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A b s t r a c t  

We continue our development of physically-based models 
for animating nonrigid objects in simulated physical envi- 
ronments. Our prior work treats the special case of objects 
that undergo perfectly elastic deformations. Real materi- 
als, however, exhibit a rich variety of inelastic phenomena. 
For instance, objects may restore themselves to their nat- 
ural shapes slowly, or perhaps only partially upon removal 
of forces that cause deformation. Moreover, the deforma- 
tion may depend on the history of applied forces. The 
present paper proposes inelastically deformable models for 
use in computer graphics animation. These dynamic mod- 
els tractably simulate three canonical inelastic behaviors-- 
viscoelasticity, plasticity, and fracture. Viscous and plastic 
processes within the models evolve a reference component, 
which describes the natural shape, according to yield and 
creep relationships that depend on applied force and/or in- 
stantaneous deformation. Simple fracture mechanics result 
from internal processes that introduce local discontinuities 
as a function of the instantaneous deformations measured 
through the model. We apply our inelastically deformable 
modds to achieve novel computer graphics effects. 
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1. I n t r o d u c t i o n  

Modeling and animation based on physical principles is 
establishing itself as a computer graphics technique offer- 
ing unsurpassed realism [1, 2]. Physically-based models of 
natural phenomena are making exciting contributions to 
image synthesis. A popular theme is the use of Newtonian 
dynamics to animate articulated or arbitrarily constrained 
assemblies of rigid objects in simulated physical environ- 
ments [3-8]. The animation of continuously stretchable 
and flexible objects in such environments is also attracting 
increasing attention. It is extremely difficult to animate 
nonrigid objects with any degree of realism using conven- 
tional, kinematic methods. A better approach to synthe- 
sizing physically plausible nonrigid motions is to model the 
continuum-mechanical principles governing the dynamics 
of nonrigid bodies. 

Initial models of flexible objects were concerned with 
static shape [9, 10]. Subsequent work produced models for 
animating nonrigid objects in simulated physical worlds 
[11-14]. In [11] we employ elasticity theory to model the 
shapes and motions of deformable curves, surfaces, and 
solids. TechnicaUy as well as computationally, this ap- 
proach is more demanding than conventional methods for 
modeling free-form shape, but the results are weU worth 
the extra effort. Our simulation algorithms have proven 
capable of synthesizing realistic motions arising from the 
complex interaction of elastically deforraable models with 
diverse forces, ambient media, and impenetrable obstacles. 

Prior work on deformable models in computer graph- 
ics treats only the case of objects undergoing perfectly elas- 
tic deformation. A deformation is termed elastic if the 
undeformed or reference shape restores itself completely, 
upon removal of all external forces. A basic assumption 
underlying the constitutive laws of classical elasticity the- 
ory is that the restoring force (stress) in a body is a single- 
valued function of the deformation (strain) of the body 
and, moreover, that it is independent of the history of 
the deformation. It is possible to quantify elastic restor- 
ing forces in terms of potential energies of deformation, a 
characterization that we employ in the formulation of our 
models. Like an ideal spring, an elastic model stores po- 
tential energy during deformation mad releases the energy 
entirely as it recovers the reference shape. By contrast, a 
perfect (Newtonian) fluid stores no deformation energy, 
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hence it exhibits no resilience. 
In the present paper, we develop computer graphics 

models which make inroads into the broad spectrum of in- 
elaJtic deformation phenomena intermediate between per- 
fectly elastic solids, on the one hand, and viscous fluids, on 
the other. Generally, a deformation is inelastic if it does 
not obey the idealized (Hookean) constitutive laws of clas- 
sical elasticity. Inelastic deformations occur in real materi- 
als for temperatures and forces exceeding certain limiting 
values above which irreversible dislocations at the atomic 
level can no longer be neglected. 

Why  model inelastic behavior? Aside from an artistic 
motivation to achieve a rich variety of novel graphics ef- 
fects, we wish to incorporate into our deformable models 
the mechanical behaviors commonly associated with high 
polymer solids--organic compounds containing a large num- 
ber of recurring chemical s t ructures--such as modeling 
clay, thermoplastic compound,  or silicone pu t ty  [15]. These 
behaviors are responsible for the universal utility of these 
sorts of modeling materials in molding complex shapes 
(e.g, in the design of automobile bodies). We are inter- 
ested in assimilating some of the natural  conveniences of 
this traditional art into the computer-aided design envi- 
ronment of the future. We envision users, aided by stereo- 
scopic and haptic input-output  devices, carving "computer  
plasticine" and applying simulated forces to it in order to 
create free-form shapes interactively. 

Our physically-based models incorporate three canon- 
ieal genres of inelastic behavior--viJeo ela~tieity, p la~tieity, 
and ]raeture. Viscoelastic mater ia l  behavior includes the 
characteristics of a viscous fluid together with elasticity. 
Silicone ("Silly") put ty  exhibits unmistakable viscoelastic 
behavior; it flows under sustained force, but  bounces like 
a rubber ball when subjected to quickly transient forces. 
Inelastic materials for which permanent deformations re- 
sult from the mechanism of slip or atomic dislocation are 
known as plastic. Most metals, for instance, behave elas- 
tically only when the applied forces are small, after which 
they yield plastically, resulting in permanent  dimensional 
changes. Our models can also simulate the behavior of 
thermoplastics, which may be formed easily into desired 
shapes by pressure at relatively moderate temperatures,  
then made elastic or rigid around these shapes by cool- 
ing. As materials are deformed beyond certain limits, they 
eventually fracture. Cracks develop according to internal 
force or deformation distributions and their propagation is 
affected by local variations in material properties. 

