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Abstract—During expressive speech, the voice is enriched to
convey not only the intended semantic message but also the
emotional state of the speaker. The pitch contour is one of the
important properties of speech that is affected by this emotional
modulation. Although pitch features have been commonly used
to recognize emotions, it is not clear what aspects of the pitch
contour are the most emotionally salient. This paper presents an
analysis of the statistics derived from the pitch contour. First, pitch
features derived from emotional speech samples are compared
with the ones derived from neutral speech, by using symmetric
Kullback–Leibler distance. Then, the emotionally discriminative
power of the pitch features is quantified by comparing nested
logistic regression models. The results indicate that gross pitch
contour statistics such as mean, maximum, minimum, and range
are more emotionally prominent than features describing the
pitch shape. Also, analyzing the pitch statistics at the utterance
level is found to be more accurate and robust than analyzing the
pitch statistics for shorter speech regions (e.g., voiced segments).
Finally, the best features are selected to build a binary emotion
detection system for distinguishing between emotional versus
neutral speech. A new two-step approach is proposed. In the first
step, reference models for the pitch features are trained with
neutral speech, and the input features are contrasted with the
neutral model. In the second step, a fitness measure is used to
assess whether the input speech is similar to, in the case of neutral
speech, or different from, in the case of emotional speech, the
reference models. The proposed approach is tested with four acted
emotional databases spanning different emotional categories,
recording settings, speakers and languages. The results show that
the recognition accuracy of the system is over 77% just with the
pitch features (baseline 50%). When compared to conventional
classification schemes, the proposed approach performs better in
terms of both accuracy and robustness.

Index Terms—Emotional speech analysis, emotional speech
recognition, expressive speech, intonation, pitch contour analysis.

I. INTRODUCTION

E MOTION plays a crucial role in day-to-day interpersonal
human interactions. Recent findings have suggested that

emotion is integral to our rational and intelligent decisions. It
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helps us to relate with each other by expressing our feelings
and providing feedback. This important aspect of human inter-
action needs to be considered in the design of human–machine
interfaces (HMIs) [1]. To build interfaces that are more in tune
with the users’ needs and preferences, it is essential to study
how emotion modulates and enhances the verbal and nonverbal
channels in human communication.

Speech prosody is one of the important communicative chan-
nels that is influenced by and enriched with emotional modu-
lation. The intonation, tone, timing, and energy of speech are
all jointly influenced in a nontrivial manner to express the emo-
tional message [2]. The standard approach in current emotion
recognition systems is to compute high-level statistical informa-
tion from prosodic features at the sentence-level such as mean,
range, variance, maximum, and minimum of F0 and energy.
These statistics are concatenated to create an aggregated feature
vector. Then, a suitable feature selection technique, such as for-
ward or backward feature selection, sequential forward floating
search, genetic algorithms, evolutionary algorithms, linear dis-
criminant analysis, or principal component analysis [3]–[5], is
used to extract a feature subset that provides better discrimi-
nation for the given task. As a result, the selected features are
sensitive to the training and testing conditions (database, emo-
tional descriptors, recording environment). Therefore, it is not
surprising that the models do not generalize across domains, and
notably in real-life scenarios. A detailed study of the emotional
modulation in these features can inform the development of ro-
bust features, not only for emotion recognition but also for other
applications, such as expressive speech synthesis. This paper fo-
cuses on one aspect of expressive speech prosody: the F0 (pitch)
contour.

The goal of this paper is twofold. The first is to study which
aspects of the pitch contour are manipulated during expressive
speech (e.g., curvature, contour, shape, dynamics). For this pur-
pose, we present a novel framework based on Kullback–Leibler
divergence (KLD) and logistic regression models to identify,
quantify, and rank the most emotionally salient aspects of the
F0 contour. Different acted emotional databases are used for
the study, spanning different speakers, emotional categories
and languages (English and German). First, the symmetric
Kullback–Leibler distance is used to compare the distributions
of different pitch statistics (e.g., mean, maximum) between
emotional speech and reference neutral speech. Then, a logistic
regression analysis is implemented to discriminate emotional
speech from neutral speech using the pitch statistics as input.
These experiments provide insights about the aspects of pitch
that are modulated to convey emotional goals. The second
goal is to use these emotionally salient features to build robust
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prosody speech models to detect emotional speech. In our
recent work, we introduced the idea of building neutral speech
models to discriminate emotional speech from neutral speech
[6]. This approach is appealing since many neutral speech
corpora are available, compared to emotional speech corpora,
allowing the construction of robust neutral speech models.
Furthermore, since these models are independent of the specific
emotional databases, they can be more easily generalized to
real-life applications [7]. While the focus on our previous
paper was on spectral speech models, this paper focuses on
features derived from the F0 contour. Gaussian mixture models
(GMMs) are trained using the most discriminative aspects of
the pitch contour, following the analysis results presented in
this paper.

The results reveal that features that describe the global as-
pects (or properties) of the pitch contour, such as the mean, max-
imum, minimum, and range, are more emotionally salient than
features that describe the pitch shape itself (e.g., slope, curva-
ture, and inflexion). However, features such as pitch curvature
provide complementary information that is useful for emotion
discrimination. The classification results also indicate that the
models trained with the statistics derived over the entire sen-
tence have better performance in terms of accuracy and robust-
ness than when they are trained with features estimated over
shorter speech regions (e.g., voiced segments).

Using the most salient pitch features, the performance of
the proposed approach for binary emotion recognition reaches
over 77% (baseline 50%), when the various acted emotional
databases are considered together. Furthermore, when the
system is trained and tested with different databases (in a
different language), the recognition accuracy does not decrease
compared to the case without any mismatch between the
training and testing condition. In contrast for the same task,
the performance of a conventional emotion recognition system
(without the neutral models) decreases up to 17.9% (absolute)
using the same pitch features. These results indicate that the
proposed GMM-based neutral model approach for binary
emotion discrimination (emotional versus neutral speech) out-
performs conventional emotion recognition schemes in terms
of accuracy and robustness.

The paper is organized as follows. Section II provides the
background and related work. Section III gives an overview of
the proposed approach. It also describes the databases and the
pitch features included in the analysis. Section IV presents the
experiments and results based on KLD. Section V gives the ex-
periments and results of the logistic regression analysis. Based
on the results derived from previous sections of the paper, Sec-
tion VI discusses the aspects of the pitch contour during expres-
sive speech that are most distinctive, and therefore, most useful
for emotion discrimination. Section VII presents the idea and
the classification results of neutral reference models for expres-
sive versus non-expressive speech classification. Finally, Sec-
tion VIII gives the concluding remarks and our future research
directions.

