

Integrating Databases with Publish/Subscribe

Luis Vargas Jean Bacon Ken Moody

Computer Laboratory, University of Cambridge

{firstname.lastname}@cl.cam.ac.uk

Abstract

Publish/subscribe is emerging as an appropriate
communication paradigm for large-scale, widely-distributed
systems. In this paper, we describe our work on integrating
active databases with publish/subscribe, using PostgreSQL
and Hermes as the experimental context. In the proposed
architecture, each database manager defines and advertises
change events, in contrast with a continuous query model.
Advertised events, which may span a number of physical
relations, correspond to the virtual relations of a security
view. Clients subscribe to events of interest, and can refine
their subscriptions through content-based filter expressions.
An event is published whenever a database change, detected
via a dynamic triggering layer, matches some active
subscription. Security and routing of database events are
handled in the same way as for conventional Hermes events.

Key Words

active databases, publish-subscribe, event-based systems

1. Introduction

The proliferation of networked environments and the use of
database systems across organizations in recent years have led
to the creation of innumerable information systems that follow
the Client-Server communication model. In these systems, a
server executes actions, or delivers data to clients, only when
explicitly requested to, by means of queries or transactions
issued in a passive, client-pull-based approach. Most online
transaction processing (OLTP) systems today follow this
mode of operation. It has proved to work well in the
traditional context of local area networks (LANs), used with a
moderate number of clients and servers in corporate
environments. This relatively small-scale use has avoided
some of the limitations imposed by the latency of the
request/reply paradigm, but these limitations are inherent in
the Client-Server model when used for conventional
query/update systems.

The massive growth of the Internet and the exponential
increase in the number of interconnected parties, both static
and mobile, has called this style of use into question. What
were once closely controlled environments have evolved into
large scale collaboration spaces that are both highly
distributed and dynamic. This evolution has led to new
requirements, as well as to exciting and novel application
domains for distributed information systems. Examples arise

in situation assessment, business process (workflow) control,
network management, and access control policy evolution, to
name but a few areas. These areas share the same basic
requirement of tracking changes at a collection of information
sources in order to detect situations of interest; what is new in
today's world is that this set of information sources may be
globally distributed and dynamic. The information system
must identify relevant changes and notify them to users or
client applications, without requiring them to know a priori
where and when to look for data. Thus, the challenge for
these change management systems is to provide the necessary
mechanisms and strategies for the scalable, reliable, and
secure monitoring, processing, and notification of changes at
the relevant information sources.

The Publish/Subscribe communication paradigm [1] can
help to meet the challenge by providing efficient, scalable,
many-to-many, push-based delivery of messages between the
various parties in a system. We are therefore creating a
secure, attribute-based pub/sub system in our EDSAC21
project (Event-Driven, Secure Application Control for the
21st Century). Given the large number of deployed database
systems, we are exploring how to integrate existing inter-
domain databases into this framework, in order to provide
scalable change notification within the global environment.

This integration will allow client applications to go beyond
the traditional lookup/update scheme, where passive queries
are issued over past and present data, such as "tell me the
price of all automatic cars currently on sale in Cambridge". In
our model, local DBMSs advertise details of changes to data
that they are willing to notify to clients, and publish events
through the publish/subscribe system when such changes
occur. Clients can subscribe to one or more of these change
events, or specify restrictions to them by providing attribute-
based filters. In consequence, they are informed in a timely
manner when particular state changes occur in some database,
e.g. "notify me of the price of any new automatic that comes
up for sale in my town". The scope of queries may thus be
future as well as existing data, and span a widely distributed,
dynamic collection of databases. The publish/subscribe
communication model used in our integrated architecture
allows database notifications to be disseminated without
requiring clients to know the location of the information
sources involved.

In this paper we describe the approach that we are taking to
achieve this integration. We are extending the built-in active
facilities provided by the object-relational database
management system (ORDBMS) PostgreSQL [2], which are
similar to those available in most commercial RDBMS today.

Our system supports a set of fine-grained active predicates
that can be integrated into our publish/subscribe
communication system, Hermes [3], in the form of generated,
typed events.

Sections 2 and 3 set up the background in active databases,
the ORDBMS PostgreSQL, and the publish/subscribe
paradigm, with a particular focus on Hermes. Section 4
describes our integrated architecture as well as its
implementation and execution model. Section 5 outlines
related work, and Section 6 mentions some future plans,
before the paper is concluded in Section 7.

