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Abstract
Many computer vision algorithms limit their performance
by ignoring the underlying 3D geometric structure in the
image. We show that we can estimate the coarse geometric
properties of a scene by learning appearance-based mod-
els of geometric classes, even in cluttered natural scenes.
Geometric classes describe the 3D orientation of an image
region with respect to the camera. We provide a multiple-
hypothesis framework for robustly estimating scene struc-
ture from a single image and obtaining confidences for each
geometric label. These confidences can then be used to im-
prove the performance of many other applications. We pro-
vide a thorough quantitative evaluation of our algorithm on
a set of outdoor images and demonstrate its usefulness in
two applications: object detection and automatic single-
view reconstruction.

1. Introduction
How can object recognition, while seemingly effortless for
humans, remain so excruciatingly difficult for computers?
The reason appears to be that recognition is inherently a
global process. From sparse, noisy, local measurements
our brain manages to create a coherent visual experience.
When we see a person at the street corner, the simple act of
recognition is made possible not just by the pixels inside the
person-shape (there are rarely enough of them!), but also by
many other cues: the surface on which he is standing, the
3D perspective of the street, the orientation of the viewer,
etc. In effect, our entire visual panorama acts as a global
recognition gestalt.

In contrast, most existing computer vision systems at-
tempt to recognize objects using local information alone.
For example, currently popular object detection algo-
rithms [26, 32, 33] assume that all relevant information
about an object is contained within a small window in the
image plane (objects are found by exhaustively scanning
over all locations and scales). Note that typical errors made
by such systems – finding faces in tree-tops or cars in key-
boards – are not always the result of poor object modeling!
There really are faces in the tree-tops when one only looks
at the world through a small peephole [31]. But if our even-
tual goal is to approach the level of human performance,
then we must look outside the box and consider the entire
image as context for the global recognition task.

The recent work of Torralba et al. [29, 30] has been very

Figure 1: Geometric context from a single image: ground (green),
sky (blue), vertical regions (red) subdivided into planar orienta-
tions (arrows) and non-planar solid (’x’) and porous (’o’).

influential in showing the importance of global scene con-
text for object detection. Low-level features have also been
used to get a coarse representation of the scene in [1, 25].
Other researchers have exploited local contextual informa-
tion using random field frameworks [16, 2, 11] and other
representations (e.g. [19]). Unfortunately, the above meth-
ods all encode contextual relationships between objects in
the image plane and not in the 3D world where these objects
actually reside. This proves a severe limitation, preventing
important information – scale relationships, surface orienta-
tions, free-space reasoning, etc. – from ever being captured.
Clearly, 2D context is not enough.

Our ultimate goal is to recover a 3D “contextual frame”
of an image, a sort of theater stage representation containing
major surfaces and their relationships to each other. Having
such a representation would then allow each object to be
physically “placed” within the frame and permit reasoning
between the different objects and their 3D environment.

In this paper, we take the first steps toward construct-
ing this contextual frame by proposing a technique to es-
timate the coarse orientations of large surfaces in outdoor
images. We focus on outdoor images because their lack of
human-imposed manhattan structure creates an interesting
and challenging problem. Each image pixel is classified as
either being part of the ground plane, belonging to a surface
that sticks up from the ground, or being part of the sky. Sur-
faces sticking up from the ground are then subdivided into
planar surfaces facing left, right or toward the camera and
non-planar surfaces, either porous (e.g. leafy vegetation or
a mesh of wires) or solid (e.g. a person or tree trunk). We
also present initial results in object detection and 3D recon-
struction that demonstrate the usefulness of this geometric
information.

We pose the problem of 3D geometry estimation in terms
of statistical learning. Rather than trying to explicitly com-
pute all of the required geometric parameters from the im-
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(a) Input (b) Superpixels (c) Multiple Hypotheses (d) Geometric Labels
Figure 2: To obtain useful statistics for modeling geometric classes, we slowly build our structural knowledge of the image: from pixels
(a), to superpixels (b), to multiple potential groupings of superpixels (c), to the final geometric labels (d).

age, we rely on other images (a training set) to furnish this
information in an implicit way, through recognition. But
in contrast to most recognition approaches that model se-
mantic classes, such as cars, vegetation, roads, or build-
ings [21, 6, 14, 28], our goal is to model geometric classes
that depend on the orientation of a physical object with rela-
tion to the scene. For instance, a piece of plywood lying on
the ground and the same piece of plywood propped up by
a board have two different geometric classes. Unlike other
reconstruction techniques that require multiple images (e.g.
[23]), manual labeling [4, 17], or very specific scenes [9],
we want to automatically estimate the 3D geometric prop-
erties of general outdoor scenes from a single image.

