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1 Basic Concepts

Broadly speaking, probability theory is the mathematical study of uncertainty. It plays a
central role in machine learning, as the design of learning algorithms often relies on proba-
bilistic assumption of the data. This set of notes attempts to cover some basic probability
theory that serves as a background for the class.

1.1 Probability Space

When we speak about probability, we often refer to the probability of an event of uncertain
nature taking place. For example, we speak about the probability of rain next Tuesday.
Therefore, in order to discuss probability theory formally, we must first clarify what the
possible events are to which we would like to attach probability.

Formally, a probability space is defined by the triple (2, F, P), where

e ) is the space of possible outcomes (or outcome space),
o F C 29 (the power set of ) is the space of (measurable) events (or event space),

e P is the probability measure (or probability distribution) that maps an event £ € F to
a real value between 0 and 1 (think of P as a function).

Given the outcome space €2, there is some restrictions as to what subset of 2 can be
considered an event space F:

e The trivial event © and the empty event ) is in F.
e The event space F is closed under (countable) union, i.e., if o, § € F, then U3 € F.
e The even space F is closed under complement, i.e., if « € F, then (2\ a) € F.

Example 1. Suppose we throw a (siz-sided) dice. The space of possible outcomes ) =
{1,2,3,4,5,6}. We may decide that the events of interest is whether the dice throw is odd
or even. This event space will be given by F = {0,{1,3,5},{2,4,6},Q}.



Note that when the outcome space (2 is finite, as in the previous example, we often take
the event space F to be 2. This treatment is not fully general, but it is often sufficient
for practical purposes. However, when the outcome space is infinite, we must be careful to
define what the event space is.

Given an event space JF, the probability measure P must satisfy certain axioms.

e (non-negativity) For all « € F, P(«) > 0.
e (trivial event) P(§2) = 1.
e (additivity) For all o, € F and an g =0, P(aU ) = P(a) + P(B).

Example 2. Returning to our dice example, suppose we now take the event space F to be
2. Further, we define a probability distribution P over F such that

P({1}) = P({2}) = --- = P({6}) = 1/6

then this distribution P completely specifies the probability of any given event happening
(through the additivity aziom). For example, the probability of an even dice throw will be

P({2,4,6}) = P({2}) + P({4}) + P({6}) =1/6+1/6+1/6 =1/2

since each of these events are disjoint.

1.2 Random Variables

Random wvariables play an important role in probability theory. The most important fact
about random variables is that they are not variables. They are actually functions that
map outcomes (in the outcome space) to real values. In terms of notation, we usually denote
random variables by a capital letter. Let’s see an example.

Example 3. Again, consider the process of throwing a dice. Let X be a random variable that
depends on the outcome of the throw. A natural choice for X would be to map the outcome
1 to the value i, i.e., mapping the event of throwing an “one” to the value of 1. Note that
we could have chosen some strange mappings too. For example, we could have a random
variable Y that maps all outcomes to 0, which would be a very boring function, or a random
variable Z that maps the outcome i to the value of 2¢ if i is odd and the value of —i if i is
even, which would be quite strange indeed.

In a sense, random variables allow us to abstract away from the formal notion of event
space, as we can define random variables that capture the appropriate events. For example,
consider the event space of odd or even dice throw in Example 1. We could have defined a
random variable that takes on value 1 if outcome ¢ is odd and 0 otherwise. These type of
binary random variables are very common in practice, and are known as indicator variables,
taking its name from its use to indicate whether a certain event has happened. So why
did we introduce event space? That is because when one studies probability theory (more
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rigorously) using measure theory, the distinction between outcome space and event space
will be very important. This topic is too advanced to be covered in this short review note.
In any case, it is good to keep in mind that event space is not always simply the power set
of the outcome space.

From here onwards, we will talk mostly about probability with respect to random vari-
ables. While some probability concepts can be defined meaningfully without using them,
random variables allow us to provide a more uniform treatment of probability theory. For
notations, the probability of a random variable X taking on the value of a will be denoted
by either

P(X =a) or Px(a)

We will also denote the range of a random variable X by Val(X).

1.3 Distributions, Joint Distributions, and Marginal Distributions

We often speak about the distribution of a variable. This formally refers to the probability
of a random variable taking on certain values. For example,

Example 4. Let random variable X be defined on the outcome space €2 of a dice throw
(again!). If the dice is fair, then the distribution of X would be

Px(1) = Px(2) == Px(6) =1/6

Note that while this example resembles that of Example 2, they have different semantic
meaning. The probability distribution defined in Example 2 is over events, whereas the one
here is defined over random variables.