Fig. 1 illustrates some of the capabilities of our inelas- 
tic models in Flatland, a restricted physical world. Flat- 
land models are deformable planar curves capable of rigid- 
body dynamics or general "elastoviscoplastodynarnics" (!) 
with possible fractures. An efficient numerical algorithm 
provides real-time response (on Symbolics 3600 series Lisp 
Machines), enabling us to interact with the models by sub- 
jecting them to user-controlled forces, aerodynamic drag, 
gravity, collisions, etc. (see [11] for more details on for- 
mnlating forces). Fig. l a - c  shows the strobed motion of 
an indast ic  flatland model that  has zero, medium, and 
high viscodasticity as it collides into friction less walls. The 
strobe frames in Fig. l d  ilhistrate the interactive molding 
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Figure  1. Simulations in Flatland. Models are strobed while 
undergoing motion subject to gravity, drag, collisions, and user- 
controlled forces. Velocity vector of the center of mass (dot) is 
indicated. (a) Elastic model. (b) Viscoelastic model. (c) Highly 
viscoelastic model. (d) A viscoelastic model is deformed. (e) 
B.esulting shape is made elastic and bounced. (f) Same shape 
made viscoelastic and bounced. 
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of inelast ic  models  th rough  the appl ica t ion  of simple forces. 
The  user s ta r t s  wi th  a circular viscoelastic model  fixed at  
i ts  center.  The model  s imulates thermoplas t ic  mater ia l .  
The  user applies a susta ined spring force from poin t  A. The  
spring (under  posi t ion control  from a "mouse")  is shown in 
the  figure as a llne between two points .  The  spring force de- 
forms the  modal,  s t re tching it to  the  left (an  effect known 
as stress re laxat ion) .  Next,  the  user  releases the  spring 
from A, then react ivates  it  at B and sweeps th rough  C, D, 
and  E, pull ing the  mater ia l  along. The final shape  is set by  
"cooling" the  thermoplas t ic .  The  model  is then  made  per- 
fectly elastic and i t  can be bounced (Fig.  l e ) .  F ina l ly  the  
model  is made  inelast ic  and bounced  again (Fig.  l f ) .  La te r  
we present  fur ther  detai ls  and examples  of more complex 
three-dimensional  inelast ic  models.  

The  inelastic models  descr ibed in this  pape r  gener- 
alize our pr ior  elastic models  and  inheri t  their  an imate  
character is t ics ,  thereby unifying the descr ipt ion of shape 
and motion.  We show how to model  inelast ic deforma- 
t ion in the context  of two variet ies of deformable  models  
which we have developed in pr ior  papers  [11, 14]. Both  
formulat ions allow elastic deformat ion away from a refer- 
ence shape represented within the  model. In  our inelast ic  
generalizations,  in ternal  viscous and plast ic  processes dy- 
namical ly  feed par t  of the  ins tan taneous  deformat ion back 
into the reference shape component .  Simplified f racture  
mechanics result from internal  processes which in t roduce  
local discontinuit ies dynamical ly  as a funct ion of the in- 
s tantaneous  deformat ions  measured through the model.  

We conclude the in t roduct ion  with a perspect ive  on 
our work as it relates to the engineering analysis  of mate-  
rials and s t ructures .  Fi rs t ,  here is a caveat:  We make  no 
par t icu la r  a t t emp t  to  model  specific mater ia l s  accurately.  
Usually the general  behavior  of a mater ia l  will defy ac- 
cura te  ma themat i ca l  descript ion,  and  engineering m o d d s  
tend  to be  complicated.  Sophis t ica ted  finite e lement  codes 
are available for analyzing the mechanics of nonrigid struc- 
tures const ructed from specific mater ia l s  such as steal and 
concrete [16]. Compute r  graphics has become indispens-  
able for visualizing the  overwhelming amount  of d a t a  tha t  
can be produced  during the preprocessing and postprocess-  
ing stages of finite d e m e n t  analysis [17-19]. 

Al though we adopt  cer tain numerical  techniques from 
finite element  analysis,  our computer  graphics  model ing 
work has a dis t inct ly  different emphasis .  We have sought 
to develop physical ly-based models  wi th  associa ted numer-  
ical procedures  tha t  can be uti l ized to create realist ic ani- 
mat ions .  Hence, our deformable models  are convenient for 
computer  graphics appl icat ions,  where a keen concern with 
t r ac tab i l i ty  mot ivates  ma themat i ca l  abs t rac t ion  and com- 
pu ta t iona l  expediency. This paper  develops inelast ic  mod-  
els t ha t  idealize regimes of mater ia l  response under  cer tain 
types  of environmental  condit ions,  whose pa ramete r s  de- 
scribe qual i ta t ively  famil iar  behaviors ,  such as s t re tchabi l -  
ity, bendabi l i ty ,  resilience, fragility, etc. 

The  organizat ion of the  remainder  of the  paper  is as 
follows: Section 2 describes inelast ic  deformat ion phenom- 
ena in more detai l  using idealized mechanical  units.  Sec- 
t ions 3 and 4 review our  basic da s t i c  models  and explain  
how we incorpora te  inelast ic behaviors  in to  the  par t ia l  dif- 

ferent ial  equations tha t  govern thei r  motions.  Section 5 
summarizes  our  implementa t ion .  Section 6 presents  more 
s imula t ion  results  and  Section 7 draws conclusions. 

