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Abstract— We present an approach to wearable sensor-based
assessment of motor function in individuals post stroke. We
make use of one on-body inertial measurement unit (IMU) to
automate the functional ability (FA) scoring of the Wolf Motor
Function Test (WMFT). WMEFT is an assessment instrument
used to determine the functional motor capabilities of individ-
uals post stroke. It is comprised of 17 tasks, 15 of which are
rated according to performance time and quality of motion.
We present signal processing and machine learning tools to
estimate the WMFT FA scores of the 15 tasks using IMU data.
We treat this as a classification problem in multidimensional
feature space and use a supervised learning approach.

I. INTRODUCTION

Regaining functional ability after stroke is necessary for
continued independent living. In this context, accurate as-
sessment of motor function is needed in order to deter-
mine appropriate rehabilitative interventions and to document
outcomes of employed rehabilitation programs. Assessment
is based on the observations of the participants’ motor
behavior using standardized clinical rating scales and is labor
intensive, usually necessitating one-on-one interaction with
the therapist. However, the number of trained therapists is
being outpaced by the number of individuals who suffer from
stroke. Thus there is a large and increasing gap between the
rehabilitative interventions that are needed and the amount
being provided.

Furthermore, it has been noted that a substantial fraction
of stroke patients perform or try to perform assessment tasks
in the clinic better than they do at home [1]. Thus, laboratory
motor tests do not fully provide the needed assessment infor-
mation because of the disassociation between performance in
the clinic/laboratory and in the home.

Thus, there is a need for an in-home upper extremity motor
functionality assessment system that does not require the
presence of a physical therapist during testing.

The above provides the motivation for the automated tool
we have developed to augment long term monitoring and
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assessment of post-stroke individuals’ functional ability in
the home. In this paper, we present a methodology for esti-
mating the functional ability score for 15 of the Wolf Motor
Function Test tasks using on-body inertial measurement unit
data. We compare the estimated scores with those assigned
by the physical therapist for one post-stroke participant.

This study builds on our previous work [4] to validate
our hypothesis that the timing and functional scores can be
accurately obtained in real world settings.

II. STANDARDIZED TOOLS FOR MOTOR
FUNCTIONALITY ASSESSMENT

To evaluate upper extremity (UE) motor capabilities in
stroke patients and set a proper rehabilitation exercise regi-
men, a number of direct-observation standardized functional
assessment instruments have been devised. Some of the
standard assessment tools, such as the Action Research Arm
Test, Chedokee McMaster (CM), Fugl Meyer Assessment
(FMA), Frenchay Arm Test, Jebsen Taylor Test, TEMPA
assessment, and Wolf Motor Function Test (WMFT), have
been discussed in [11]. The WMFT is preferable to the
commonly used UE performance tests because it covers a
wide range of functional tasks (i.e., from simple to complex,
from proximal to distal) and explores performance time,
quality of movement, and strength [2]. Although specific
equipment is needed for test administration, most of the items
used in conducting the WFMT are commonly available and
inexpensive. This, combined with its reliability, consistency,
and validity, makes the WMFT valuable for research pur-
poses [3].

III. WOLF MOTOR FUNCTION TEST

The Wolf Motor Function Test is an assessment performed
under the supervision of a physical therapist [2], [3]. It
requires the participant to perform 17 tasks (Table III),
15 of which are rated on the basis of performance time
and a functional ability (FA) scale for quality of motion;
the remaining two tasks are strength-based. The WMFT
quantifies upper extremity movement ability through these
functional tasks. The WMFT is conducted in a standardized
setting (Figures 1, 2); this includes a table, camera positions,
and a template (taped on the table surface) which specifies
the location of objects and start and end points for each task.
The WMFT starts with simple items such as placing the
hand on a table top and swiping the hand, and progresses to
more challenging fine motor tasks such as stacking checkers,
picking up paper clips, and folding a towel. Each task starts
when the physical therapist says “Go” and ends when the
participant has met the required conditions for the completion



of the task (e.g. checkers are stack, or the thumb has passed
a specific line on the template). A physical therapist rates the
performance for each task on a scale of 0—5. The guidelines
for FA scoring are shown in Table I .

TABLE I: Functional Ability Scale

Score || Description
0 Does not attempt with involved arm.
1 Involved arm does not participate functionally;

however, an attempt is made to use the arm. In
unilateral tasks the uninvolved extremity may be
used to move the involved extremity.

