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ABSTRACT

In this paper, we investigate set Input to State Stability (set-ISS) in the context of
multi-agent systems, specifically when agent interaction is spatial in nature. We review
the definition of Input-to-State (ISS) Lyapunov functions with respect to sets, from which
we provide a structural formulation of set-ISS that accommodates the local and per-agent
nature of interacting systems. We argue that such a non-global characterization of set-ISS
results in intuitive studies of multi-agent systems subject to external disturbances, result-
ing in superior understanding of collective and asymptotic behaviors. For the validation
of our propositions, we consider a decentralized control law to reach swarm aggregation
towards a bounded region of space. We demonstrate that our set-ISS structure, coupled
with the requirement of physical occupancy in spatial interaction, connects with the clas-
sical notions of set-ISS, and yields both a fundamentally simplified analysis and superior
insight into agent behavior compared to previous work.



1 Introduction

Multi-agent systems have become an important focus of the control community in recent
work, particularly given the theoretical spectrum of their analysis and the widely varying
implications of their application in real-world environments. Examples of general multi-
agent analyses include investigations into consensus processes [15], formation control [5]
and distributed decision and control frameworks [4] , with applications ranging from target
tracking [13], to environmental monitoring [10,24].

We are concerned in this work with multi-agent systems that are both mobile and
spatially interacting. That is, systems whose collaboration and objectives, e.g. informa-
tion exchange and collective behavior, is directly related to configuration in space. There
is a large body of work that investigates such systems. Examples range from general-
ized swarming and constrained interaction [25], to coverage or flocking behaviors [2,23].
When analyzing the collective behavior of systems that interact spatially, it is typical to
apply swarm energy functions together with Laplacian techniques and standard Lyapunov
methods to arrive at bounds on cohesiveness or system aggregation. However, few works
(which we highlight here) treat multi-agent systems through input-to-state stability (ISS)
or its set-based counterpart set Input to State Stability (set-ISS), our primary focus in
this work.

It is generally known that ISS and set-ISS are powerful tools in the analysis of the sta-
bility and robustness of control systems. Seminal works on ISS and set-ISS include [12]
which provides a converse Lyapunov theory for set stability, and [11,20,21] which in-
troduce ISS, extend the notion to non-compact sets, and generalize to arbitrary closed
invariant sets, respectively. In the context of multi-agent systems, [14] adapts ISS no-
tions to networked control systems. Mobile systems are considered in [18], where the
authors investigate set stability in guaranteeing global target aggregation when there
exist informed leaders in the network, inducing a priori knowledge of the set of con-
vergence. Similarly, [19] views set-ISS for set tracking when network leaders, possibly
non-stationary, define the desired set of aggregation over time. However, the applica-
tion of set-ISS in spatially interacting systems, particularly without leader influence, is
noticeably sparse. Further, the methods of works such as [18,19] are specialized to the
application of interest, while providing notions of set stability, they deviate from classi-
cal Lyapunov-based set-ISS approaches, making generalization beyond leaderless systems
cumbersome. We thus aim to provide an intuitive tool for studying per-agent behavior,
abstracting from the stacked vector nature of the system.

Our proposition is then to adapt and formalize the structural components of works
such as [18,19,21] to study purely collaborative systems, i.e. those without leader influence.
We first show how the classical ISS and set-ISS notions of [11,20,21] can be structured
with proper choice of a set-ISS Lyapunov function and local input-to-state bounds, to
yield set stability with input disturbances for leaderless multi-agent systems. Then, we
demonstrate how our construction can be applied in the context of spatial interaction,
by considering constraints on physical occupancy in the workspace, yielding insights into
the tradeoffs of disturbance, collective behaviors, and the parameters of interaction. Our
results show that when agents spatially interact under realistic conditions, the applica-
tion of set-ISS can be formulated, unlike previous works such as [18,19], in the classical
manner of [11,20,21], effectively exploiting the known conditions of the system to vastly
simplify analysis. Further, this formulation gives us physical intuition in spatially inter-



acting systems, that relates the parameters of interaction with input disturbance analysis.
This relationship could also be extended to spatially interacting systems with competing
objectives, specifically by treating such objectives as systematic disturbances. While our
formulations share certain mathematical machinery with works such as [18,19], we provide
a fundamentally different goal, as opposed to having the convergent set implicit (through
leader information), we aim to provide useful tools for the set-ISS characterization of fully
collaborative multi-agent systems.

