LUDOCORE: A Logical Game Engine for Modeling Videogames

Adam M. Smith, Mark J. Nelson, and Michael Mateas

Abstract— LUDOCORE is a logical “game engine”, linking
game rules as reasoned about by game designers to the formal
logic used by automated reasoning tools in AL. A key challenge
in designing this bridge is engineering a concise, safe, and
flexible representation that is compatible with the semantics of
the games that logical models created with our engine intend
to represent.

Building on the event calculus, a formalism for reasoning
about state and events over time, and a set of common structures
and idioms used in modeling games, we present a tool that is
capable of generating gameplay traces that illustrate the game’s
dynamic behavior. It supports incremental modeling of player
and non-player entities in the game world, modification of
game rules without extensive non-local changes, and exploratory
temporal and structural queries. In addition, its logical models
can support play as real-time, graphical games with minimal
user-interface description.

I. INTRODUCTION

While the term videogame brings to mind graphics,
sounds, and story worlds, at the core of every game is
a formal rule system. We are interested in declaratively
modeling these games so that the emergent properties of
their rule systems can be understood. The tools of logicist
Al hold promise for bringing such properties to light, but
have not been used for design or analysis of videogames,
in part because of a mismatch between how designers think
of their rule systems and the way logical specifications are
usually written. We propose the use of a logical “game
engine” to ease and accelerate the modeling of game worlds
in formal logic. Our engine, LUDOCORE, provides a set
of primitives and abstractions that link game-level concepts
to the first-order logic understood by Al reasoning tools.
Specifically, our engine supports automatically generating
gameplay traces, integrated player modeling, and both tem-
poral and structural queries. Finally, games modeled in
LUDOCORE can be directly read in, without compilation or
translation, to a custom, prototyping-focused game engine
(described in more detail elsewhere [1]), allowing them to
be played as real-time, graphical games (an example, using
visual elements styled after those used in paper prototyping,
is shown in Figure 1).

An existing way to represent purely abstract games in
logic is GDL, the game description language [2]. GDL
was designed to specify games for the general gameplay-
ing competition [3], in which computers competitively play
unfamiliar, turn-based games. Thus, the language itself was
designed primarily to write infrequently-edited specifications
to be read and understood by computer players as state-
transition systems. In contrast, when modeling videogames,

The authors are with the Expressive Intelligence Studio at the
University of California, Santa Cruz (email: amsmith@soe.ucsc.edu,
mnelson@cc.gatech.edu, michaelm@soe.ucsc.edu).

(<) BIPED - Human-Playable Prototype o

’ua.
.‘

Fig. 1. Example of a playable version of a game specified in LUDOCORE,
within a game engine based on paper-prototyping-style graphical elements.
An automatically generated gameplay trace for this game is shown in
Figure 3.

designers are much more concerned with the ease with which
they can incrementally build up a game’s rule system through
a series of experimental tweaks [4, p. 14]. LUDOCORE
supports this kind of modeling, at least for technically savvy
designer-programmers.

Our iterative-design motivation also contrasts with the
goals of formal verification. While verification attempts to
prove that a set of desired properties hold, it is not clear
during a game’s prototyping phase which properties are even
desirable. In fact, coming to understand what properties a
game has, and which ones would be desirable, is the main
challenge.

Our bridge from games to formal logic is based on the
event calculus, a logical formalism commonly associated
with commonsense reasoning. In previous research [5], we
proposed that the event calculus is an attractive basis on
which to build informative, queryable prototypes. Since then,
in building games with the event calculus, we encountered
various design patterns and idioms, common to all games; it
is this experience which prompted the design of LUDOCORE.

II. BUILDING GAMES ON THE EVENT CALCULUS

Standard game-design texts discuss a game’s mechanics
in terms of objects with dynamic properties (the state of the
game), and triggered behaviors (events and conditional state
updates) [6, p. 295] [4, p. 112]. While state and events can
be modeled with several formalisms, or even ad-hoc logical
encodings, a common challenge is the well known frame

problem, commonly solved by adding frame axioms. In a
language like GDL, frame axioms explicitly declare when
state doesn’t change from turn to turn. An alternate proposed
solution is based on the commonsense law of inertia [7],
which reads that states retain their values until an event
changes them. This mirrors the usual game-programming
assumption that variables stay set to the same value until
changed by an active behavior.

Given our desire to model state and events, and avoid
frame axioms that are tedious to maintain, the event cal-
culus (EC) is a natural choice. Additionally, there is a
large body of literature discussing the use of EC as a
practical knowledge representation, e.g. Mueller’s book [8]
on applying it to commonsense reasoning problems involving
interaction of objects over time, for which inertial state is the
common case.