2 Arm does participate, but requires assistance of
uninvolved extremity for minor readjustments or
change of position, or requires more then two
attempts to complete, or accomplishes very slowly.
In bilateral tasks the involved extremity may

serve only as a helper or stabilizer.

3 Arm does participate, but movement is influenced
to some degree by synergy or is performed slowly
and/or with effort.

4 Arm does participate; movement is close to normal*,
but slightly slower; may lack precision, fine
coordination or fluidity.

5 Arm participates; movement appears to be normal.*

* For the determination of normal, the uninvolved limb can be used as an
available index for comparison, with premorbid limb dominance taken into
consideration [2].

Fig. 1: Standardized WMFT setup, showing the camera
positions, the testing table, and the template.

Automated administration of the WMFT tasks requires 1)
automation of the time score and 2) automation of the FA
score. In our previous study, we presented the sensor modali-
ties and framework for automating the timing [4]. This paper
builds on that previous work and presents signal processing
and machine learning tools to quantitatively estimate the FA
scores for functional tasks from wearable IMU data.

IV. PREVIOUS WORK

Researchers have investigated the automation of functional
assessments and home-based healthcare analysis. Hester et
al. and Knorr et al. explored the estimation of the WMFT FA
score with statistical tools using wearable sensor modalities
[5] [6]. Hester et al. correlated accelerometer data from the
trunk and arms to FMA, CM, and WMFT scores using linear
regression techniques. Knorr et al. used statistical features
and regression analysis to estimate the FA score for 2 of
the WMFT tasks from accelerometer data. However, use of

Fig. 2: Standard WMFT template and the participant with
the wearable IMU (highlighted).

gyroscope (angular rate sensor) for post-stroke functional
motion assessment has not been studied extensively. In this
work, along with the accelerometer we utilize a gyroscope
to estimate the functional scores of the 15 WMFT tasks.

An alternative approach to stroke assessment and rehabil-
itation involves robotic devices and exoskeletons. Examples
of such technologies are presented in [7]. These devices
measure force and torque (F/T) applied by the user and the
resulting motion profiles while performing functional tasks.
The F/T data is generally used to quantify the required
amount of assistance, motion smoothness, and movement
synergy in participants’ motion. These methods have been
primarily used for augmenting the rehabilitation process but
can also be extended to assessment, as has been shown in
the works by Krebs et al. [8]. Finally, Van Dijck et al.
used posterior probability based models for estimating FMA
scores by analysing the F/T profile [9].

Though the robotic systems have the capability to provide
very accurate motion profiles and assessment results, the
issues of cost, safety, and calibration of the setup make them
unsuitable for in-home settings. We chose inertial sensing
technology because it is inexpensive, robust, and can be
easily integrated into preexisting functional environments
like homes and workplaces.

V. HARDWARE

In our experimental setup, the participant wears one sensor
on the wrist. The wearable sensor used in this study is an
inertial measurement unit (IMU) developed in the Interaction
Lab at the University of Southern California [10]. This device
has been validated in previous studies with stroke survivors
as well as with healthy users [4] [10]. The IMU contains a
triaxial accelerometer, three single-axis rate gyros, and one
single- and one dual-axis magnetometer.

We employ the Gumstix-Wifitix stack as the wearable cen-
tral controller. Gumstix is a small and powerful Linux based
computer which hosts a number of on-board hardware in-
terfaces (http://www.gumstix.org). It supports common data
transfer protocols and is capable of wireless communication
over the local network using wifistix.

We use the Player/Stage robotics development software
suite (http://www.playerstage.sourceforge.net). Player is an



open source software suite that allows for the control and
coordination of multiple devices using a server/client archi-
tecture. The gumstix connects to the IMU using the I*C
interface and streams the sampled IMU data at an average
rate of 20 samples per second. The data is then transferred
over the player interface from gumstix to the host machine
for processing and analysis.

VI. EXPERIMENTS AND DATA ANALYSIS

For our FA scoring experiments, a trained clinician ad-
ministered the WMFT with one post-stroke participant. This
step was followed by data analysis and FA score estimation.
Written informed consent was obtained from the participant
before the start of the experiment. During these trials the
participant wore the IMU on the arm on which the test was
being administered. These trials were also video recorded,
as shown in Figure 1. The purpose of the recordings is for
post-experiment analysis of the performance of motor tasks
by the therapist to assign the FA scores. The therapist was
blinded to the IMU data processing and score estimation.