2 Preliminaries

Consider a system of n mobile agents operating in R? and denote with z; € R? the
location of the agent 7. The aggregate state of the system is given by the stacked vector
X = [11,...,2,)T € R"™. Assume each agent i has the following dynamics:

where f; : R™ x R™ — R? is a continuous map locally Lipschitz on x, and the local agent
state x; and the local input u; are function of time ¢t € RT, with values z;(t) € R? and
u;(t) € R™. In particular, an input u; is a measurable locally essentially bounded function
u; : R = R™. The dynamics of the entire system can be then written as:

x = f(x,u) (2)

with f = [fi(x,u1),. .., fi(x,u,)]" the stacked vector of agent dynamics and u = [uy, ..., uy)
the stacked vector of exogenous inputs.

The interactions of the agents can be described by G(t) = {V, £(t)}, the time-varying
graph encoding the network topology of the multi-agent system at time t, with V =
{1,...,n} the set of vertexes modeling the agents, and £(t) = {(i,7) € V x V} the set of
edges representing the inter-agents interaction at time ¢. Agents with (7, j) € £ are called
neighbors and the neighbor set for an agent i is denoted N; = {j € V| (i,j) € £}

Assume that we wish to study convergence of the agents towards a nonempty set
A € R? and denote with ||z 4 the point to set distance® defined as:

|2]l.a = dist(z, A) = in {[lz — al[}. (3)

where ||z — a|| is the Euclidean distance. Further, consider the following norm definition
describing the upper bound on the input disturbance over time [22]:

[illoo = sup {{lu:(®)]|, ¢ = 0} (4)

In studying convergence to A, we will further require the following notions of so-called
KC functions. First, a function ¢ : [0,a) — [0, 00] is said to be positive if ¢(s) > 0 for all
s > 0 and ¢(0) = 0. A continuous function « : [0,a) — [0,00) is said to belong to class
KC if it is positive, strictly increasing and «(0) = 0. It is said to belong to class K, if
a =00 and «(r) — 0o as r — co. An example of a class K., function is a(r) = r¢ with

INote that, the computation of the distance of a point to a set often requires one to solve a constrained
optimization problem as such a distance does not generally admit a closed form. Indeed, a closed form
for this distance exists only in special cases, e.g., the distance of a point to a ball.
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¢ > 0. Similarly, the continuous function g : [0,a) X [0,00) — [0,00) is said to belong
to class KL if, for each fixed s, the mapping 5(r, s) belongs to class K with respect to r
and, for each fixed r, the mapping 3(r, s) is decreasing with respect to s and B(r,s) — 0
as s — 00. An example of a class KL function is 5(r,¢) = r®e* with ¢ > 0.

As will be required in the sequel, consider a function V : R™ — R, a locally Lipschitz
function, and the composed function ¢(t) = V(z(t)) with x the state of the system (2).
Usually the function v (t) is not differentiable, however the composition of a locally Lips-
chitz function V' and an absolutely continuous function x(¢) is also absolutely continuous,
and thus it is differentiable almost everywhere. Therefore, we can consider the upper
right-hand Dini derivative as:

Yt +h)) —¢(t)

D*e)(t) = lim sup h (5)

h—0t

Interestingly, if an absolutely continuous function v (t) is defined on and interval [t;, t5],
it has the right Dini derivative DT (¢) nonpositive almost everywhere, that it is non-
increasing on such interval as in the case of differentiable functions.

Note that, given the system (2) the upper right-hand Dini derivative with respect to
the composite function V' (z(t)) can be expressed as:

Vx+hfix) -V

D'V (x) = lim sup T (6)

h—0t

Consider the following special case for which the Lyapunov derivative admits an explicit
expression, since the directional derivative can be written in a simple way.

Lemma 1 ( [3]) Let V; : RY — R with i € 1,...,n be continuously differentiable, V; €
C', and let V = max;—1__,{Vi(z;)}. Denote as I(z) = {i : V(x) = Vi(z;)} the set of
indices where the mazimum s reached, then:
D*V = max {%(:ci)} . (7)
i€l (x)
The above property will prove fundamental to determining the set-ISS of a multi-agent
system, specifically in terms of viewing the system through worst-case behaviors instead

of studying the entire aggregate system, noting that the worst behavior continues to imply
information about the remainder of the system.