The discrete event calculus [9] is based on fluents (pred-
icates whose truth values vary over time) and events,
which happen at particular integer-valued timepoints and
can change the truth values of fluents. Its key predi-
cates are: happens(E,T), which says that an event hap-
pens at a timepoint; holds_at(F,T), which says that a
fluent is true at a timepoint; and initiates(E, F,T) and
terminates(E, F,T), which map event occurrences to
changes in fluent truth values. In addition to state that does
not change without cause (inertial fluents), the circumscrip-
tion used in the event calculus implies that events have no
effects besides those that can be derived. Together, these two
kinds of default reasoning give the event calculus elaboration
tolerance [10], the ability to modify a knowledge repre-
sentation without re-engineering it, because new assertions
override defaults.

To realize EC in a computational setting, we use answer-
set programming (ASP), an approach proposed in unpub-
lished notes accompanying Mueller’s book [8],"' which Kim
et al. [11] proved preserves the expected EC semantics.
Answer sets are sets of literals that represent acceptable
beliefs in an abstract world [12]. When applied to programs
in the discrete event calculus, these answer sets amount to
assertions about what was true and what happened at each
timepoint. Further, for games modeled in EC, the narrative of
events amounts to what we call a gameplay trace. While there
are more direct ways to extract a single trace from a game,
ASP does not forward-simulate a game, but rather reasons
abstractly about the space of possible executions, which is
far more flexible.

The combination of EC+ASP is an interesting tool for
game-related Al because ASP provides fast inference to
models of a game’s execution, and EC is a solid knowledge
representation for abstract worlds. Together they facilitate
generating traces from concise declarative descriptions. This
trace inference is in fact more expressive than forward-search
based methods such as Monte Carlo rollouts; for example,
it can definitively prove certain properties of a game, rather
than simply showing that they are unlikely.

'http://decreasoner.sourceforge.net/csr/ecas/

III. THE LOGICAL GAME ENGINE

There some drawbacks to modeling games directly in
EC+ASP. In particular, nearly all of the 7' variables are
superfluous because, outside of the event calculus axioms,
the logical rules of a game tend to refer only to the current
time. Secondly, crafting more complex games directly in the
event calculus formalism leads to duplication of common
preconditions for an event in each of its initiates/terminates
clauses. This duplication creates a maintenance challenge for
the game’s author, who might want to make simple changes
to the conditions for a particular event. Finally, expressing
the fact that some set of game events conflict with each other,
despite being independently possible, requires mapping a
complex idiom (of threading special conditions through most
game logic) over each new game design. Mutually conflicting
events are a common occurrence even in simple turn-based
games, but describing this constraint directly is, in our
experience, error-prone. These annoyances are resolved in
our engine while retaining the advantages of EC+ASP.

Programming computer games is an immensely difficult
task, and only through the continued application of software
engineering practices has a sequence of increasingly power-
ful game engines made possible the rich games we expect
today [13]. Game engines attempt to provide standard solu-
tions for game programming problems without prescribing
particular rules or setting for a game. These solutions are
exposed by a set of APIs that games can be programmed
against. Some engines, such as Torque’? and Unreal,® go so
far as to provide custom programming languages to ease
the integration of a game’s specification with the engine’s
services. LUDOCORE is modeled after this richer variant of
game engines: it provides not only APIs that encapsulate
solutions to difficult logical modeling problems (such as con-
flicting events) but effectively provides a new language that is
tailored to the application of specifying logical game worlds.
Games produced with our engine are not only smaller than
their equivalent specification using only the event calculus,
but also easier to maintain throughout meaningful design
changes, and easier for the game’s author (or even automated
tools) to analyze.

Our game engine is essentially a background theory for
logical game descriptions. In the rest of this section we
will describe the logical predicates of our game engine and
how individual games can leverage them. Figure 2 gives an
overview of how our engine builds on the event calculus,
and in turn supports modeling games on top of it. The event
calculus axioms provide the base semantics for discussing
state and events over time. Our engine adds higher-level
abstractions for modeling games than the raw event calculus
primitives do (discussed below).