2. Active Databases

In traditional database systems, data is created, retrieved,
modified and deleted, in response to requests issued by users
or applications. This passive pattern cannot be used
effectively to model requirements that involve monitoring and
reacting to particular situations in the database, such as the
automated creation of purchase orders for items that go below
a low inventory threshold. Supporting such a requirement on
a passive database system would need a polling mechanism to
check the number of product units in stock periodically. The
(complex) estimation of an appropriate polling frequency is of
central importance. While a high value introduces costly
overheads into the system, too low a value may result in late
detection of, and reaction to, a critical situation.

Active DBMSs [4] extend "passive" DBMSs with the
possibility of specifying reactive behaviour. Such behaviour,
implemented by triggers, allows monitoring for and reacting
to specific database circumstances at the DBMS itself.

An active database built on top of an active DBMS must
specify a knowledge model and an execution model. The
knowledge model defines the database reactive behaviour,
generally in terms of event-condition-action (ECA) rules. The
event part of a rule defines the situation that triggers the rule,
the condition evaluates the context in which the event takes
place, and the action formulates the task to execute after the
rule has been triggered and its condition validated.

The execution model specifies how to treat a set of rules at
run-time. It defines, for example, the rules' coupling mode
and prioritization strategy. The coupling mode of a rule
defines when its condition and action are evaluated and
executed, relative to the event that triggers the rule. The
prioritization strategy determines the order in which the
system triggers multiple rules associated with the same event.

2.1. PostgreSQL

PostgreSQL is an open-source object-relational database
management system supporting the ANSI SQL92 and SQL99
standards. Domain, referential, and transactional integrity, as
well as multi-version concurrency control, are offered as part
of its features. In PostgreSQL, active database functionality is
provided in the form of triggers. A trigger, associated with a
function (possibly parameterized) that implements it, can be
defined to execute before, after, or instead of a data
manipulation operation. This definition can be set either at a

tuple-level, executing the trigger-associated function once per
affected row, or at a statement-level, performing the function
over the entire affected tuple set.

Because its operation is catalogue-driven, PostgreSQL can
be extended in many ways, for example by adding new data
types, functions, operators, or procedural languages.

3. Publish / Subscribe Systems

The publish/subscribe communication paradigm is well-
adapted to the loosely coupled nature of large-scale distributed
systems. This paradigm builds on the notion of an event; that
is, a particular happening of relevance in the system. In a
publish/subscribe system, subscribers express their interest in
an event or a pattern of events, and are asynchronously
notified when publishers produce them. This many-to-many
data dissemination model removes for clients (publishers and
subscribers) the need to know each other. All that is needed is
that the definition of events of potential interest is advertised
before such events are published in the system.

Publish/subscribe systems are classified as either (type-)
topic-based or (attribute-) content-based. In topic-based
systems, publishers generate events with respect to a topic or
subject. Subscribers then specify their interest in a particular
topic, and receive all events published on that topic. Defining
events in terms of topic names only is inflexible and requires
subscribers to filter events belonging to general topics.
Content-based systems solve this problem by introducing a
subscription scheme based on the contents of events. Siena
[5], Gryphon [6], Rebecca [7], and Hermes are examples of
scalable content-based publish/subscribe systems.

3.1. Hermes

Hermes is a distributed, content-based publish/subscribe
architecture with an integrated programming model and strong
message typing. It is built on a peer-to-peer routing substrate
to provide scalable event dissemination and fault-tolerance. A
distributed event-based system implemented on top of Hermes
consists of two kinds of components: event clients and event
brokers. Event clients (event publishers or event subscribers)
use the services provided by the architecture to communicate
using events. Event brokers form the application-level overlay
network that performs event propagation using a novel type-
and attribute-based routing algorithm.

Hermes enforces the strong typing of events; thus every
published event (publication) in Hermes is an instance of an
event type. Publishers define event types using a name and a
list of typed attributes according to their data notification
needs. These definitions are used for type-checking
publications and subscriptions at runtime. Before publishing
an event instance, a publisher must advertise the associated
event type by sending an advertisement message to its local
broker. This message is then forwarded to a special node,
known as a rendezvous node, whose address is computed
from the type-name using a distributed hash table (DHT)
algorithm. Routing state for the advertised event type is set up
in appropriate event brokers as a result of this action.

In our integrated database – publish/subscribe architecture,
we have created an adapter component (described in Section
4.3) to connect the active layer of a database with Hermes.