3 Set Input to State Stability

In studying the ISS and set-ISS properties of a system, the following generalized system
is considered (noting that in this summary of concepts, n is not the agent cardinality, but
a general state dimension):

t = f(x,u) (8)
where x € R” is the system state, f : R" x D — R" is a continuous map locally Lipschitz
on x and u € R™ is the input, i.e., a locally essentially bounded measurable function of
time u : Rt — R™. Denote with z(¢,x¢, u) the trajectory of the system (8) with initial
state o = x(0) and input u.

Let us now introduce the concept of asymptotic gain. This generalizes the idea of
finite (linear) gain, classically used in input/output stability theory [22].
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Definition 1 The system (8) is said to have K asymptotic gain with respect to a set
A € R" if there exists a class K function v such that:

Jimn (2, 70, 1) L4 < 7([lul) )

uniformly® on subsets of the form {x € R™, ||z||4 < r} withr > 0 and u.

Let us now introduce the concept of set stability. To this end, consider the “zero-input”
or “undisturbed” system:

&= fo(x) = f(z,0). (10)
that is, system (8) under the assumption u(t) = 0, V¢ € RT. The reader is referred to [12]
for a more comprehensive description of the topic.?

Definition 2 The system (8) is said to be globally asymptotically stable with respect to a
closed set A C R™ if and only if there exists a class KL function 3 such that, given any
initial state xo, the solution z(t,xo,0) satisfies:

[ (t, 20, 0)[|a < B(llxoll4,t),  VE=0. (11)

An intuitive approach to study the stability of a system with respect to a set is by
introducing the concept of Lyapunov function with respect to sets.

Definition 3 A Lyapunov function for the system (10) with respect to a nonempty set
A € R" is a function V : R — RT such that there exist ay, o, a3 € Koo over R* \ A
where:
—ay([lz]la) < V(z) < —as(]z].4) (12)
and
VV () f(x,0) < —as(l|lz]la) (13)

for all x € R™. Then the system (10) is globally asymptotically stable with respect to the
set A.

Note that, according to Definition 2 the set A C R™ is said to be O-invariant set for
the system (10), as by definition any solution starting in A is defined for all ¢ > 0 and
stays in A: z(t,20,0) € A, ¥Vt >0, Vz, € A.

Let us now introduce the concept of set input-to-state (set ISS) stability.

Definition 4 The system (8) is said to the set input-to-state stable with respect to a
closed, 0-invariant set A C R™ if and only if there exist a class KL function B and a class
IC function ~ such that:

[l (t, zo, u)lla < Bllzolla,t) +v(lullec), VI 0. (14)

2As pointed out in [22], the uniformity requirement means that solutions exist for all initial states,
controls, and times and for each real numbers €, there is some T = T(r,€) so that ||(¢, zg,u)||a <
€+ v(JJulloo) for all w, all ||z]j4 <r. and all ¢ > T.

3Note that, in this work for the sake of simplicity we do not mention the forward completeness
assumption. As pointed out in [12] this is redundant for compact sets as (11) implies the boundedness
of the solution. In addition, we assume parameters to be constant over time.

4An alternative definition would be to consider a continuous, positive definite function o rather than
as € Ko. However, as pointed out in [11] these two variants are equivalent, as it is always possible to
build an ISS Lyapunov from the positive definite function for which a function ag € K exists.




which can be equivalently expressed as:
lim (¢, 20, u)]La < (]l ) (15)

characterizing the ultimate asymptotic boundedness of the system with respect to the input
disturbance, the representation we adopt in this work.

Note that, any function v for which (14) holds (for some () is an ISS-gain for the
system (with respect to A ) such a « is in particular an asymptotic gain.

A suitable approach to study the set ISS property of a system is by introducing the
concept of ISS Lyapunov function with respect to a set A C R™.

Definition 5 A Lyapunov function for the system (8) with respect to a nonempty set
A € R" is a function V : R™ — RT such that there exists ay, an, a3, X € Ko over R™\ A
where:

—on([lz]la) < V(z) < —as(l|z]a) (16)

and
VV(z)f(z) < —as([[z]la),  [l2fla> x(llul) (17)

for all z € R™ and all uw € R™. Then the system is set ISS with asymptotic gain x.

Remark 1 The above converse Lyapunov theorem exists in generally equivalent forms
where there are characterizations ranging from V' being smooth [12], to Lipschitz [8], or
even locally Lipschitz [16].