The first step in data analysis involved preprocessing the
data stream by passing it through a low pass filter with cutoff
frequency of 20 Hz and through a high pass filter with a
cutoff frequency of 0.3 Hz. The low pass filter removed the
high frequency noise, while the high pass filter removed the
very low frequency device drift.

We approached the estimation of WMFT FA scores
from the IMU data as a classification problem in multi-
dimensional feature space. We extracted a number of statis-
tical features, mentioned in Table II, from the filtered IMU
data and used them in conjunction with a naive Bayes classi-
fier for estimation. Naive Bayes classification is a simple and
well-known method for classification. Given a feature vector
f, the class variable C' is given by the maximum aposteriori
(MAP) decision rule as

k
c(f)= argmaxc{p(C) Hp(fl|C)} (D

i=1

Here p(C') is the class prior; p(f;|C) are the class conditional
densities (conditional distribution over class variable C'); and
each member of the set C' represents one of the 6 possible
FA scores (Table I). The statistical features extracted from
different axes of the IMU data were fed into the classifier,
which estimated the most probable FA score class to which
the motion profile belongs. The features were manually
selected from a list of probable candidates by conducting
extensive trials with the collected data. For training, we used
IMU data from 5 tasks which were randomly picked (shown
in Table III); the classifier estimated the scores for the 15
WMEFT tasks.

In standard WMFT FA scoring, the unaffected arm gets
a full score of 5 for all tasks. For rating the affected arm,
corresponding affected arm gestures are compared with those
of the unaffected arm. To take this into account, we normal-
ized all feature values computed from affected arm data by
dividing them with the corresponding values computed from

TABLE II: List of features used for estimation of FA scores

Features for classification

Kurtosis, Skewness, Mean, Variance
Approximate Entropy, RMS of jerk, Power in 1.5 — 3 Hz band,
Power in 5 — 8 Hz band, Time taken to perform the task

FAS

unaffected arm. These normalized feature values were then
used for classification.

We also performed power spectrum analysis on the IMU
data from the affected and unaffected arms. The results are
presented in the next section.

VII. RESULTS AND DISCUSSION

The spectral analysis yielded some interesting observa-
tions. Figure 3 shows power spectral density (PSD) plots
for the affected and unaffected arms. It is evident from the
plot that both arms have major components in the frequency
band centered at 2 Hz, which corresponds to the intended
gesture motion. The difference between the two is evident at
higher frequencies. The affected arm has more information
content at higher frequencies as compared to the unaffected
arm, which corresponds to the involuntary motion (tremor,
jerk, etc.). We used average power content in the 2 Hz and 7
Hz bands as two of the features used in classification. Here,
it should be noted that this PSD plot (Figure 3) is for one
subject. We believe that the spectral density can also be a
function of individual’s motor capabilities. Hence the power
content in different frequency bands might vary depending
on the functional ability of the stroke patient.

Power spectrum
T

= Unaffected arm
= Affected arm

\—— Unaffected Arm

1 2 3 4 7 8 Ll 10

5 6
Frequency (Hz)

Fig. 3: PSD plot of affected and unaffected arm data

Figures 4 and 5 are two cluster plots showing the clas-
sification between affected and unaffected arm. The points
in the cluster plots represent individual WMFT tasks. The
classification is performed by the trained naive Bayes classi-
fier using the features listed in Table II. These cluster plots
are showing classification in 2 and 3 dimensional feature
space respectively. The FA score estimation is performed in a
similar way by classifying the IMU data in multidimensional
feature space.

In Table III, we compare the functional scores assigned
by the therapist with those estimated from the IMU data
for each of the 15 tasks. The FA scores as rated by the
therapist are labeled F' ASiperapist and the estimated scores
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Fig. 4: Classification between affected and unaffected arm

O affected
X unaffected

0.6
0.5~
>
0.4~
§ ; o
S 03— o}
g © 00
2 o02-
£
I ;
5 o1 o o
g ;
< 07 o
017 : 7 2000
0.2 S _ 1000
12000 10000 8000 6000 4000 2000 ° 0 PoweroiAccy

Variance of Acc

Fig. 5: Classification between affected and unaffected arm

from IMU data are labeled F'AS,q,, respectively. It can
be noted from Table III that the automated system is able
to compute the FA score to a good level of accuracy. The
distribution of error between F'AS:perapist and F'ASq,:, has
mean = 0.0667; variance = 0.2095; and RMS value = 0.4472.
This result strengthens our hypothesis that our automated
system can perform accurate motor functionality assessment
in a considerably short amount of time without involving a
therapist.

