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1. Introduction

Computation has become a central tool in economics. From the solution of dynamic equilib-

riummodels in macroeconomics or industrial organization, to the characterization of equilibria

in game theory, or in estimation by simulation, economists spend a considerable amount of

their time coding and running fairly sophisticated software.

And while some effort has been focused on the comparison of different algorithms for the

solution of common problems in economics (see, for instance, Aruoba, Fernández-Villaverde,

and Rubio-Ramírez, 2006), there has been little formal comparison of programming languages.

This is surprising because there is an ever-growing variety of programming languages and

economists are often puzzled about which language is best suited to their needs.1 Instead of a

suite of benchmarks, researchers must rely on personal experimentations or on “folk wisdom.”

For example, it is still commonly believed that Fortran is the fastest available language or

that C++ is too hard to learn.

In this paper, we take a first step at correcting this unfortunate situation. The target au-

dience for our results is younger economists (graduate students, junior faculty) or researchers

who have used the computer less often in the past for numerical analysis and who are searching

for guideposts in their first incursions into computation.

We solve the stochastic neoclassical growth model, the workhorse of modern macroeco-

nomics, using C++11, Fortran 2008, Java, Julia, Python, Matlab, Mathematica, and R.2 We

implement the same algorithm, value function iteration with grid search for optimal future

capital, in each of the languages and measure the execution time of the codes in a Mac and

in a Windows computer. The advantage of our algorithm, value function iteration with grid

search, is that it is “representative”of many economic computations: expensive loops, large

matrices to store in memory, and so on. Thus, while our investigation does not entail a full

suite of benchmarks, both our model and our solution method are among the best available

choices for our investigation. In addition, our two machines, a Mac and a Windows computer,

are the two most popular environments for software development for economists (in the Mac

we compile and run some of the code from the command line, thus implying results very close

to those that would come from equivalent Unix/Linux machines).

In section 4, we report speed results for each language (including several implementations

of the same language and different compilers), but here is a brief summary of some of our

main findings:

1This also stands in comparison with work in other fields, such as Prechelt (2000), Lubin
and Dunning (2013), or web projects, such as The Computer Language Benchmarks Game (see
http://benchmarksgame.alioth.debian.org/).

2From now on, we drop the year of the standard of the language unless it is needed.
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1. C++ and Fortran are still considerably faster than any other alternative, although one

needs to be careful with the choice of compiler.

2. C++ compilers have advanced enough that, contrary to the situation in the 1990s and

some folk wisdom, C++ code runs slightly faster (5-7 percent) than Fortran code.

3. Julia delivers outstanding performance. Execution speed is only between 2.64 and 2.70

times slower than the execution speed of the best C++ compiler.

4. Baseline Python was slow. Using the Pypy implementation, it runs around 44 times

slower than in C++. Using the default CPython interpreter, the code runs between 155

and 269 times slower than in C++.

5. Matlab is between 9 to 11 times slower than the best C++ executable.

6. R runs between 475 to 491 times slower than C++. If the code is compiled, the code is

between 243 to 282 times slower.

7. Hybrid programming and special approaches can deliver considerable speed ups. For

example, when combined with Mex files, Matlab is only 1.24 to 1.64 times slower than

C++ and when combined with Rcpp, R is between 3.66 and 5.41 times slower. Similar

numbers hold for Numba (a just-in-time compiler for Python that uses decorators) and

Cython (a static compiler for writing C extensions for Python) in the Python ecosystem.

8. Mathematica is only about three times slower than C++, but only after a considerable

rewriting of the code to take advantage of the peculiarities of the language. The baseline

version of our algorithm in Mathematica is considerably slower.

Some could argue that our results are not surprising as they coincide with the guesses

of an experienced programmer. But we regard this comment as a point of strength, not of

weakness. It is a validation that our exercise was conducted under reasonably fair conditions.

We do not seek to overturn the experience of knowledgeable programmers, but to formalize

such experience under well-described and explicitly controlled conditions and to report the

information to others.