To produce a completely specified logical game that admits
automatic gameplay trace generation, the author adds a
particular game’s rules: the specific state and events that
make up the game, the consequences of events happening

thtp://www.torquepowered.com
3http://www.unrealtechnology.com

e

0
o
3
=g
[}
x
=
~
[

el
D
[a]
=3
Q
=4
<
o
>
0
wn
C
3

el
o
o
>
9]

e

Game Rules

State
Events
Consequences

Game Engine

World Configuration

Nature Model

a
O Event Calculus

Fig. 2. Block diagram illustrating how the logical theories involved in a
complete application of LUDOCORE fit together to form a logic program: (a)
provides a temporal logic basis; (b) expands the temporal logic to include
videogame-level concepts; (c) is a complete specification of a particular
game; (d) provides a model of a certain class of players playing this game;
and (e) represents a focused view of particular situations that could arise in
this player’s play.

in the game world, the configuration of entities within the
game world (e.g. level layouts), and a model of when
things take place in the game world without the player’s
intervention (caused by “nature”). While this fully specifies
a game world, a player model additionally adds assumptions
about what kinds of actions a player can take, in which
combinations—either due to actual restrictions (e.g. if the
author has in mind an input mapping* that would make
certain actions impossible to perform simultaneously), or due
to a desire to investigate certain kinds of player behavior.
Finally, speculative assumptions can be added that restrict
the generated traces to certain kinds of situations that the
author wants to investigate.

A. State, events, and consequences

Since state and events are natural elements of a game’s
definition, we expose the event calculus’s fluents and events
in our game engine with the predicates game_state and
game_event, respectively. A game state assertion in LUDO-
CORE looks like this:

game_state(at(A, R)) < agent(A), room(R).

This assertion reads that at is conceptually a table that
records the relation between agents and rooms (answering,
“is agent A in room R?”). Elements of this table stay set

4We discuss elsewhere [14] why, when modeling games, input mappings
make sense to model separately from the mechanics that define a gameworld.

until changed otherwise, a property inherited from the event
calculus’s commonsense law of inertia.

For state that should be updated dynamically as a function
of other state, we provide the state_helper mechanism,
which provides a computed view on inertial state. State
helpers are, semantically, event-calculus fluents with inertia
disabled, which cannot be directly initiated or terminated.
This stratification into primary and derived fluents that we
enforce syntactically is one safe idiom for avoiding the
ramification problem in the event calculus [15].

The state_helper assertion below provides a convenient
view on the at state for checking when a particular agent is
at their starting location (starts_in) without having to name
that location. This example also illustrates how rules can
be conditioned on the current game state using the holds
predicate. This state helper rule implies that home is a
dynamic (time-varying) property of the game world:

state_helper(home(A)) +
holds(at(A, R)), starts_in(A, R).

Game-event declarations are relatively straightforward.
The assertion below describes the event of an agent perform-
ing a healing action:

game_event(heals(A)) + agent(A).

However, game events can have significantly more struc-
ture in LUDOCORE than in the event calculus alone. For
example, the conditions under which a game event is possible
(e.g., the legality of moves in a board game) are specified
using the possible predicate. In this example, agents may
only heal in their starting room:

possible(heals(A)) < home(A).

Possibility assertions are used not only for defining the
rules of the game, but also to control event selection when
generating gameplay traces. Importantly, possibility is deeply
intertwined with the event conflict mechanism. An assertion
like the one below can keep two otherwise possible events
from happening together:

conflicts(heals(A), moves(A, R)).

By providing possible and pairwise con flicts conditions
for game events in a game model, the required event-
selection logic can be implemented and debugged once in
the game engine, instead of by each game author. By default,
actions that are not marked to conflict are safe to co-occur
(whereas GDL enforces exactly one player action per turn,
which is unsuitable for modeling general videogames).

Game events can be tagged by the game’s author with
whether they are direct player actions or spontaneous actions
that can only be caused by a non-player entity, thought
of as “nature” or “the game master”. The player_event
and nature_event predicates signify this tagging. Although
these annotations do not correspond to what we normally
think of as game rules, they play an important role in

scoping the applicability of player-modeling rules, described
with the player_asserts and player_forbids predicates (and
corresponding nature predicates), discussed later.

Linking game state to game events, the initiates and
terminates predicates from the event calculus are exposed
to game authors with minimal change. The only modification
our engine uses is that these predicates are defined in a time-
invariant fashion, always referring to the current game state.
The example below asserts that the moves event causes an
update to the at game state, and that the hits event causes
the target of the hit to no longer be alive, under certain
conditions:

initiates(moves(A, R), at(A, R)).
terminates(hits(Ay, As), alive(As))
holds(armed(A1)), not holds(armed(Az)).

Finally, the initial state of the game world is given by,
simply enough, the initially predicate, which is often con-
ditioned on world configuration. Even in the examples above,
we have suggested the existence of room and starts_in
predicates as background knowledge used to control our
state-and-event logic. Many predicates of this kind can be
thought of as specifying a static world configuration: time-
invariant facts about the game world, such as level geometry,
item properties, and tables of weapon effects.