The geometric context is philosophically similar to the
2 1

2D sketch proposed by David Marr [18]. However, we
differ from it in several important ways: 1) we use statisti-
cal learning instead of relying solely on a geometric or pho-
tometric methodology (e.g. Shape-from-X methods), 2) we
are interested in a rough sense of the scene geometry, not
the orientation of every single surface, and 3) our geometric
context is to be used with the original image data, not as a
substitute for it.

We observed two tendencies in a sampling of 300 out-
door images that we collected using Google’s image search
The first is that over 97% of image pixels belong to one of
three main geometric classes: the ground plane, surfaces
at roughly right angles to the ground plane, and the sky.
Thus, our small set of geometric classes is sufficient to pro-
vide an accurate description of the surfaces in most images.
Our second observation is that, in most images, the camera
axis is roughly parallel (within 15 degrees) to the ground
plane. We make this rough alignment an assumption, rec-
onciling world-centric cues (e.g. material) and view-centric
cues (e.g. perspective).

Our main insight is that 3D geometric information can be
obtained from a single image by learning appearance-based
models of surfaces at various orientations. We present a
framework that progressively builds structural knowledge
of the scene by alternately using estimated scene struc-
ture to compute more complex image features and using
these more complex image features to gain more structural
knowledge. Additionally, we provide a thorough analysis of
the impact of different design choices in our algorithm and
offer evidence of the usefulness of our geometric context.

2. Obtaining Useful Geometric Cues
A patch in the image could theoretically be generated by a
surface of any orientation in the world. To determine which
orientation is most likely, we need to use all of the available
cues: material, location, texture gradients, shading, vanish-
ing points, etc. Much of this information, however, can be
extracted only when something is known about the structure
of the scene. For instance, knowledge about the intersection
of nearly parallel lines in the image is often extremely use-
ful for determining the 3D orientation, but only when we
know that the lines belong to the same planar surface (e.g.
the face of a building or the ground). Our solution is to
slowly build our structural knowledge of the image: from
pixels to superpixels to related groups of superpixels (see
Figure 2).

Our first step is to apply the over-segmentation method
of Felzenszwalb et al. [7] to obtain a set of “superpixels”.
Each superpixel is assumed to correspond to a single label
(superpixels have been shown to respect segment bound-
aries [24]). Unlike plain pixels, superpixels provide the
spatial support that allows us to compute some basic first-
order statistics (e.g. color and texture). To have any hope
of estimating the orientation of large-scale surfaces, how-
ever, we need to compute more complex geometric features
that must be evaluated over fairly large regions in the image.
How can we find such regions? One possibility is to use a
standard segmentation algorithm (e.g. [27]) to partition the
image into a small number of homogeneous regions. How-
ever, since the cues used in image segmentation are them-
selves very basic and local, there is little chance of reliably
obtaining regions that correspond to entire surfaces in the
scene.

2.1. Multiple Hypothesis Method
Ideally, we would evaluate all possible segmentations of an
image to ensure that we find the best one. To make this
tractable, we sample a small number of segmentations that
are representative of the entire distribution. Since sampling
from all of the possible pixel segmentations is infeasible, we
reduce the combinatorial complexity of the search further
by sampling sets of superpixels.