II. RELATED WORK

Pitch features from expressive speech have been extensively
analyzed during the last few years. From these studies, it is well

known that the pitch contour presents distinctive patterns for
certain emotional categories. In an exhaustive review, Juslin and
Laukka reported some consistent results for the pitch contour
across 104 studies on vocal expression [8]. For example, they
concluded that the pitch contour is higher and more variable
for emotions such as anger and happiness and lower and less
variable for emotions such as sadness. Despite having a pow-
erful descriptive value, these observations are not adequate to
quantify the discriminative power and the variability of the pitch
features. In this section, we highlight some of the studies that
have attempted to measure the emotional information conveyed
in different aspects of the pitch contour.

The results obtained by Lieberman and Michaels indicate that
the fine structure of the pitch contour is an important emotional
cue [9]. Using human perceptual experiments, they showed that
the recognition of emotional modes such as bored and pompous
decreased when the pitch contour is smoothed. Therefore, they
concluded that small pitch fluctuations, which are usually ne-
glected, convey emotional information.

In many languages, the F0 values tend to gradually decrease
toward the end of the sentence, a phenomenon known as dec-
lination. Wang et al. compared the pitch declination conveyed
in happy and neutral speech in Mandarin [10]. Using four-word
sentences, they studied the pitch patterns at the word level. They
concluded that the declination in happy speech is less than in
neutral speech and that the slope of the F0 contour is higher than
neutral speech, especially at the end of the sentence. Paeschke
et al. also analyzed the pitch shape in expressive speech [11].
They proposed different pitch features that might be useful for
emotion recognition, such as the steepness of rising and falling
of the pitch, and direction of the pitch contour [11]. Likewise,
they also studied the differences in the global trend of the pitch,
defined as the gradient of linear regression, in terms of emotions
[12]. In all these experiments, they found statistically significant
differences.

Bänziger and Scherer argued that the pitch mean and range
account for most of the important emotional variation found in
the pitch [13]. In our previous work, the mean, shape, and range
of the pitch of expressive speech were systematically modified
[14]. Then, subjective evaluations were performed to assess the
emotional differences perceived in the synthesized sentences
with the F0 modifications. The mean and the range were in-
creased/decreased in different percentages and values. The pitch
shape was modified by using stylization at varying semitone
frequency resolution. The results indicated that modifications
of the range (followed by the mean) had the biggest impact
in the emotional perception of the sentences. The results also
showed that the pitch shape needs to be drastically modified to
change the perception of the original emotions. Using percep-
tual experiments, Ladd et al. also suggested that pitch range was
more salient than pitch shape. Scherer et al. explained these re-
sults by making the distinction between linguistic and paralin-
guistic pitch features [15]. The authors suggested that gross sta-
tistics from the pitch are less connected to the verbal context,
so they can be independently manipulated to express the emo-
tional state of the speaker (paralinguistic). The authors also ar-
gued that the pitch shape (i.e., rise and fall) is tightly associ-
ated with the grammatical (linguistic) structure of the sentence.
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Therefore, the pitch shape is jointly modified by linguistic and
affective goals. As an aside, similar interplay with pitch has been
observed in facial expressions [16].

Another interesting question is whether the emotional varia-
tions in the pitch contour change in terms of specific emotional
categories or general activation levels. Bänziger and Scherer re-
ported that the mean and range of the pitch contour change as a
function of emotional arousal [13]. On the other hand, they did
not find evidence for specific pitch shapes for different emo-
tional categories. Thus, we argue that using pitch features is
more suited for binary emotion classification than for imple-
menting multiclass emotion recognition. These results support
our ideas of contrasting pitch statistics derived from emotional
speech with those of the neutral counterpart.

Although the aforementioned studies have reported statisti-
cally significant emotional differences, they do not provide au-
tomatic recognition experiments to validate the discriminative
power of the proposed features. The framework presented in this
paper allows us not only to identify the emotionally salient as-
pects the F0 contour, but also to quantify and compare their dis-
criminative power for emotion recognition purposes. The main
contributions of this paper are as follows:

• a discriminative analysis of emotional speech with respect
to neutral speech;

• a novel methodology to analyze, quantify, and rank the
most prominent and discriminative pitch features;

• a novel robust binary emotion recognition system based
on contrasting expressive speech with reference neutral
models.

III. METHODOLOGY

A. Overview

The fundamental frequency or F0 contour (pitch), which is a
prosodic feature, provides the tonal and rhythmic properties of
the speech. It predominantly describes the speech source rather
than the vocal tract properties. Although it is also used to em-
phasize linguistic goals conveyed in speech, it is largely inde-
pendent of the specific lexical content of what is spoken in most
languages [17].

The fundamental frequency is also a supra-segmental speech
feature, where information is conveyed over longer time scales
than other segmental speech correlates such as spectral envelope
features. Therefore, rather than using the pitch value itself, it is
commonly accepted to estimate global statistics of the pitch con-
tour over an entire utterance or sentence (sentence-level) such
as the mean, maximum, and standard deviation. However, it is
not clear that estimating global statistics from the pitch contour
will provide local information of the emotional modulation [9].
Therefore, in addition to sentence-level analysis, we investigate
alternative time units for the F0 contour analysis. Examples of
time units that have been proposed to model or analyze the pitch
contour include those at the foot-level [18], word-level [10], and
even syllable-level [11]. In this paper, we propose to study the
pitch features extracted over voiced regions (hereon referred as
voiced-level). In this approach, the frames are labeled as voiced
or unvoiced frames according to their F0 value (greater or equal
to zero). Consecutive voiced frames are joined to form a voiced

region over which the pitch statistics are estimated. The average
duration of this time unit is 167 ms (estimated from the neu-
tral reference corpus described in Section III-B). The lower and
upper quartiles are 60 and 230 ms, respectively. The motiva-
tion behind using voiced region as a time unit is that the voicing
process, which is influenced by the emotional modulation, di-
rectly determines voiced and unvoiced regions. Therefore, anal-
ysis along this level may shed further insights into emotional
influence on the F0 contour not evident from the sentence level
analyses. From a practical viewpoint, voiced regions are easier
to segment compared to other short time units, which require
forced alignment (word and syllable) or syllable stress detec-
tions (foot). In real-time applications, in which the audio is con-
tinuously recorded, this approach has the advantage that smaller
buffers are required to process the audio. Also, it does not re-
quire pre-segmenting the input speech into utterances. Both sen-
tence- and voiced-level pitch features are analyzed in this paper.

For the sake of generalization, the results presented in this
paper are based on four different acted emotional databases
(three for training and testing and one for validation) recorded
from different research groups and spanning different emo-
tional categories (Section III-B). Therefore, some degree of
variability in the recording settings and the emotional elicitation
is included in the analysis. Instead of studying the pitch contour
in terms of emotional categories, the analysis is simplified
to a binary problem in which emotional speech is contrasted
with neutral speech (i.e., neutral versus emotional speech).
This approach has the advantage of being independent of the
emotional descriptors (emotional categories or attributes), and
it is useful for many practical applications such as automatic
expressive speech mining. In fact, it can be used as a first step
in a more sophisticated multiclass emotion recognition system
in which a second level classification would be used to achieve
a finer emotional description of the speech.