We do not comment on the diffi culty of implementation of the algorithm in each language,

for a couple of reasons. First, such diffi culty is subjective and depends on the familiarity of

a researcher with a particular programming language or perhaps just with his predisposition

toward a programming paradigm. Second, to make the comparison as unbiased as possible,

we coded the same algorithm in each language without adapting it to the peculiarities of each

language (which could reflect more about our knowledge of each language than of its objective
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virtues).3 Therefore, the final code looks remarkably similar among languages, with the ex-

ception of one version of the code in Mathematica. The codes are posted at our github reposi-

tory https://github.com/jesusfv/Comparison-Programming-Languages-Economics and

the reader is invited to gauge that diffi culty for himself. The main point of this paper is

to provide a measure of the “benefit” in a cost-benefit calculation for researchers who are

considering learning a new language. The “cost”part will be subjective.

The rest of the paper is structured as follows. First, in section 2, we introduce our

application and algorithm. In section 3 we motivate our selection of programming languages.

In section 4, we report our results. Section 5 concludes.

2. The Stochastic Neoclassical Growth Model

We pick, for our exercise, the stochastic neoclassical growth model, the foundation of much

work in macroeconomics. We solve the model with value function iteration and a grid search

for the optimal values of future capital. In that way, we compare programming languages

for their ability to handle a task such as value function iteration that appears everywhere in

economics and within a well-understood economic environment.

In this model, a social planner picks a sequence of consumption ct and capital kt to solve

max
{ct,kt+1}

E0
∞∑
t=0

(1− β) βt log ct

where E0 is the conditional expectation operation, β the discount factor, and the resource
constraint is given by

ct + kt+1 = ztk
α
t + (1− δ)kt

where productivity zt takes values in a set of discrete points {z1, ..., zn} that evolve according
to a Markov transition matrix Π. The initial conditions, k0 and z0, are given. While, in the

interest of space, we have written the model in terms of the problem of a social planner, this

is not required and we could deal, instead, with a competitive equilibrium.

For our calibration, we pick δ = 1, which implies that the model has a closed-form solution

kt+1 = αβztk
α
t and ct = (1− αβ) ztk

α
t . This will allow us to assess the accuracy of the solution

we compute. Then, we are only left with the need to choose values for β, α, and the process

for zt. But since δ = 1 is unrealistic, instead of targeting explicit moments of the data, we

3It also means that proposals to improve the coding should be made for all languages (unless there is an
obvious problem with one of the languages). The game is not to write the best possible C++ code, it is to
write C++ code that is comparable to, for example, Matlab code in computational complexity. We are not
interested in speed itself, but on relative speed.
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just pick conventional values for these parameters and processes. For β we pick 0.95, 1/3 for

α, and for zt we have a 5-point Markov chain:

zt ∈ {0.9792, 0.9896, 1.0000, 1.0106, 1.0212}

with transition matrix:

Π =


0.9727 0.0273 0 0 0

0.0041 0.9806 0.0153 0 0

0 0.0082 0.9837 0.0082 0

0 0 0.0153 0.9806 0.0041

0 0 0 0.0273 0.9727


The transition matrix is similar to the one that would come from a discretization of an AR(1)

process for (log) productivity following Tauchen’s (1986) procedure, except that we move

mass from the diagonal to the upper and lower bands to induce more movements across states

and to create a more challenging computation. The relative speed comparisons that we report

below are robust to different calibrated values, including values of δ < 1.

The recursive formulation of this problem in terms of a value function V (·, ·) and a Bellman
operator is:

V (k, z) = max
k′

(1− β) βt log (zkα − k′) + βE [V (k′, z′)|z]

(where we have already imposed that δ = 1). We solve this Bellman operator using value

function iteration and grid search on k′. We take advantage of monotonicity in the policy

function and of an envelope condition to avoid unnecessary computations. We use a grid of

17,820 points for k uniformly distributed ±50 percent of the steady-state value of capital. We

choose this grid size so that C++ or Fortran would solve the problem in about one second.

Shorter run times would cause large relative measurement error (due to issues such as the

situation of the cache at any given time). We impose a tolerance of 1.0e-07 for convergence.

The value function took 257 iterations to converge. We checked that all codes achieved

convergence in the same number of iterations and that the computed value and policy functions

were exactly the same.