B. Player model interface

In addition to tagging the subset of game events that are
player actions with player_event, we build an additional
interface for specifying models for players’ behavior.

Simply allowing a certain set of events to be considered
by the player, by tagging them as player events, does not
immediately yield an expressive modeling interface. The
player_asserts and player_forbids predicates can be used
to express stronger preferences that an action be taken or
should never be taken under any circumstances (forbids
beats asserts in our engine). The example below illustrates
these assertions in the context of a hypothetical game in
which picking up objects is a player action:

player_asserts(pickup(0)) + kind(O, gold).
player_forbids(pickup(O1)) <
kind(0O1, K), holds(carrying(Oz2)), kind(O2, K).

This model describes a player who never misses a chance
to pick up a gold object, but never picks up duplicates (even
of gold objects).

The combination of such assertions allows for the speci-
fication of a complex, nondeterministic player action policy
that automatically respects the game’s mechanics. The de-
fault player model is maximally permissive (it reads that the
player considers all player events) which allows meaningful
play traces to be extracted from games even when no
effort has been put into player modeling. Every clause of
player_forbids or player_asserts serves to pare down the
space of gameplay traces to those that are more reasonable
to expect, given the provided knowledge.

Identical in structure to the player modeling interface, we
provide nature_asserts and nature_forbids predicates to
operate on the events marked with nature_event. Whether
the nature model is used to model an opponent, a game
master, a collection of non-player characters, or even used at
all, is largely a game author’s choice. Many of the rules that
end up in a nature model could be pushed into the game’s
core rules, resulting in an equivalent logical model. Leaving
certain elements of the game in the realm of the nature model,
however, makes it easy to experiment with modification to
these policies without modifying the accepted base rules.
Having such flexibility is crucial when modeling videogames
with a live world, full of enemies, moving platforms, and
other active, non-player entities.

C. Relation to the general event calculus

In comparison to the general event calculus, we disallow
holds and happens from ever being used at the head of a
rule. In event-calculus terms, that means we disallow state
constraints and triggers.

In general, state constraints are not game mechanics. For
example, the state constraint that the hero is never at the
bottom of a pit while alive might be true of a bit of design,
but it is not itself a game rule. There may be rules that
produce this state constraint: for example, saying that the
hero dies when he hits the bottom of pits (a terminates
clause); and so would a rule that prevented the hero from
ever falling off ledges into pits (a possible clause). The result
is that every state is either only changed by initiates and
terminates, or is known to be completely passive, in the
case of state helpers. Disallowing general state constraints
ensures that games have well-defined, consistent, procedural
meanings (which is required for them to be human-playable).

By disallowing a game’s author from directly specifying
when an event happens, we can ensure that our engine
has complete control over event management, allowing us
to implement possible, con flicts, and the player and nature
models. The logic required to implement the required seman-
tics of these predicates is highly circular and counterintuitive.
Since such a mechanism is required for almost any interesting
videogame model, by implementing it once and for all in
LUDOCORE, a game author doesn’t have to create an ad-hoc
reimplementation of similar constructs for each game they
model.

While we disable rules with happens at the head, our
engine permits a conceptual equivalent to the use of trig-
gers (rules that specify that an event happens whenever a
particular combination of state holds) through the nature
model. For example, to model a triggered collision event, the
nature model could include a line that says nature_asserts
the collision event between two objects if their position is
identical.

In summary, our engine provides a modified view of
the event calculus that is designed to make game-level
assertions easy to express while minimizing the possibility
of a game author (modeler) accidentally introducing purely
logical bugs such as deductive loops and contradictions. This

lets designers focus on whether their set of game rules is
an interesting game, and how it functions, as opposed to
spending much time worrying about whether their set of
logical assertions specifies a game at all. It should be clear
from Figure 2 that a complete, inspectable model of play
includes much more than just the event calculus.

IV. LUDOCORE IN ACTION

Having defined the major ideas in our game engine, we
now use it to generate interesting gameplay traces, and to
perform incremental rule modification, world configuration
changes, and player modeling.

A. Gameplay Trace Inference

The simplest use of our engine is to simply generate any
gameplay trace compatible with a game’s definition. One
of the difficulties for game designers is understanding the
potential consequences of rule interactions. When initially
crafting game models, these unconstrained traces provide
quick access to possible interactions within the game, quickly
revealing undesirable behaviors resulting from game-design
bugs. The output of our tools provides not only a log of
game events, but the complete game state at all times, to
ease diagnosis.

