for bounded variables. If does not
already have lower bound, then any new lower bound x > b is relevant. Finally,
the third case states that the magnitude of the improvement must be significant
and the number of bound improvements for & in M must be smaller than Max.
In theory, to prevent non-termination during bound propagation we only need
the cutoff Max. The condition lower(x, M) + d|lower(z, M)| < b is used for prag-
matical reasons, and is inspired by an approach used in [1]. The idea is to block
any bound improvement for x that is insignificant with respect to the already
known bound for z.

10 Dejan Jovanovi¢ and Leonardo de Moura

Even when only §-relevant propagations are performed, it is still possible to
generate an infinite sequence of transitions. The key observation is that Backjump
is essentially a propagation rule, that is, it backtracks M, but it also adds a new
improved bound for some variable x. It is easy to construct non-terminating
examples, where Backjump is used to generate an infinite sequence of non §-
relevant bounds.

We propose a simple heuristic to deal with the termination problem. It is
based on the observation that if we generate a non d-relevant bound for x, then
the problem is probably unsatisfiable, and z is in the unsatisfiable core. Thus,
when selecting variables for the rule Decide we should give preference to variables
that we computed non d-relevant bounds for.

4 Strong Conflict Resolution

In this section, we extend our procedure to be able to handle divisibility con-
straints, by adding propagation, solving and consistency checking rules into our
system. Then we show how to ensure that our procedure terminates even in cases
when some variables are unbounded.

Solving divisibility constraints. We will add one proof rule to the proof sys-
tem, in order to help us keep the divisibility constraints in a normal form. As
Cooper originally noticed in [5], given two divisibility constraints, we can always
eliminate a variable from one of them, obtaining equivalent constraints.

di | a1z +p1,dz | azx + po —
DIV-SOLVE if| 4= ecd(aidz, az2dy)

dids | dx + a(dapr) + B(dip2) oardz) + flazdy) = d
d | G2p1 — aip2

We use the above proof rule in our transition system to enable such normalization
when needed.

Solve-Div
Dq,D5 € C,
(M, C) = (M,C") if < (D, D)) = p1v-SOLVE(D1, D3),
C'=C\{Dy,Ds} U{Dy, D}}.
Unsat-Div
(M, CU{(d]arx1+ -+ apnzy, +¢)}) = unsat if ged(d,ay,...,an)tc

Propagation. With divisibility constraints as part of our problem, we can now
achieve even more powerful propagation of bounds on variables. We say a variable
x is fized in the state S = (M,C) if upper(z, M) = lower(z, M). Similarly a
polynomial p is fixed if all its variables are fixed. To clarify the presentation, for
fixed variables and polynomials we write val(z, M) and val(p, M) as a shorthand
for lower(z, M) and lower(p, M).

Cutting to the Chase - Solving Linear Integer Arithmetic 11

Let (M, C) be a well-formed state, and D, I € C be a divisibility constraint
and a tight inequality

D=d|ax+p , I=—2+¢g<0,

with a > 0, d > 0, and z >; b € M. Assume, additionally, that p is fixed, i.e.
assume that val(p, M) = k.

In order to satisfy the divisibility constraint we then must have an integer z
such that dz = ax+p > aq+p. Since all the variables in ag+p are either assigned
or implied, we can now use our system for deriving tight inequalities to deduce
—z+1r < 0 that would bound z in this state. Moreover substituting the solution
for z, that is on the bound of the inequality, when substituted for x, would also
satisfy the divisibility constraint. Using this, since dz = ax+p, we can deduce an
inequality —dax —dp+dr < 0 which will guarantee that the bound on x satisfies
the divisibility constraint. And, we can also use our procedure to convert this
constraint into a tightly propagating one. Similar reasoning can be applied for
the upper bound inequalities. We denote, as a shorthand, the result of this whole
derivation with div-derive(I, D, 2z, M). We can now use the derivation above to
empower propagation driven by divisibility constraints, as summarize below.

Propagate-Div
D=d|ax+peC,
r>;5be M,
(M,C) = ([M,xz>;c],CU{l}) if ¢ I = div-derive(J, D,z, M)
improves(I,z, M)
¢ = bound(I,z, M)

Eliminating Conflicting Cores. For sets of constraints containing unbounded
variables, there is no guarantee that the procedure described in the previous
section will terminate, even if learned inequalities (cuts) are not deleted using
the Forget rule. In this section, we describe an extension based on Cooper’s
quantifier elimination procedure that guarantees termination.