Our approach is to make multiple segmentation hypothe-
ses based on simple cues and then use each hypothesis’ in-
creased spatial support to better evaluate its quality. Differ-
ent hypotheses vary in the number of segments and make
errors in different regions of the image (see Figure 2c). Our
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Feature Descriptions Num
Color 16
C1. RGB values: mean 3
C2. HSV values: C1 in HSV space 3
C3. Hue: histogram (5 bins) and entropy 6
C4. Saturation: histogram (3 bins) and entropy 4
Texture 15
T1. DOOG filters: mean abs response of 12 filters 12
T2. DOOG stats: mean of variables in T1 1
T3. DOOG stats: argmax of variables in T1 1
T4. DOOG stats: (max - median) of variables in T1 1
Location and Shape 12
L1. Location: normalized x and y, mean 2
L2. Location: norm. x and y, 10th and 90th pctl 4
L3. Location: norm. y wrt horizon, 10th, 90th pctl 2
L4. Shape: number of superpixels in region 1
L5. Shape: number of sides of convex hull 1
L6. Shape: num pixels/area(convex hull) 1
L7. Shape: whether the region is contiguous ∈ {0, 1} 1
3D Geometry 35
G1. Long Lines: total number in region 1
G2. Long Lines: % of nearly parallel pairs of lines 1
G3. Line Intsctn: hist. over 12 orientations, entropy 13
G4. Line Intsctn: % right of center 1
G5. Line Intsctn: % above center 1
G6. Line Intsctn: % far from center at 8 orientations 8
G7. Line Intsctn: % very far from center at 8 orient. 8
G8. Texture gradient: x and y “edginess” (T2) center 2

Table 1: Features computed on superpixels (C1-C2,T1-T4,L1) and
on regions (all). The “Num” column gives the number of features
in each set. The boosted decision tree classifier selects a discrimi-
native subset of these features.

challenge, then, is to determine which parts of the hypothe-
ses are likely to be correct and to accurately determine the
labels for those regions.

2.2. Features
Table 1 lists the features used by our system. Color and
texture allow the system to implicitly model the relation be-
tween material and 3D orientation. Image location also pro-
vides strong 3D geometry cues (e.g. ground is below sky).
Our previous work [12] provides further rationale for these
features.

Although the 3D orientation of a plane (relative to
the viewer) can be completely determined by its vanish-
ing line [10], such information cannot easily be extracted
from relatively unstructured outdoor images. By computing
statistics of straight lines (G1-G2) and their intersections
(G3-G7) in the image, our system gains information about
the vanishing points of a surface without explicitly com-
puting them. Our system finds long, straight edges in the
image using the method of [15]. The intersections of nearly
parallel lines (within π/8 radians) are radially binned from
the image center, according to direction (8 orientations) and
distance (2 thresholds, at 1.5 and 5 times the image size).
When computing G1-G7, we weight the lines by length,
improving robustness to outliers. The texture gradient (G8)
can also provide orientation cues, even for natural surfaces
without parallel lines.

3. Learning Segmentations and Labels
We gathered a set of 300 outdoor images representative of
the images that users choose to make publicly available on
the Internet. These images are often highly cluttered and
span a wide variety of natural, suburban, and urban scenes.
Figure 4 shows twenty of these images. Each image is over-
segmented, and each segment is given a ground truth label
according to its geometric class. In all, about 150,000 su-
perpixels are labeled. We use 50 of these images to train
our segmentation algorithm. The remaining 250 images are
used to train and evaluate the overall system using 5-fold
cross-validation. We make our database publicly available
for comparison1.

3.1. Generating Segmentations
We want to obtain multiple segmentations of an image into
geometrically homogeneous regions2. We take a learning
approach to segmentation, estimating the likelihood that
two superpixels belong in the same region. We generate
multiple segmentations by varying the number of regions
and the initialization of the algorithm.

Ideally, for a given number of regions, we would maxi-
mize the joint likelihood that all regions are homogeneous.
Unfortunately, finding the optimal solution is intractable;
instead, we propose a simple greedy algorithm based on
pairwise affinities between superpixels. Our algorithm has
four steps: 1) randomly order the superpixels; 2) assign the
first nr superpixels to different regions; 3) iteratively assign
each remaining superpixel based on a learned pairwise
affinity function (see below); 4) repeat step 3 several times.
We want our regions to be as large as possible (to allow
good feature estimation) while still being homogeneously
labeled. We run this algorithm with different numbers
of regions (nr ∈{3, 4, 5, 7, 9, 11, 15, 20, 25} in our
implementation).

