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Abstract

We continue our development of physically-based models
for animating nonrigid objects in simulated physical envi-
ronments. Our prior work treats the special case of objects
that undergo perfectly elastic deformations. Real materi-
als, however, exhibit a rich variety of inelastic phenomena.
For instance, objects may restore themselves to their nat-
ural shapes slowly, or perhaps only partially upon removal
of forces that cause deformation. Moreover, the deforma-
tion may depend on the history of applied forces. The
present paper proposes inelastically deformable models for
use in computer graphics animation. These dynamic mod-
els tractably simulate three canonical inelastic behaviors—
viscoelasticity, plasticity, and fracture. Viscous and plastic
processes within the models evolve a reference component,
which describes the natural shape, according to yield and
creep relationships that depend on applied force and/or in-
stantaneous deformation. Simple fracture mechanics result
from internal processes that introduce local discontinuities
as a function of the instantaneous deformations measured
through the model. We apply our inelastically deformable
models to achieve novel computer graphics effects.

Keywords: Modeling, Animation, Deformation, Elastic-
ity, Dynamics, Simulation

CR Categories and Subject Descriptors: G.1.8—
Partial Differential Equations; 1.3.5—Computational Ge-
ometry and Object Modeling (Curve, Surface, Solid, and
Object Representations); I.3.7—Three-Dimensional Graph-
ics and Realism (Animation); 1.6.3 Simulation and Model-
ing (Applications)

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1988 ACM-0-89791-275-6/88/008/0269 $00.75

1. Introduction

Modeling and animation based on physical principles is
establishing itself as a computer graphics technique offer-
ing unsurpassed realism [1, 2]. Physically-based models of
natural phenomena are making exciting contributions to
image synthesis. A popular theme is the use of Newtonian
dynamics to animate articulated or arbitrarily constrained
assemblies of rigid objects in simulated physical environ-
ments [3-8]. The animation of continuously stretchable
and flexible objects in such environments is also attracting
increasing attention. It is extremely difficult to animate
nonrigid objects with any degree of realism using conven-
tional, kinematic methods. A better approach to synthe-
sizing physically plausible nonrigid motions is to model the
continuum-mechanical principles governing the dynamics
of nonrigid bodies.

Initial models of flexible objects were concerned with
static shape [9, 10]. Subsequent work produced models for
animating nonrigid objects in simulated physical worlds
[11-14]. In [11] we employ elasticity theory to model the
shapes and motions of deformable curves, surfaces, and
solids. Technically as well as computationally, this ap-
proach is more demanding than conventional methods for
modeling free-form shape, but the results are well worth
the extra effort. Qur simulation algorithms have proven
capable of synthesizing realistic motions arising from the
complex interaction of elastically deformable models with
diverse forces, ambient media, and impenetrable obstacles.

Prior work on deformable models in computer graph-
ics treats only the case of objects undergoing perfectly elas-
tic deformation. A deformation is termed elastic if the
undeformed or reference shape restores itself completely,
upon removal of all external forces. A basic assumption
underlying the constitutive laws of classical elasticity the-
ory is that the restoring force (stress) in a body is a single-
valued function of the deformation (strain) of the body
and, moreover, that it is independent of the history of
the deformation. It is possible to quantify elastic restor-
ing forces in terms of potential energies of deformation, a
characterization that we employ in the formulation of cur
models. Like an ideal spring, an elastic model stores po-
tential energy during deformation and releases the energy
entirely as it recovers the reference shape. By contrast, a
perfect (Newtonian) fluid stores no deformation energy,
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hence it exhibits no resilience.

In the present paper, we develop computer graphics
models which make inroads into the broad spectrum of in-
elastic deformation phenomena intermediate between per-
fectly clastic solids, on the one hand, and viscous fluids, on
the other. Generally, a deformation is inelastic if it does
not obey the idealized (Hookean) constitutive laws of clas-
sical elasticity. Inelastic deformations occur in real materi-
als for temperatures and forces exceeding certain limiting
values above which irreversible dislocations at the atomic
level can no longer be neglected.