4. Pub/Sub with Database integration

In this section we present our approach to integrating a
number of PostgreSQL databases with Hermes, our
publish/subscribe communication system, to form one global
event-based system. Figure 1 gives an architectural
perspective of the various components involved in the
integration.

Figure 1. Integrated Database and

Publish/Subscribe System Architecture

4.1. The Active Predicate Store

At the lowest level of the architecture is the database
storage layer, where user tables reside and the active predicate
store component is maintained. This component builds on a
number of interrelated relational tables; it provides the
required infrastructure for storing the definitions of the
relevant conditions to monitor, the optional actions to be
executed, and the notifications to be published on their
occurrence.

The situations to be monitored, as well as optional actions
to be executed on their detection, are expressed in the form of
Event-Condition-Action (ECA) rules. These rules are based
on the notion of transitions, where a transition is a database
state change resulting from the execution of a data
manipulation operation. A rule in the active predicate store is
triggered by a given transition when its transition predicate,
expressed in terms of the rule's event and condition definition,
holds with respect to that transition.

The event part of a rule specifies a primitive SQL
operation, such as "INSERT", "UPDATE", and "DELETE",
on a particular relation, and a set of optional attributes. This

specification works as a first filter for the rule, and only after a
matching occurrence will the condition part of the rule be
considered for evaluation. In order to provide the system with
greater flexibility, we allow a rule to be checked before or
after the signalling of an event.

The condition part of the rule is an optional, arbitrary
predicate expressed as a standard Boolean SQL operation. It
may involve the database state before or after the transition
(depending on the definition), and the values in the state
transition tables, which reflect the changes that occurred.

Finally, the action part of the rule defines an optional
operation to be executed, after the rule's condition has been
validated, and before (or after - as specified) any notification
associated with the rule is generated. There are various
predefined actions to choose from; for example, to disable a
rule after it is triggered a number of times. Also, user defined
actions written in any of the four procedural languages
supported by the PostgreSQL server interface (pgSQL, Tcl,
Perl, and Python) can be declared at any time, in the active
predicate store, to be used as part of a rule.

An example of a simple rule, expressing interest in products
that fall below their established threshold, is presented below.

name R1
relation Products
event AFTER UPDATE (threshold, unitsInStock)
condition SELECT OLD.unitsInStock >= threshold

AND NEW.unitsInStock < threshold
action NULL

Besides the different rules used to specify the many
situations of interest in the database, the active predicate store
allows the definition of notification types. These each contain
a name and a schema that describes the type, and serve as the
basic templates for any notification that is published from the
database. The schema of a notification type is defined as a set
of attribute-name/datatype pairs called notification attributes.

Creating a new notification type in the active predicate store
causes the sending of an advertisement message to the Hermes
adapter through the message queue. This XML-based
message, which specifies the schema of the notification type
(see example below), indicates the intention of the database to
publish notifications of that type. A rendezvous node and a
set of dissemination paths routed towards it from the Hermes
adapter are set up by issuing an advertisement message in the
Hermes event system. A corresponding unadvertisement
message is used to undo a previous advertisement when a
notification type is removed from the predicate store.

<hermes>
<advertise type=”ProductBelowThreshold”>

 <att name=”productId” type=”varchar”/>
 <att name=”unitsInStock” type=”int”/>
 <att name=”dateTime” type=”timestamp”/>

</advertise>
</hermes>

The active predicate store also maintains sets of
associations between the different notification types and rules
defined in the system. A stored association states that when a
particular rule is triggered, a notification should be derived
from the related type. Such associations are rendered in the
standard manner for n-to-n relations as in:

Database storage

User tables Active predicate store

Active predicate management

Dynamic reactive behaviour

triggers functions

Condition
Evaluator

Notification
Evaluator

Cache
Manager

Notification
Builder

Message queue

Hermes adapter Publisher node

rules_notificationTypes(‘R1’,
 ‘ProductBelowThreshold’,

 ‘SELECT NEW.productId,
 NEW.unitsInStock,

 now’)

An extra field, known as the notification type source, has
been attached to such associations. This field, expressed as a
standard SQL SELECT operation, specifies where the data
used to fill the attributes in a notification type should come
from: the state of the database before or after the transition;
the values of the state transition tables that reflect the changes
on the transition; or both. A notification type's source thus
represents an active virtual relation in some view of the
database at a particular time. Database administrators can
therefore normalise the underlying physical database model as
they require, without affecting the definition of the
notification type sources in the predicate store.