2. I n e l a s t i c  D e f o r m a t i o n  

A formal t r ea tment  of inelast ic  deformat ion is beyond  the  
scope of this  paper .  For  theory on viscoelast ici ty,  plast ic-  
i ty,  and  fracture,  refer to,  e.g., [20-22]. The  basic inelast ic  
behaviors  may be unders tood  readily,  however, in  terms 
of assemblies of idealized uniaxia l  (one-dimensional)  me- 
chanical  units.  The  ideal  finear elast ic  unit  is the  spr ing 
(Fig.  2a). The  spring satisfies Hooke 's  law---elongat ion or  
cont rac t ion  e (s t rain)  is p ropor t iona l  to appl ied tension or  
compression force f (stress):  ke = f ,  where k is the  spring 
constant .  The elastic unit  is supp lemented  by  two o ther  
uniaxiaI  uni ts ,  the  viscous and plas t ic  uni ts  (Fig. 2b,c). 
By assembling these uni ts  in specific configurations,  we 
can s imulate  simple, uniaxia l  viscoelast ic i ty  and plast ici ty.  
Our  indas t icaUy deformable models  incorpora te  the  laws 
governing these units ,  sui tably  generalized and  ex tended  
over a mul t id imensional  continuum. 

/ 
Elastic unit 

/ 
Viscous unit 

i - - - i - -  . i 

I--e~ J 
Plastic unit 

br - - - p  - I e 

F i g u r e  2. Uniaxial deformation units and their response to 
applied forces. (a) Elastic spring. (b) Viscous dashpot. (c) 
Plastic slip unit. 

2.1.  V i s c o e l a s t i c i t y  

Viscoelast ic i ty  is a general izat ion of elast ic i ty  and  viscosity. 
I t  is character ized by the phenomenon of creep which mani-  
fests i tself  as a t ime dependent  deformat ion under  constant  
appl ied  force. In addi t ion to ins tan taneous  deformat ion,  
creep deformations develop which general ly increase wi th  
the  dura t ion  of the force. Whereas  an elast ic  model ,  by  
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definition, is one which has the memory only of its refer- 
ence shape, the instantaneous deformation of a viscoelastic 
model is a function of the entire history of applied force. 
Conversely, the instantaneous restoring force is a function 
of the entire history of deformation. 

The ideal linear viscous unit is the dashpot (Fig. 2b). 
The rate of increase in elongation or contraction e is pro- 
portional to applied force f :  Wd = f ,  where i/is the viscos- 
ity constant (the overstruck dot denotes a time derivative). 
The elastic and viscous units are combined to model lin- 
ear viscoelasticity, so that the internal forces depend not 
just on the magnitude of deformation, but also on the rate 
of deformation. Fig. 3a illustrates a four-unit viscoelastic 
model, a series assembly of the so called Maxwell and Voigt 
viscoelastic models. The stress-strain relationship for this 
assembly has the general form 

~z2E+a,~+aoe=b~]+b, j  +bof, (1) 

where the coefficients depend on the spring and viscosity 
constants. The response of the models to an applied force 
(Fig. 3b) is shown graphically in Fig. 3c. 

Four-unit viscoelastic model 
[ I 

I r , I V - ~ - - - q  I 

- Maxwe. emmen~ I .-.J 
Voigt element 

I- 
/ 

OT~ > t 

Elastic 

0 

Maxwell 
~ Four-unit 

/ ~ .  tVisc°us 

Voigt 

Figure 3. Uniaxial viscoelastic model. (a) The four-element 
model is a series connection of a Maxwell viscoelastic unit and 
a Voigt viscoelastic unit. (b) Force applied to the model. (c) 
Response of various components. 

2.2. P las t i c i ty  

In plasticity, unique relationships between displacement 
and applied force do not generally exist. The ideal plastic 
unit is the slip unit (Fig. 2c). It is capable of arbitrary elon- 

gation or contraction as soon as the applied force exceeds 
a yield force. During plastic yield, the apparent instan- 
taneous elastic constar~ts of the material arc smaller than 
those in the elastic state. Removal of applied force causes 
the material to unload elastically with its initial elastic 
constants. This behavior may be termed elastoplastic. 

Viscoplasticity, a generalization of plasticity and vis- 
cosity, can be modeled by assembling dashpots with plastic 
units. Analogously, elastoplasticity generalizes elasticity 
and plasticity and is modeled by assembling springs with 
plastic units. Fig. 4b presents graphically the response of 
a simple elastoplastic model (Fig. 4a). The model is lin- 
early elastic from O to A. After reaching the yield point 
A, the model exhibits linear work hardening. Upon un- 
loading from B, the elastic region is defined by force am- 
plitude fB - f c  = 2fA. Subsequent loads now move the 
model along BC. Loading past point B causes further plas- 
tic deformation along BE. The reverse plastic deformation 
occurs, along CD. After a closed cycle in force and displace- 
ment OABCDO, the model returns to its initial state and 
subsequent behavior is not affected by the cycle. 

Elastoplastic model 

• / 

FeN 

O 

B . . . . . .X E 

Figure 4. Uniaxial elastoplastic model. (a) The three-unit 
model. (b) Response to applied force (see text). 

2.3. F r a c t u r e  

Solid materials cannot sustain arbitrarily large stresses with- 
out failure, as is represented at point E in the elastoplas- 
tic model of Fig. 4. Beyond this limiting elongation, the 
elastoplastic model fractures. Fractures are localized posi- 
tion discontinuities that arise due to the breaking of atomic 
bonds in materials. They usually initiate from stress sin- 
gularities that arise at corners of irregularities or cavities 
present in solids. Solids exhibit three modes of fracture 
opening: a tensile mode and two shear modes, one planar 
and one normal to a plane. 
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As fractures develop they release internal potential 
energy of deformation (strain energy). For fractures to 
propagate through the material, the energy release rate 
as the fracture lengthens must be greater than a critical 
value. For brittle materials such as glass, fractures will de- 
velop unstably if the energy released is equal to the energy 
needed to  create the free surface associated with the frac- 
ture. In this case, minor variations in material  properties 
in the continuum can greatly influence the propagation. 
For materials like steel, however, the effects of plasticity 
at fracture tips must  be taken into account. We do not 
consider this effect; its mathematical  t reatment  is under 
development in the large body of literature on fracture 
mechanics (see [22]). 