Why model inelastic behavior? Aside from an artistic
motivation to achieve a rich variety of novel graphics ef-
fects, we wish to incorporate into our deformable models
the mechanical behaviors commonly associated with high
polymer solids—organic compounds containing a large num-
ber of recurring chemical structures—such as modeling
clay, thermoplastic compound, or silicone putty [15]. These
behaviors are responsible for the universal utility of these
sorts of modeling materials in molding complex shapes
(e.g, in the design of automobile bodies). We are inter-
ested in assimilating some of the natural conveniences of
this traditional art into the computer-aided design envi-
ronment of the future. We envision users, aided by stereo-
scopic and haptic input-output devices, carving “computer
plasticine” and applying simulated forces to it in order to
create free-form shapes interactively.

Qur physically-based models incorporate three canon-
ical genres of inelastic behavior—uvtscoelasticily, plasticity,
and fracture. Viscoelastic material behavior includes the
characteristics of a viscous fluid together with elasticity.
Silicone (“Silly”) putty exhibits unmistakable viscoelastic
behavior; it flows under sustained force, but bounces like
a rubber ball when subjected to quickly transient forces.
Inelastic materials for which permanent deformations re-
sult from the mechanism of slip or atomic dislocation are
known as plastic. Most metals, for instance, behave elas-
tically only when the applied forces are small, after which
they yield plastically, resulting in permanent dimensional
changes. Our models can also simulate the behavior of
thermoplastics, which may be formed easily into desired
shapes by pressure at relatively moderate temperatures,
then made elastic or rigid around these shapes by cool-
ing. As materials are deformed beyond certain limits, they
eventually fracture. Cracks develop according to internal
force or deformation distributions and their propagation is
affected by local variations in material properties.

Fig. 1 illustrates some of the capabilities of our inelas-
tic models in Flatland, a restricted physical world. Flat-
land models are deformable planar curves capable of rigid-
body dynamics or general “elastoviscoplastodynamics” (!)
with possible fractures. An efficient numerical algorithm
provides real-time response (on Symbolics 3600 series Lisp
Machines), enabling us to interact with the models by sub-
jecting them to user-controlled forces, aerodynamic drag,
gravity, collisions, ete. (see [11] for more details on for-
mulating forces). Fig. la—c shows the strobed motion of
an inelastic flatland model that has zero, medium, and
high viscoelasticity as it collides into frictionless walls. The
strobe frames in Fig. 1d illustrate the interactive molding
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Figure 1. Simulations in Flatland. Models are strobed while
undergoing motion subject to gravity, drag, collisions, and user-
controlled forces. Velocity vector of the center of mass (dot) is
indicated. (a) Elastic model. (b) Viscoelastic model. (c) Highly
viscoelastic model. (d) A viscoelastic model is deformed. (e)
Resulting shape is made elastic and bounced. (f) Same shape
made viscoelastic and bounced.
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of inelastic models through the application of simple forces.
The user starts with a circular viscoelastic model fixed at
its center. The model simulates thermoplastic material.
The user applies a sustained spring force from point A. The
spring (under position control from a “mouse”) is shown in
the figure as a line between two points. The spring force de-
forms the model, stretching it to the left (an effect known
as stress relaxation). Next, the user releases the spring
from A, then reactivates it at B and sweeps through C, D,
and E, pulling the material along. The final shape is set by
“cooling” the thermoplastic. The model is then made per-
fectly elastic and it can be bounced (Fig. 1le). Finally the
model is made inelastic and bounced again (Fig. 1f). Later
we present further details and examples of more complex
three-dimensional inelastic models.

The inelastic models described in this paper gener-
alize our prior elastic models and inherit their animate
characteristics, thereby unifying the description of shape
and motion. We show how to model inelastic deforma-
tion in the context of two varieties of deformable models
which we have developed in prior papers [11, 14]. Both
formulations allow elastic deformation away from a refer-
ence shape represented within the model. In our inelastic
generalizations, internal viscous and plastic processes dy-
namically feed part of the instantaneous deformation back
into the reference shape component. Simplified fracture
mechanics result from internal processes which introduce
local discontinuities dynamically as a function of the in-
stantaneous deformations measured through the model.