Let U be a subset of the variables in X. We say U is the set of unbounded
variables. Let < be a total order over the variables in X such that for all variables
x € X\U and y € U, x < y. We say a variable x is mazimal in a constraint C'
containing z if for all variables y different from x in C, y < x. For now, we assume
U contains all unbounded variables in the set of constraints C, and < is fixed.
Later, we describe how to dynamically change U and < without compromising
termination.

A interval conflicting core for variable x at state S = (M, C) is a set {—ax +
p <0, bz — g < 0} such that p and ¢ are fixed at S, and bound(—az + p <
0,2, M) > bound(bx — q < 0,2, M). A divisibility conflicting core for variable
x at state S is a set {—ax +p < 0, bx — ¢ < 0, (d | cx + s)} such that
p, ¢ and s are fixed, and for all values k in the interval [bound(—az + p <
0,2, M), bound(bx —q < 0,2, M)], (d 1 ck+val(s, M)). We do not consider cores
containing more than one divisibility constraint because rule Solve-Div can be

12 Dejan Jovanovi¢ and Leonardo de Moura

used to eliminate all but one of them. From hereafter, we assume a core is always
of the form {—ax +p <0, bz —q <0, (d| cx +)}, since we can include the
redundant divisibility constraint (1 |) to any interval conflicting core. We say
x is a conflicting variable at state S if there is a interval or divisibility conflicting
core for x. The variable x is the minimal conflicting variable at S if there is no
y < x such that y is also a conflicting variable at S. Let = be a minimal conflicting
variable at state S = (M,C) and D ={—az+p <0, b —¢ <0, (d|cx+r)}
be a conflicting core for x, then a strong resolvent for D is a set R of inequality
and divisibility constraints equivalent to

. —ax+p<0ANbx—q<O0OA(d]|cx+r)

The key property of R is that in any state (M’,C’) such that R C C’, is not
the minimal conflicting variable or D is not a conflicting core.

We compute the resolvent R using Cooper’s left quantifier elimination pro-
cedure. It can be summarized by the rule

(d]lcx+s), —ar+p<0, bx —¢<0

COOPER-LEFT
0<k<m, bp—aq+0bk <0,

alk+p, ad|ck+cp+as

where k is a fresh variable and m = lem(a, W‘%) — 1. The fresh variable k is
bounded so it does not need to be included in U. We extend the total order <
to k by making k the minimal variable. For the special case, where (d | cz + s)
is (1 | z),the rule above simplifies to

—ax+p<0, bx—q<0

0<k<a,bp—ag+bk<0,a|p+k

The rule Cooper-Left is biased to lower bounds. We may also define the
Cooper-Right rule that is based on Cooper’s right quantifier elimination pro-
cedure and is biased to upper bounds. We use cooper(D) to denote a procedure
that computes the strong resolvent R for a conflicting core D. Now, we extend
our procedure with a new rule for introducing resolvents for minimal conflicting
variables.

Resolve-Cooper
xzeU,
(M,C) = (M,C Ucooper(D)) if < z isthe minimal conflicting variable,
D is a conflicting core for x.

Note in addition to fresh variables, Resolve-Cooper rule also introduces new
constraints without resorting to the Learn rule. We will show that this can not
happen indefinitely, as the rule can only be applied a finite number of times.

Now we are ready to present and prove a simple and flexible strategy that
will guarantee termination of our procedure even in the unbounded case.

Cutting to the Chase - Solving Linear Integer Arithmetic 13

Definition 2 (Two-layered strategy). We say a strategy is two-layered for
an initial state ([], Co) if

1. it is reasonable (i.e., gives preference to the Propagate-Simple rules);

2. the Propagate rules are limited to d-relevant bound refinements;

3. the Forget rule is never used to eliminate resolvents introduced by Resolvent-
Cooper;

4. only applies the Conflict rule if Resolve-Cooper is not applicable.

Theorem 3 (Termination). Given a set of constraints C, there is no infinite
derivation sequence starting from Sy = ([], C) that uses a two-layered strategy
and U contains all unbounded variables in C.

As an improvement, we note that we do not need to fix ordering < at the
beginning. It can be modified but, in this case, termination is only guaranteed
if we eventually stop modifying it. Moreover, we can start applying the strategy
with U =). Then, far any non-d-relevant bound refinement (), produced by
the Backjump rules, we add « to the set U. Moreover, a variable x can be removed
from U whenever a lower and upper bound for can be deduced, and they do
not depend on any decided bounds (variable becomes bounded).