In Figure 1, we plot the value (top panel) and policy function for capital next period

(middle panel) along the capital dimension, with each color representing a different value of

zt. The value and policy functions are, as expected, increasing and concave. We also plot

the difference between the exact and approximated policy function for capital in percentage

terms (bottom panel). The maximum error is only -0.0059 percent, which illustrates the high

accuracy achieved with 17,820 points for k.

5



3. Selection of Programming Languages

Since Fortran came around in 1957, hundreds of programming languages have been created.

Even limiting ourselves to languages that have acquired a solid user base circa 2014, we need

to choose among dozens of them.

Fortunately, the task is simpler than it seems. There is little point to picking languages

such as Perl or PHP, neither of which is particularly suited to, nor widely used for scientific

computing. Also, many languages are close relatives of each other and one member of the

family will suffi ce for our comparison. With our choices of languages, we cover a wide range

of possibilities and, with the exception of the functional programming languages discussed

below, we feel we have covered all the obvious choices for numerical computation.

3.1. Compiled Languages

Among compiled languages, we select C++, Fortran, and Java. C++ is, perhaps, the most pow-

erful language among those widely used. Together with C and Objective-C, it constitutes the

backbone of much of the modern computing world. According to the well-cited TIOBE Index

of programming language popularity (May 2014 edition), C is ranked number 1, Objective-C

is ranked number 3, and C++ number 4, with a total rating of 34.70 percent.4 Our C++ code

does not use any specific C++ features such as objects. Thus, the C and Objective-C codes

(which can be found on the github page) are nearly equivalent. We checked, also, that the

run time of the C and Objective-C codes was nearly exactly the same. Thus, we will only

report the C++ running time.5

Two other relatives of C++ are C# and D. C# is widely used in the industry (C# is ranked

6th in the TIOBE Index with 3.75 percent). However, design considerations that make C#

attractive for commercial applications also render it slower for numerical computation and,

thus, it is rarely employed for the tasks we are concerned with in this paper.6 D, which

generates code usually roughly of the same speed as C++, is less popular (ranked 26 with 0.60

percent). Including all five languages, the C family accumulates a popularity index of 39.04

percent. Swift, a proposed replacement for Objective-C, is not designed, at this moment,

as a programming language for use outside OS X and iOS.

Fortran, the oldest language of all, still maintains a significant presence in high perfor-

mance scientific computing and among economists. Its latest incarnation, Fortran 2008, is

4See the definition and interpretation of the index at:
http://www.tiobe.com/index.php/content/paperinfo/tpci/tpci_definition.htm.
5For a comparison of syntaxes, see the Hyperpolyglot at http://hyperpolyglot.org/cpp.
6Anastasios Stamulis reported that a straightforward conversion of our C++ to C# is around 20 percent

slower.
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updated with modern features and innovations such as coarrays. Reflecting this niche nature

of Fortran, the TIOBE ranks it 32, with a 0.42 percent popularity.

Java is a common vehicle for undergraduate education and the availability of the Java

Virtual Machine in practically all computer environments makes it an attractive choice. In

the TIOBE Index, it is ranked 2nd with a popularity of 5.99 percent.

The performance of compiled languages also depends on the compiler used to generate

the executable files.7 Thus, we select a number of those. For C++, in the Mac machine, we

pick GCC, Intel C++, and Clang (which shares the LLVM —lower level virtual machine —with

XCode and delivers nearly identical speed) and in the Windows machine, GCC, Intel C++, and

Visual C++. For Fortran, in both machines, we select GCC and Intel Fortran.8 For Java,

we select the standard Oracle JDK.

3.2. Scripting Languages

We pick as our scripting languages Matlab, Mathematica, R, Python, and Julia. Matlab,

Mathematica, and R are suffi ciently known among economists that it is not necessary to

elaborate on our choice.

Python is an elegant open-source language that has become popular in the scientific com-

munity (see Sargent and Stachurski, 2014), in particular the 2.7 version.9 Since there are

different implementations of Python, we select CPython, the default Python interpreter that

comes with Mac and Linux machines, and Pypy (http://pypy.org/), a speed-oriented re-

placement virtual machine that uses a just-in-time compiler. Our Python code for CPython

and Pypy was exactly the same and it uses the Numpy library for matrix operations.