We conclude the introduction with a perspective on
our work as it relates to the engineering analysis of mate-
rials and structures. First, here is a caveat: We make no
particular attempt to model specific materials accurately.
Usually the general behavior of a material will defy ac-
curate mathematical description, and engineering models
tend to be complicated. Sophisticated finite element codes
are available for analyzing the mechanics of nonrigid struc-
tures constructed from specific materials such as steel and
concrete [16]. Computer graphics has become indispens-
able for visualizing the overwhelming amount of data that
can be produced during the preprocessing and postprocess-
ing stages of finite element analysis [17-19].

Although we adopt certain numerical techniques from
finite element analysis, our computer graphics modeling
work has a distinctly different emphasis. We have sought
to develop physically-based models with associated numer-
ical procedures that can be utilized to create realistic ani-
mations. Hence, our deformable models are convenient for
computer graphics applications, where a keen concern with
tractability motivates mathematical abstraction and com-
putational expediency. This paper develops inelastic mod-
els that idealize regimes of material response under certain
types of environmental conditions, whose parameters de-
scribe qualitatively familiar behaviors, such as stretchabil-
ity, bendability, resilience, fragility, etc.

The organization of the remainder of the paper is as
follows: Section 2 describes inelastic deformation phenom-
ena in more detail using idealized mechanical units. Sec-
tions 3 and 4 review our basic elastic models and explain
how we incorporate inelastic behaviors into the partial dif-

ferential equations that govern their motions. Section 5
summarizes our implementation. Section 6 presents more
simulation results and Section 7 draws conclusions.

2. Inelastic Deformation

A formal treatment of inelastic deformation is beyond the
scope of this paper. For theory on viscoelasticity, plastic-
ity, and fracture, refer to, e.g., [20-22]. The basic inelastic
behaviors may be understood readily, however, in terms
of assemblies of idealized uniaxial (one-dimensional) me-
chanical units. The ideal linear elastic unit is the spring
(Fig. 2a). The spring satisfies Hooke’s law—elongation or
contraction e (strain) is proportional to applied tension or
compression force f (stress): ke = f, where k is the spring
constant. The elastic unit is supplemented by two other
uniaxial units, the viscous and plastic units (Fig. 2b,c).
By assembling these units in specific configurations, we
can simulate simple, uniaxial viscoelasticity and plasticity.
QOur inelastically deformable models incorporate the laws
governing these units, suitably generalized and extended
over a multidimensional continuum.

f

Elastic unit

f
Viscous unit
=" :
e
f

Plastic unit

e

Figure 2. Uniaxial deformation units and their response to
applied forces. (a) Elastic spring. (b) Viscous dashpot. (c)
Plastic slip unit.

2.1. Viscoelasticity

Viscoelasticity is a generalization of elasticity and viscosity.
It is characterized by the phenomenon of creep which mani-
fests itself as a time dependent deformation under constant
applied force. In addition to instantaneous deformation,
creep deformations develop which generally increase with
the duration of the force. Whereas an elastic model, by
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definition, is one which has the memory only of its refer-
ence shape, the instantaneous deformation of a viscoelastic
model is a function of the eatire history of applied force.
Conversely, the instantaneous restoring force is a function
of the entire history of deformation.

The ideal linear viscous unit is the dashpot (Fig. 2b).
The rate of increase in elongation or contraction e is pro-
portional to applied force f: né = f, where 7 is the viscos-
ity constant (the overstruck dot denotes a time derivative).
The elastic and viscous units are combined to model lin-
ear viscoelasticity, so that the internal forces depend not
just on the magnitude of deformation, but also on the rate
of deformation. Fig. 3a illustrates a four-unit viscoelastic
model, a series assembly of the so called Maxwell and Voigt
viscoelastic models. The stress-strain relationship for this
assembly has the general form

026+ ajé+age =byf + b, f +bof, (1)
where the coefficients depend on the spring and viscosity

constants. The response of the models to an applied force
(Fig. 3b) is shown graphically in Fig. 3c.

