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Abstract

One of the steps to reconstruct the 3-D geometry of bio-
logical objects from a stack of 2-D microscopic images, is 
to align the individual slices with respect to each other. 
Due to complex internal structures and imaging artifacts, 
automatic methods do not always lead to reliable results. 
Visual feedback consisting of sagittal and coronal 
cross-sections is very useful to validate the alignment re-
sult. For data sets which are too large to fit into main 
memory, this is an expensive operation as each slice in the 
volume needs to be referenced, resulting in a lot of disk 
I/O. Array data (including images) is conventionally 
stored in row- or column-major order. This is however not 
always optimal. In our application, we chose to store the 
data in Z-order (Morton order), resulting in a significantly 
improved performance.  

1 Introduction 

A topic that currently receives much interest in biology 
and medicine is the creation of standard atlases [2, 8]. The 
purpose of such atlases is to serve as a geometrical refer-
ence model into which different kinds of experimental 
data can be integrated. The results of our work emerged in 
a biologically oriented research project, which aims to 
create a 4-D standard atlas of plant seeds. As a first step, a 
3-D surface representation of the grain is to be created 
from microscopic images taken from physical sections by 
performing a number of image processing steps.  

An essential step is the alignment of the section images. 
In our alignment application this problem is treated as a 
series of pair-wise registrations (see Fig. 1). Starting at the 
bottom of the stack, two neighboring slices are aligned at 
a time, by running an automatic registration method or 
interactively. The user works towards the end of the stack, 
always aligning the upper slice with the respect to the 
lower one. Currently only rigid transformations are al-
lowed. Due to complex physiological structures and image 
imperfections, automatic alignment methods do not al-
ways lead to satisfying results. Therefore, it is imperative 
that the user is offered the opportunity to visually inspect 
the result of such automatic methods and that she can con-
trol the alignment process interactively. The application 
provides two windows for viewing the current alignment 
status in planes parallel to the xz- and the yz-planes. Ex-
perts find these orthogonal views a very important feature 
for validating the global alignment status and results. 
Alignment errors easily propagate and deteriorate through 
the volume. Therefore, much attention should be paid to 
the accuracy. The user should be able to zoom in and look 
at the image data at its full resolution. 

Common data sets in the project consist of thousands of 
high-resolution color images, leading to a total data set 

size of roughly 10-30 GB. Such data sets do not fit into 
the main memory of current desktop computers. In order 
to be able to perform the alignment, the application only 
loads the two slices that are currently being aligned into 
memory. For slices which have been aligned, only the 
transformation parameters remain resident; the image data 
is removed from memory. This way, the whole volume 
can be processed without the need to have the complete 
data set in main memory. 

However, in order to display the orthogonal views, we 
need to extract a line from each slice in the volume. This 
line has an arbitrary position and orientation, due to the 
alignment transformation. This makes updating these win-
dows an expensive operation as lots of disk I/O may be 
involved. The storage order for the data is an important 
parameter for the performance. This paper shows that for 
our application storing data on disk in Z-order (Morton 
order) significantly improves the response time in com-
parison to conventional row-major layout. 

2 M ethod

External memory algorithms and data structures [9] ad-
dress the problem of data exceeding the size of available 
main memory. Out-of-core data storage on disk is required, 
which uses block-wise I/O. The general goal is to redesign 
the algorithms to run with minimal performance loss due 
to this non-uniform cost for memory accesses. The first 
step is to understand the data access patterns. Then, when 
possible, the algorithm should be redesigned to maximize 
data access locality, and to devise a data storage layout 
consistent with the access pattern, thus amortizing the cost 
of individual I/O operations over several memory access 
operations. 

2.1 Storing data as a space-filling curve 

The most common way to store data in a 
two-dimensional array of size N×M is in lexicographic 
order, i.e. either row-major or column-major. The follow-
ing mappings are used to obtain the memory offset of 
element (i,j) with respect to the start of the array, for re-
spectively row-major and column-major layout: 
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Accessing a row-major ordered array in a row-major 
order requires an optimal low number of disk block I/Os. 
However, data access in column-major order uses a worst 
number of I/Os (vice versa for column-major layout).  

Storing data in Z-order (also known as Morton order) [5, 
7] offers a compromise between these extremes. It is not 
biased towards a row-major or column-major access pat-
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tern and it offers a great deal of spatial locality. The latter
enables algorithms to avoid page faults independently of
the actual page size. This cache-oblivious data layout [4]
optimizes block transfers at all levels in the memory hier-
archy at the same time.

A Z-curve is member of the class of space-filling curves, 
i.e. functions mapping a multi-dimensional array to a 
one-dimensional array [1, 3]. For the two-dimensional
case this mapping has the signature:

},,1{: 2NNNP

The index of point (i,j) of a two-dimensional array
stored in Z-order can be calculated as follows. Let the
bit-representations of i and j be i = ik...i3i2i1i0 and j = 
jk...j3j2j1j0. Then the bit-representation of the Z-index Z(i,j)
corresponds to the alternating bits of i and j:

00112233),( jijijijijijiZ kk

The calculation of the Z-index is relatively expensive as 
it involves bit operations which are not implemented in
hardware in today's CPUs. These costs can however be
avoided when dilated integer arithmetic is used. We refer
to [10] for a detailed discussion.