Figure 3 shows an automatically generated event trace
from the LUDOCORE model of a popular online game,
Motherload,” in which a mining robot recovers ore and
treasures from a network of caverns without running out
of fuel (our playable model of the game is illustrated in
Figure 1). In this case, we show both player-action events,
such as mine(al) (the player’s robot mined the rock named
al, which removed it from the world and added it to the
robot’s inventory), and natural events, such as drain (the
robot’s energy drains by one unit). The player here mines a
single rock reachable from the starting location, and trades it
in and refuels. Then, he embarks on a longer mining journey,
mining a few rocks and moving downwards into the ground,
before finishing with some fairly aimless wandering up and
down. The values of each piece of game state at each time
step can also be viewed, but we focus here on just the event
trace.

While Figure 3 shows a random trace with no constraints,
the most common use of LUDOCORE is combining a game
with a set of hypothetical or speculative assumptions (SAs).
SAs are commonly used to assert that certain events do
happen or never happen, or that a certain condition is met by
a certain timepoint (e.g., victory within 20 turns). This helps
explore the space in a much more focused way than simply
looking at random gameplay traces; for example, while the
random wandering up and down in Figure 3 is a common
feature of random traces, it doesn’t illustrate anything par-
ticularly interesting about the gameplay possibilities.

The mechanism of specifying speculative assumptions
(based on integrity constraints) provides a simple, modular
querying interface for narrowing down to more interesting

Shttp://www.xgenstudios.com/play/motherload

happens(mine(al), 0).
happens(drain, 1) .
happens (drain, 2) .
happens (trade, 3) .
happens (refuel, 3).
happens(mine (a2), 4) .
happens(mine (a0), 5).
happens(down_to(a), 6) .
happens (mine (space_canary.corpse), 7).
happens(mine(c0), 8) .
happens(down_to(c), 9)
happens(down_ to(f), 10
happens(wup-to(c), 11
happens(wup-to(a), 12
happens(down_to(c), 13
happens (down_to(f), 14

Fig. 3. Example gameplay trace for the game shown in Figure 1, generated
by asking our analysis engine for a random 15-time-step trace with no
constraints.

traces, and asking questions about gameplay possibilities.
“Is my game winnable?” requires only one SA to specify
(asserting that victory happens at some timepoint). To scope
the question further, asking “is my game winnable with
avatar health never dropping below 57?7, requires only one
more SA. In our model of Motherload, we used SAs to look
at extreme kinds of gameplay possibilities: speed runs by
players beating the game in as short a time as possible,
or what kinds of gameplay would result if a player never
refuelled, or refuelled cautiously. We compared these traces
to traces from human playtesters, who gave us an idea of
how beginners would play the game before being familiar
with it, which showed us, for example, that our players were
much more cautious on refuelling than necessary.®

In generating these kinds of constrained traces, the log-
ical inference approach taken in EC+ASP shines. Had we
used randomized forward search in the game’s state space,
constraints on happenings of the final timepoint would be
difficult to encode and inefficient to compute, requiring
exhaustive search to prove nonexistence. ASP lets us “run
the game backwards” or even sideways’ as needed to satisfy
trace constraints or quickly prove them impossible.

While gameplay traces can be highly informative (because
each includes a complete narrative of events), even the
absence of traces can be informative. If adding a particular
SA yields no traces for a game that previously admitted
many, then it has been proven (by contradiction) that the SA
is incompatible with the game’s rules, i.e. that the assumption
is false in the game’s abstract world.®?

Extraction of gameplay traces is the primary function of
the LUDOCORE engine. The affordances we describe below

6We discuss this complementary use of human and machine playtesting
in more detail elsewhere [1].

TInferring which state is compatible with a particular narrative of events

8Thielscher [16] also uses termination without models of an ASP solver
to prove properties of a game via contradiction.

for modeling and modifying games all serve to give the
game’s author the ability to sculpt the space of traces that
our system will generate.

B. Modifying rules and configuration

Recall that game design is often an iterative pro-
cess, adding, removing, and tweaking rules as a de-
sign progresses. Rules, in LUDOCORE, are represented by
the game_event, game_state, possible, conflicts, and
initiates/terminates predicates. A game’s author might
make changes to these rules (and examine the traces for the
new game) as part of a major intentional design change, or
simply as a way of quickly testing the implications of alterna-
tive formulations of a particular mechanic in the game. Often
it is useful to disable (by simply commenting-out) several
rules to focus on sub-parts of a game in isolation without dis-
tracting interactions, e.g. disabling ammunition consumption
on weapons when examining health-point management. In
a language without elaboration tolerance, this would require
more complex editing than simply commenting out a rule.
Creating a variant of chess without castling in GDL, for
example, cannot be done simply by removing the castling
rule, but requires other edits as well.