gation or contraction as soon as the applied force exceeds
a yield force. During plastic yield, the apparent instan-
taneous elastic constants of the material are smaller than
those in the elastic state. Removal of applied force causes
the material to unload elastically with its initial elastic
constants. This behavior may be termed elastoplastic.
Viscoplasticity, a generalization of plasticity and vis-
cosity, can be modeled by assembling dashpots with plastic
units. Analogously, elastoplasticity generalizes elasticity
and plasticity and is modeled by assembling springs with
plastic units. Fig. 4b presents graphically the response of
a simple elastoplastic model (Fig. 4a). The model is lin-
early elastic from O to A. After reaching the yield point
A, the model exhibits linear work hardening. Upon un-
loading from B, the elastic region is defined by force am-
plitude fp — fc = 2fa. Subsequent loads now move the
model along BC. Loading past point B causes further plas-
tic deformation along BE. The reverse plastic deformation
occurs.along CD. After a closed cycle in force and displace-
ment QABCDO, the model returns to its initial state and
subsequent behavior is not affected by the cycle.

Four-unit viscoelastic model

Maxwell element

b - -
Voigt element

el

e Maxwell

Four-unit

i aT
Elastic - Viscous

| —

Voigt

Figure 3. Uniaxial viscoelastic model. (a) The four-element
model is a series connection of a Maxwell viscoelastic unit and
a Voigt viscoelastic unit. (b} Force applied to the model. (c})
Response of various components.

2.2. Plasticity

In plasticity, unique relationships between displacement
and applied force do not generally exist. The ideal plastic
unit is the slip unit (Fig. 2c). It is capable of arbitrary elon-
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Figure 4. Uniaxial elastoplastic model. (a) The three-unit
model. (b) Response to applied force (see text).

2.3. Fracture

Solid materials cannot sustain arbitrarily large stresses with-
out failure, as is represented at point E in the elastoplas-
tic model of Fig. 4. Beyond this limiting elongation, the
elastoplastic model fractures. Fractures are localized posi-
tion discontinuities that arise due to the breaking of atomic
bonds in materials, They usually initiate from stress sin-
gularities that arise at corners of irregularities or cavities
present in solids. Solids exhibit three modes of fracture
opening: a tensile mode and two shear modes, one planar
and one normal to a plane.
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As fractures develop they release internal potential
energy of deformation (strain energy). For fractures to
propagate through the material, the energy release rate
as the fracture lengthens must be greater than a critical
value. For brittle materials such as glass, fractures will de-
velop unstably if the energy released is equal to the energy
needed to create the free surface associated with the frac-
ture. In this case, minor variations in material properties
in the continuum can greatly influence the propagation.
For materials like steel, however, the effects of plasticity
at fracture tips must be taken into account. We do not
consider this effect; its mathematical treatment is under
development in the large body of literature on fracture
mechanics (see [22]).

3. Basic Deformable Models

This section briefly reviews two formulations of deformable
models, a primary formulation and a hybrid formulation,
each of which can serve as a foundation for modeling inelas-
tic behavior. In both formulations u denotes the intrinsic
or material coordinates of points in a body 2. For a solid
body u = (u;,uz,us) has three coordinates. For a surface
u = (u;,u2) and for a curve u = (u;). In these three cases,
respectively, and without loss of generality,  will be the
unit interval [0, 1], the unit square [0,1]2, and the unit cube
[0, 1)3.

The primary formulation of deformable models [11]
describes deformations using the positions x(u, t) of points
in the body relative to an inertial frame of reference &
in Euclidean 3-space (Fig. 5). Position is a 3-component

vector-valued function of the material coordinates and time.

Deformations are measured away from a reference shape
which is represented in differential geometric form. For
elastic deformations, this representation gives rise to in-
ternal deformation energies £(x) which produce restoring
forces that are invariant with respect to rigid motions in

®.

Y Deforming body
1
e Reference
component
r ¥
q
x
T
Body
frame
c
X

Inertial frame
Z

Figure 5. Geometric representation of deformable models.