3 .  B a s i c  D e f o r m a b l e  M o d e l s  

This section briefly reviews two formulations of deformable 
models, a primary formulation and a hybrid formulation, 
each of which can serve as a foundation for modd ing  inelas- 
tic behavior. In both  formulations u denotes the intrinsic 
or material coordinates of points in a body fL For a solid 
body u = (ul,uz,u3) has three coordinates. For a surface 
u = (Ul,U2) and for a curve u = (ul).  In these three cases, 
respectively, and without loss of generality, 12 will be the 
unit interval [0, 1], the unit square [0,1] 2, and the unit cube 
[0,1] s. 

The primary formulation of deformable models [11] 
describes deformations using the positions x(u,  t) of points 
in the body relative to an inertial frame of reference 6 
in Euclidean 3-space (Fig. 5). Position is a 3-component 
vector-valued function of the material coordinates and time. 
Deformations are measured away from a reference shape 
which is represented in differential geometric form. For 
elastic deformations, this representation gives rise to in- 
ternal deformation energies £(x)  which produce restoring 
forces that  are invariant with respect to rigid motions in 
6 .  

Y 

~ame 
Z 

Figure 5. 

Reference 
ponent 

X 

Geometric representation of deformable models. 

The hybrid formulation [14] represents the same de- 
formable body as the sum of a reference component  r(u, t) 
and a deformation component e(u, t ) .  Both components  
are expressed relative to a reference frame ~b whose origin 
coincides with the body's center of mass e(t) and which 
translates and rotates along with the deformable body 
(Fig. 5). Wc denote the positions of mass elements in the 
body relative to q~ by 

q(u,t) = r(n,t) + e(u,t). (2) 
We measure deformations with respect to the reference 
shape r represented in parametric form. Elastic defor- 
mations are again representable by an energy ~(e), but  
this energy depends on the position of ¢. Hence, for the 
deformable model to have a rigid-body motion mode in ad- 
dition to an elastic mode, the reference component  must  
be evolved over time according to the laws of rigid-body 
dynamics [23]. We obtain a model with explicit deformable 
and rigid characteristics; hence the name "hybrid." 

Appendix A gives the equations of motion for both  
formulations. The primary and hybrid formulations offer 
different practical benefits at extreme limits of deformable 
behavior. The primary formulation handles free motions 
implicitly, but at the expense of a nonquadrat ic  energy 
functional £(x)  (nonlinear restoring forces). The equation 
of motion (9) with such a functional is numerically solvable 
without much difi/iculty for extremely nonrigid models such 
as rubber sheets, but the numerical conditioning deterio- 
rates with increasing rigidity due to exacerbated nonlinear- 
ity. The hybrid formulation permits the use of a quadratic 
energy functional £(e)  (linear restoring forces). Despite 
their greater complexity, the equations of motion (13) of- 
fer a significant practical advantage for fairly rigid mod- 
els with complex reference shapes. Conditioning improves 
as the model becomes more rigid, tending in the limit to 
wall-conditioned, rigid-body dynamics. See [14] for more 
details. 

4 .  I n c o r p o r a t i n g  I n e l a s t i c  B e h a v i o r  

This section describes how we incorporate inelastic behav- 
ior using the hybrid formulation of deformable m o d d s  and 
also briefly indicates how we obtain similar effects using 
the primary formulation. First we will specify the internal 
restoring forces that  govern deformation. Recall that  the 
hybrid formulation expresses this deformation e(u, t) with 
respect to a reference component r(u, t). We obtain vis- 
coelastic, plasti% and fracture behavior by designing inter- 
no1 processes tha t  lawfully update  r and modify material 
properties according to applied force and instantaneous de- 
formation. 

In the hybrid equations of motion (13), the restoring 
force due to deformational displacement e(u , t )  is repre- 
sented in (13c) by /feE, a variational derivative [24] with 
respect to e of an rus t ic  potential energy functional ~. 
The general form of ~ is 

L E(n, e, e,, e~u,...) du, (3) £(e)  

an integral over material coordinates of art elastic energy 
density E,  which depends on e and its partial derivatives 
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with  respect  to  mater ia l  coordinates.  
A convenient choice for E is the  control led-cont inui ty  

general ized spline kernels [25]. These splines are of the  
form (3) wi th  the in tegrand  defined by 

= i. = jl!...J, fwJlO~ e I , (4) 

where j = ( j a , . . .  , j d )  is a mul t i - index with IJl = J,  + . .  + 
jd ,  where d is the  mater ia l  d imensional i ty  of the  model  
(d = 1 for curves, d = 2 for surfaces, and d = 3 for solids), 
and  where the par t ia l  derivat ive opera to r  

0m 
a?  = . . . (5) 

Thus,  E is a weighted combinat ion  of pa r t i a l  derivat ives 
of e of all orders  up to p, wi th  the  weighting funct ions 
w j (u )  in (4) controll ing the  elastic proper t ies  of the  de- 
formable  model  over u. The  allowable deformat ion be- 
comes smoother  for increasing p. 