5 Experimental Evaluation

We implemented the procedure described in a new solver cutsat. Implementation
is a straightforward translation of the presented ideas, with very limited propaga-
tion, but includes heuristics from the SAT community such as dynamic ordering
based on conflict activity, and Luby restarts. When a variable is to be decided,
and we have an option to choose between the upper and lower bound, we choose
the value that could satisfy most constraints. The solver source code, binaries
used in the experiments, and all the accompanying materials are available at the
authors website®.

In order to evaluate our procedure we took a variety of already available in-
teger problems from the literature, but we also crafted some additional ones. We
include the problems that were used in [10] to evaluate their new simplex-based
procedure that incorporates a new way of generating cuts to eliminate rational
solutions. These problems are generated randomly, with all variables unbounded.
This set of problems, which we denote with dillig, was reported hard for modern
SMT solvers. We also include a reformulation of these problems, so that all the
variables are bounded, by introducing slack variables, which we denote as slack.
Next, we include the pure integer problems from the MIPLIB 2003 library [2],
and we denote this problem set as miplib2003. The original problems are all very
hard optimization instances, but, since we are dealing with the decision prob-
lem only, we have removed the optimization constraints and turned them into

® http://cs.nyu.edu/~dejan/cutsat/

14 Dejan Jovanovi¢ and Leonardo de Moura

feasibility problems.® We include PB problems from the 2010 pseudo-Boolean
competition that were submitted and selected in 2010, marked as pb2010, and
problems encoding the pigeonhole principle using cardinality constraints, de-
noted as pigeons. The pigeonhole problems are known to have no polynomial
Boolean resolution proofs, and will therefore be hard for any solver that does
not use cutting planes. And finally, we include a group of crafted benchmarks
encoding a tight n-dimensional cone around the point whose coordinates are
the first n prime numbers, denoted as primes. In these benchmarks all the vari-
ables are bounded from below by 0. We include the satisfiable versions, and the
unsatisfiable versions which exclude points smaller than the prime solution.

In order to compare to the state-of-the art we compare to three different types
of solvers. We compare to the current best integer SMT solvers, i.e yices 1.0.29
[11], 23 2.15 [9], mathsat5 [13] and mathsat5+cfp that simulates the algorithm
from [10]. On all 0-1 problems in our benchmark suite, we also compare to the
sat4j [3] PB solver, one of the top solvers from the PB competition, and a version
sat4j+cp that is based on cutting planes. And, as last, we compare with the
two top commercial MIP solvers, namely, gurobi 4.0.1 and cplex 12.2, and the
open source MIP solver glpk 4.38. The MIP solvers have largely been ignored in
the theorem-proving community, as it is claimed that, due to the use of floating
point arithmetic, they are not sound.

Table 1. Experimental results.

problems miplib2003 (16) | pb2010 (81) dillig (250) slacks (250) | pigeons (19) | primes (37)
cutsat 722.78 12| 1322.61 46| 4012.65 223| 2722.19 152 0.15 19| 5.08 37
smt solvers time(s) solved time(s) solved time(s) solved time(s) solved time(s) solved time(s) solved
mathsatb+cfp | 575.20 11| 2295.60 33|2357.18 250 160.67 98 0.23 19| 1.26 37
mathsatb 89.49 11| 1224.91 38| 3053.19 245|3243.77 177 0.30 19| 1.03 37
yices 226.23 8 57.12 37| 5707.46 159| 7125.60 134| 0.07 19| 0.64 32
z3 532.09 9| 168.04 38| 885.66 171 589.30 115 0.27 19|11.19 23
pb solvers

sat4j 22.34 10| 798.38 67 0.00 0 0.00 0{110.81 8| 0.00 0
sat4j+cp 28.56 10| 349.15 60 0.00 0 0.00 0| 4.85 19| 0.00 0
mip solvers

glpk 242.67 12| 1866.52 46 4.50 248 0.08 10| 0.09 19| 0.44 37
cplex 53.86 15| 1512.36 58 8.65 250 8.76 248 0.51 19| 3.47 37
gurobi 28.96 15(1332.53 58 5.48 250| 8.12 248 021 19| 0.80 37

All tests were conducted on an Intel Pentium E2220 2.4 GHz processor, with
individual runs limited to 2GB of memory and 600 seconds. The results of our
experimental evaluation are presented in Table 1. The rows are associated with
the individual solvers, and columns separate the problem sets. For each problem

5 All of the problems have a significant Boolean part, and 13 (out of 16) problems are
pure PB problems

Cutting to the Chase - Solving Linear Integer Arithmetic 15

set we write the number of problems that the solver managed to solve within
600 seconds, and the cumulative time for the solved problems. We mark with
bold the results that are best in a group of solvers, and we underline the results
that are best among all solvers.