To illustrate rule modifications, we draw on two exam-
ples from our LUDOCORE model of Motherload (discussed
earlier, and shown in Figure 1).

If we wanted to add a fixed inventory capacity to our
mining robot (constraining an existing event on the basis
of existing game state), we would modify the possible
conditions for our game’s mine event to depend on a count
of the number of items for which the bagged state for
rocks held. This single change would not only stop traces
that violate the new rule from being generated but reject
traces when even an externally assumed narrative included
too many mining events:

state_helper(have_space) <
count(R, holds(bagged(R)), N), N < 10.
possible(mine(R)) +

holds(present(R)), touching(R), fueled, have_space.

To modify the game to charge players energy points for
mining instead of moving, we would drop the initiates and
terminates rules linking the moving event to the energy
state and create two new ones linking mining to moving (one
to terminate the previous energy value and another to initiate
the diminished value). This re-wiring task incurs only a four-
line change to the game source when using our engine, due to
the conciseness of expressions enabled by our game engine.
With access to gameplay trace inference, we can quickly
verify the effectiveness of the rule modification without the
need for human play testers.

This ease of rule modifications directly derives from the
elaboration tolerance afforded by the underlying EC formal-
ism. McCarthy [10] describes elaboration tolerance as the
ability (of a knowledge representation) to accept changes
to known facts without having to “start over”, which is

exactly what we realize for the space of games. Further,
in other research applying EC to games, we have shown
how entire modules (corresponding to game mechanics and
vocabularies) can be swapped in and out without trouble [5].

In addition to swapping rules, it is quite easy to pair a
fixed game with different sets of configuration such as map
layout, static item properties, and tweakable constants. For
example, a simple map can be used for early testing, and a
more complex one used later for detailed player modeling.
In addition to manually specified game configurations, it
is possible to let the ASP solver reason across possible
configurations for the game. In our model of the game
Minesweeper, we are able to reason over possible placements
of mines that are consistent with player observations. In
a simple dungeon crawl game, we allowed the solver to
manipulate the presence and connectivity of rooms on a map.
The ability to make structural queries of this sort is a novel
feature for game engines.

C. Using player and nature models

While we think of speculative assumptions as convenient
but throwaway constraints, specifying complex assumptions
can be tedious. The player modeling interface provides a
more straightforward way of building larger player models
that will be retained and modified, rather than used in only
a few queries. Sets of player_asserts and player_forbids
clauses are collected to carve out the space of behavior that
can be reasonably expected of the kinds of player being
investigated.

A custom nature model can similarly be used to carve
the behavior of other in-game entities. In the dungeon
crawl game, we used the nature model to control monster
wandering behavior. We had tagged the monster movement
event as a nature event, implying that it should always be
considered in trace finding when using the default nature
model. To effect patrolling behavior, we used the following
assertion, which yields monsters who wander only within
their own marked areas:

nature_forbids(move_to(M, R)) +
not patrolled_by(M, R).

V. APPLICATIONS ENABLED

LUDOCORE enables a number of broader applications,
some of which have already been investigated in other forms.

A. Game design

Designing games in a logical game engine, or at least using
one to prototype game ideas, can provide designers with
insight about design pros and cons, and suggest possible im-
provements. Many logical formalisms can allow verification
that desired properties hold, and undesired properties don’t.
However, designers often work in an iterative, exploratory
manner, and find exact yes-or-no queries somewhat difficult
to formulate [17]. The experimentation with gameplay traces
that our engine supports can help designers understand the
possibilities of their design by iteratively “zooming in” on

specific kinds of traces using SAs, and observing how dif-
ferent player models shape emergent properties of the game.
We have already begun pursuing this application, creating
a game prototyping system [1] in which human-playable,
board-game-like prototypes can be built, using the logical
representations described in this paper. Figure 1 shows an
example designed as if to be an early prototype version of
Motherload (discussed earlier). This prototype focuses on
the core mechanics: moving around underground, mining,
and refueling (whereas Motherload also includes shopping
for upgrades and story elements). These prototypes support
two kinds of playtesting: traditional observations of human
players, and a new mode of machine playtesting, in which
observation of machine-generated gameplay traces is the
focus.

Logical game engines may also form a core component of
emerging research in automated videogame design. In a non-
logical approach, Togelius and Schmidhuber [18] generate
Pac-Man variants from a parameterized space and use rein-
forcement learning to demonstrate gameplay in the resulting
games. Games implemented in LUDOCORE can be varied
in a much more open-ended and incremental manner than
with a parameterized space of variation, and its elaboration
tolerance addresses the problem of brittleness of symbolic
representations, which was in part responsible for the move
towards parameterized numerical representations in content-
generation research.