For notation, we will use P(X) to denote the distribution of the random variable X.

Sometimes, we speak about the distribution of more than one variables at a time. We
call these distributions joint distributions, as the probability is determined jointly by all the
variables involved. This is best clarified by an example.

Example 5. Let X be a random variable defined on the outcome space of a dice throw. Let
Y be an indicator variable that takes on value 1 if a coin flip turns up head and 0 if tail.
Assuming both the dice and the coin are fair, the joint distribution of X and Y is given by

P X=1|X=2[X=3[X=4[X=5|X=6
Y=0] 1/12 | 1/12 | 1/12 | 1/12 | 1/12 | 1/12
Y=1] 1/12 | 1/12 | 1/712 | 1/12 | 1/12 | 1/12

As before, we will denote the probability of X taking value a and Y taking value b by
either the long hand of P(X = a,Y =), or the short hand of Pxy(a,b). We refer to their
joint distribution by P(X,Y).

Given a joint distribution, say over random variables X and Y, we can talk about the
marginal distribution of X or that of Y. The marginal distribution refers to the probability
distribution of a random variable on its own. To find out the marginal distribution of a



random variable, we sum out all the other random variables from the distribution. Formally,
we mean
P(X)= > PX)Y =0 (1)
beVal(Y)
The name of marginal distribution comes from the fact that if we add up all the entries
of a row (or a column) of a joint distribution, and write the answer at the end (i.e., margin)

of it, this will be the probability of the random variable taking on that value. Of course,
thinking in this way only helps when the joint distribution involves two variables.

1.4 Conditional Distributions

Conditional distributions are one of the key tools in probability theory for reasoning about

uncertainty. They specify the distribution of a random variable when the value of another

random variable is known (or more generally, when some event is known to be true).
Formally, conditional probability of X = a given Y = b is defined as

P(X =a,Y =)

P(X =alY =b) = PV =) (2)

Note that this is not defined when the probability of Y = b is 0.

Example 6. Suppose we know that a dice throw was odd, and want to know the probability
of an “one” has been thrown. Let X be the random variable of the dice throw, and Y be an
indicator variable that takes on the value of 1 if the dice throw turns up odd, then we write
our desired probability as follows:

PX=1Y=1) 1/6

PX =1y =1) = =5 = o =173

The idea of conditional probability extends naturally to the case when the distribution
of a random variable is conditioned on several variables, namely

P(X=aY =b7=c)

P(X=alY=bZ=c)= PY =07 =)

As for notations, we write P(X|Y = b) to denote the distribution of random variable X
when Y = b. We may also write P(X|Y') to denote a set of distributions of X, one for each
of the different values that ¥ can take.

1.5 Independence

In probability theory, independence means that the distribution of a random variable does
not change on learning the value of another random variable. In machine learning, we often
make such assumptions about our data. For example, the training samples are assumed to



be drawn independently from some underlying space; the label of sample 7 is assumed to be
independent of the features of sample 7 (7 # j).
Mathematically, a random variable X is independent of Y when

P(X) = P(X|Y)

(Note that we have dropped what values X and Y are taking. This means the statement
holds true for any values X and Y may take.)
Using Equation (2), it is easy to verify that if X is independent of Y, then Y is also
independent of X. As a notation, we write X L Y if X and Y are independent.
An equivalent mathematical statement about the independence of random variables X
and Y is
P(X,Y)=P(X)P(Y)

Sometimes we also talk about conditional independence, meaning that if we know the
value of a random variable (or more generally, a set of random variables), then some other
random variables will be independent of each other. Formally, we say “X and Y are condi-
tionally independent given 27 if

P(X|Z)=P(X|Y,Z)

or, equivalently,
P(X,Y|Z)=P(X|Z2)P(Y|Z)

An example of conditional independence that we will se in class is the Naive Bayes
assumption. This assumption is made in the context of a learning algorithm for learning to
classify emails as spams or non-spams. It assumes that the probability of a word x appearing
in the email is conditionally independent of a word y appearing given whether the email is
spam or not. This clearly is not without loss of generality, as some words almost invariably
comes in pair. However, as it turns out, making this simplifying assumption does not hurt
the performance much, and in any case allow us to learn to classify spams rapidly. Details
can be found in Lecture Notes 2.