Training. We sample pairs of same-label and different-
label superpixels (2,500 each) from our training set. We
then estimate the likelihood that two superpixels have the
same label based on the absolute differences of their feature
values: P (yi = yj ||xi−xj |). We use the logistic regression
form of Adaboost [3] with weak learners based on naive
density estimates:

fm(x1, x2) =

nf∑
i

log
P (y1 = y2, |x1i − x2i|)
P (y1 6= y2, |x1i − x2i|)

(1)

where nf is the number of features. Each likelihood func-
tion in the weak learner is obtained using kernel density es-
timation [5] over the mth weighted distribution.

We assign a superpixel to the region (see step 3 above)
with the maximum average pairwise log likelihood between
the superpixels in the region and the superpixel being added.

1Project page: http://www.cs.cmu.edu/∼dhoiem/projects/context/
2A region is “homogeneous” if each of its superpixel has the same label.

The regions need not be contiguous.

3



In an experiment comparing our segmentations with
ground truth, using our simple grouping method, 40%
of the regions were homogeneously labeled3, 89% of the
superpixels were in at least one homogeneous region for
the main classes, and 61% of the vertical superpixels were
in at least one homogeneous region for the subclasses. A
superpixel that is never in a homogeneous region can still
be correctly labeled, if the label that best describes the
region is the superpixel’s label.

3.2. Geometric Labeling
We compute the features for each region (Table 1) and es-
timate the probability that all superpixels have the same la-
bel (homogeneity likelihood) and, given that, the confidence
in each geometric label (label likelihood). After forming
multiple segmentation hypotheses, each superpixel will be
a member of several regions, one for each hypothesis. We
determine the superpixel label confidences by averaging the
label likelihoods of the regions that contain it, weighted by
the homogeneity likelihoods:

C(yi = v|x) =

nh∑
j

P (yj = v|x, hji)P (hji|x) (2)

where C is the label confidence, yi is the superpixel
label, v is a possible label value, x is the image data, nh

is the number of hypotheses, hji defines the region that
contains the ith superpixel for the jth hypothesis, and
yj is the region label.4 The sum of the label likelihoods
for a particular region and the sum of the homogeneity
likelihoods for all regions containing a particular superpixel
are normalized to sum to one. The main geometric labels
and vertical subclass labels are estimated independently
(subclass labels are assigned to the entire image but are
applied only to vertical regions).

Training. We first create several segmentation hypotheses
for each training image using the learned pairwise likeli-
hoods. We then label each region with one of the main ge-
ometric classes or “mixed” when the region contains mul-
tiple classes and label vertical regions as one of the sub-
classes or “mixed”. Each label likelihood function is then
learned in a one-vs.-rest fashion, and the homogeneity like-
lihood function is learned by classifying “mixed” vs. ho-
mogeneously labeled. Both the label and the homogeneity
likelihood functions are estimated using the logistic regres-
sion version of Adaboost [3] with weak learners based on
eight-node decision trees [8]. Decision trees make good
weak learners, since they provide automatic feature selec-
tion and limited modeling of the joint statistics of features.
Since correct classification of large regions is more impor-
tant than of small regions, the weighted distribution is ini-

3To account for small manual labeling errors, we allow up to 5% of the
a region’s pixels to be different than the most common label.

4If one were to assume that there is a single “best” hypothesis, Equa-
tion 2 has the interpretation of marginalizing over a set of possible hy-
potheses.

Geometric Class
Ground Vertical Sky

Ground 0.78 0.22 0.00
Vertical 0.09 0.89 0.02
Sky 0.00 0.10 0.90

Table 2: Confusion matrix for the main geometric classes.

Vertical Subclass
Left Center Right Porous Solid

Left 0.15 0.46 0.04 0.15 0.21
Center 0.02 0.55 0.06 0.19 0.18
Right 0.03 0.38 0.21 0.17 0.21
Porous 0.01 0.14 0.02 0.76 0.08
Solid 0.02 0.20 0.03 0.26 0.50

Table 3: Confusion matrix for the vertical structure subclasses.

tialized to be proportional to the percentage of image area
spanned.