Furthermore, given sets of traces, inductive logic program-
ming (ILP) can be used to induce models for the style of
gameplay exhibited in those traces. The player modeling
interface in LUDOCORE makes this more feasible by having
player models built from only two key predicates. Many
popular ILP systems, such as Progol [19] can only learn
single predicates at a time. In our player modeling interface,
single-predicate ILP systems can learn the player_asserts
predicate from example gameplay traces. Some research has
even been done on learning EC rules themselves [20], which,
for games, would open up the possibility of inducing new
game rules from a collection of desired gameplay traces.

Procedural level design can be done by specifying and
solving constraints for what constitutes a good level, some-
times as part of a larger search process [e.g. 21]. Particularly
relevant here, a community-driven project recently added
procedurally generated maps and base layouts to the real-
time strategy game Warzone 2100, using ASP to specify and
solve constraints on the maps’ layouts.® Designing a good
level, however, often means designing a level that supports
good gameplay, and these sorts of static constraints only
indirectly speak to gameplay. Other approaches, such as that
of Togelius et al. [22], generate levels and score them with a
fitness function that predicts whether they support interesting
gameplay. For games written using our logical game engine,
a constraint-based approach can easily include these kinds of
constraints on gameplay in addition to constraints on static
level properties, because the level-generation search and

Shttp://warzone2100.org.uk/manual-diorama

game-tree search are unified into the same query mechanism.

B. Crafting game playing agents

Despite our motivating focus on analyzing game designs,
our logical game engine has applications to playing games
as well. Because gameplay trace inference in our engine
corresponds exactly to what is commonly known as EC
planning [23], it is possible to use our engine directly in
a general game player. Thielscher [16] already argued for
the applicability of ASP with temporal-logic models for the
contemplation phase of GGP competitions.

The player modeling interface we provide is designed
to accept incremental additions of knowledge about how
a player (or their opponents) make choices. Though this
interface cannot express a minimax-like policy (that includes
quantification over models at every timepoint), it does coa-
lesce facts into a unified move-set selection policy which
would allow minimax to operate in the more restricted space
in which the modeled opponent is really playing.

The ease of adding and removing rules in our games
has another benefit for those wishing to craft general game
players. The elaboration tolerance of the representation
makes syntactic construction of novel games much easier. By
building all combinations of a fixed set of add-on mechanics,
a generative space of games can be realized, providing a
much wider selections of games for agents to be tested on.

VI. CONCLUSION

In this paper, we introduce a new concept: the logical
game engine. Our logical game engine, LUDOCORE, much
like a traditional game engine, both provides a higher-level
language to describe games, and centralized solutions to
tedious or error-prone programming tasks. By virtue of using
logic, we gain not only a concise representation of a game’s
mechanics, but also the ability to automatically generate
interesting gameplay traces that meet meaningful constraints.

While clearly LUDOCORE serves as a bridge from the
concerns of game design to logic-based Al tools, it has also
served as the basis for implementing interactive prototypes.
In BIPED [1], human-playtestable prototypes with real-time
interaction and graphics are written with the LUDOCORE
engine, enabling the same game specifications to both be
used with logical tools (objective, machine playtesting) and
as gameplay demos (subjective, human playtesting).

Apart from demonstrating its utility by building BIPED on
it, the question of how to evaluate LUDOCORE itself is more
subtle. We are not immediately interested in metrics such
as benchmarks. Rather, the primary driver of our research is
expressiveness, the ability for human or automated game de-
signers to succinctly specify and informatively query models
of gameplay. We want to answer questions such as: How easy
is it to specify different kinds of games? Is making common
kinds of modifications to a game easy? Are there queries
we can’t answer from this kind of model? We’ve designed
with these questions in mind, but a satisfying answer to these
questions must come from the kind of extensive case studies

that look at the evolution of a multiple game designs through
many stages of modification.

Future work on LUDOCORE will aim to further improve
the process of specifying, working with, and reusing formal
game models. Although the event calculus’ elaboration toler-
ance gives specifications some built-in modularity, a higher-
level module system would make it easier to quickly swap
in and out larger subsystems, such as pre-specified inventory
systems or economy models. Language improvements can
also simplify the specification of many common kinds of
game mechanics, for example by adding inheritance between
game objects, or higher-level handling of numerical opera-
tions. Finally, our goal in building LUDOCORE is to enable
two main applications: an automated game design system
that can understand and manipulate game rules [24], and a
game-design prototyping system that provide designers quick
feedback and deeper insight into early-stage designs [17].