Julia (http://julialang.org/) is a new open-source high-performance programming

language with a syntax very close to Matlab, Lisp-style macros, and many other modern fea-

tures, and it also uses a just-in-time compiler for speed based on the LLVM. Three particularly

attractive features of Julia are:

1. Julia’s default typing system is dynamic (to facilitate fast coding), but it is possible to

indicate the type of certain values to avoid type-instability problems that often decrease

speed in dynamically typed languages.

2. Julia can call C or Fortran functions without wrappers or APIs.

7See, for example, the comparison at http://www.polyhedron.com/fortran-compiler-comparisons.
8We could not find data on compilers’market share, but our picks include the most popular compilers

in user forums. Our experience with other compilers, such as PGI, has been less satisfactory in terms of the
speed of the generated executables.

9A key advantage of Python is the existence of libraries such as Numpy, Scipy, SymPy, MatPlotLib, and
pandas and of shells such as IPython. Some of these libraries have only been partially ported to Python 3+.
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3. Julia has a library that imports Python modules and provides wrappers for all of the

functions on them.

We did not check Octave, an open source clone of Matlab, because it is well-known

that it is considerably slower than Matlab. In preliminary testing, we checked that Gauss

(http://www.aptech.com/) was roughly seven times slower than Matlab and, thus, we de-

cided not to include it in our exercise.

3.3. Functional Programming Languages

The big missing items in our list of languages are those that belong to the functional program-

ming family that inherits the insights from Lisp. In a companion paper (Amador, Aruoba,

Fernández-Villaverde, 2014), we elaborate on the advantages of functional programming for

economics and explain how to extend our benchmark investigation to functional languages

such as Ocaml or Haskell. Since this comparison involves a number of issues of its own, we

prefer to avoid them here to keep the paper focused.10

3.4. Hybrid and Special Approaches

Most languages allow for the used of mixed programming. This is particularly useful in

Matlab and R, where one can send computer-intensive parts of the code to C++ and keep the

rest of the code in an easier scripting language format. Thus, in addition to “pure”Matlab

and R, we also use Mex files, where part of the code is written in C++ and compiled before

the Matlab code runs, and Rcpp, a package in R that facilitates the integration of R and C++

(http://cran.r-project.org/web/packages/Rcpp/index.html). In both cases, we sent to

C++ the Bellman operator that updates the value function and that consumes nearly all the

computing time.

As in the case of Matlab and R, we compile in Python the Bellman operator that updates

the value function. We do so using two different approaches:

1. Numba (http://numba.pydata.org/), a just-in-time compiler that uses decorators to

compile Python to LLVM.

2. Cython (http://cython.org/), a compiler that converts type-annotated Python into

generated C code that can be imported as a module.11

10We run, though, an experiment with Scala, a “trendy” language that allows for multi-paradigm pro-
gramming by integrating imperative, object-orientation, and functional features. Our Scala code built with
imperative features runs, not surprisingly, at roughly the same speed as the Java code (Scala compiled Java
bytecode runs in the Java Virtual Machine) and, thus, we decided not to include it in our results.

11The Python ecosystem is incredibly rich and continuously expanding. Thus, it is well beyond
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Finally, we have Mathematica. Although Mathematica allows for multiparadigm program-

ming (including our imperative algorithm), its kernel strongly prefers a more functionally

oriented approach. Thus, we will also use its Compile function plus a rewriting of the code to

take advantage of the peculiarities of the language. While this would make the results from

this last computation hard to interpret, some readers may find them of interest.

4. Results

We report our results in Table 1, where we show the average run time and the relative

performance of each code in terms of the best performer in each group (C++ with GCC in the

Mac machine and C++ with Visual C++ in the Windows machine). For those codes that run

in less than 60 seconds, we average 10 runs (after a warm-up) to smooth out small differences

caused by the operating system. In the codes that run in more than 60 seconds, we report

only one run, as any small difference does not have a material effect on relative performance.