Compared to the SMT solvers, cutsat performs surprisingly strong, particu-
larly being a prototype implementation. It outperforms or is the same as other
smt solvers, except mathsatb on all problem sets. Most importantly, it outper-
forms even mathsat5 on the real-world miplib2003 and pb2010 problem sets. The
random dillig problems seem to be attainable by the solvers that implement the
procedure from [10], but the same solvers surprisingly fail to solve the same
problems with the slack reformulation (slacks).

Also very noticeable, the commercial MIP solvers outperform all the sMT
solvers and cutsat by a big margin.

6 Conclusion

We proposed a new approach for solving 1LP problems. It has all key ingredi-
ents that made CDCL-based SAT solver successful. Our solver justifies propaga-
tion steps using tightly-propagating inequalities that guarantee that any conflict
detected by the search procedure can be resolved using only inequalities. We
presented an approach to integrate Cooper’s quantifier elimination algorithm
in a model guided search procedure. Our first prototype is already producing
encouraging results.

We see many possible improvements and extensions to our procedure. A
solver for Mixed Integer-Real problems is the first natural extension. One basic
idea would be to make the real variables bigger than the integer variables in
the variable order <, and use Fourier-Moztkin resolution (instead of Cooper’s
procedure) to explain conflicts on rational variables. Integrating our solver with
a Simplex-based procedure is another promising possibility. The idea is to use
Simplex to check whether the current state or the search is feasible in the rational
numbers or not. In principle, our solver can be integrated with a SMT solver based
on DPLL(T). For example, it is straightforward to extract proofs/lemmas from
unsatisfiable problems. On the other hand, there are many technical problems
that need to be addressed. One radical, but appealing possibility, would be to
use our solver instead of a SAT solver as the main search engine in a SMT solver.

Acknowledgements. We would like to thank Ken McMillan for reading an early

draft and providing useful feedback, and Alberto Griggio for providing us with
a custom version of mathsat5.

References

1. T. Achterberg. SCIP: Solving constraint integer programs. PhD thesis, TU Berlin,
2007.

16

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

Dejan Jovanovi¢ and Leonardo de Moura

. T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research

Letters, 34(4):361-372, 2006.

D. L. Berre and A. Parrain. The Sat4j library, release 2.2 system description.
Journal on Satisfiability, Boolean Modeling and Computation, 7:59-64, 2010.

V. Chvétal. Edmonds polytopes and a hierarchy of combinatorial problems. Dis-
crete Mathematics, 4(4):305-337, April 1973.

D. Cooper. Theorem proving in arithmetic without multiplication. Machine Intel-
ligence, 7(91-99):300, 1972.

S. Cotton. Natural domain SMT: A preliminary assessment. In FORMATS, 2010.
M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5(7):397, 1962.

M. Davis and H. Putnam. A computing procedure for quantification theory. Jour-
nal of the ACM (JACM), 7(3):201-215, 1960.

L. de Moura and N. Bjgrner. Z3: An Efficient SMT Solver. In TACAS 2008,
Budapest, Hungary, volume 4963 of LNCS, page 337. Springer, 2008.

I. Dillig, T. Dillig, and A. Aiken. Cuts from proofs: A complete and practical
technique for solving linear inequalities over integers. In CAV, 2009.

B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T). In
CAV, LNCS, pages 81-94, 2006.

R. E. Gomory. Outline of an algorithm for integer solutions to linear programs.
Bulletin of the American Mathematical Society, 64(5):275-278, 1958.

A. Griggio. A practical approach to SMT(LA(Z)). SMT workshop, 2010.

K. Korovin, N. Tsiskaridze, and A. Voronkov. Conlflict resolution. In Principles
and Practice of Constraint Programming, 2009.

S. Krstic and A. Goel. Architecting Solvers for SAT Modulo Theories: Nelson-
Oppen with DPLL. In FroCos, 2007.

K. L. McMillan, A. Kuehlmann, and M. Sagiv. Generalizing DPLL to richer logics.
In CAV, 2009.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chalff: engi-
neering an efficient SAT solver. In DAC, 2001.

R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Modulo The-
ories: From an abstract DPLL procedure to DPLL(T). J. ACM, 53(6):937-977,
2006.

J. P. M. Silva and K. A. Sakallah. GRASP — a new search algorithm for satisfia-
bility. In ICCAD, 1997.

L. A. Wolsey and G. L. Nemhauser. Integer and combinatorial optimization. Wiley
New York, 1999.