1.6 Chain Rule and Bayes Rule

We now present two basic yet important rules for manipulating that relates joint distributions
and conditional distributions. The first is known as the Chain Rule. It can be seen as a
generalization of Equation (2) to multiple random variables.

Theorem 1 (Chain Rule).
P(X1, Xo, ..., Xp) = P(X1)P(Xa| X1) -+ - P(X0] X1, Xoy ooy Xpa) (3)

The Chain Rule is often used to evaluate the joint probability of some random variables,
and is especially useful when there are (conditional) independence across variables. Notice



there is a choice in the order we unravel the random variables when applying the Chain Rule;
picking the right order can often make evaluating the probability much easier.

The second rule we are going to introduce is the Bayes Rule. The Bayes Rule allows
us to compute the conditional probability P(X|Y') from P(Y|X), in a sense “inverting” the
conditions. It can be derived simply from Equation (2) as well.

Theorem 2 (Bayes Rule).
P X)P(X)

P(X|Y) = 4
(1Y) = = (@)
And recall that if P(Y') is not given, we can always apply Equation (1) to find it.

P(Y)= ) PX=aY)= ) PY[X=aPX=a)
aeVal(X) aeVal(X)

This application of Equation (1) is sometimes referred to as the law of total probability.

Extending the Bayes Rule to the case of multiple random variables can sometimes be
tricky. Just to be clear, we would give a few examples. When in doubt, one can always refer
to how conditional probabilities are defined and work out the details.

Example 7. Let’s consider the following conditional probabilities: P(X,Y|Z) and (X|Y, Z).

px.y|z) = PEXYIPLY) P ZIX)PWY)

P(Z) P(Z)
 P(Y|X,2)P(X,Z) P(Y|X,Z)P(X|2)P(Z) P(Y|X,Z)P(X|Z)
PAY2D) == 2~ Pwinp2 ~  POD

2 Defining a Probability Distribution

We have been talking about probability distributions for a while. But how do we define
a distribution? In a broad sense, there are two classes of distribution that require seem-
ingly different treatments (these can be unified using measure theory). Namely, discrete
distributions and continuous distributions. We will discuss how distributions are specified
next.

Note that this discussion is distinct from how we can efficiently represent a distribution.
The topic of efficient representation of probability distribution is in fact a very important
and active research area that deserves its own course. If you are interested to learn more
about how to efficiently represent, reason, and perform learning on distributions, you are
advised to take CS228: Probabilistic Models in Artificial Intelligence.

2.1 Discrete Distribution: Probability Mass Function

By a discrete distribution, we mean that the random variable of the underlying distribution
can take on only finitely many different values (or that the outcome space is finite).
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To define a discrete distribution, we can simply enumerate the probability of the random
variable taking on each of the possible values. This enumeration is known as the probability
mass function, as it divides up a unit mass (the total probability) and places them on the
different values a random variable can take. This can be extended analogously to joint
distributions and conditional distributions.

2.2 Continuous Distribution: Probability Density Function

By a continuous distribution, we mean that the random variable of the underlying distribu-
tion can take on infinitely many different values (or that the outcome space is infinite).
This is arguably a trickier situation than the discrete case, since if we place a non-zero
amount of mass on each of the values, the total mass will add up to infinity, which violates
the requirement that the total probaiblity must sum up to one.
To define a continuous distribution, we will make use of probability density function
(PDF). A probability density function, f, is a non-negative, integrable function such that

/ flz)de =1
Val(X)

The probability of a random variable X distributed according to a PDF f is computed
as follows

Pla< X <b) = /bf(x)dx

Note that this, in particular, implies that the probability of a continuously distributed
random variable taking on any given single value is zero.

Example 8 (Uniform distribution). Let’s consider a random variable X that is uniformly
distributed in the range [0,1]. The corresponding PDF would be

fz) =

0 otherwise

{1 fo<z<l1

We can verify that fol 1 dz is indeed 1, and therefore f is a PDF. To compute the probability
of X smaller than a half,

P(X <1/2) = /1/2 1de = [z])* =1/2

More generally, suppose X is distributed uniformly over the range |a,b], then the PDF
would be

fz) =

otherwise

ﬁ ifa<x<b
0



Sometimes we will also speak about cumulative distribution function. It is a function
that gives the probability of a random variable being smaller than some value. A cumulative
distribution function F' is related to the underlying probability density function f as follows:

F(b) = P(X <b) = /_ f(@)dz

and hence F(z) = [ f(x)dz (in the sense of indefinite integral).
To extend the definition of continuous distribution to joint distribution, the probability
density function is extended to take multiple arguments, namely,

by b bn
P(a1§X1Sbl,a2§X2§b2,--->anSXnSTM):/ / [z, 29, .. 2,)doydrs .
al a Qan

To extend the definition of conditional distribution to continuous random variables, we
ran into the problem that the probability of a continuous random variable taking on a single
value is 0, so Equation (2) is not well defined, since the denominator equals 0. To define the
conditional distribution of a continuous variable, let f(z,y) be the joint distribution of X
and Y. Through application of analysis, we can show that the PDF, f(y|x), underlying the
distribution P(Y|X) is given by

flylz) =

For example,

Pla<y<ix=a= [ fuloa - [ fj(f(’c ?j) dy

3 Expectations and Variance

3.1 Expectations

One of the most common operations we perform on a random variable is to compute its
expectation, also known as its mean, expected value, or first moment. The expectation of a
random variable, denoted by E(X), is given by

E(X)= ) aP(X=a) or E(X):/EV Z(X):Ef(x) dx (5)

aeVal(X)

Example 9. Let X be the outcome of rolling a fair dice. The expectation of X is

L @) 40k =3
6 6 6 2

We may sometimes be interested in computing the expected value of some function f of
a random variable X. Recall, however, that a random variable is also a function itself, so

.dxz,



the easiest way to think about this is that we define a new random variable Y = f(X), and
compute the expected value of Y instead.
When working with indicator variables, a useful identify is the following:

E(X)=P(X =1) for indicator variable X

When working with the sums of random variables, one of the most important rule is the
linearity of expectations.

Theorem 3 (Linearity of Expectations). Let Xy, X, ..., X, be (possibly dependent) ran-
dom variables,

EXi+Xo+ -+ X,) =E(Xy)+ E(Xs) +---+ E(X,) (6)

The linearity of expectations is very powerful because there are no restrictions on whether
the random variables are independent or not. When we work on products of random vari-
ables, however, there is very little we can say in general. However, when the random variables
are independent, then

Theorem 4. Let X and Y be independent random variables,

E(XY)=E(X)E(Y)

3.2 Variance

The variance of a distribution is a measure of the “spread” of a distribution. Sometimes it
is also referred to as the second moment. It is defined as follows:

Var(X) = E (X = B(X))?) (7)

The variance of a random variable is often denoted by 2. The reason that this is squared
is because we often want to find out o, known as the standard deviation. The variance and
the standard deviation is related (obviously) by o = y/Var(X).

To find out the variance of a random variable X, it’s often easier to compute the following
instead

Var(X) = BE(X*) — (E(X))*

Note that unlike expectation, variance is not a linear function of a random variable X.
In fact, we can verify that the variance of (aX + b) is

Var(aX +b) = a*Var(X)
If random variables X and Y are independent, then
Var(X +Y) =Var(X)Var(Y) ifX 1LY

Sometimes we also talk about the covariance of two random variables. This is a measure
of how “closely related” two random variables are. Its definition is as follows.

Cou(X,Y) = E((X — E(X))(Y — E(Y)))



4 Some Important Distributions

In this section, we will review some of the probability distributions that we will see in this
class. This is by no means a comprehensive list of distribution that one should know. In
particular, distributions such as the geoemtric, hypergeometric, and binomial distributions,
which are very useful in their own right and studied in introductory probability theory, are
not reviewed here.

4.1 Bernoulli

The Bernoulli distribution is one of the most basic distribution. A random variable distrib-
uted according to the Bernoulli distribution can take on two possible values, {0,1}. It can
be specified by a single parameter p, and by convention we take p to be P(X = 1). It is
often used to indicate whether a trail is successful or not.

Sometimes it is useful to write the probability distribution of a Bernoulli random variable
X as follows

P(X)=p"(1—p)'*

An example of the Bernoulli distribution in action is the classification task in Lecture
Notes 1. To develop the logistic regression algorithm for the task, we assume that the labels
are distributed according to the Bernoulli distribution given the features.

4.2 Poisson

The Poisson distribution is a very useful distribution that deals with the arrival of events.
It measures probaiblity of the number of events happening over a fixed period of time, given
a fixed average rate of occurrence, and that the events take place independently of the time
since the last event. It is parametrized by the average arrival rate A. The probability mass
function is given by:
exp(—A)\F
—

The mean value of a Poisson random variable is A, and its variance is also \.