Notice that the concept of neutral speech is not clear due to
speaker variability. To circumvent this problem, we propose the
use of a neutral (i.e., non-emotional) reference corpus recorded
from many speakers (Section III-B). This neutral speech refer-
ence will be used to contrast the speech features extracted from
the emotional databases (Section IV) to normalize the energy
and the pitch contour for each speaker (Section III-C) and to
build neutral model for emotional versus non-emotional classi-
fication (Section VII).

B. Databases

In this paper, five databases are considered: one non-emo-
tional corpus used as a neutral speech reference, and four acted
emotional databases with different properties. A summary of the
databases is given in Table I.

The corpus considered in this paper as the neutral (i.e., non-
emotional) reference database is the Wall Street Journal-based
Continuous Speech Recognition Corpus Phase II (WSJ) [19].
This corpus, which we will refer to here on as WSJ1, comprises
read and spontaneous speech from Wall Street Journal articles.
For our purposes, only the spontaneous portion of this data was
considered, which was recorded by 50 journalists with varying
degrees of dictation experience. In total, more than eight thou-
sand spontaneous utterances were recorded. Notice that in our
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TABLE I
SUMMARY OF THE DATABASES (��� � neutral, ��� � anger, ��� � happiness, ��	 � sadness, 
�� � boredom,
	
� � disgust, ��� � fear, ��� � anxiety, ��� � panic, ��� � hot anger, ��� � cold anger, 	�� � despair,

��� � elation, 
�� � interest, ��� � shame, ��
 � pride, ��� � contempt, ��� � surprise)

previous work [6], the read-speech TIMIT database was used as
reference [20]. Since our ultimate goal is to build a robust neu-
tral model for contrasting and recognizing emotion in real-life
applications, this spontaneous corpus was preferred.

For the analysis and the training of the models (Sec-
tions IV–VI), three emotional corpora were considered. These
emotional databases were chosen to span different emotional
categories, speakers, genders, and even languages, with the
purpose to include, to some extent, the variability found in
the pitch. The first database was collected at the University
of Southern California (USC) using an electromagnetic artic-
ulography (EMA) system [21]. In this database, which will
be referred to here on as EMA, one male and two female
subjects (two of them with formal theatrical vocal training)
read ten sentences five times portraying the emotions sadness,
anger, and happiness, in addition to neutral state. Although this
database contains articulatory information, only the acoustic
signals are analyzed in this study. Note that the EMA data have
been perceptually evaluated and inter-evaluator agreement has
been shown to be 81.9% [22].

The second emotional corpus corresponds to the Emotional
Prosody Speech and Transcripts database (EPSAT) [23]. This
database was collected at the University of Pennsylvania and
is comprised of recordings from eight professional actors (five
female and three male) who were asked to read short seman-
tically neutral utterances corresponding to dates and numbers,
expressing 14 emotional categories in addition to neutral state
(Table I). The emotion states were elicited by providing exam-
ples of a situation for each emotional category. This database
provides a wide spectrum of emotional manifestation.

The third emotional corpus is the Database of German Emo-
tional Speech (GES) which was collected at the Technical Uni-
versity of Berlin [24]. This database was recorded from ten par-
ticipants, five female, and five male, who were selected based
on the naturalness and the emotional quality of the participant’s
performance in audition sessions. The emotional categories con-
sidered in the database are anger, happiness, sadness, boredom,
disgust, and fear, in addition to neutral state. While the previous
databases were recorded in English, this database was recorded
in German. Although each language influences the shape of the
pitch contour differently, we hypothesize that emotional pitch
modulation can be still measured and quantified using English
neutral pitch models. The assumption is that the fundamental
frequency in English and German will share similar patterns.
The results presented in Section VII-C give some evidence for
this hypothesis.

In addition, a fourth emotional database is used in Sec-
tion VII-C to evaluate the robustness of the pitch neutral

models. Since the most discriminant F0 features are selected
from the analysis presented in Sections IV and V, this database
will be used to assess whether the emotional discrimination
from this set of features extends to other corpora. This vali-
dation corpus corresponds to the Spanish Emotional Speech
database (SES), which was collected from one professional
actor with Castilian accent at the Polytechnic University of
Madrid [25]. The emotions considered in this database are
anger, happiness, sadness, and surprise, in addition to neutral
state.

Although acted emotions differ from genuine emotions dis-
played during real-life scenarios [7], databases recorded from
actors have been widely used in the analysis of emotions to cope
with the inherent limitations of natural databases (e.g., copy-
right, lack of control, noisy signal). In fact, most of the cur-
rent emotional corpora have been recorded from actors [26]. We
have argued in our previous work about the role of acting as a vi-
able research methodology for studying human emotions [27].
Although we acknowledge the simplifications of acted emo-
tional speech, we believe that these corpora provide useful in-
sights about the properties of genuine expressive speech.

C. Speaker Dependent Normalization

Normalization is a critical step in emotion recognition. The
goal is to eliminate speaker and recording variability while
keeping the emotional discrimination. For this analysis, a
two-step approach is proposed: 1) energy normalization and
2) pitch normalization.

In the first step, the speech files are scaled such that the av-
erage RMS energy of the neutral reference database and
the neutral subset in the emotional databases are the
same for each speaker . This normalization is separately ap-
plied for each subject in each database. The goal of this normal-
ization is to compensate for different recording settings among
the databases.

(1)

In the second step, the pitch contour is normalized for each
subject (speaker-dependent normalization). The average pitch
across speakers in the neutral reference database is estimated

. Then, the average pitch value for the neutral set of the
emotional databases is estimated for each speaker . Fi-
nally, a scaling factor is estimated by taking the ratio be-
tween and , as shown in (2). Therefore, the neutral
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TABLE II
SENTENCE- AND VOICED-LEVEL FEATURES EXTRACTED FROM THE F0

samples of each speaker in the databases will have a similar F0
mean value

(2)

One assumption made in this two-step approach is that neu-
tral speech will be available for each speaker. For real-life appli-
cations, this assumption is reasonable when either the speakers
are known or a few seconds of their neutral speech can be pre-
recorded. Notice that these scaling factors will not affect emo-
tional discrimination in the speech, since the differences in the
energy and the pitch contour across emotional categories will
be preserved.

D. Pitch Features

The pitch contour was extracted with the Praat speech pro-
cessing software [28], using an autocorrelation method. The
analysis window was set to 40 ms with an overlap of 30 ms,
producing 100 frames per second. The pitch was smoothed to
remove any spurious spikes by using the corresponding option
provided by the Praat software.