The hybrid formulation [14] represents the same de-
formable body as the sum of a reference component r(u,t)
and a deformation component e(u,t). Both components
are expressed relative to a reference frame ¢ whose origin
coincides with the body’s center of mass ¢(t) and which
translates and rotates along with the deformable body
(Fig. 5). We denote the positions of mass elements in the
body relative to ¢ by

q(u,t) = r(u,t) +e(u,t). (2)
We measure deformations with respect to the reference
shape r represented in parametric form. Elastic defor-
mations are again represcntable by an energy £(e), but
this energy depends on the position of ¢. Hence, for the
deformable model to have a rigid-body motion mode in ad-
dition to an elastic mode, the reference component must
be evolved over time according to the laws of rigid-body
dynamics [23]. We obtain a model with explicit deformable
and rigid characteristics; hence the name “hybrid.”
Appendix A gives the equations of motion for both
formulations. The primary and hybrid formulations offer
different practical benefits at extreme limits of deformable
behavior. The primary formulation handles free motions
implicitly, but at the expense of a nonquadratic energy
functional £(x) (nonlinear restoring forces). The equation
of motion {9) with such a functional is numerically solvable
without much difficulty for extremely nonrigid models such
as rubber sheets, but the numerical conditioning deterio-
rates with increasing rigidity due to exacerbated nonlinear-
ity. The hybrid formulation permits the use of a quadratic
energy functional £(e) (linear restoring forces). Despite
their greater complexity, the equations of motion (13) of-
fer a significant practical advantage for fairly rigid mod-
els with complex reference shapes. Conditioning improves
as the model becomes more rigid, tending in the limit to
well-conditioned, rigid-body dynamics. See [14] for more
details.

4. Incorporating Inelastic Behavior

This section describes how we incorporate inelastic behav-
ior using the hybrid formulation of deformable models and
also briefly indicates how we obtain similar effects using
the primary formulation. First we will specify the internal
restoring forces that govern deformation. Recall that the
hybrid formulation expresses this deformation e(u,t) with
respect to a reference component r{u,t). We obtain vis-
coelastic, plastic, and fracture behavior by designing inter-
nal processes that lawfully update r and modify material
properties according to applied force and instantaneous de-
formation.

In the hybrid equations of motion (13), the restoring
force due to deformational displacement e(u,t) is repre-
sented in (13c) by Sef, a variational derivative [24] with
respect to e of an elastic potential energy functional £.
The general form of £ is

8(e)='LE(u,e,e“,e““,...) du, (3)

an integral over material coordinates of an elastic energy
density E, which depends on e and its partial derivatives
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with respect to material coordinates.

A convenient choice for £ is the controlled-continuity
generalized spline kernels [25]. These splines are of the
form (3) with the integrand defined by

P=i> ¥ 2

m=0 |jl=m 7

w_, |6"‘e[ (4)

where j = (ji,...,Jq4) is a multi-index with |j] = j; +...+
Jd, where d is the material dimensionality of the model
(d = 1 for curves, d = 2 for surfaces, and d = 3 for solids),
and where the partial derivative operator
m
o = g ®)
Sul'...0u}
Thus, E is a weighted combination of partial derivatives
of e of all orders up to p, with the weighting functions
w;{u) in (4) controlling the elastic properties of the de-
formable model over u. The allowable deformation be-
comes smoother for increasing p.
The variational derivative in Q of £€ with the spline
density (4) is

P
b= (-1)"A7 e, (6)
m=0
where
Ay = Z _Ln__ (w]am (7
T e te g K

is a spatially-weighted iterated Laplacian operator of order
m. For convenience, we use cyclic boundary conditions
on ) and we introduce predetermined fractures to create
free boundaries as necessary. To create a free surface, for
example, we start with a torus and section it around the
large and small circumierence to obtain a single sheet.
For a surface with p = 2 (the highest order of p that
we have used to date), the variational derivative of (18) is

8 o 8 a
ses(e) =ume = g (o) = gy (W)
LB (L e, & &e
5a2 \"? a2 BurOuz \ ' Buy Ouy
32 32
"] (w”a?) ’
(8)

where u = (uj,u2) are the surface’s material coordinates.
The function wgo penalizes the total magnitude of the de-
formation; wyo and wy; penalize the magnitude of its first
partial derivatives; ws9, wy;, and wy, penalize the magni-
tude of its second partial derivatives; etc.