The purpose of normalization of the feature values (before
using them for classification) is to develop and train a generic
classifier which is user independent. But this hypothesis of a
generic estimation system must be validated across a larger
stroke population and its performance compared with a user-
specific classifier.

VIII. CONCLUSION

We have described a technique for automating the FA
scoring of WMFT tasks. We have completed a feasibility
study with one post-stroke participant and presented our
sensor modality and the data processing techniques used in
this framework. Our long term goal is to be able to auto-
matically 1) quantify long term motor functionality changes
in real world settings and 2) evaluate the rehabilitation
methodologies. Towards that end, the reliability and validity
of the described approach and system must be evaluated
across a sufficiently large stroke participant population.

TABLE III: FAS of the affected arm as measured by the
physical therapist and automated system

Task FAStheT‘apist FASauto
1. Forearm to table (side)f 4 4
2. Forearm to box (side) 3 3
3. Extend Elbow (side) 4 3
4. Extend Elbow,weight (side) | 3 3
5. Hand to table (front) 4 4
6. Hand to box (front)f 4 4
7. Weight to box* - -
8. Reach and retrieve 3 3
9. Lift can 4 4
10. Lift pencilf 4 4
11. Lift paper clip 3 4
12. Stack checkerst 4 4
13. Flipping Cards 3 3
14. Grip strength* - -
15. Turn key in lockt 4 4
16. Fold towel 4 4
17. Lift basket 4 4

*Tasks 7 and 14 are not scored.
tTasks used for training the classifier.

IX. ACKNOWLEDGMENTS

The authors gratefully acknowledge the contribution of
Shuya Chen in conducting the WMFT experiments.

REFERENCES

[1] Andrews K, Stewart J. Stroke recovery: he can but does he? Rheuma-
tology Rehabil. 18:4348, 1979.

[2] Steven L. Wolf, Pamela A. Catlin, Michael Ellis, Audrey Link Archer,
Bryn Morgan, and Aimee Piacentino. Assessing Wolf Motor Function
Test as Outcome Measure for Research in Patients After Stroke.
Stroke, 32(7):1635-1639, 2001.

[3] David M. Morris, Gitendra Uswatte, Jean E. Crago, Edwin W. Cook,
and Edward Taub. The reliability of the wolf motor function test for
assessing upper extremity function after stroke. Archives of Physical
Medicine and Rehabilitation, 82(6):750-755, 2001.

[4] Eric Wade, Avinash Rao Parnandi, and Maja J Mataric, Automated
administration of the Wolf Motor Function Test for post-stroke
assessment. 4th International Conference on Pervasive Computing
Technologies for Healthcare (PervasiveHealth), pages 1-7, 22-25, 2010

[5]1 T. Hester, R. Hughes, D.M. Sherrill, B. Knorr, M. Akay, J. Stein, and P.
Bonato. Using wearable sensors to measure motor abilities following
stroke. Proceedings of the International Workshop on Wearable and
Implantable Body Sensor Networks (BSN’06), pages 5-8, April 03-
05, 2006.

[6] Bethany Knorr, Richard Hughes, Delsey Sherrill, Joel Stein, Metin
Akay, and Paolo Bonato. Quantitative measures of functional upper
limb movement in persons after stroke. volume 2005, pages 252-255,
2005.

[7]1 Avinash Parnandi, ”A Framework for Automated Administration of
Post Stroke Assessment Test”. Master’s Thesis. Department of Elec-
trical Engineering, University of Southern California, May 2010.

[8] H.IL Krebs, J.J. Palazzolo, L. Dipietro, M. Ferraro, J. Krol, K. Rannek-
leiv, B.T. Volpe, and N. Hogan. Rehabilitation robotics: Performance-
based progressive robot-assisted therapy. Autonomous Robots, 15(1),
pages 7-20, 2003.

[91 Gert Van Dijck, Jo Van Vaerenbergh, and Marc M. Van Hulle. Posterior
probability profiles for the automated assessment of the recovery
of stroke patients. In AAAI-07: Proceedings of the 22nd national
conference on Artificial intelligence, pages 347-353, 2007.

[10] Eric Wade and Maja J. Mataric. Design and testing of lightweight
inexpensive motion capture devices with application to clinical gait
analysis. In Proceedings of the International Conference on Pervasive
Computing, pages 1-7, Aug 2009.

[11] JH. Ang and D.W. Man, The discriminative power of the Wolf motor
function test in assessing upper extremity functions in persons with
stroke, Int J Rehabil Res 29 (2006), pp. 357361.