Table II describes the statistics estimated from the pitch con-
tour and the derivative of the pitch contour. These statistics
are grouped into sentence-level and voiced-level features as de-
fined in Section III-A. These are the statistics that are commonly
used in related work to recognize emotions from the pitch. The
nomenclature convention for the pitch features in this study was
defined as intuitively as possible. Pitch features at sentence-level
start with . Pitch features at voiced-level start with . The
labels for the pitch derivative features start with either (sen-
tence-level), or (voiced-level). Note that only voiced regions
with more than four frames are considered to have reliable sta-
tistics (more than 40 ms). Likewise, kurtosis and skewness, in
which the third and fourth moments about the mean need to be
estimated, are not estimated at the voiced-level segments. As
mentioned in Section III-A, the average duration of the voiced

segments is 167 ms. (16.7 frames). Therefore, there are not
enough samples to robustly estimate these statistics.

Describing the pitch shape for emotional modulation anal-
ysis is a challenging problem, and different approaches have
been proposed. The Tones and Break Indices System (ToBI) is
a well-known technique to transcribe prosody (or intonation)
[29]. Although progress has been made toward automatic ToBI
transcription [30], an accurate and more complete prosodic tran-
scription requires hand labeling. Furthermore, linguistic models
of intonation may not be the most appropriate labels to describe
the emotions [13]. Taylor has proposed an alternative pitch con-
tour parameterization called Tilt Intonation Model [31]. In this
approach, the pitch contour needs to be pre-segmented into in-
tonation events. However, there is no straightforward or readily
available system to estimate these segments. Given these limi-
tations, we follow a similar approach presented by Grabe et al.
[32]. The voiced regions, which are automatically segmented
from the pitch values, are parameterized using polynomials.
This parameterization captures the local shape of the F0 contour
with few parameters, which provides clear physical interpreta-
tion of the curves. Here, the slope , curvature , and in-
flexion are estimated to capture the local shape of the pitch
contour by fitting a first-, second-, and third-order polynomial
to each voiced region segment

(3)

(4)

(5)

Table III shows additional sentence-level statistics derived
from the voiced-level feature average. The nomenclature con-
vention for these features is to start with . These statistics
provide insights about the local dynamics of the pitch con-
tour. For example, while the pitch range at the sentence-level
(Srange) gives the extreme value distance of the pitch contour
over the entire sentence, SVmeanRange, the mean of the range
of the voiced regions, will indicate whether the voiced regions
have flat or inflected shape. Likewise, some of these features
will inform global patterns. For instance, the feature SVmeanS-
lope is highly correlated with the declination or global trend
of the pitch contour, which previous studies have reported to
convey emotional information [10], [12].

In sum, 60 pitch features are analyzed (39 sentence-level fea-
tures and 21 voiced-level features). From here on, the statistics
presented in Tables II and III are interchangeably referred to as
“features,” “F0 features,” or “pitch features.”

IV. EXPERIMENT 1: COMPARISONS USING SYMMETRIC

KULLBACK–LEIBLER DISTANCE

This section presents our approach to identifying and quanti-
fying the pitch features with higher levels of emotional modula-
tion. Instead of comparing just the mean, the distributions of the
pitch features extracted from the emotional databases are com-
pared with the distributions of the pitch features extracted from
the neutral reference corpus using KLD [33]. KLD provides a
measure of the distance between two distributions. It is an ap-
pealing approach to robustly estimate the differences between
the distributions of two random variables.
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TABLE III
ADDITIONAL SENTENCE-LEVEL F0 FEATURES DERIVED FROM

THE STATISTICS OF THE VOICED REGION PATTERNS

Since the KLD is not a symmetric metric, we propose the use
of the symmetric Kullback–Leibler distance or -divergence,
which is defined as

(6)

where is the conventional KLD

(7)

The first step is to estimate the distribution of the pitch fea-
tures for each database, including the neutral reference corpus.
For this purpose, we proposed the use of the K-means clus-
tering algorithm to estimate the bins [34]. This nonparametric
approach was preferred since the KLD is sensitive to the bins’
estimation. To compare the symmetric KLD in terms of features
and emotional categories the number of bins, was set constant
for each distribution ( empirically chosen). Notice that
these feature-dependent nonuniform bins were estimated con-
sidering all the databases to include the entire range spanned
by the features. After the bins were calculated, the distribu-
tion of each pitch feature was estimated for each
database , and for each emotional category . Therefore,
the true feature distribution for each subset is approximated by
counting the number of samples assigned to each bin. The same
procedure was used to estimate the distribution of the pitch fea-
tures in the reference neutral corpus, .

The next step is to compute the symmetric KLD between the
distribution of the emotional databases and the distribution esti-
mated from the reference database (6). This
procedure is repeated for each database and for each emotional
category.

A good pitch feature for emotion discrimination ideally
would have close to zero (neutral speech of the
database is similar to the reference corpus) and a high value

Fig. 1. Most emotional prominent features according to the average symmetric
KLD ratio between features derived from emotional and neutral speech. The
figures show the sentence-level (top) and voiced-level (bottom) features. The
nomenclature of the F0 features is given in Tables II and III.

for , where is any emotional category except the neutral

state. Notice that if and have high values,
this test would indicate that the speech from the emotional
database is different from the reference database (how neutral
is the neutral speech?). Likewise, if both values were similar,
this feature would not be relevant for emotion discrimination.
Therefore, instead of directly comparing the symmetric KLD,
we propose to estimate the ratio between and
(8). That is, after matching the feature distributions with the
reference feature distributions, the emotional speech is directly
compared with the neutral set of the same emotional database
by taking the ratio. High values of this ratio will indicate that
the pitch features for emotional speech are different from their
neutral counterparts, and therefore are relevant to discriminate
emotional speech from neutral speech

(8)

Fig. 1 shows the average ratio between the emotional and
neutral symmetric KLD obtained across databases and emo-
tional categories. The pitch features with higher values are
SVmeanMin, SVmeanMax, Sdiqr, and Smean for the sen-
tence-level features and Vrange, Vstd, Vdrange, and Vdiqr for
the voiced-level features. As further discussed in Section VI,
these results indicate that gross statistics of the F0 contour
are more emotionally salient than the features describing the
pitch shape itself. In Section VII, the top features from this
experiment will be used for binary emotion classification.

Figs. 2–4 show the results for the EMA, EPSAT, and GES
databases, respectively. For the sake of space, these figures
only display the results for the emotions anger, happiness,
and sadness. They also include the average ratio across the
emotional categories for each database (Emo). The figures
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Fig. 2. Average symmetric KLD ratio between pitch features derived from
emotional and neutral speech from the EMA corpus. The label Emo corresponds
to the average results across all emotional categories. In order to keep the �

axis fixed, some of the bars were clipped. The first ten bars correspond to sen-
tence-level features and the last ten to voiced-level features. The nomenclature
of the F0 features is given in Tables II and III.