The controlled-continuity spline kernel (4) allows our
models to simulate the piecewise continuous deformations
characteristic of fractures, creases, curvature discontinu-
ities, etc. The distributed parameter functions w; offer
local continuity control throughout the material domain
Q. Discontinuities in the deformation of order 0 < k < p
will occur freely at a material point uy when w;(u) is set
to 0 for |7] > k [25].

When the stresses or deformations exceed preset frac-
ture limits, we locally nullify the w; to introduce disconti-
nuities. We have experimented with several simple schemes
for propagating fractures in our models; for instance, at
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each time step we can insert a position discontinuity (order
k = 0) at the material point u, at which there occurs the
greatest elastic displacement beyond the limiting elonga-
tion over 2. The yield limit may vary greatly over material
coordinates in real materials, especially if there happen to
be localized weaknesses, say, from imperfections. We have
experimented successfully with yield functions that vary
stochastically around some mean yield limit. Promising
variations on this theme abound.

As a simple case of viscoelasticity, consider the Maxwell
unit depicted in Fig. 3. We allow e(u,t), as governed by
(6), to play the role of a multidimensional elastic spring
in the continuum generalization of this unit, while r(u,t)
plays the role of the dashpot. The viscous behavior of the
dashpot is simulated by an internal process which evolves
the reference component as follows: #(u,t) = (1/n(u))e(u,t).
We extend this to simulate the four-element viscoelastic
model shown in the figure, according to (1). Thus, the vis-
coelastic process establishes a feedback path from e into r.
During each time interval, a portion of the instantaneous
elastic displacement is transferred into the reference com-
ponent, thereby maintaining a deformation history. This
is analogous to the incremental strain theory or flow the-
ory of elasticity. More complex viscoelastic behaviors are
produced readily by introducing nonlinear functions into
the feedback loop. Bizarre yet interesting behavior—such
as negative viscosity—is possible by choosing physieally
unrealizable parameters.

We have incorporated a multidimensional extension of
the uniaxial elastoplastic model of Fig. 4. Here, the refer-
ence component e absorbs the extension of the plastic unit
as soon as the applied force exceeds the yield limit. In the
multidimensional case, we can incorporate a yield condi-
tion which can either be dependent on the stresses internal
to the model (such as the Tresca or von Mises yield con-
ditions [21]) or on the internal deformation e. The model
behaves elastically until the yield condition is exceeded lo-
cally. Then the material parameters w; are reduced locally
to simulate linear strain hardening.

The primary formulation of elastically deformable mod-
els involves deformation energy functionals that contain
fundamental tensors of curves, surfaces, and solids (see
[11]). For example, the elastic functional for a solid model
was of the form £(x) = f, |G—G’(}, du, a squared normed
difference between the first-order or metric tensors (ma-
trices) G(x) of the deformed body and G° of the unde-
formed body. The weighted norm |- |w provides functions
w;(u) that determine material properties. The approach
for introducing inelastic behavior is essentially the same
as for the hybrid model: We evolve the metric tensor G°
(and other tensors in £(x) associated with the undeformed
body) according to the model’s internal stresses or defor-
mations. For plasticity and fracture, this includes dynamic
adjustments to the material property functions.

5. Implementation Overview

Our implementation of inelastic models is built on a sub-
strate of numerical algorithms that we have developed for
simulating elastically deformable models {11, 14]. This sec-
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tion provides an overview of the solution methodology. We
refer the reader to our prior papers for mathematical de-
tails and discussion.

The first step is to discretize the continuum equations
(9) or (13c) in material coordinates (these partial differen-
tial equations are of the hyperbolic-parabolic type, second-
order in time and, so far, up to fourth-order in material
coordinates). This step, known as semidiscretization, may
be performed using finite-difference or finite-element meth-
ods on a discrete mesh of nodes [26]. The result is a large
system of simultaneous ordinary differential equations.