We overload the definition of the active predicate store
tables, using PostgreSQL's rule base and built-in triggering, so
that any change to the definition of a rule results in the
automatic (re-)generation of both the extended triggering
behaviour and the metadata used by the active predicate
management layer for monitoring the selected relations.

Storing the definition of relevant database conditions in this
way has many advantages over explicitly setting up triggers
on each of the relations containing data to be monitored.
Firstly, by making the configuration of the reactive behaviour
on these relations automatic, the maintenance of the ECA rule
system across the database is significantly simplified. Also,
from a user perspective, the tables in the active predicate store
behave exactly the same as other tables in the DBMS. This
makes it simple to make the features of the store available
through any SQL-compliant client console. To further assist
the user we have devised a graphical interface for access to
the store.

Because the semantics of trigger conditions, and the schema
and source of system notifications, are defined and validated
by the time they are introduced into the active predicate store,
a number of optimization strategies can be considered at the
active predicate management layer (see Section 4.2), e.g.

a) By promptly determining if a particular change in a relation
should be considered as relevant, based on the detailed
description in the active predicate store (expressed in terms of
relation, event, affected columns, and time interval).

b) By determining whether or not the condition of a rule
covering a relevant change, or the data used to build a
notification associated with that change, can be evaluated by
simple inspection of the state transition values of the tuples
involved in the change.

c) Through a caching strategy that allows the execution plan
of frequently referenced rule conditions and notification
sources to be readily available in a shared buffer cache.

4.2. Active Predicate Management

Above the lowest database storage level, where the active
predicate store is found, we have created an active predicate
management layer. This layer extends the PostgreSQL base

triggering system using a number of dynamically loadable C
functions (also called shared libraries) to extend the relations
in the underlying database storage level with dynamic reactive
behaviour. In addition, it hosts a number of components for
evaluating rule conditions and notification sources, and for
creating the associated notifications and passing them to the
message queue for later delivery.

Having established the required extended triggering
mechanisms on the relations of interest, the predicates defined
on these relations are monitored. Once a situation of interest is
detected, the dynamic reactive behaviour comes into place,
first determining the set of relevant rules, then passing them to
the condition evaluator component.

The condition evaluator makes use of the existing
PostgreSQL query processing architecture to evaluate the
condition part of a rule. Rule conditions are parsed and
converted into internal PostgreSQL query tree structures in the
usual way. At this stage, however, a new component, known
as the cache manager, has been introduced. The task of the
DBMS planner/optimizer is that of creating an optimal
execution plan for a given query. This operation can be
lengthy, especially in the presence of joins. It can be
improved by maintaining a copy (in the shared buffer cache)
of the optimal execution plan for those queries associated with
frequently referenced rule conditions. A cache manager
component has therefore been incorporated in the architecture.
There are a number of trade-offs and decisions involved in
designing the caching strategy to follow, for example, when
should an execution plan be stored, removed or recreated?
At this early stage, we have started to experiment with various
approaches. We are certain that an efficient caching strategy
will result in considerable optimization gains during the
evaluation phases of the integration architecture.

Once the condition part of a rule has been validated, the
next task for the active predicate management layer is to fetch
the notification sources of those notification types associated
with the rule, and send them to the notification evaluator.

The notification evaluator follows the same principle as the
condition evaluator for assessing the predicate contained in a
notification type source. The evaluation of such a predicate
will provide as result a virtual relation on the state of the
database at that time, and/or on the values of any state
transition tables associated with the current database event.
Any tuple contained in the virtual relation returned by the
evaluator is then passed to the notification builder component
for the creation of the associated database notification.

The main task of the notification builder is to map every
tuple coming from the notification evaluator into a valid
database notification, according to the schema of the
notification type defined in the active predicate store. This
involves the assignment (and possibly casting) of the values of
tuple attributes to their corresponding notification attributes.
The notification generated, which contains a notification type
name and a set of attribute name/value pairs, is encoded as an
XML notification message (exemplified below) and sent to
the message queue for its later delivery to the Hermes adapter.

<hermes>
<notify type=”ProductBelowThreshold”>

<productId>NES206</productId>
<unitsInStock>342</unitsInStock>

 <dateTime>2005-01-14 11:48:23</dateTime>
</notify>

</hermes>

4.3. Message Queue and Hermes Adapter

A message queue, implemented in Java, has been located
between the active predicate management layer and the
Hermes adapter to provide the architecture with reliable
publication of notification messages originating at the
database. By writing every notification message to disk, and
making use of a set of acknowledgements and timeouts,
exactly-once message delivery from the dynamic reactive
layer of the database to the Hermes adapter (and its related
publisher node) has been ensured.