The  var ia t ional  derivat ive in ~ of E with  the  spline 
densi ty  (4) is 

P 

~eE = E (--1)mA'~"~ e '  (6) 
rr l .~ 0 

where 

_ ~  .0. m 
Ijl=,~ 

is a spat ia l ly-weighted i t e ra ted  Laplacian  opera to r  of order  
m.  For  convenience, we use cyclic b o u n d a r y  condit ions 
on N and we in t roduce  prede te rmined  fractures to create  
free boundar ies  as necessary. To create a free surface, for 
example ,  we s ta r t  wi th  a torus and  sect ion i t  a round  the 
large and small circumference to  ob ta in  a single sheet. 

For a surface with p = 2 ( the highest  order  of p tha t  
we have used to date) ,  the var ia t ional  derivat ive of (18) is 

( ) (°°) 0e 0 w01 geE(e)  = w 0 0 e -  ~ 1  

02 ( 0 2 e ~  0 z f 02e 

O~lO~a ~, O~lO~z] 
0 2 (  02e~ 

+ 

(8) 
where u = (u l , u2 )  are the  surface 's  mater ia l  coordinates .  
The  function woo penalizes the  to ta l  magni tude  of the  de- 
formation;  wl0 and w01 penalize the  magni tude  of i ts first 
par t ia l  derivatives;  w20, wax, and  w02 penalize the  magni-  
tude  of i ts second par t ia l  derivatives;  etc. 

The  control led-cont inui ty  spline kernel (4) allows our 
models  to s imulate  the piecewise continuous deformat ions  
character is t ic  of fractures,  creases, curvature  discontinu-  
ities, etc. The  d is t r ibu ted  pa rame te r  functions wj offer 
local cont inui ty  control  th roughout  the  mater ia l  domain 
fL Discontinuit ies  in the  deformat ion of order  0 < k < p 
will occur freely at  a mater ia l  point  u0 when wj(u0) is set 
to 0 for IJl > k [25]. 

When  the stresses or deformations exceed preset  frac- 
ture  l imits ,  we locally nullify the wj  to in t roduce  disconti-  
nuit ies.  We have exper imented  with several  simple schemes 
for p ropaga t ing  fractures in our  models; for instance,  at  

each t ime step we can insert  a posi t ion d iscont inui ty  (order  
k = 0) at  the ma te r i a l  point  u .  at  which there occurs the  
greates t  elastic displacement  beyond  the l imit ing elonga- 
t ion over ~ .  The  yield l imit  may  vary  grea t ly  over mate r ia l  
coordinates  in real  mater ia ls ,  especial ly if there  h a p p e n  to 
be  localized weaknesses, say, from imperfect ions.  We have 
exper imented  successfully with yield funct ions tha t  vary 
s tochast ica l ly  a round some mean  yield l imit .  Promis ing  
var ia t ions  on this theme abound.  

As a simple ease of viscoelasticity,  consider  the  Maxwell  
uni t  depic ted  in Fig. 3. We allow e(u,  t)~ as governed by  
(6), to  play the  role of a mul t id imens ional  elast ic  spring 
in the  cont inuum general izat ion of  this  unit ,  while r (u ,  t)  
plays the  role of the  dashpot .  The  viscous behavior  of the  
dashpot  is s imula ted  by  an in ternal  process which evolves 
the reference component  as follows: /~(u,t) = ( 1 / ~ ( u ) ) e ( u , t ) .  
We ex tend  this to  s imulate  the  four-element viscoelast ic 
model  shown in the  figure, according to (1). Thus,  the  vis- 
coelastic process establishes a feedback p a t h  from e into r .  
During each t ime interval ,  a por t ion  of the  ins tan taneous  
elastic d isplacement  is t ransfer red  into  the  reference com- 
ponent ,  thereby main ta in ing  a deformat ion  history.  This  
is analogous to the  incrementa l  s t ra in  theory  or flow the- 
ory of elasticity.  More complex viscoelast ic behaviors  are 
produced  readi ly  by in t roducing nonl inear  functions in to  
the  feedback loop. Bizarre  yet  in teres t ing b e h a v i o r - - s u c h  
as negat ive  v i scos i ty - - i s  possible by choosing physica l ly  
unreal izable  parameters .  

We have incorpora ted  a mul t id imensional  extension of 
the  uniaxia l  e las toplas t ic  model  of Fig. 4. Here, the  refer- 
ence component  e absorbs  the extension of the  plas t ic  unit  
as soon as the  appl ied  force exceeds the  yie ld  l imi t .  In  the  
mul t id imensional  case, we can incorpora te  a yield condi- 
tion which can ei ther  be  dependent  on the  stresses in terna l  
to the  model  (such as the  Tresca or yon Mises yield con- 
di t ions [21]) or on the  in terna l  deformat ion e. The  model  
behaves  elast ical ly unt i l  the  yield condi t ion is exceeded lo- 
cally. Then  the mater ia l  parameters  wj are reduced local ly 
to s imulate  l inear  s t ra in  hardening.  

The  p r imary  formulat ion of elast ical ly deformable  mod-  
els involves deformat ion energy funct ionals  t ha t  conta in  
fundamenta l  tensors of curves, surfaces, and  solids (see 
[11]). For  example,  the  elast ic  funct ional  for a solid model  
was of the  form E(x) = fn I G -  GO I Zw du, a squared normed  
difference between the  f i rs t-order  or metr ic  tensors  (ma-  
tr ices) G ( x )  of the  deformed body  and G O of the  undo- 
formed body.  The  weighted norm I" Iw provides functions 
wi(u)  t ha t  de termine  mate r ia l  proper t ies .  The  approach  
for in t roducing inelast ic behavior  is essent ial ly  the  same 
as for the  hybr id  model:  We evolve the  metr ic  tensor  G O 
(and other  tensors in E(x)  associated with the  undeformed 
b o d y )  according to the  model ' s  in terna l  stresses or defor- 
mat ions .  For p las t ic i ty  and fracture,  this  includes dynamic  
ad jus tments  to the  mate r ia l  p rope r ty  functions.  