The second step is to integrate the semidiscrete system
through time, thus simulating the dynamics of deformable
models. At each time step (or every few time steps) the
resulting simulation data may be rendered to create suc-
cessive frames of the animation. We use a semi-implicit
time integration procedure which evolves the elastic dis-
placements (and rigid-body dynamics in the hybrid model)
from given initial conditions. In essence, the evolving de-
formation yields a recursive sequence of (dynamic) equi-
librium problems, each requiring the solution of a sparse,
linear system whose dimensionality is proportional to the
number of nodes comprising the discrete model.

The size of these linear systems can vary greatly de-
pending on the application. The simulations presented in
the next sections range from hundreds to tens of thou-
sands of state variables. Since deformable models involve
so many variables (very many more than for typical rigid
or articulated body simulations) it is crucial to choose the
applicable numerical solution methods judiciously in or-
der to achieve efficiency ([27] is a nice survey of standard
numerical techniques).

For up to moderately-sized problems, we have used
direct methods; specifically, a Choleski-type matrix fac-
torization procedure with forward-reverse resolution. We
use an efficient, profile storage scheme [28] which exploits
the sparsity of the linear system (a sparse stiffness matrix
results from discretizing the variational derivative §e& us-
ing finite-element or finite-difference approximations; e.g.,
discretizing (8) using central differences yields equations
having at most 13 nonzero coeflicients). For large prob-
lems involving surfaces or solids, we must resort to iterative
methods such as successive over-relaxation (SOR) or the
conjugate gradient (CG) method. We have also made use
of an alternating-direction-implicit method (ADI) which
iterates fast, one-dimensional Choleski solvers [27]. Multi-
grid methods based on SOR have served well in the largest
of our simulations {29].

6. Simulation Examples

The Flatland simulations in Fig. 1 involve a 50-node dis-
crete model (100 deformation equations) and the Choleski
solution on the hybrid equations of motion in two dimen-
sions. The collisions are computed by a simple projection
method which does not conserve the area of the model. We
have animated both physically realizable and unrealizable
behaviors in Flatland, including buckling and collapse un-
der load, swelling after impact, etc. It should be possible

Figure 6. Hugo. (a} A “plasticine” bust of Victor Hugo.
(b, back to front}) Grabby hand pinches; grabby hand pulls;
deformed Hugo.

to animate such inelastic dynamics in real-time in three
dimensions on a supercomputer.

Next, we demonstrate a physically-based interaction
with a 3D simulated “plasticine” bust (Fig. 6a). Employ-
ing the hybrid formulation, we initialized the reference
component of the model with sampled three-dimensional
data (made available by the University of Utah [30]) from
a laser scanned sculpture of Victor Hugo. Fig. 6b shows
first the undeformed model, followed by a simulation of a
robot hand pinching the deformable material with sticky
fingers, pulling, then releasing to show the residual plastic
deformation. Because of the relatively large size of the dis-
crete model (180 x 127 mesh; 68580 equations), we applied
a multigrid solution method similar to the one described
in [31].

The last two examples simulate fracture propagation
in surfaces. We used the primary deformable model for-
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Figure 7. A net falling over a spherical obstacle. Fractures develop and propagate
as the deformation exceeds the elastic limit.

276



@ Computer Graphics, Volume 22, Number 4, August 1988

mulation and the ADI solution method to run these sim-
ulations. Fig. 7 presents an animation of a net (23 x 23
mesh; 1587 equations) falling over an impenetrable obsta-
cle in a gravitational field, in the spint of the flying carpet
animation in [11]. The difference here is that the “fibers”
of the mesh are subject to fracture limits based on the de-
formation in the material. When a fiber stretches beyond
the fracture limit it is broken by the fracture process which
inserts a discontinuity as described in Section 4. The yield
limit is uniform over the mesh, which causes linear tears
as one might obtain with cloth.

Fig. 8 shows surface models (30 x 30; 2700 equations)
which are sheared by opposing forces. In these examples,
we perturbed the fracture tolerance around the material’s
mean tolerance stochastically in order to introduce some
unpredictability in the propagation of fractures.

We rendered the color images in this section using the
modeling testbed system described in [32].