We will get to work on a learning algorithm that deals with Poisson random variables in
Homework 1, Problem 3.

P(X =k) =

4.3 Gaussian

The Gaussian distribution, also known as the normal distribution, is one of the most “ver-
satile” distributions in probability theory, and appears in a wide variety of contexts. For
example, it can be used to approximate the binomial distribution when the number of ex-
periments is large, or the Poisson distribution when the average arrival rate is high. It is
also related to the Law of Large Numbers. For many problems, we will also often assume
that when noise in the system is Gaussian distributed. The list of applications is endless.
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Figure 1: Gaussian distributions under different mean and variance

The Gaussian distribution is determined by two parameters: the mean p and the variance
o%. The probability density function is given by

o) = e (-2 8

2mo 202

To get a better sense of how the distribution changes with respect to the mean and the
variance, we have plotted three different Gaussian distributions in Figure 1.

In our class, we will sometimes work with multi-variate Gaussian distributions. A k-
dimensional multi-variate Gaussian distribution is parametrized by (u,>), where u is now a
vector of means in R*, and ¥ is the covariance matriz in R*** in other words, ¥y = Var(X;)
and X;; = Cov(X;, X;). The probability density function is now defined over vectors of input,
given by

1 1 T
10 = e (—5x =S =) )
(Recall that we denote the determinant of a matrix A by |A|, and its inverse by A™!)

To get a better sense of how a multi-variate Gaussian distribution depends on the covari-
ance matrix, we can look at the figures in Lecture Notes 2, Pages 3—4.

Working with a multi-variate Gaussian distribution can be tricky and daunting at times.
One way to make our lives easier, at least as a way to get intuition on a problem, is to assume
that the covariances are zero when we first attempt a problem. When the covariances are
zero, the determinant || will simply be the product of the variances, and the inverse 3!
can be found by taking the inverse of the diagonal entries of X.
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5 Working with Probabilities

As we will be working with probabilities and distributions a lot in this class, listed below
are a few tips about efficient manipulation of distributions.

5.1 The log trick

In machine learning, we generally assume the independence of different samples. Therefore,
we often have to deal with the product of a (large) number of distributions. When our goal
is to optimize functions of such products, it is often easier if we first work with the logarithm
of such functions. As the logarithmic function is a strictly increasing function, it will not
distort where the maximum is located (although, most certainly, the maximum value of the
function before and after taking logarithm will be different).

As an example, consider the likelihood function in Lecture Notes 1, Page 17.

m

L(0) = H(he(x(i)))y(i)(l _ h@(x(i)))l—y(i)

=1

I dare say this is a pretty mean-looking function. But by taking the logarithm of it, termed
log-likelihood function, we have instead

m

0(0) =log L(0) = Zy(z’) log hg(m(i)) +(1- y) log(1 — he(m(i)»

i=1

Not the world’s prettiest function, but at least it’s more manageable. We can now work
on one term (i.e., one training sample) at a time, because they are summed together rather
than multiplied together.

5.2 Delayed Normalization

Because probability has to sum up to one, we often have to deal with normalization, especially
with continuous distribution. For example, for Gaussian distributions, the term outside of the
exponent is to ensure that the integral of the PDF evaluates to one. When we are sure that
the end product of some algebra will be a probability distribution, or when we are finding the
optimum of some distributions, it’s often easier to simply denote the normalization constant
to be Z, and not worry about computing the normalization constant all the time.

5.3 Jenson’s Inequality

Sometimes when we are evaluating the expectation of a function of a random variable, we
may only need a bound rather than its exact value. In these situations, if the function is
convex or concave, Jenson’s inequality allows us to derive a bound by evaluating the value
of the function at the expectation of the random variable itself.
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Figure 2: Illustration of Jenson’s Inequality

Theorem 5 (Jenson’s Inequality). Let X be a random variable, and f be a convex function.
Then

FEX)) < E(f(X))

If f is a concave function, then

FE(X)) = E(f(X))

While we can show Jenson’s inequality by algebra, it’s easiest to understand it through
a picture. The function in Figure 2 is a convex function. We can see that a straight line
between any two points on the function always lie above the function. This shows that if a
random variable can take on only two values, then Jenson’s inequality holds. It is relatively
straight forward to extend this to general random variables.
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