The Hermes adapter is a multi-threaded Java application in
charge of translating advertisement and notification messages
coming from the database into their corresponding event
advertisements and publications in Hermes. It makes use of a
configurable data type mapping table and the Hermes
Publisher Application Programming Interface (API) to
transform SQL-typed attribute-based messages received from
the active predicate management layer into their equivalent
Hermes internal representation. Such a representation, class-
based in our current Java implementation, is exemplified by
Figure 2.

Figure 2. Internal representation of a Hermes event

publication

As result of this transformation, database notifications are
defined and managed exactly the same as any other events in
the event-based system. This allows subscriptions to events
originating in the database to have the same syntax and
semantics as other advertised events, as exemplified below.

EventFilter eventFilter = new EventFilter();
eventFilter.addEqualityFilter("productId", "NES206");
eventFilter.addGreaterThanFilter("unitsInStock", 200);
eventSubscriber.subscribe(eventType, eventFilter, this);

The Hermes adapter maintains, at all times, an instance of a
Hermes publisher node and a list of one or more broker nodes
that it connects to when started. These broker nodes, known
as publisher-hosting-brokers, form part of the Hermes overlay
delivery routing network, and constitute the local entry points
to the publish/subscribe system for database notifications.

5. Related Work

To our knowledge, there is no published work on
integrating active databases with a publish/subscribe service.
However, considerable research has been done in monitoring
data changes at information sources. Most of this research has
been based on the concept of continuous queries [8].

In continuous query (CQ) systems, clients set up standing
queries at each information source that they are interested in.
These queries specify the data they wish to monitor for
changes. Whenever any of these changes is detected, the
system delivers the requested information (defined in the
query) to the client who installed the query at the information
source. This approach differs significantly from the one
proposed in our integrated database - publish/subscribe
architecture, where change notifications are defined and
advertised at the database using a structured event type model.

In CQ systems, queries on the state of a database originate
from clients. Installing a continuous query at a database
system thus requires that a client know its location in advance.
This is unlikely in open distributed environments with
possibly hundreds of information sources. Moreover, the
installation of a continuous query requires that the associated
triggering behaviour at the database is set up remotely.
Serious security concerns arise if clients are allowed to
execute data definition statements on the database remotely.
Because of the decoupled nature of publish/subscribe, our
approach removes from clients the need to know the location
of databases. Moreover, the decision of which data is publicly
accessible from the database is taken by the database
administrators when defining their space of events, each
corresponding to the virtual relation of a security view.

In CQ systems, all queries installed by clients are stored at
the information source. However, for reasons of efficiency,
these systems hypothesize that a large percentage of user
queries will tend to be similar, and base their optimization
techniques on grouping similar queries together. Our system
avoids this redundancy (and its associated performance
penalties) by permitting database managers to define and
advertise their own space of relevant situations using
structured event types. Also, because published events and
client subscriptions are efficiently matched and routed by the
publish/subscribe system, no subscription data is required to
be maintained at the database side.

In CQ systems, once a query is triggered, the notification
data associated with the query is delivered to the issuer who
installed it, using some notification channel (e.g. SMTP). Our
architecture, on the other hand, allows any number of clients
to subscribe to an advertised event type (or a subset of it) by
indicating filter expressions. As a result, event publications
are delivered efficiently to clients via the publish/subscribe
system. This is a more flexible approach that, as the number of
clients grows, scales better than the one-to-one
communication model used by continuous query systems.

java.lang.String eventType “ProductBelowThreshold”

Java.util.HashMap eventAttributes

java.lang.String productId “NES206”

java.lang.Integer unitsInStock 342

java.util.Date dateTime “2005-01-14 11:48:23”

6. Future Work

A prototype version, implementing the various components
of our integrated database - publish/subscribe architecture, has
been developed and tested. From this, a number of interesting
research opportunities have emerged.

Regarding system optimization, we intend to investigate
how a number of techniques can be used for efficiently
evaluating conditions, and the clients to be notified of them, at
the publishing databases. The first technique, incremental
query evaluation, consists in the incremental maintenance of
materialized views that can be used to evaluate rule conditions
and notifications. Different incremental update algorithms
have been proposed in the database literature. Deciding
whether using these will carry lower execution costs than our
current approach (based on virtual relations and cached
execution plans) will require careful controlled experiments
under different query load scenarios. The second technique,
parallel condition evaluation, makes use of various degrees of
concurrency to achieve scalable condition and notification
evaluation.