Fig. 3. Average symmetric KLD ratio between pitch features derived from
emotional and neutral speech from the EPSAT corpus. The label Emo corre-
sponds to the average results across all emotional categories. Only the emotional
categories hot anger, happiness, and sadness are displayed. In order to keep the
� axis fixed, some of the bars were clipped. The first ten bars correspond to sen-
tence-level features and the last ten to voiced-level features. The nomenclature
of the F0 features is given in Tables II and III.

Fig. 4. Average symmetric KLD ratio between pitch features derived from
emotional and neutral speech from the GES corpus. The label Emo corresponds
to the average results across all emotional categories. Only the emotional cat-
egories anger, happiness, and sadness are displayed. In order to keep the �

axis fixed, some of the bars were clipped. The first ten bars correspond to sen-
tence-level features and the last ten to voiced-level features. The nomenclature
of the F0 features is given in Tables II and III.

show that the rank of the most prominent pitch features varies
according to the emotional databases. By analyzing different

corpora, we hypothesize that the reported results will give
more general insights about the emotional salient aspects of
the fundamental frequency. These figures also reveal that some
emotional categories with high activation levels (i.e., high
arousal) such as anger and happiness are clearly distinguished
from neutral speech using pitch-related features. However,
subdued emotional categories such as sadness present similar
pitch characteristics to neutral speech. This result agrees with
the hypothesis that emotional pitch modulation is triggered
by the activation level of the sentence [13], as mentioned in
Section II. Further discussion about the pitch features is given
in Section VI.

V. EXPERIMENT 2: LOGISTIC REGRESSION ANALYSIS

The experiments presented in Section IV provide insight
about the pitch features from expressive speech that differ from
the neutral counterpart. However, they do not directly indicate
the discriminative power of these features. This section ad-
dresses this question with the use of logistic regression analysis
[35].

All the experiments reported in this section correspond to
binary classification (neutral versus emotional speech). Unlike
Section VII, the emotional databases are separately analyzed.
The neutral reference corpus is not used in the section. The
emotional categories are also separately compared with neutral
speech (i.e., neutral-anger, neutral-happiness).

Logistic regression is a well-known technique to model bi-
nary or dichotomous variables. In this technique, the condi-
tional expectation of the variable given the input variables is
modeled with the specific form described in (9). After applying
the logit transformation (10), the regression problem becomes
linear in its parameters . A nice property of this
technique is that the significance of the coefficients can be mea-
sured using the log-likelihood ratio test between two nested
models (the input variables of one model are included in the
other model). This procedure provides estimates about the dis-
criminative power of each input feature

(9)

(10)

Experiment 2.1: The first experiment was to run logistic re-
gression with only one pitch feature in the model at a time. The
procedure is repeated for each emotional category. The goal of
this experiment is to quantify the discriminative power of each
pitch feature. This measure is estimated in terms of the improve-
ment in the log-likelihood of the model when a new variable
is added (the statistic log-likelihood ratio is approx-
imately chi-square distributed and can be used for hypothesis
testing). Fig. 5 gives the average log-likelihood improvement
across the emotional categories and databases for the top 15 sen-
tence- and voiced-level features. The pitch features with higher
score are Smedian, Smean, SVmeanQ75, and SQ75 for the sen-
tence-level features, and VQ75, Vmean, Vmedian, and Vmax for
the voiced-level feature. These features will also be considered
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Fig. 5. Most emotionally discriminative pitch features according to the log-
likelihood ratio scores in logistic regression analysis when only one feature is
entered at a time in the models. The figure displays the average results across
emotional databases and categories. The figures show the sentence-level (top)
and voiced-level (bottom) features. The nomenclature of the F0 features is given
in Tables II and III.

for binary emotion recognition in Section VII. Although the
order in the ranking in the F0 features is different in Figs. 1 and
5, eight sentence- and voiced-level features are included among
the top ten features according to both criteria (experiments 1 and
2.1). This result shows the consistency of the two criteria used to
identify the most emotionally salient aspects of the F0 contour
(the F0 features with higher emotional/neutral symmetric KLD
ratio are supposed to provide more discriminative information
in the logistic regression models).

Experiment 2.2: Some of the pitch features provide overlap-
ping information or are highly correlated. Since the pitch fea-
tures were individually analyzed in experiment 2.1, these im-
portant issues were not addressed. Therefore, a second experi-
ment was designed to answer this question, which is important
for classification. Logistic regression analysis is used with for-
ward feature selection (FFS) to discriminate between each emo-
tional category and neutral state (i.e., neutral-anger). Here, the
pitch features are sequentially included in the model until the
log-likelihood improvement given the new variable is not sig-
nificant (chi-square statistic test). In each case, the samples are
split in training (70%) and testing (30%) sets.

Fig. 6 gives the pitch features that were most often selected
in each of the 26 logistic regression tests (see Table IV). This
figure provides insights about some pitch features, which may
not be good enough if they are considered alone, but they give
supplementary information to other pitch features. Notice that
in each of these experiments, the pitch features were selected
to maximize the performance of that specific task. The goal of
analyzing the selected features across emotional categories and
databases is to identify pitch features that can be robustly used
to discriminate between emotional and neutral speech in a more
general fashion (for generalization).

Fig. 6. Most frequently selected features in logistic regression models using
forward feature selection. The figures show the sentence-level (top) and voiced-
level (bottom) features. The nomenclature of the F0 features is given in Tables II
and III.

TABLE IV
DETAILS OF THE LOGISTIC REGRESSION ANALYSIS USING FFS WITH

SENTENCE-LEVEL FEATURES (��� � Accuracy, ��� � Recall,
��� � Precision, ��	 � Baseline)

The pitch features that were most often selected in the lo-
gistic regression experiments reported in Fig. 6 are Smedian,
Sdmedian, SVmeanRange, and SVmaxCurv for the sentence-
level features, and Vcurv, Vmin, Vmedian, and VQ25 for the
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TABLE V
DETAILS OF THE LOGISTIC REGRESSION ANALYSIS USING FFS WITH

VOICED-LEVEL FEATURES (��� � Accuracy, ��� � Recall,
��� � Precision, ��	 � Baseline)

voiced-level features. This experiment reveals interesting re-
sults. For example, Smedian and Smean were seldom selected
together since they are highly correlated . In fact,
while Smean was the second best feature according to the ex-
periment 2.1 (Fig. 5), it is not even in the top 15 features ac-
cording to this criterion (Fig. 6). In contrast, other features that
were not relevant when they were individually included in the
model appear to provide important supplementary information
(e.g., SVmeanCurv and Vcurv). Further discussion about the fea-
tures is given in Section VI.