4. Results
We test our system on 250 images using 5-fold cross-
validation. We note that the cross-validation was not used to
select any classification parameters. Accuracy is measured
by the percentage of image pixels that have the correct la-
bel, averaged over the test images. See our web site for the
250 input images, the ground truth labels, and our results.

4.1. Geometric Classification
Figure 4 shows the labeling results of our system on a sam-
ple of the images. Tables 2 and 3 give the confusion ma-
trices of the main geometric classes (ground plane, vertical
things, sky) and the vertical subclasses (left-facing plane,
front-facing plane, right-facing plane, porous non-planar,
solid non-planar). The overall accuracy of the classifica-
tion is 86% and 52% for the main geometric classes and
vertical subclasses, respectively (see Table 4 for baseline
comparisons with simpler methods). The processing time
for a 640x480 image is about 30 seconds using a 2.13GHz
Athalon processor and unoptimized MATLAB code.

As the results demonstrate, vertical structure subclasses
are much more difficult to determine than the main geomet-
ric classes. This is mostly due to ambiguity in assigning
ground truth labels, the larger number of classes, and a re-
duction of useful cues (e.g. material and location are not
very helpful for determining the subclass). Our labeling
results (Figures 4 and 5), however, show that many of the
system’s misclassifications are still reasonable.

4.2. Importance of Structure Estimation
Earlier, we presented a multiple hypothesis method for ro-
bustly estimating the structure of the underlying scene be-
fore determining the geometric class labels. To verify that
this intermediate structure estimation is worthwhile, we
tested the accuracy of the system when classifying based on
only class priors (CPrior), only pixel locations (Loc), only
color and texture at the pixel level (Pixel), all features at the
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Intermediate Structure Estimation
CPrior Loc Pixel SPixel OneH MultiH

Main 49% 66% 80% 83% 83% 86%
Sub 34% 36% 43% 45% 44% 52%

Table 4: Classification accuracy for different levels of intermedi-
ate structure estimation. “Main” is the classification among the
three main classes. “Sub” is the subclassification of the vertical
structures class. The column labels are defined in Section 4.2.

Importance of Different Feature Types
Color Texture Loc/Shape Geometry

Main 6% 2% 16% 2%
Sub 6% 2% 8% 7%

Table 5: The drop in overall accuracy caused by individually re-
moving each type of feature.

superpixel level (SPixel), a single (nr = 9) segmentation
hypothesis (OneH), and using our full multiple-hypothesis
framework (MultiH). Our results (Table 4) show that each
increase in the complexity of the algorithm offers a signifi-
cant gain in classification accuracy.

We also tested the accuracy of the classifier when the
intermediate scene structure is determined by partitioning
the superpixels according the ground truth labels. This
experiment gives us an intuition of how well our system
would perform if our grouping and hypothesis evaluation
algorithms were perfect. Under this ideal partitioning, the
classifier accuracy is 95% for the main geometric classes
and 66% for the vertical subclasses5. Thus, large gains are
possible by improving our simple grouping algorithm, but
much work remains in defining better features and a better
classifier.

4.3. Importance of Cues
Our system uses a wide variety of statistics involving lo-
cation and shape, color, texture, and 3D geometric infor-
mation. We analyzed the usefulness of each type of infor-
mation by removing all features of a given type from the
feature set and re-training and testing the system. Table 5
displays the results, demonstrating that information about
each type of feature is important but non-critical. These re-
sults show that location has a strong role in the system’s
performance, but our experiments in structure estimation
show that location needs to be supplemented with other
cues. Color, texture, and location features affect both the
segmentation and the labeling. Geometric features affect
only labeling. Figure 6 qualitatively demonstrates the im-
portance of using all available cues.

5. Applications
We have shown that we are able to extract geometric infor-
mation from images. We now demonstrate the usefulness
of this information in two areas: object detection and auto-
matic single-view reconstruction.

5Qualitatively, the subclass labels contain very few errors. Ambiguities
such as when “left” becomes “center” and when “planar” becomes “non-
planar” inflate the error estimate.
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Figure 3: ROC for Car Detection. Detectors were trained and
tested using identical data, except that the detector “With Con-
text” used an additional 40 context features computed from the
confidence values outputted by our system.