5 .  I m p l e m e n t a t i o n  O v e r v i e w  

Our  implemen ta t ion  of inelast ic  models  is bui l t  on a sub- 
s t rafe  of numerical  a lgor i thms tha t  we have developed for 
s imula t ing  elast ical ly deformable  models  [11, 14]. This  sec- 
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t ion provides an overview of the  solut ion methodology.  We 
refer the  reader  to our prior  papers  for ma themat i ca l  de- 
tai ls  and discussion. 

The  first s tep is to  discretize the  cont inuum equations 
(9) or (13c) in mater ia l  coordinates  (these pa r t i a l  differen- 
t ia l  equations are of the  hyperbol ic-parabol ic  type,  second- 
order  in t ime and,  so far, up to four th-order  in mater ia l  
coordinates) .  This  step, known as semidiscret izat ion,  may  
be  performed using finite-difference or f ini te-element meth-  
ods on a discrete mesh of nodes [26]. The  result  is a large 
sys tem of s imultaneous ordinary  differential  equations.  

The  second step is to in tegra te  the semidiscrete  sys tem 
through t ime,  thus s imulat ing the dynamics  of deformable 
models.  At  each t ime step (or every few t ime steps) the  
result ing simulat ion da t a  may  be  rendered to create suc- 
cessive frames of the animat ion.  We use a semi-implici t  
t ime in tegra t ion  procedure  which evolves the  elastic dis- 
p lacements  (and r ig id-body dynamics  in the hybr id  model)  
from given ini t ial  conditions.  In  essence, the  evolving de- 
format ion yields a recursive sequence of (dynamic)  equi- 
l ibr ium problems,  each requiring the solut ion of a sparse ,  

l inear sys tem whose dimensional i ty  is p ropor t iona l  to  the  
number  of nodes comprising the discrete model.  

The  size of these l inear  systems can vary great ly  de- 
pending  on the appl icat ion.  The  s imulat ions presented  in 
the next sections range from hundreds  to tens of thou-  
sands of s ta te  variables.  Since deformable models  involve 
so many  variables (very many  more than  for typical  r igid 
or a r t i cu la ted  body  simulat ions)  it  is crucial to  choose the  
applicable numerical  solution methods  judiciously in or- 
der to achieve efficiency ([27] is a nice survey of s t anda rd  
numerical  techniques).  

For up to modera te ly-s ized  problems,  we have used 
direct methods;  specifically, a Choleskl- type ma t r ix  fac- 
tor izat ion procedure  wi th  forward-reverse resolution.  We 
use an efficient, profile s torage scheme [28] which exploits  
the  spars i ty  of the  l inear  sys tem (a sparse  stiffness ma t r ix  
results  from discretizing the var ia t ional  derivative ~SeE us- 
ing finite-element or finite-difference approximat ions;  e.g., 
discretizing (8) using central  differences yields equations 
having at most 13 nonzero coefficients). For large prob- 
lems involving surfaces or solids, we must  resort  to i te ra t ive  
methods  such as successive over-relaxat ion (SOR) or the  
conjugate  gradient  (CG) method .  We have also made  use 
of an a l ternat ing-direct ion- impl ic i t  me thod  (ADI)  which 
i tera tes  fast, one-dimensional  Choleski solvers [27]. Mult i -  
grid methods  based on SOR have served well in the  largest  
of our simulat ions [29]. 

6 .  S i m u l a t i o n  E x a m p l e s  

The  F la t l and  simulat ions in Fig. 1 involve a 50-node dis- 
crete model  (100 deformat ion equat ions)  and  the Choleski 
solution on the hybr id  equations of mot ion in two dimen- 
sions. The collisions are computed  by a s imple pro jec t ion  
me thod  which does not  conserve the area  of the  model .  We 
have an imated  bo th  physical ly  realizable and unreal izable  
behaviors  in F la t l and ,  including buckling and collapse un- 
der  load,  swelling after impac t ,  etc. I t  should be possible  

F i g u r e  6. Hugo. (a) A "plasticine" bust of Victor Hugo. 
(b, back to front) Grabby hand pinches; grabby hand pulls; 
deformed Hugo. 

to an imate  such inelast ic  dynamics  in real- t ime in three 
dimensions on a supercomputer .  

Next,  we demons t ra te  a phys ica l ly-based in te rac t ion  
with a 3D s imulated "plast icine" bus t  (Fig.  6a). Employ-  
ing the  hybr id  formulat ion,  we ini t ia l ized the reference 
component  of the model  wi th  sampled three-dimensional  
da t a  (made available by the Universi ty  of U t a h  [30]) from 
a laser scanned sculpture  of Victor  Hugo. Fig.  6b shows 
first the undeformed model ,  followed by  a s imula t ion  of a 
robot  hand  pinching the  deformable ma te r i a l  wi th  st icky 
fingers, pulling, then releasing to show the residual  plas t ic  
deformation.  Because of the re la t ively large size of the dis- 
crete model  (180 × 127 mesh; 68580 equat ions) ,  we appl ied  
a mul t igr id  solution me thod  similar  to the  one descr ibed 
in [31]. 

The  last  two examples  s imulate  f racture  p ropaga t ion  
in surfaces. We used the  p r imary  deformable  model  for- 
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F i g u r e  7. A net falling over a spherical obstacle. Fractures develop and propagate 
as the deformation exceeds the elastic limit. 
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mulation and the ADI solution method to run these sim- 
ulations. Fig. 7 presents an animation of a net (23 x 23 
mesh; 1587 equations) falling over an impenetrable obsta- 
cle in a gravitational field, in the spirit of the flying carpet 
animation in [11]. The difference here is that  the "fibers" 
of the mesh are subject to fracture limits based on the de- 
formation in the material. When a fiber stretches beyond 
the fracture limit it is broken by the fracture process which 
inserts a discontinuity as described in Section 4. The yield 
limit is uniform over the mesh, which causes linear tears 
as one might obtain with cloth. 