Tables IV and V provide details about the logistic regression
experiments performed with FFS for the sentence- and voiced-
level features, respectively. In the tables, we highlight the cases
when the fit of the logistic regression models was considered ad-
equate, according to the Nagelkerke r-square statistic ( ,
empirically chosen) [36]. These tables show that some emo-
tional categories cannot be discriminated from neutral speech
based on these pitch features (e.g., sadness, boredom, shame).
The tables also reveal that voiced-level features provide emo-
tional information, but the performance is in general worse than
the sentence-level features. This result indicates that the voiced
segment region may not be long enough to capture the emo-
tional information. An alternative hypothesis is that not all the
voiced region segments present measurable emotional modula-
tion, since the emotion is not uniformly distributed in time [37].
In fact, previous studies suggest that the patterns displayed by
the pitch at the end of the sentences are important for emotional
categories such as happiness [10], [15]. Therefore, the confu-
sion in the classification task may increase by considering each
voiced region as a sample.

VI. ANALYSIS OF PITCH FEATURES

On the one hand, the results presented in the previous sections
reveal that pitch statistics such as the mean/median, maximum/
upper quartile, minimum/lower quartile, and range/interquartile
range, are the most emotionally salient pitch features. On the
other hand, features that describe the pitch contour shape such
as the slope, curvature and inflexion, are not found to convey the
same measurable level of emotional modulation. These results
indicate that the continuous variations of pitch level are the most
salient aspects that are modulated in expressive speech. These
results agree with previous findings reported in [13] and [38],
which indicate that pitch global statistics such as the mean and
range are more emotionally prominent than the pitch shape it-
self, which is more related with the verbal context of the sen-
tence [15].

The results of the experiment 1 indicate that the standard de-
viation and its derivative convey measurable emotional informa-
tion at the voiced-level analysis (Vstd, Fig. 1). This result agrees
with the finding reported by Lieberman and Michaels, which
suggested that fluctuations in short-time segments are indeed
important emotional cues [9]. Notice that in the experiments 2.1
and 2.2 reported in Section V, Vstd is among the top-ten best
features (Figs. 5 and 6).

The results in Fig. 6 suggest that the curvature of the pitch
contour is affected during expressive speech. Although SVmax-
Curv and Vcurv were never selected as the first feature in the
FFS algorithm, they are among the most selected features for
the sentence- and voiced-level logistic regression experiments.
These results indicate that these features provide supplemen-
tary emotional information that can be used for classification
purposes. For other applications such as expressive speech syn-
thesis, changing the curvature may not significantly change the
emotional perception of the speech. This result agrees with the
finding reported by Bulut and Narayanan [14] (Section II).

The analysis also reveals that sentence-level features derived
from voiced segment statistics (Table III) are important. From
the top-five sentence-level features in Figs. 1, 5, and 6, six out
of twelve features correspond to global statistics derived from
voiced segments. This result suggests that variations between
voiced regions convey measurable emotional modulation.

Features derived from the pitch derivative are not as salient as
the features derived from the pitch itself. Also, SVmeanSlope,
which is related to the pitch global trend, is not found to be
an emotionally salient feature, as suggested by Wang et al. and
Paeschke [10], [12].

To build the neutral models for binary emotion recognition
(Section VII), a subset of the pitch features was selected. Instead
of finding the best features for that particular task, we decided
to pre-select the top-six sentence- and voiced-level features
based on results from experiments 1, 2.1 and 2.2 presented in
Sections IV and V (Figs. 1, 5, and 6). Some of the features
were removed from the group since they presented high levels
of correlation. The pitch features Sdiqr, Smedian, SQ75, SQ25,
Sdmedian, SVmeanRange, and SVmaxCurv were selected as
sentence-level features, and Vstd, Vdrange, Vdiqr, VQ75, Vme-
dian, Vmax, and Vcurv were selected as voiced-level features.
Table VI gives the correlation matrix between these features.
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TABLE VI
CORRELATION OF THE SELECTED PITCH FEATURES

Only a few pitch features present high levels of correlation.
These variables were not removed since our preliminary results
indicated that they improve the recognition accuracy.

VII. EMOTIONAL DISCRIMINATION RESULTS

USING NEUTRAL MODELS

In this section, neutral speech prosodic models are trained
for emotional speech discrimination. Aspects of this approach
were originally proposed to analyze the emotional modulation
observed in expressive speech [39]. In our recent study, we pro-
posed this framework to recognize expressive speech using the
acoustic likelihood scores obtained from hidden Markov models
(HMMs) [6]. The models were trained with neutral (non-emo-
tional) speech using spectral features. In this section, the ideas
are extended to build neutral models for the selected sentence-
and voiced-level pitch features (Table VI).

A. Motivation and Proposed Approach

Automatic emotion recognition in real-life applications is a
nontrivial problem due to the inherent inter-speaker variability
of expressive speech. Furthermore, the emotional descriptors
are not clearly established. The boundaries between emotional
categories are blurred [7] and do not account for different
degrees of emotional intensity [40]. Most of the current efforts
to address this problem have been limited to dealing with
emotional databases spanning a subset of emotional categories.
The feature selection and the models are trained for specific
databases with the risk of sparseness in the feature space and
over-fitting. It is also fairly difficult, if not infeasible, to collect
enough emotional speech data so that one can train robust and
universal acoustic models of individual emotions. Therefore,
it is not surprising that the models built with these individual
databases (usually offline) do not easily generalize to different
databases or online recognition tasks in which blending of
emotions is observed [26].

Instead of building emotional models, we propose the use of
robust acoustic neutral reference models to discriminate emo-
tional speech, under the assumption that expressive speech dif-
fers from neutral speech in the measurable feature space. One

Fig. 7. General framework of the proposed two-step approach to discriminate
neutral versus emotional speech. In the first step, the input speech is contrasted
with robust neutral references models. In the second step, the fitness measures
are used for binary emotional classification (details are given in Section VII-A).
In this paper, the neutral models are implemented with univariate GMMs (for
each F0 feature), and the classification is implemented with LDC.

advantage of this approach is that many more emotionally neu-
tral databases are available to build robust models. Since we are
addressing the problem of neutral versus emotional speech, this
approach does not depend on the emotional labels used to tag the
corpus. Furthermore, the framework inherently captures speaker
variability; for our experiments, the reference models are built
with the WSJ1 database (Section III-B), which was collected
from 50 speakers.

Fig. 7 describes the general framework of the proposed two-
step approach. In the first step, neutral models are built to mea-
sure the degree of similarity between the input speech and the
reference neutral speech. The output of this block is a fitness
measure of the input speech. In the second step, these measures
are used as features to infer whether the input speech is emo-
tional or neutral. If the features from the expressive speech differ
in any aspect from their neutral counterparts, the fitness measure
will decrease. Therefore, we hypothesize that setting thresholds
over these fitness measures is easier and more robust than set-
ting thresholds over the features themselves.

While the first step is independent of the emotional database,
the speakers, and the emotional categories, the second step de-
pends on these factors since the classifier needs to be trained
with emotional and neutral speech. To overcome this limitation,
the three emotional databases (EMA, EPSAT, and GES) were
combined to train a semi-corpus-independent classifier. Notice
that this binary recognition task is more challenging than the
logistic regression analysis presented in Section V, since the
emotional corpora are jointly used, and all the emotional cate-
gories (without neutral state) are grouped into a single category
(emotional).