Figure 8. (a) January 12, 1988. (b) April 15, 1988.

7. Conclusion

We have developed physically-based models of objects ca-
pable of inelastic deformation for use in computer graph-
ics. We have applied these dynamic models to create inter-
esting viscoelasticity, plasticity, and fracture effects. Our
models are designed to be computationally tractable for
the purposes of animation. This paper has only touched
upon the vast volume of accumulated facts about the me-
chanics of materials. The modeling of inelastic deforma-
tion remains open for further exploration in the context of
computer graphics.
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A. Equations of Motion

A deformable model is described completely by the posi-
tions x(u, t), velocities %(u,t), and accelerations %(u,t) of
its mass elements as a function of material coordinates u
and time ¢. In this appendix, overstruck dots denote time
derivatives d/dt or 8/0t as appropriate.

Lagrange’s equations of motion [23] for x in the iner-
tial frame ® take on a relatively simple form [11]:

pxX 4 yx + 8xE = 1. 9)
During motion, the net external forces f{x,t) balance dy-
namically against the inertial force due to the mass density
#(u), the velocity dependent damping force with damp-
ing density v(u) (here a scalar, but generally a matrix),
and the internal restoring force. The latter is expressed
as a variational derivative §x [24] of a nonnegative defor-
mation energy £(x) whose value increases monotonically
with the magnitude of the deformation. Eq. (9) is a par-
tial differential equation (due to the dependence of §x€ on
x and its partial derivatives with respect to u—see below).
Given appropriate conditions for x on the boundary of
and initial conditions x(u, 0), x(u, 0), we have a well-posed
initial-boundary-value problem.

In the hybrid formulation of the deformable model de-
formation is decomposed into a reference component r(u,1)
and a deformation component e(u, t) in a noninertial frame
¢ located at the model’s center of mass {See Fig. 5.)

c(t) = / p(u)x(u,t)du. (10)
0
The orientation of ¢ relative to ® is 8(¢). Given

v(t) =e(t);  w(t) =8(1), (11)

respectively the linear and angular velocity of ¢ relative to
®, the velocity of mass elements relative to ® is

x(u,t) = v(2) + w(t) x q(u,t) + é(u,t), (12)
where q is given by (2).

In [14] we apply Lagrangian mechanics based on the
kinetic and potential energies which govern our model to
transform (9) into three coupled, partial differential equa-
tions for the unknown functions v, w and e under the ac-
tion of an applied force f{u,t). These equations are given
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d d . . v

—_— —_ d du=f", (13a

dt(mv)+ dt/;“e u+A7x u (13a)
d d . . = b
—(Iw)+ = | pgxedu+ [ vq x xdu=f", (13b)
dt dt /g o

d, . .
Z(#8) + u¥ + pw x (w x q)
+2uw X &+ o X q + 7% + be€ =15, (13c)
Here m = f, pdu is the total mass of the body, and
the time-varying, 3 x 3 symmetric matrix I with entries
Ii; = fﬂ ;,L(Si_,-qz — ¢ig;) du, where q = {q1,92, 93] and &;; is
the Kronecker delta, is known as the inertia tensor. The

applied force transforms to a deformational term € (u,t) =
f{u,t), as well as net translational f*(t) = J, f{u,t) du and

net torque () = Jo 9(u,t) xf(u,t) du terms on the center
of mass.

The ordinary differential equations (13a) and (13b)
describe v and w, the translational and rotational motion
of the body’s center of mass. The terms on the left hand
sides of these equations pertain to the total moving mass
of the body as if concentrated at c, the total (vibrational)
motion of the mass elements about the reference compo-
nent r, and the total damping of the moving mass elements.
The partial differential equation (13c) describes (relative
to ¢) the deformation e of the model away from r. Each
term is a dynamic per-mass-element force: (i) the basic in-
ertial force, (ii) the inertial force due to linear acceleration
of ¢, (iii) the centrifugal force due to the rotation of ¢, (iv)
the Coriolis force due the velocity of the mass elements in
é, (v) the transverse force due to the angular acceleration
of ¢, (vi) the damping force, and (vii) the restoring force
due to deformation away from r.
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