We are also interested in extending our current database
event model, in order to support the definition of composite
events. By allowing more complex event patterns to be
defined and detected at the database, a considerably larger set
of situations of interest could be expressed. Different
approaches for defining the semantics and execution model of
such event patterns in active databases will be evaluated.

In today's large-scale collaboration environments, database
systems may span different cultural, institutional, and
geographical spaces. Since publish/subscribe decouples event
publishers and subscribers, an event, encapsulating data about
a happening of interest at one particular database, will only be
properly interpreted by clients when sufficient context
information is known. This requires publishers and
subscribers to share a common understanding in order to
express their mutual interests. We are thus interested in
studying how ontologies and other semantic mechanisms can
be used to make events in the system more "context-aware".

In terms of security, we are investigating how controlled
access to Hermes events can be achieved in large-scale multi-
domain distributed systems, using role-based, policy-driven
access control. We envisage independently administered but
related domains, each providing a context for defining a set of
events (in our case database change notifications), and a set of
principals and roles expressing and enforcing a security policy
over these events and their associated information sources.
We believe that OASIS [9] (Open Architecture for Securely
Interworking Services), a parametrised RBAC system
developed at the Computer Laboratory, fits naturally with our
architecture. It can be used to secure the communication
channel within a domain, controlling the roles that can
advertise, publish, or subscribe to an event type (e.g. a
particular change in a database). Moreover, secure inter-
domain communication can be achieved through negotiated
access control policies defining which role(s) of one domain
may receive (which attributes of) which event message(s) of
another.

7. Conclusion

We have proposed a novel approach to handling database
change notifications in large-scale distributed environments.
It is based on the integration of active databases and the
publish/subscribe communication model to form a global
event-based system: databases define and advertise change
events, and clients subscribe to events of interest, and can
refine their subscriptions through content-based filter
expressions. An integrated architecture was presented, and its
different components were explained, using our experimental
context, based on the ORDBMS PostgreSQL and Hermes, our
content-based publish/subscribe system. Our approach differs
from the continuous query model, being more flexible,
scalable and secure. It constitutes a good basis for future
research in scalable and secure inter-domain data notification.

Acknowledgements

Luis Vargas is supported by the National Council of
Science and Technology of Mexico (CONACYT). The many
contributions of members of the Opera research group are
acknowledged.

References

[1] P.T. Eugster, P.A. Felber, R. Guerraoui, and A.M. Kermarrec,
“The Many Faces of Publish/Subscribe”, ACM Computing Surveys
35, pages 114-131, 2003.

[2] T.P.G.D. Group, “PostgreSQL 7.4 Programmer´s Guide”,
http://www.postgresql.org.

[3] P.R. Pietzuch, “Hermes: A scalable event-based middleware”,
University of Cambridge PhD Thesis and TR590, 2004.

[4] ACT-NET Consortium, “The Active Database Management
System Manifesto: ADBMS Features”, ACM SIGMOID Record 25
(3), pages 40-49, 1996.

[5] A. Carzaniga, D.S. Rosenblum, A.L. Wolf, “Design and
Evaluation of a Wide-Area Event Notification Service”, ACM
Transactions on Computer Systems 19, pages 332—383, 2001.

[6] R. Strom, G. Banavar, T. Chandra, M. Kaplan, K. Miller, B.
Mukherjee, D. Sturman, M. Ward, “Gryphon: An Information Flow
Based Approach to Message Brokering”, IBM TJ Watson Research
Center, 1998.

[7] G. Muhl, L. Fiege, F. Gartner, A. Buchmann, “Evaluating
Advanced Algorithms for Content-Based Publish/Subscribe
Systems”, In Proceedings of the 10th International Symposium on
Modelling, Analysis, and Simulation of Computer and
Telecommunication Systems, pages 167-176, 2002

[8] D. Terry, D. Goldberg, D. Nichols, and B. Oki, “Continuous
Queries over Append-Only Databases”, In Proceedings of the 1992
ACM-SIGMOD International Conference on Management of Data,
pages 321-330, San Diego, CA, January 1992.

[9] J. Bacon, K. Moody, W. Yao, “Access Control and Trust in the
Use of Widely Distributed Services”, Middleware 2001, Volume
LNCS pages 300-315, 20012218, Springer-Verlag,

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