The proposed two-step framework described in Fig. 7 is gen-
eral and can be implemented using different algorithms. For ex-
ample, in our previous work, we built neutral models (first step)
for spectral features using HMMs [6]. These models were de-
pendent on the underlying phonetic units of the spoken mes-
sage. Likewise, any linear or nonlinear machine learning tech-
nique can be used to classify the fitness measures (second step).
The proposed approach can be extended to other features such
as voice quality or even facial features (i.e., comparing neutral
faces with expressive faces).

As mentioned in Section III-A, the F0 contour is assumed to
be largely independent of the specific lexical content, in contrast
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to spectral speech features. Therefore, a single lexical-indepen-
dent model is adequate to model the selected pitch features. For
this task, we propose the use of univariate GMM for each pitch
feature

(11)

with

The maximum likelihood estimates of the parameters in the
GMM are computed using the expectation-maximization
(EM) algorithm. These parameters are estimated with the pitch
features derived from the WSJ1 corpus (reference neutral
database). For initialization, samples are selected at random
with uniform mixing proportions . The maximum number
of iteration was set to 200.

For a given input speech, the likelihoods of the models,
, are used as fitness measures. In the second

step, a Linear Discriminant Classifier (LDC) was implemented
to discriminate between neutral and expressive speech. While
more sophisticated non-linear classifiers may give better ac-
curacy, this linear classifier was preferred for the sake of
generalization.

B. Results

The recognition results presented in this section are the av-
erage values over 400 realizations. Since the emotional cate-
gories are grouped together, the number of emotional samples
is higher than the neutral samples. Therefore, in each of the
400 realizations, the emotional samples were randomly drawn to
match the number of neutral samples. Thus, for the experiments
presented here and in Section VII-C, the priors were equally set
for the neutral and emotional classes baseline . Then,
the selected samples were split in training and testing sets (70%
and 30%, respectively). Notice that the three emotional corpora
are considered together.

Given that some emotional categories are confused with neu-
tral speech in the pitch feature space (Section V), a subset of
emotional categories for each database was selected. The cri-
terion was based on the Nagalkerke -square score of the lo-
gistic regression presented in Table IV . This sec-
tion presents the results in terms of all emotional categories
(all emotions) and this subset of emotional categories (selected
emotions).

An important parameter of the GMM is the number of mix-
tures, . Fig. 8 shows the performance of the GMM-based pitch
neutral models for different numbers of mixtures. The figure
shows that the proposed approach is not sensitive to this param-
eter. For the rest of the experiments, was set to 2.

Table VII presents the performance of the proposed approach
for the sentence- and voiced-level features. When all the emo-
tional categories are used, the performance accuracy reaches
77.31% for the sentence-level features and 72% for the voiced-

Fig. 8. Accuracy of the proposed neutral model approach as a function of the
number of mixture components in the GMM. The results are not sensitive to this
variable. For the rest of the experiments � � � was selected.

TABLE VII
ACCURACY OF THE PROPOSED NEUTRAL MODEL APPROACH AS A

FUNCTION OF THE FEATURE TYPE AND EMOTION SET. THE ACCURACIES

OF THE CONVENTIONAL LDC CLASSIFIER (WITHOUT NEUTRAL MODELS)
FOR THE SAME TASK ARE ALSO PRESENTED

level features. These values increase approximately 5% when
only the selected emotional categories are considered. Notice
that only pitch features are used, so these values are notably high
compared to the baseline (50%).

For comparison, Table VII also presents the results for the
same task, using the pitch statistics as features without the neu-
tral models (without the first step in the proposed approach as
described in Fig. 9). This classifier, which is similar to the con-
ventional frameworks used to discriminate emotions, was also
implemented with LDC. The table shows that the proposed ap-
proach achieves better performance than the conventional ap-
proach in each of the four conditions (sentence/voiced level fea-
tures; all/selected emotional categories). A paired samples -test
was computed over the 400 realizations to measure whether
the differences between these two approaches are statistically
significant. The results indicate that the classifier trained with
the likelihood scores (proposed approach) is significantly better
than the one trained with the F0 features (using the conventional
approach) in each of the four conditions . In Sec-
tion VII-C, the neutral model approach is compared with the
conventional LDC classifier in terms of robustness.

In Table VIII, the results of the proposed approach are disag-
gregated in terms of databases (notice that three different emo-
tional databases are used for training and testing). An inter-
esting result is that the precision rate is in general high, which
means that there are not many neutral samples labeled as emo-
tional (false positive). For the sentence-level features, the ac-
curacy for the EPSAT database is slightly lower than for the
other databases (6%–11%). This result might be explained by
the short sentences used to record this corpus (Section III-B).
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Fig. 9. Conventional classification scheme for automatic emotion recognition.
Speech features are directly used as input of the classifier, instead of the fitness
measures estimated from the neutral reference models (Fig. 7). The classifier is
implemented with LDC.

TABLE VIII
PERFORMANCES OF THE PROPOSED NEUTRAL MODEL APPROACH FOR EACH

EMOTIONAL DATABASE (��� � Accuracy, ��� � Recall, ��� � Precision)

With few frames available to estimate the pitch statistics, the F0
features will have higher variability and will be less accurate.

Table IX provides further details about the recognition per-
formance of the proposed approach. In this table, the results
are disaggregated in terms of the emotional categories for each
database. The results are presented in terms of recall rate (ac-
curacy and precision values are given in Table VIII). In most
of the cases, the recall rate is equal to or better than the recall
rates reported in the logistic regression experiments (Tables IV
and V). Notice that this task is significantly harder than the task
presented in Section V, since the emotional categories and the
emotional database were jointly analyzed.

C. Robustness of the Neutral Model Approach

As mentioned before, using neutral models for emotional
recognition is hypothesized to be more robust and, therefore,
to generalize better than using a direct emotion classification
approach. To validate this claim, this section compares the
performance of the proposed approach (Fig. 7) with the con-
ventional classifier (without neutral models, Fig. 9) when there
is a mismatch between the training and testing conditions. For
this purpose, the emotional databases were separated by lan-
guages into two groups: English (EPSAT, EMA), and German
(GES). One of these groups was used for training, and the other
one for testing. The results for the two conditions are given in
Table X for the sentence-level features and Table XI for the
voiced-level features. Since the samples were randomly drawn
to have an equal number of emotional and neutral samples
(both in the training and testing sets), the baseline is 50%. The

TABLE IX
RECALL RATE OF THE PROPOSED NEUTRAL MODEL APPROACH

FOR EACH EMOTIONAL CATEGORY ���� � Recall�

recognition results reported here are also average values over
400 realizations.