4 Set ISS for Multi-Agent Systems

In this section, the set input-to-state stability results previously recalled are considered in
the context of multi-agent systems. The objective is to structure the definition of the set
ISS Lyapunov function in order to provide a useful tool to succinctly prove set stability
and robustness against disturbances for typical applications in multi-agent systems such
as swarm aggregation, as will be seen in Section 5. To begin let us provide a local variant
of the classical set-ISS definition for each agent i € V:

; ) < . ) .
B [lzi[la < max{x(fuill)},  VieV (18)

with local® asymptotic gain .
We are now ready to state our main result, that is a characterization of the classical
set-ISS Lyapunov theorem in the context of multi-agent systems.

Theorem 1 Consider a multi-agent system where each agent i € V has the dynamics
giwen in (1) and assume the local Lyapunov function to be defined as V; = §||z;||%. Assume
there exist x € KL and az € K4 such that:

Vi < —ag(lzilla),  llzilla = x(Juill), i€ I(2) (19)

®Note that we referred to x as the local asymptotic gain rather than the max;cy () itself to emphasize
the fact that the agents share the same structure for the asymptotic bound on the state trajectory.




where we define the set of agents that reach the maximal distance from set A at time t,
I(x) = argmax{ V}(t)} : (20)
i€V

providing a worst-case characterization of system behavior®. Then, the dynamics (1) is
(locally) set ISS with respect to A with (local) asymptotic gain x for each agent i.

Proof: For brevity we highlight the most vital aspects of the relationship between our
locally oriented structure and the general global result of Definition 5. Consider the
following global metric:

|[l.an = max {[las]l.a} (21)
and note that by choosing:
1
an([lllan) = ao(llz]lan) = 5 max {{lz:]% ) (22)

we have aq (||z]|an) = as(||z]|4n) =V, with the cartesian product A" = A x ... x A.
According to Lemma 1, it follows that the upper right Dini derivative can be computed

as: '
D*V = max {v} (23)
il (i)
Furthermore, from (19) we obtain:
DV < —ag([[#]lan),  N2flar > x(llull) (24)
which comes from the fact that:
[z]lan = x(ull) = ll@illa = x(lwills), @ € I(x) (25)
which in turns implies that:
Vi < —ag(||@illa), i € I(2) = DTV < —ag([|z].an). (26)

Therefore, it can be proven” that there exists a time instant 7' > 0 such that:
V(z(t) < aa(x(llull)), VE=T, (27)

from which we obtain: .
[2(t)[|.an < a7~ (aa(x(([u]l)))

<x(lull), V2T .
At this point by recalling the norm definition given in (4) it follows:
lzi(®)]l4 < max{x([luille)}, VE 2T (29)
where it should be noticed that by construction:
max{x([[uiflo)} = x{lulloc}, (30)

yielding the asymptotic trajectory boundedness given in (18).

6As opposed to a fully global viewpoint, which views all agent behavior in the aggregate.
"Proof is omitted due to space. See [9] and [1] for relevant methodologies.
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Remark 2 Let us summarize the implications of Theorem 1:

e [t should be noticed that the connection of our localized formulation and the classical
notions of set-1SS lies in the fact that the ISS gain is taken over the worst-case
behavior of agents in the system (i.e. max;ey ). Further, the fundamental coupling
of dynamics in interacting systems renders such a construction intuitive, as one
cannot hope to fully decouple agent behavior.

o Forthe proposed 1SS Lyapunov function the IC asymptotic gain is derived with respect
to a single agent rather than the overall system. This is not a surprising result as
in the context of multi-agent systems while referring to the disturbance affecting
the system and preventing its convergence towards the set A™, we normally refer
to the disturbance which prevents the convergence of each agent towards the set A.
In the next section where we consider as a case study the swarm aggregation of a
multi-agent system towards a bounded region, i.e. the set A, this concept will result
clear.

o As pointed out in [11], the ISS Lyapunov function given in Definition 5 can be used
to study the global asymptotic stability of the “zero-input” system (10). Indeed, the
same holds for the ISS Lyapunov function we propose in Theorem 1, in studying
multi-agent systems with disturbance.