Also, we report elapsed time, not watch time, except for R, where we report user time (to

avoid the problems of the overhead of the REPL shell).12 At the bottom of the table, and

separated by a double line, we report the hybrid and special cases: Matlab with Mex files, R

with Rcpp, Numba, Cython, and the rewrite of Mathematica.

Our first result is that C++ and Fortran still maintain a considerable speed advantage with

respect to all other alternatives. For example, Java is between 2.10 and 2.69 times slower

than C++, Matlab around 10 times slower, and the Pypy implementation of Python around 48

times slower.

Second, C++ compilers have advanced enough that, contrary to the situation in the 1990s,

C++ code runs slightly faster (5-7 percent) than Fortran code. The many other strengths

of C++ in terms of capabilities (full object orientation, template meta-programming, lambda

functions, large user base) make it an attractive language for graduate students to learn. On

the other hand, Fortran is simple and compact —and, thus, relatively easy to learn —and it

can take advantage of large amounts of legacy code.

Third, even for our very simple code, there are noticeable differences among compilers.

We find speed improvements of more than 100 percent between different executables of the

same underlying code (and using equivalent compilation flags). While the open-source GCC

compilers are superior in a Mac/Unix/Linux environment (for which they have been explicitly

developed) to the Intel compilers, GCC compilers do less well in a Windows machine. The

deterioration in performance of the Clang compiler was expected given that the goal of the

our abilities to survey every single possibility. The interested reader can check a list of compilers at
http://compilers.pydata.org/.

12The details of each machine and the compilation instructions are reported in the appendix.
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LLVM behind it is to minimize compilation time and executable file sizes, both important

goals when developing general-use applications but often (but not always!) less relevant for

numerical computation.

Fourth, Java is between 2.2 to 2.69 times slower than C++. This difference in speed

plus Java’s issues with floating point arithmetic in high-performance scientific computation

suggests that there is no obvious advantage for choosing Java over C++ unless portability

across platforms or the wide availability of Java programmers is an important factor.

Julia, with its just-in-time compiler, delivers an outstanding performance. Execution

speed is only 2.64 to 2.70 times slower than the speed of C++. Julia is slightly faster than

Java and close to 4 times faster than Matlab. Given how close Julia’s syntax is to Matlab’s,

the fact that it is open-source, and that the language has been designed from scratch for

easy parallelization, many researchers may want to learn more about it. However, Julia’s

standard is still evolving (causing potential backward incompatibilities in the future) and

there are only a few libraries for it at the moment.

Matlab runs between 9 to 11 times slower than the best C++ executable. The difference

in performance between compiled languages and this widely used scripting language seems to

have stabilized over the last decade.

In the Pypy implementation, the Python code runs around 44-45 times slower than in C++.

In the “traditional”implementation of Python (often called CPython), the code runs between

155 and 269 times slower than in C++. Other benchmarks have also found similar results. For

example, the Computer Languages Benchmark Game finds many examples where Python is

over 100 times slower then C++.13

R runs between 475 to 491 times slower than C++, although the performance improves some-

what (to between 243 and 281 times slower) if the R code is compiled using the R compiler

package. This poor performance is well-understood in the R community and it is due, in part,

to some choices in the original design of R back in the 1990s, when nobody could have fore-

casted its future success. In fact, there are a number of initiatives to increase R’s speed, such

as pqR, Renjin, and Riposte.14 Of course, the strength of R is in statistics and econometrics

where the overwhelming richness of existing packages (over 5,500 at the CRAN repository as

of May 2014) makes it an outstanding alternative. Mathematica, in its imperative version,

runs up to 809 times slower than C++.

We move now to analyzing the hybrid and special cases. When we use a Mex file written in

C++, Matlab runs 1.29 and 1.64 times slower than C++. When we use Rcpp in R, the resulting

13See also Lubin and Dunning (2013), https://modelingguru.nasa.gov/docs/DOC-1762, or
http://wiki.scipy.org/PerformancePython.

14See the discussions and speed tests in http://www.pqr-project.org/, http://www.renjin.org/, and
https://github.com/jtalbot/riposte.
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code runs between 3.66 and 5.41 times slower than C++. While Mex files were faster, we found

Rcpp to be elegant and easy to use. These numbers suggest that a researcher can use the

friendly environment of Matlab or R for everyday tasks (data handling, plots, etc.) and rely

on Mex files or Rcpp for the heavy computations, especially those involving loops.