For sentence-level F0 features, Table X shows that the neu-
tral model approach generalizes better than the conventional
scheme. In fact, the absolute accuracy improvement over the
conventional scheme is over 4%. Even though there is a mis-
match between the training and testing conditions, the perfor-
mance of the proposed approach does not decrease compared
to the case when the same corpora are used for training and
testing (no mismatch). For instance, Table VIII shows that the
accuracy of the GES database was 80.9% when there was not
a training/testing mismatch. Interestingly, Table X shows that
the performance for this database is still over 80% when only
the English databases are used for training. When the classi-
fier is trained with the German database, and tested with the
English databases, the performance is 75.1%. As mentioned in
Section VII-B, the EPSAT database presents the lowest perfor-
mance of the emotional databases considered in this paper (74%,
Table VIII). Since this corpus accounts for more than 85% of the
English samples (Table I), the lower accuracy observed for the
English databases is expected.

For the voiced-level F0 features, Table XI shows that the per-
formance of the proposed approach is similar to the performance
of the system without any mismatch (see Table VIII). The con-
ventional scheme presents similar performance.

Notice that the F0 features were selected from the analysis
presented in Sections IV and V. The EMA, EPSAT, and GES
databases were considered for the analysis. To assess whether
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TABLE X
VALIDATING THE ROBUSTNESS OF THE NEUTRAL MODEL APPROACH AGAINST MISMATCH BETWEEN TRAINING AND TESTING CONDITIONS.

SENTENCE-LEVEL FEATURES (��� � Accuracy, ��� � Recall, ��� � Precision)

TABLE XI
VALIDATING THE ROBUSTNESS OF THE NEUTRAL MODEL APPROACH AGAINST MISMATCH BETWEEN TRAINING AND TESTING CONDITIONS.

VOICED-LEVEL FEATURES (��� � Accuracy, ��� � Recall, ��� � Precision)

the emotional discrimination observed from these F0 features
transpires to other corpora, a fourth emotional database was
considered for the final experiments. For this purpose, the SES
database is used, which was recorded in Spanish (Section III-B).
Notice than the SES corpus contains the emotional category sur-
prise, which is not included in the training set.

For this experiment, the classifier of the neutral model ap-
proach was separately trained with the English (EPSAT, EMA),
German (GES), and English and German databases. Tables X
and XI present the results for the sentence- and voiced-level F0
features, respectively. The results indicate that the accuracy of
the proposed approach is over 78% for the sentence-level fea-
tures and 68% for the voiced level features. The performance is
similar to the ones achieved with the other emotional databases
considered in this paper. Interestingly, the performance of the
proposed approach is about 10%–18% (absolute) better than the
one obtained with the conventional scheme. These results sug-
gest that conventional approaches to automatically recognizing
emotions are sensitive to the feature selection process (the most
discriminant features from one database may not have the same
discriminative power in another corpus). However, the perfor-
mance of the proposed approach can be robust against this type
of variability.

In Section III-B, we hypothesized that neutral speech
prosodic models trained with English speech can be used
to detect emotional speech in another language. The results
presented in Tables X and XI support this hypothesis. As men-
tioned in Sections III-A, the fundamental frequency in language
such as German, English, and Spanish is largely independent
of the specific lexical content of the utterance. As a result,
the proposed neutral speech prosodic models present similar
performance regardless of the languages of the databases used
to train and test the classifier.

VIII. CONCLUSION

This paper presented an analysis of different expressive
pitch contour statistics with the goal of finding the emotionally
salient aspects of the F0 contour (pitch). For this purpose,
two experiments were proposed. In the first experiment, the
distribution of different pitch features was compared with the
distribution of the features derived from neutral speech using
the symmetric KLD. In the second experiment, the emotional
discriminative power of the pitch features was quantified within
a logistic regression framework. Both experiments indicate
that dynamic statistics such as mean, maximum, minimum,
and range of the pitch are the most salient aspects of expres-
sive pitch contour. The statistics were computed at sentence
and voiced region levels. The results indicate that the system
based on sentence-level features outperforms the one with
voiced-level statistics both in accuracy and robustness, which
facilitates a turn-by-turn processing in emotion detection.

The paper also proposed the use of neutral models to contrast
expressive speech. Based on the analysis of the pitch features, a
subset with the most emotionally salient features was selected.
A GMM for each of these features was trained using a refer-
ence neutral speech corpus (WSJ1). After contrasting the input
speech with neutral models, the likelihood scores were used for
classification. The approach was trained and tested with three
different emotional databases spanning different emotional cat-
egories, recording settings, speakers, and even languages (Eng-
lish and German). The recognition accuracy of the proposed ap-
proach was over 77% (baseline 50%) using only pitch-related
features. To validate the robustness of the approach, the system
was trained and tested with different databases recorded in three
different languages (English, German, and Spanish). Although
there was a mismatch between the training and testing condition,
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the performance of the proposed framework did not degrade. In
contrast, the performance of the conventional classifier without
the neutral models decreased up to 17.9% (absolute, Table X),
for the same task using the same F0 features. These results show
that this system is robust against different speakers, languages,
and emotional descriptors and can generalize better than stan-
dard emotional classifiers.

Results from our previous work indicated that emotional
modulation is not uniformly distributed, in time and in space,
across different communicative channels [37]. If this trend is
also observed in the fundamental frequency, certain regions in
the pitch contour might present stronger emotional modula-
tion, as discussed in Section V. We are planning to study this
problem by comparing neutral and emotional utterances spoken
with the same lexical content. With this approach, we would be
able to locally compare the F0 contours between emotional and
neutral speech under similar lexical constraints.

As mentioned in Section III-A, the proposed approach to de-
tect emotional speech can be used as a first step in a multiclass
emotion recognition system. In many domains, neutral speech is
more common than expressive speech (e.g., call centers). There-
fore, it is very useful to have a robust emotional speech detector
at the front end. Depending on the application, the emotional
speech can be postprocessed using emotion specific models. For
example, in call center applications, the emotional speech could
be further classified as positive or negative based on activation
specific models.

One drawback of the emotional databases used in this paper
is that they were collected from actors. In our future work, we
will include in the analysis natural emotional databases recorded
from real-life scenarios (e.g., the Vera am Mittag German audio-
visual emotional speech database [41]).

Another limitation of this framework is that speaker depen-
dent normalization is used to reduce speaker variability. In gen-
eral, neutral speech for each speaker may not be available. In
that scenario, at least gender normalization should be applied
[42]. Our ultimate goal is to design a framework to automat-
ically detect emotional speech regions from large amounts of
data in an unsupervised manner (e.g., call center data). There-
fore, we are currently working on extending the proposed ap-
proach by using speaker-independent normalization.

In terms of classification, we are planning to expand the
proposed approach to include features related to energy and du-
ration. Likewise, this neutral prosodic model can be combined
with the neutral spectral models presented in our previous work
[6]. By considering different emotionally salient aspects of
speech, we expect to improve the accuracy and robustness of
the proposed neutral model approach further.
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