Fig. 8 shows surface models (30 × 30; 2700 equations) 
which are sheared by opposing forces. In these examples, 
we per turbed the fracture tolerance around the material 's  
mean tolerance stochastically in order to introduce some 
unpredictability in the propagation of fractures. 

We rendered the color images in this section using the 
modeling testbed system described in [32]. 

Figure  a. (a) January 12, 1988. (b) April 15, 1988. 

7.  C o n c l u s i o n  

We have developed physically-based models of objects ca- 
pable of inelastic deformation for use in computer  graph- 
ics. We have applied these dynamic models to create inter- 
esting viscoelasticity, plasticity, and fracture effects. Our 
models are designed to be computat ionally tractable for 
the purposes of animation. This paper has only touched 
upon the vast volume of accumulated facts about  the me- 
chanics of materials. The modeling of inelastic deforma- 
tion remains open for further exploration in the context of 
computer graphics. 
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A .  E q u a t i o n s  o f  M o t i o n  

A deformable model is described completely by the posi- 
tions x(u,  t), velocities ~(u, t), and accelerations J~(u, t) of 
its mass elements as a function of material coordinates u 
and time $. In this appendix, overstruck dots denote time 
derivatives d/dt or SlOt as appropriate. 

Lagrange's  equations of motion [23] for x in the iner- 
tial frame • take on a relatively simple form [11]: 

~ + "r~¢ + 6x~ = f. (9) 
During motion, the net external forces f (x ,Q balance dy- 
namically against the inertial force due to the mass density 
#(u),  the velocity dependent damping force with damp- 
ing density 7(u) (here a scalar, but  generally a matrix),  
and the internal restoring force. The latter is expressed 
as a variational derivative 6x [24] of a nonnegative defor- 
mation energy g(x)  whose value increases monotonically 
with the magnitude of the deformation. Eq. (9) is a par- 
tial differential equation (due to the dependence of 6x£ on 
x and its partial derivatives with respect to u- -see  below). 
Given appropriate conditions for x on the boundary  of fl 
and initial conditions x(u,  0), ~(u, 0), we have a well-posed 
initial-boundary-value problem. 

In the hybrid formulation of the deformable model de- 
formation is decomposed into a reference component  r(u, t) 
and a deformation component e (u , / )  in a noninertial frame 
~b located at the model 's  center of mass (See Fig. 5.) 

~(u)x(n,  t) au. (10) C(1~) 

The orientation of @ relative to @ is 8(Q. Given 

v(t)  = / : ( t ) ;  to(g) = O(t), (11) 

respectively the linear and angular velocity of ~b relative to 
• , the velocity of mass elements relative to ,l~ is 

~(u, t) = v(t)  + to(g) × q(u, t) + 6(u, t), (12) 

where q is given by (2). 
In [14] we apply Lagrangian mechanics based on the 

kinetic and potential energies which govern our model to 
transform (9) into three coupled, partial differential equa- 
tions for the unknown functions v,  to and e under the ac- 
tion of an applied force f(u, t). These equations are given 
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by 
d 

d-~(mv) + ~ L p6du+ /ftT:kdu =fV, (13a) 

L ( I w ) + ~  # q × 6 d u +  , 7 q × i d u = f  w, (13b) 

~ ( ~ )  + , +  + ~ × × q) 

+ 2 p z ~ x A + p & x q + T x + g e E = f e .  (13c) 

Here m = fn p d u  is the total  mass of the body, and 
the time-varying, 3 x 3 symmetric  matr ix  I with entries 
Iij  = ffl/.t(6ijq 2 -  qiqj)du, where q = [qt)qa,qs] and ~ij is 
the Kronecker delta, is known as the inertia tensor. The 
applied force transforms to  a deformational t e rm fe (u, t) = 
if(u, t), as well as net translational fv( t )  = fa f(u, t) du and 

net torque l~( t )  = f~ q(u,  t) x f(u, t) du terms on the center 
of mass. 

The  ordinary differential equations (13a) and (13b) 
describe v and W, the translational and rotational motion 
of the body ' s  center of mass. The  terms on the left hand  
sides of these equations pertain to the total  moving mass 
of the body  as if concentrated at c, the total (vibrational) 
mot ion of the mass elements about the reference compo- 
nent r, and the total damping of the moving mass elements. 
The  partial differential equation (13c) describes (relative 
to ¢) the deformation e of the model away from r. Each 
te rm is a dynamic per-mass-element force: (i) the basic in- 
ertial force, (it) the inertial force due to linear acceleration 
of ~b, (iii) the centrifugal force due to the rotat ion of ~b, (iv) 
the Coriolis force due the velocity of the mass elements in 
¢, (v) the transverse force due to the angular acceleration 
of ¢, (vi) the damping force, and (vii) the restoring force 
due to  deformation away from r. 

R e f e r e n c e s  

i. Ba r r ,  A.,  Bar re l ,  R . ,  H a u m a n n ,  D. ,  Kass ,  M. ,  P l a i t ,  
J . ,  Terzopoulos ,  D.,  and  W i t k i n ,  A. ,  Topics in phys- 
ically-based modeling, ACM SIGGRAPH '87 Course Notes, 
Vol. 17, Anaheim, CA, 1987. 