5.1. Object Detection
Our goal in this experiment is to demonstrate that our con-
textual information improves performance in an existing ob-
ject detection system, even when naively applied. We train
and test a multiple-orientation car detector using the PAS-
CAL [22] training and validation sets with the grayscale
images removed. We use a local detector from Murphy et
al. [20] that employs GentleBoost to form a classifier based
on fragment templates. We train two versions of the sys-
tem, one using 500 local features (templates) and one that
adds 40 new contextual features from the geometric context.
The contextual features are the average confidence for the
object window region (center), average confidences for the
windows above and below the object, and the above-center
and below-center differences for each of the three main ge-
ometric classes and five subclasses. Our results (Figure 3)
show that the geometric contextual information improves
detection performance considerably. When training, four
out of the first five features selected by the boosting algo-
rithm were contextual. The most powerful (first selected)
feature indicates that cars are usually less ground-like than
the region immediately below them. Figure 7 shows two
specific examples of improvement.

Our representation of geometric context in this experi-
ment is quite simple. In future work, we plan to use our
geometric information to construct a 3D contextual frame,
allowing powerful reasoning about objects in the image. We
believe that providing such capabilities to computer vision
algorithms could result in substantially better systems.

5.2. Automatic Single-View Reconstruction
Our main geometric class labels and a horizon estimate are
sufficient to reconstruct coarse scaled 3D models of many
outdoor scenes. By fitting the ground-vertical intersection
in the image, we are able to “pop up” the vertical surfaces
from the ground. Figure 8 shows the Merton College im-
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age from [17] and two novel views from a texture-mapped
3D model automatically generated by our system. The de-
tails on how to construct these models and additional results
are presented in our companion graphics paper [12]. Object
segmentation and estimation of the intrinsic and extrinsic
camera parameters would make automatic construction of
metric 3D models possible for many scenes. Besides the
obvious graphics applications, we believe that such mod-
els would provide extremely valuable information to other
computer vision applications.

6. Conclusion
We have taken important steps toward being able to
analyze objects in the image within the context of the
3D world. Our results show that such context can be
estimated and usefully applied, even in outdoor images
that lack human-imposed structure. Our contextual models
could be improved by including additional geometric cues
(e.g. symmetry [13]), estimating camera parameters, or
improving the classification techniques. Additionally,
much research remains in finding the best ways to apply
this context to improve other computer vision applications.
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Figure 4: Results on images representative of our data set. Two columns of {original, ground truth, test result}. Colors indicate the main
class label (green=ground, red=vertical, blue=sky), and the brightness of the color indicates the confidence for the assigned test labels.
Markings on the vertical regions indicate the assigned subclass (arrows indicate planar orientations, “X”=non-planar solid, “O”=non-
planar porous). Our system is able to estimate the geometric labels in a diverse set of outdoor scenes (notice how different orientations of
the same material are correctly labeled in the top row). This figure is best viewed in color.

7



Figure 5: Failure examples. Two columns of {original, ground truth, test result}. Failures can be caused by reflections (top row) or shadows
(bottom-left). At the bottom-right, we show one of the most dramatic failures of our system.

(a) Input (b) Full (c) Loc Only (d) No Color (e) No Texture (f) No Loc/Shp (g) No Geom
Figure 6: In difficult cases, every cue is important. When any set of features (d-g) is removed, more errors are made than when all features
are used (b). Although removing location features (f) cripples the classifier in this case, location alone is not sufficient (c).

(a) Local Features Only (b) Geometric Labels (c) With Context
Figure 7: Improvement in Murphy et al.’s detector [20] with our geometric context. By adding a small set of context features derived from
the geometric labels to a set of local features, we reduce false positives while achieving the same detection rate. For a 75% detection rate,
more than two-thirds of the false positives are eliminated. The detector settings (e.g. non-maximal suppression) were tuned for the original
detector.

Input Labels Novel View Novel View
Figure 8: Original image used by Liebowitz et al. [17] and two novel views from the scaled 3D model generated by our system. Since the
roof in our model is not slanted, the model generated by Liebowitz, et al. is slightly more accurate, but their model is manually specified,
while ours is created fully automatically [12]!
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