4.1 Spatial Interaction and Physical Occupancy

Given the typical structure of collaborative multi-agent systems, that is:

B =) wiglwi @) (2 — ) (31)

JEN;

with time varying weight w;;, in applying Theorem 1, we must generally evaluate the
boundedness of the inner product z] (z; — z;), specifically in determining condition (19).
Thus, we provide a geometric argument concerning the relationship between agents lying
at a maximal distance from A € R? e.g. i € I(x), and other agents in the system. In
particular, the following result forms the basis of our physical intuition that relates set-ISS
to spatially interacting systems:

Lemma 2 Consider a pair of robots (i, j) with i, j € V such that ||z;|| > ||z;|| and assume
each robot has a physical occupancy of €, i.e., |z; — ;|| > 2€. For the sake of clarity,
assume d = 2, although the concepts generalize for any d € [1,3]. It follows that:

) (v —x;) < —#||lai® (32)

2

with k € RT defined as:
€

Kk =1-—cos <2 sin™! <W)) , (33)

with W a Fuclidean measure of workspace boundedness.



Figure 1: An illustration of the basic geometric concepts of Lemma 2, yielding a bound on
the inner product =} (z; — ;) when ||z;|| > ||a;||, Vi,j € V. As agents ¢ and j approach
minimal occupancy |z; — z;|| = 2¢, the angle a — 2 sin™! (¢/||z;]|), ultimately yielding a

bound on z] (z; — ;).

Proof: In order to prove the lemma we provide a geometrical reasoning based on the
physical occupancy assumption. In particular, we know that the inner product «] (x;—x;)
can be written as ||a;||*—||z;|| |«;]] cos(a). Since we are looking for a lower bound it follows
that the worst case scenario is given by the case ||z;|| = ||z;|| for which the following holds:
2
I

lill* = llll |21 cos(e) = fla]|*(1 — cos(a)).

Then, in order to compute the lower bound we need to compute the angle o for which
the cosine is maximum according to the physical occupancy assumption. In particular for
the case ||z;|| = [|z;||, the minimum admissible angle « is given by the configuration for
which the robots are at distance 2 e from each other over a circle of radius r = ||z;|| = W.
Therefore, by using the sine law we obtain o = 2 sin™! (1/_6\/)’ and the thesis follows. See
Figure 1 for a graphical representation of this argument in a 2-dimensional case. In other
dimensions there will exist a s, while not necessarily possessing the form (33), it will

continue to be a function of the ratio ¢/WW.

Remark 3 [t is important to notice that k is a function of the ratio of physical occupancy
€ and the workspace scale VW. As we will see, k is instrumental in the ISS gain of our
system, and thus plays a key role in the tradeoff between the quality of asymptotic trajectory
bounds, the magnitude of input disturbances, and the parameters of agent interaction.

Now, assuming that a spatially interacting system meets the standards of Lemma
2, and particularly the intuition of Remark 3, we can intuitively evaluate the set-ISS
properties of the system by applying Theorem 1. In the sequel we provide an illustrative
example of our propositions.

5 Spatially Interacting Systems: An Illustrative Ex-
ample

In this section we consider the swarm aggregation behavior originally proposed in [7] and
successively extended for a distributed context in [6] as an illustrative example of Theorem
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1 and Lemma 2. In particular, the following interaction modeling is considered for each
agent ¢:

) =Y glw— ) +u; (34)

JEN(1)

where the interaction function g(y) is defined as:

9) = =y [9alyl) = 9-(l)] . v e R, (35)

with the aggregative and repulsive terms defined as:
b
gallyl) =a, g(llyll) = i (36)

Briefly speaking, the following main results were proven in [7], [6], [17] for (34), when
u; =0,V eV:

e The swarm eventually reaches a steady state configuration.

e The swarm converges to a bounded region defined as:

A={z eR", |z| < =} (37)

Q| SN

with @ = aAgmin and b = /n(n — 1)b where Ay is the lower bound for the
algebraic connectivity®. It is worth noting that these works derive localized swarm
bounds per-agent (as we do in applying Theorem 1), however they do so by exploiting
the relationship between the euclidean norm of the stacked vector, and that of a
single agent, yielding looser bounds than we will demonstrate. Further, no effort is
made to characterize input disturbances in these previous works.