2. Fournier ,  A.,  B loomen tha l ,  J . ,  O p p e n h e i m e r ,  P.) 
Reeves)  W . T . ,  and  Smi th ,  A .R. ,  The modeling of nat- 
ural phenomena, ACM SIGGRAPH '87 Course Notes, Vol. 
16, Anaheim, CA, 1987. 

3. A r m s t r o n g ,  W . W . ,  and  Green ,  M.,  "The dynamics 
of articulated rigid bodies for purposes of animation," The 
Visual Computer, I ,  1985, 231-240. 

4. Wilhelms)  J~) and  Barsky) B.A.) "Using dynamic anal- 
ysis to animate articulated bodies such as humans and 
robots," Proc. Graphics Interface '85, Montreal, Canada, 
1985, 97-104. 

5. Girard, M., and  Maciejewski ,  A.A., uComputational 
modeling for the computer animation of legged figures," 
Computer Graphics, 19, 3, 1985, (Proc. SIGGRAPH), 263- 
270. 

6. Barre l ,  R.., and  Bar r ,  A.,  Dynamic Constraints, 1987, 
in [11 . 

7. Hof fmann ,  C.M.)  a nd  Hopcro f t ,  J .E. ,  "Simulation 
of physical systems from geometric models," IEEE Yourn. 
Robotics and Automation, RK-3,  3, 1987, 194-206. 

8. Issacs,  P.M.,  and  Cohen ,  M.F. ,  "Controlling dynamic 
simulation with kinematic constraints, behavior functions, 
and inverse dynamics," Computer Graphics, 21, 4, 1987, 
(Proc. SIGGRAPH) 215-224. 

9. Well) J . ,  "The synthesis of cloth objects," Computer 
Graphics, 20, 4, 1986, (Proc. SIGGRAPH), 49-54. 

10. F e y n m a n ,  C.R. ,  Modeling the Appearance of Cloth, 
MSc thesis, Department of Electrical Engineering and Com- 
puter Science, MIT, Caxnhridge, MA, 1986. 

11. Terzopoulos ,  D.) P la t t ,  J . ,  Bar r ,  A.) and  Fleischer) 
K.) "Elastically deformable models," Computer Graphics, 
21, 4, 1987, (Proc. SIGGRAPH) 205-214. 

12. H a u m a n n ,  D.,  Modeling the physical behavior of flexible 
objects, 1987, in [I]. 

13. Well) J. ,  "Animating cloth objects," unpublished manu- 
script, 1987. 

14. Terzopoulos, D., and Witkln, A., "Physically-based 
models with rigid and deformable components," Proc. Graph- 
ics Inlet[ace '88, Edmonton, Canada, June, 1988. 

15. Alfrey, T.,  Mechanical Behavior of High Polymers, In- 
terscience, New York, NY, 1947. 

16. K a r d e s t u n c e r ,  H.,  and  Norr le ,  D.H. ,  (ed.) ,  Finite 
Element Handbook, McGraw-Hill, New York, NY, 1987. 

17. Chr is t iansen ,  H.N.)  "Computer generated displays of 
structures in vibration," The Shock and Vibration Bul- 
letin, 44, 2, 1974, 185-192. 

18. Chr l s t lansen ,  H.N. ,  and  Benzley) S.E., "Computer 
graphics displays of nonlinear cMculations," Computer Meth- 
ods in Applied Mechanics and Engineering, 34, 1982, 1037- 
1050. 

19. Shephard, M.S., and Abel) JoF., Interactive computer 
graphics for CAD/CAM, 1987, in [16], Section 4.4.3. 

20. Chr is tensen ,  R .M. ,  Theory of viscoelasticity, 2nd ed., 
Academic Press, New York, NY, 1982. 

21. Mendelson)  A.) Plasticity--Theory and Application, Mac- 
millan, New York, NY, 1968. 

22. Sih, G.C.)  Mechanics of Fracture, MartLnus Nijhoff, The 
Hague, 1981. 

23. Goldsteln ,  H.) Classical Mechanics, Addison-Wesley, Read- 
ing, MA, 1950. 

24. Couran t )  R.,  and  Hilber t )  D.) Methods of Mathemat- 
ical Physics, Vol. I, Interscience, London, 1953. 

25. Terzopoulos, D.) "Regulaxizatlon of inverse visual prob- 
lems involving discontinuities," IEEE Trans. Pattern Anal- 
ysis and Machine Intelligence, PAMI-8, 1986, 413-424. 

26. Lapidus ,  L., and  P inder ,  G.F. ,  Numerical Solution of 
Partial Differential Equations in Science and Engineering, 
Wiley, New York, NY, 1982. 

27. Press) W. I t . )  F lannery)  B.P. ,  Teukolsky,  S.A.) and  
Vet ter l ing ,  W,']:.) Numerical Recipes: The Art of Scien- 
tific Computing, Cambridge University Press, Cambridge, 
UK) 1986. 

28. Zienkiewlcz) O.C., The Finite Element Method; Third 
edition, McGraw-Hill, London, 1977. 

29. Hackbusch, W., Multigrid Methods and Applications, 
Springer-Verlag, Berlin, 1985. 

30. Hansen ,  C., and  Henderson)  T. ,  UTAH Range Data- 
base, Dept. of Computer Science, University of Utah, Salt 
Lake City, Utah, TR No. UUCS-86-113, 1986. 

31. Terzopoulos ,  D.,  "Multilevel computational processes 
for visual surface reconstruction," Computer Vision, Graph- 
ics, and Image Processing, 24, 1983, 52-96. 

32. Fleischer) K.,  and  Wi tk in ,  A.) "A modeling testbed," 
Proc. Graphics Interface '88, Edmonton, Canada, June, 
1988. 

278 