In the Python world, Numba’s decorated code runs between 1.57 and 1.62 times slower than

the best C++ executable and Cython code runs between 1.41 and 2.49 times slower than C++.

Both approaches demonstrate a great performance.15

Mathematica is a particular case. If we just use the function Compile to compile the Bell-

man operator, performance improves, but not dramatically. If, instead, we both rewrite

the code to have a more functionally oriented structure and use the function Compile,

Mathematica runs between 1.67 and 2.22 times slower than C++. As we mentioned before,

we do not emphasize this performance, as the code was tuned to Mathematica requirements,

something we did not do for other languages.

We close with three caveats about our exercise. First, our computational task (value func-

tion iteration with grid search, monotonicity in the decision rule, and an envelope condition),

is not well-suited to vectorization. The argument is explained in detail in the appendix. In

particular, the nesting of a while loop with three for loops and an if control statement, far

from being a poor programming choice, saves considerable time in execution. We have vector-

ized versions of our code in Matlab or R (languages that often profit from vectorization) that

run slower than the baseline codes. Furthermore, the deterioration in performance becomes

worse as the number of grid points increases.

Second, we did not try to take advantage of the particular features of each programming

language (for example, we do not change the order or the iteration of the loops between rows

and columns to suit the preference of each languages; a choice that degrades, for instance, the

performance of C++). In our personal assessment, that would make the comparison extremely

cumbersome. However, the reader is invited to look at our github page and check how much

her favorite language can improve from being coded by an expert.

Third, and also beyond this paper, we do not compare how easy it is to parallelize the

code written in each language. This may be an important factor, with some languages such

as Julia that are designed from scratch being easy to parallelize and others having more

issues with it (for example, in Python due to its Global Interpreter Lock that synchronizes

the execution of threads).

15Without compiling the Bellman equation as a separate function, Numba was slower than Pypy.
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5. Concluding Remarks

In this short paper we have taken a first step at a comparison of programming languages

in economics. Our focus on speed should not be taken as the only important metric for

language comparison. Other issues (ease of programming, existence of auxiliary tools, or

vibrant communities of fellow programmers) should be considered as well. Also, different

programming languages can be used by one researcher to address different problems (for

example, a complicated value function iteration in C++ and a statistical analysis of some data

in R).

Nevertheless, speed has three inherent advantages. First, it is easier to measure. Second,

speed comparisons give us an indication of the potential benefits for researchers frommastering

a new programming language. Third, many real-life applications in macro are considerably

more computationally intensive than our simple exercise. As we increase, for example, the

number of state variables or we nest a value function iteration in an estimation loop, speed

considerations become central for many research projects where the code may take weeks to

run.

Our simple exercise leaves many questions unanswered. For example: How do our results

extend to other problems, such as those in econometrics? Are there improvements in our

algorithm that would benefit one programming language much more than others? Can we

re-arrange loops in ways that change relative speeds? However, our results in and themselves

should be of interest to a wide audience of researchers. We hope to see more comparisons

of programming languages in economics in the future and a discussion of our coding choices

through our github repository, where readers can fork their own versions of our programs.
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Table 1: Average and Relative Run Time (Seconds)