REFERENCES

[1] A. M. Smith, M. J. Nelson, and M. Mateas, “Com-
putational support for play testing game sketches,’
in Proceedings of the 5th Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE),
2009.

[2] N. Love, T. Hinrichs, D. Haley, E. Schkufza, and
M. Genesereth, “General game playing: Game descrip-
tion language specification,” Stanford Logic Group,
Tech. Rep. LG-2006-01, 2006.

[3] M. Genesereth, “General game playing: Overview of
the AAAI competition,” Al Magazine, vol. 26, no. 2,
pp- 62-72, 2005.

[4] T. Fullerton, Game Design Workshop. Morgan Kauf-
mann, 2008.

[5S] M. J. Nelson and M. Mateas, “Recombinable game me-
chanics for automated design support,” in Proceedings
of the 4th Artificial Intelligence and Interactive Digital
Entertainment Conference (AIIDE), 2008, pp. 84—89.

[6] E. Adams, Fundamentals of Game Design. New
Riders, 2009.

[7] M. Shanahan, Solving the Frame Problem: A Mathemat-
ical Investigation of the Common Sense Law of Inertia.
MIT Press, 1997.

[8] E. T. Mueller, Commonsense Reasoning.
Kaufmann, 2006.

[9] E. T. Mueller, “Event calculus reasoning through satis-
fiability,” Journal of Logic and Computation, vol. 14,
no. 5, pp. 703-730, 2004.

[10] J. McCarthy, “Elaboration tolerance,” in Proceedings
of the 4th Symposium on Logical Formalizations of
Commonsense Reasoning, 1998.

[11] T.-W. Kim, J. Lee, and R. Palla, “Circumscriptive event
calculus as answer set programming,” in Proceedings
of the 21st International Joint Conference on Artificial
Intelligence (IJCAI), 2009, pp. 823—-829.

Morgan

[12] V. Lifschitz, “What is answer set programming?”’ in
Proceedings of the 23rd National Conference on Arti-
ficial Intelligence (AAAI), 2008, pp. 1594-1597.

[13] J. Blow, “Game development: Harder than you think,”
ACM Queue, vol. 1, no. 10, pp. 28-37, 2004.

[14] M. J. Nelson and M. Mateas, “Towards automated
game design,” in AI*IA 2007: Artificial Intelligence and
Human-Oriented Computing, 2007, pp. 626-637.

[15] M. Shanahan, “The ramification problem in the event
calculus,” in Proceedings of the 16th International Joint
Conference on Artificial Intelligence (IJCAI), 1999, pp.
140-146.

[16] M. Thielscher, “Answer set programming for single-
player games in general game playing,” in Proceedings
of the 25th International Conference on Logic Program-
ming (ICLP), 2009, pp. 327-341.

[17] M. J. Nelson and M. Mateas, “A requirements analysis
for videogame design support tools,” in Proceedings of
the 4th International Conference on the Foundations of
Digital Games (FDG), 2009, pp. 137-144.

[18] J. Togelius and J. Schmidhuber, “An experiment in
automatic game design,” in Proceedings of the 2008
IEEE Symposium on Computational Intelligence and
Games (CIG), 2008, pp. 111-118.

[19] S. Muggleton, “Inverse entailment and Progol,” New
Generation Computing Journal, vol. 13, pp. 245-286,
1995.

[20] S. Moyle and S. Muggleton, “Learning programs in the
event calculus,” in Proceedings of the 7th International
Workshop on Inductive Logic Programming, 1997, pp.
205-212.

[21] G. Smith, M. Treanor, J. Whitehead, and M. Mateas,
“Rhythm-based level generation for 2D platformers,”
in Proceedings of the 4th International Conference on
the Foundations of Digital Games (FDG), 2009, pp.
175-182.

[22] J. Togelius, R. De Nardi, and S. M. Lucas, “Towards au-
tomatic personalised content creation for racing games,”
in Proceedings of the 2007 IEEE Symposium on Com-
putational Intelligence and Games (CIG), 2007, pp.
252-259.

[23] M. Shanahan, “Event calculus planning revisited,” in
Proceedings of the 4th European Conference on Plan-
ning, 1997, pp. 390-402.

[24] A. M. Smith and M. Mateas, ‘“Variations Forever:
Flexibly generating rulesets from a sculptable design
space of mini-games,” in Proceedings of the 2010 IEEE
Conference on Computational Intelligence and Games
(CIG), 2010.