It may appear that Morton indexing wastes space when 
used for large arrays that are not square and do not have
dimensions that are a power of two, because in those cases
the space needs to be padded. This waste however only
involves address space. In hierarchical memory only its 
margin will ever be swapped into cache, so only very little
physical memory space is lost [10].

2.2 Approach

Our approach is characterized as follows. The data is 
stored in 2D Z-ordered slices. We do not use 3D 
Z-ordering because the alignment transformation of each
slice is independent. Therefore, spatial locality in the z
direction cannot be exploited.

By using the mmap system call (only available on Unix,
MapViewOfFile is the equivalent Windows function) we
leave all memory management to the operating system.
All slices are ‘mmapped’ to a virtual address range which
can be indexed through a pointer. This virtual address
range is usually much larger than the available physical
memory. The operating system performs the necessary
paging and disk I/O to transparently provide the data at
addresses accessed by the application. The virtual address
range is limited by the number of bits per address. A
64-bit operating system is required if the data size exceeds
approximately 1.5 GB. The whole geometry reconstruc-
tion pipeline is implemented in the visualization and data
analysis software Amira [6]. 

3 Results

Two experiments were performed in order to measure
the impact of Z-ordering the data on the update rates in 
comparison to row-major layout. In practice, a common
scenario is to slice through the data in the sagittal (parallel
to yz-plane) or coronal (xz) direction in order to confirm
that the alignment result is satisfactory across the whole
volume. This is simulated in the experiments. Starting
with the Z-ordered stack of slices, the yz-plane is moved
through the volume with one voxel stepsize, starting at
x=0. This procedure is repeated for the coronal direction
and with the data stored in row-major layout. In the sec-
ond experiment, the same procedure was followed, but
with randomly transformed data. Each slice was rotated
around the image center with an arbitrary angle and sub-
sequently translated with a random vector (Tx,Ty) where Tx,
Ty [-256, 256].

The data set used for the experiments consisted of a 
stack of 600 color (RGBA) images of size 2048×2048,
yielding a total size of 9.6 GB.  The experiments were 
performed on a Dual AMD Opteron 2 GHz 64-bit com-
puter running Linux 2.4.21-211-smp. One gigabyte of

Fig. 2. Ordering of the elements of a
4×4 matrix in a Z-curve.

Fig. 1. Alignment application showing two slices currently being aligned
(top left), sagittal (right) and coronal (bottom) cross-sections.
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physical memory was assigned to the process of which 65 
MB was used for the application. The operating system's 
page size is 4 kB.  

The result of the first experiment for the first 512 steps 
is shown in Fig. 3 (top). We see from Table 1 that the 
Z-ordered layout is approximately as fast as the optimal 
case (row-major, coronal), but performs much better than 
the worst case (row-major, sagittal) for untransformed 
data. Given 4 kB page size and the data set dimensions 
mentioned above, one page in row-major ordering corre-
sponds to a 1024×1 subvolume (half an image line). Thus, 
for a sagittal cross-section, for each pixel to be displayed, 
one entire page needs to be retrieved, which means that 
half the volume needs to be loaded, although only 1/1024 
is used. The amount of data exceeds the size of the main 
memory, resulting in a lot of page swapping (thrashing). 
This explains the long update times.  Whenever a coronal 
cross-section needs to be displayed however, only a 
minimum number of pages needs to be loaded as all pixels 
from a loaded page are used. When the physical memory 
has been filled after approximately 200 slices, pages need 
to be swapped out, leading to increased update times. This 
also holds for the Z-ordered slices. With this layout, one 
page corresponds to a 32×32 subvolume. Thus, in order to 
display one line, 64 pages need to be loaded.  For a whole 
cross-sectional slice this amounts to 64×600×4 kB  150 
MB. As the memory is large enough so that those pages 
are not swapped out during the current screen update, the 
data required to display the next 31 slices is directly 
available. After this new disk I/O follows. This explains 
the peaks at 32-slice intervals. For the randomly trans-
formed data, these effects disappear as the longer load 
times are spread out over all slices. In this case storing 
data in Z-order results in much faster update times. 

4 Summary and Outlook 

The experiments showed that a different data storage 
order makes a significant difference in the overall update 
rates of the orthogonal cross-sections. As the Z-order lay-
out is approximately as fast as the best access pattern of 
the row-major storage, it offers a huge advantage over the 
worst case. In practice it proves however still too slow to 
provide interactive update rates. Current work focuses on 
a hierarchical storage and display scheme. This way, a 
subsampled version of the data can be retrieved and dis-
played very quickly. The resolution is gradually increased 
as more data is loaded. This way the user can still view the 
full-resolution cross-sections, without unnecessarily in-
terrupting the workflow. 
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Table 1. Average update time (msec.) per pixel. Average 
update time for one cross-section of the untransformed 

data is given in parenthesis. 

Untransformed data Transformed data 

sagittal coronal sagittal coronal 

Z-indexed 0.00160 
(1.97s) 

0.00109 
(1.33s) 

0.00606 0.00607

Row-major 0.213 
(262s) 

0.00161 
(1.97s) 

0.327 0.317 
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Slicing through the untransformed data set
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Slicing through the randomly transformed data set
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Fig. 3. The cross-sectional planes are moved along the x-axis (sagittal view) and the y-axis (coronal view). The time re-
quired to retrieve the data to update the orthogonal views is measured for Z-ordered data and for data stored in row-major

order. The experiments were performed for both untransformed data (top) and randomly transformed data (bottom).
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