Mac Windows

Language Version/Compiler Time Rel. Time Version/Compiler Time Rel. Time

C++ GCC-4.9.0 0.73 1.00 Visual C++ 2010 0.76 1.00

Intel C++ 14.0.3 1.00 1.38 Intel C++ 14.0.2 0.90 1.19

Clang 5.1 1.00 1.38 GCC-4.8.2 1.73 2.29

Fortran GCC-4.9.0 0.76 1.05 GCC-4.8.1 1.73 2.29

Intel Fortran 14.0.3 0.95 1.30 Intel Fortran 14.0.2 0.81 1.07

Java JDK8u5 1.95 2.69 JDK8u5 1.59 2.10

Julia 0.2.1 1.92 2.64 0.2.1 2.04 2.70

Matlab 2014a 7.91 10.88 2014a 6.74 8.92

Python Pypy 2.2.1 31.90 43.86 Pypy 2.2.1 34.14 45.16

CPython 2.7.6 195.87 269.31 CPython 2.7.4 117.40 155.31

R 3.1.1, compiled 204.34 280.90 3.1.1, compiled 184.16 243.63

3.1.1, script 345.55 475.10 3.1.1, script 371.40 491.33

Mathematica 9.0, base 588.57 809.22 9.0, base 473.34 626.19

Matlab, Mex 2014a 1.19 1.64 2014a 0.98 1.29

Rcpp 3.1.1 2.66 3.66 3.1.1 4.09 5.41

Python Numba 0.13 1.18 1.62 Numba 0.13 1.19 1.57

Cython 1.03 1.41 Cython 1.88 2.49

Mathematica 9.0, idiomatic 1.67 2.29 9.0, idiomatic 2.22 2.93
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6. Appendix

6.1. Compilation Flags

Our Mac machine had an Intel Core i7 @2.3 GHz processor, with 4 physical cores, and 16 GB

of RAM. It ran OSX 10.9.2. Our Windows machine had an Intel Core i7-3770 CPU @3.40GHz

processor, with 4 physical cores, hyperthreading, and 12 GB of RAM. It ran Windows 7,

Ultimate-SP1.

The compilation flags were:

1. GCC compiler (Mac): g++ -o testc -O3 RBC_CPP.cpp

2. GCC compiler (Windows): g++ -Wl,--stack,4000000, -o testc -O3 RBC_CPP.cpp

3. Clang compiler: clang++ -o testclang -O3 RBC_CPP.cpp

4. Intel compiler: icpc -o testc -O3 RBC_CPP.cpp

5. Visual C: cl /F 4000000 /o testvcpp /O2 RBC_CPP.cpp

6. GCC compiler: gfortran -o testf -O3 RBC_F90.f90

7. Intel compiler: ifortran -o testf -O3 RBC_F90.f90

8. javac RBC_Java.java and run as java RBC_Java -XX:+AggressiveOpts.

6.2. Vectorization and the Properties of the Solution

In the main paper, we use value function iteration with grid search over capital as our solution

method. In particular, we take a value function V n−1 (k, z), we apply the Bellman operator:

V n (k, z) = max
k′

(1− β) βt log (zkα − k′) + βE
[
V n−1 (k′, z′) |z

]
and we get a new value function V n (k, z). Using standard arguments, one can show that, for

any initial V 0 (k, z), V n (k, z)→ V (k, z) as n→∞ in the sup norm.

There are two computational costs in value function iteration. First, we need to evaluate

the operator for any value of the state variables, k and z. In the main paper, we have 17820

points in the grid of capital (ki, for i ∈ {1, . . . , 17820}) and 5 points in the grid of productivity
(z, for i ∈ {1, . . . , 5}), for a total of 89100 points. Second, we need to solve the maxk′ problem

using grid search. That is, for each of the 89100 points, we need to search among the 17820

possible choices of k′m, for m ∈ {1, . . . , 17820}.16

16Given our choice of capital grid, all the choices of k′ are feasible for any point in the state space.
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To ease the computational burden of the maximization problem, we take advantage of two

key properties of the solution. First, the monotonicity of the decision rule. That is, if we

know that for state variables ki and zj, the optimal choice is

k′m = g (ki, zj) ,

then we also know that k′n = g (ki+1, zj) ≥ k′m = g (ki, zj). The decision rule is also monotone

along the productivity dimension (although we do not exploit monotonicity along the second

dimension in our algorithm: we found in preliminary testing that the improvements in speed

from doing so were minimal).

Second, we know that an envelope condition applies. More concretely, if

(1− β) βt log
(
zjk

α
i − k′n+1

)
+ βE

[
V n−1 (k′n+1, z′) |z]

< (1− β) βt log (zjk
α
i − k′n) + βE

[
V n−1 (k′n, z

′) |z
]

then we know that the optimal choice of k′ cannot be higher than k′n, or k
′
n = g (ki, zj) < k′n+1.