Using the results of Theorem 1, we will now demonstrate an analysis of system (34)
from the context of set-ISS. Considering now the system (34), we are interested in in-
vestigating how for each agent ¢ the additive disturbance u; might affect the convergence
of each agent i towards the set A. For the sake of the analysis, the following per agent
coordinate transformation e;(t) = ;(t) — 7 is considered?, i.e., the distance of the agent i
from the instantancous barycenter z = £ 3" | x;(0). It follows that the dynamics of agent
i given in (34) can be written as:

Let |le]| 4 be the point to set distance defined as:

le|| —r ifeeRI\A
lefla = : : (39)
0 otherwise

8 A connectivity maintenance control law is required to enforce this property. The reader is referred
to [17] and references therein for a comprehensive overview of this topic.

9Gtrictly speaking, this coordinates transformation makes the analysis independent from any particular
choice of the reference frame as only relative distances are considered.
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where the parameter r is the unknown radius of the hyperball of convergence to be
determined.

According to Theorem 1 we consider the Lyapunov function V' (t) = max;ey {V;(z;)}
where each V; : R — R has the following structure:

1
Vi= sl (40)

for which the time derivative is defined as:

Vi = e (Glll) &0

(41)
= [lei(®)ll.a Vellei(®)].a €(t)
where the gradient Vel|le;(t)||4 for any e(t) € R"\ A" is defined as:
Vellei(t)lla = Ve [lle:(®)]| =] = Velle:(t)]
_[alle@l e Olle®)]
dey 7 0e; T Oen . (42)

)

Therefore, by plugging (42) into (41) we obtain:

_ lle@lla
C eIl

Let us now assume the i-th robot to be such that i € I(z). In particular, the V; can
be further detailed as follows by plugging (38) into (43):

eit)" éi(t) (43)

_latols, .
:Hemue S G T (44
fescop ”Jre,-(t)uv’“) ‘

k3 k3

where we have partitioned V; into systematic contribution V;* and disturbance V4. We
first characterize V;° as follows:

oL@l

N POTRCRA
Medla o= [y [ D
el ZN[ e |- 2

O A 1T oo
<o L Wl [ = asledl + o]

JesOLAT _ pet e [ — e
< e L Nl [ = a el

—arleil|%

N
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where the fact r = % and |N;| > 1 (by trivially assuming connectivity over time) has
been used. Further, in bounding the inner product over the neighborhood N;, we have
applied Lemma 2, as it must hold for i € Z(V), that ||z;|| > ||z;||. Finally, as required for
condition (19), the connectedness assumption ensures that there cannot exist an i € I(x)
for which V; = 0. Note that, this provides a set stability characterization of the system,
that is when zeroing the input.
Let us now simply characterize Vid through application of the Cauchy-Swartz inequality
as follows:
7l _ ”ei(t)HAei(t)T ”
o le@)l (46)
< [lei()]la l[uill

At this point, by plugging (45) and (46) into (44) we have:

V=V 4 v
< —ark el + llei®)lla fluill (47)
< —ar (1=0)|leill%

with 0 < 6 < 1, where the last inequality holds if:

i o
illa > 48
Jeilla > el (18)
Therefore, we can apply Theorem 1 with the following functions:
az(||zilla) = ar (1= 0)|lell%
| o (49)

Kluilloe) = S50

This implies that the system (1) is locally set ISS with respect to the set A defined as

b
A={zeR?: |z <r}, with r=— (50)
ak
with local asymptotic gain x(||u;||o0) = %. Thus ensuring the boundedness condition

given in (18) or equivalently the boundedness condition given in (15) for the stacked vector
system with respect to the cartisian product A" = A x ... x A.

Remark 4 We reiterate the role that our physical intuition plays in adapting set-1SS
concepts to multi-agent systems with spatial interaction. In particular, contrary to the
common notion that the difficulty of analysis scales with the fidelity of system modeling,
our case study illustrates that by leveraging the requirements (not assumptions) of the
system, we can arriwe at simplified and clear analysis, and fundamentally better results.

6 Conclusion

In this work, the set Input to State stability framework in the context of multi-agent
systems has been investigated. Motivated by the typical analysis carried out in the context
of multi-agent system to prove for instance formation control, or swarm aggregation or
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containment, we have reviewed the definition of ISS Lyapunov function with respect to
sets in order to provide a handy tool to effectively prove set stability and robustness to
external disturbances for typical applications. The swarm aggregation problem has been
considered as a case study to prove the effectiveness of the proposed revised definition of
ISS Lyapunov function. Future work will be focused on abstracting our results to studying
the interplay of competing objectives in multi-agent systems.
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