In other words, once we have reached the optimal choice of k′, higher future capital only

decreases the value function (the increase in continuation utility would be lower than the cost

of a lower current consumption).

These two properties allow us to write a particularly effi cient algorithm. We copy the code

here from the Matlab version, but all the other codes are nearly identical:

------------------------------------------

for nCapitalNextPeriod = gridCapitalNextPeriod:nGridCapital

consumption = mOutput(nCapital,nProductivity)-vGridCapital(nCapitalNextPeriod);

valueProvisional = (1-bbeta)*log(consumption)...

+bbeta*expectedValueFunction(nCapitalNextPeriod,nProductivity);

if (valueProvisional>valueHighSoFar)

valueHighSoFar = valueProvisional;

capitalChoice = vGridCapital(nCapitalNextPeriod);

gridCapitalNextPeriod = nCapitalNextPeriod;

else

break; % We break when we have achieved the max

end

end

------------------------------------------
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What are we doing here? The counter nCapitalNextPeriodwill search over optimal values

of k′ given some values ki and zj. But we do not initialize the counter at 1 (except with the first

point of the grid). We initialize the counter at gridCapitalNextPeriod, that is, the optimal

choice of capital in the previous point of the grid ki−1 and zj. Then, we evaluate consumption

and the value function for the choice of k′ capital given by the counter. If the choice im-

proves the previous evaluation of the value function (valueProvisional>valueHighSoFar),

we move to the next point of the grid. Otherwise, we break the search since we have already

found our optimal choice.

A good way to see the effi ciency of this algorithm is to note that we will only need to

check a few points in the vector nCapitalNextPeriod. For example, in the last iteration of

the value function (iteration 257), we search on average 2.65 points of k′ for each value ki
and zj, instead of 17820 (as a naive search would require). In other words, instead of having

to evaluate the value function 1.5878e+09 times in iteration 257, we only evaluate it 235656

times. The average number of searches is very stable from iteration 1 and already at iteration

9 it has settled down at 2.65 points.

A cursory inspection of our code, where we nest a while loop with three for loops and

an if control statement, could suggest the possibility of improving performance by taking

advantage of vectorization. Unfortunately, our algorithm is unlikely to benefit from vector-

ization. The reason is that vectorization cannot easily accommodate monotonicity and the

envelope condition. We could, for example, evaluate the value function for

(1− β) βt log
(
zik

α
j − k′

)
+ βE

[
V n−1 (k′, z′) |z

]
for all possible values of k′ using vectorized functions and obtain a vector V̂ (k′). But then

we would need to search V̂ (k′) for its maximum value, a costly task. Monotonicity and the

envelope condition tell us that we do not need to compute the whole of V̂ (k′), just 2.65

points on average. Furthermore, as the number of grid points k′ increases, the performance

of vectorization deteriorates more and more because we need to search among more values

of k′. Note that this is not directly linked to the effi ciency with which we store matrices in

memory. Therefore, the inner for loops and the if control statement are the consequence of

understanding the mathematical structure of our problem.

The two outer for loops are just convenient ways to move along the state space without

the need to store large matrices. Similarly, the while loop is unavoidable: the very core of

value function iteration is that it is an iteration.

We can illustrate the drawbacks of vectorization running Matlab and R code with and

without vectorization and for three different grids for capital: 179, 1782, and 17820 grid
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points. Table A.1 reports the running time in seconds. We can see that our original code

is substantially faster than a vectorized version and that the deterioration in performance

increases with the number of grid points.

Our vectorization was very simple: we eliminated the inner loop and the conditional

statement and replaced them with vector operations on the whole grid of k′. While a more

carefully designed vectorization could reduce the distance with respect to our loop code,

vectorization would always need to beat a very effi cient loop search that uses monotonicity

and an envelope condition. Therefore, we are not sanguine about the chances of vectorization

in this particular problem.

Table A.1: Loop vs. Vectorization

k′ 179 1782 17820 k′ 179 1782 17820

Matlab, loop 0.09 0.80 7.91 R, loop 2.14 22.00 345.55

Matlab, vectorized 1.51 76.04 3408.18 R, vectorized 2.29 108.72 10785.20
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