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Preface

These lecture notes are not meant as a replacement of a more comprehensive textbook.

Rather, the notes at hand present the essentials of modern applied cryptography in compact

form and should accompany the lecture in conjunction with one of the books mentioned

below. The notes grew out of an introductory graduate course in cryptography which I have

taught twelve times by now at Worcester Polytechnic Institute and in industry. Remarks,

questions, and classroom discussions by our graduate students as well as by the sta� of GTE

Governments Systems, MA, and Philips Research, NY, greatly helped to improve the lecture

notes.

I tried to present modern cryptography in a way that is accessible for engineers without

any background in abstract mathematics. There is a focus on private-key and public-key

algorithms, an understanding of which appears to be extremely helpful for the development

of real-world applications. However, protocol-related issues such as security services, key

distributions, and identi�cation are also treated.

The lecture notes work well together with an actual book. I've used Doug Stinson's

excellent textbook, [Sti95], as well as Bruce Schneier's comprehensive compilation, [Sch93].

The treatment of topics in these lecture notes loosely follow the presentation in Stinson's

book. For those interested in an in-depth understanding of the �eld, including many the-

oretical topics, the handbook by Alfred Menezes, Paul van Oorschot, and Scott Vanstone,

[AM97], can be strongly recommended for additional reading. Another good book which is

more introductory is William Stalling's recent text book [Sta99].

I would like to express my deep gratitude to my graduate students Jorge Guajardo and

Martin Rosner, who were in charge of typing the notes and of drawing all �gures and tables.

Their many suggestions and proof reading greatly improved the notes.

Christof Paar

May 2000
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Chapter 1

Introduction to Cryptography and

Data Security

1.1 Literature Recommendations

Course Textbooks: [Sti95] or [Sch93].

Further Reading - the following books are excellent supplements to the course textbook:

1. [AM97] - great compilation of theoretical and practical aspects of many crypto schemes.

Unique since it includes many theoretical topics that are hard to �nd otherwise. Highly

recommended.

2. [Sta95] - Very readable treatment of algorithms and standards relevant to cryptography

in networks.

1.2 Overview

Brief History of Cryptography

� Private-Key: all encryption and decryption schemes dating from BC to 1976.

1



Block cipher
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Cryptography Cryptanalysis
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Stream cipher

Figure 1.1: Overview on the �eld of cryptology

� Public-Key: in 1976 the �rst public-key scheme was introduced by Di�e-Hellman key

exchange protocol.

� Hybrid Approach: in today's protocol, very often hybrid schemes are applied which

use private and public-key algorithms.

1.3 Private-Key Cryptosystems

Sometimes these schemes are also referred to as symmetric, single-key, and secret-key ap-

proaches.

Problem Statement: Alice and Bob want to communication over an un-secure channel

(e.g., computer network, satellite link). They want to prevent Oscar (the bad guy) from

listening.

Solution: Use of private-key cryptosystems (these have been around since BC) such that

if Oscar reads the encrypted version y of the message x over the un-secure channel, he will

not be able to understand its content because x is what really was sent.
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Figure 1.2: Private-key cryptosystem

Some important de�nitions:

1a) x is called the \plaintext"

1b) P= fx1; x2; : : : ; xpg is the (�nite) \plaintext space"

2a) y is called the \ciphertext"

2b) C= fy1; y2; : : : ; ycg is the (�nite) \ciphertext space"

3a) k is called the \key"

3b) K= fk1; k2; : : : ; klg is the �nite \key space"

4a) There are l encryption functions eki
: P!C (or: eki

(x) = y)

4b) There are l decryption functions dki
: C!P (or: dki

(y) = x)

4c) ek1 and dk2 are inverse functions if k1 = k2 : dki
(y) = dki

(eki
(x)) = x for all ki 2K

Example: Data Encryption Standard (DES)

� P = C= f0; 1; 2; : : : ; 264 � 1g (each xi has 64 bits: xi = 010 : : : 0110)

� K= f0; 1; 2; : : : ; 256 � 1g (each ki has 56 bits)

� encryption (ek) and decryption (dk) will be described in Chapter 4

3



1.4 Cryptanalysis

De�nition: The science of recovering the plaintext x from the ciphertext y without the

knowledge of the key (Oscar's job).

Rules of the game:
The cryptanalysis rules are known as Kerckho�'s Principle:

1. Oscar knows the cryptosystem (encryption and decryption algo-

rithms).

2. Oscar does not know the key.

1.4.1 Attacks against Cryptoalgorithms

1. Ciphertext-only attack

Oscar's knowledge: some y1 = ek(x1), y2 = ek(x2), : : :

Oscar's goal : obtain x1; x2; : : : or the key k.

2. Known plaintext attack

Oscar's knowledge: some pairs (x1; y1 = ek(x1)); (x2; y2 = ek(x2)) : : :

Oscar's goal : obtain the key k.

3. Chosen plaintext attack

Oscar's knowledge: some pairs (x1; y1 = ek(x1)); (x2; y2 = ek(x2)) : : : of which he can choose

x1; x2; : : :

Oscar's goal : obtain the key k.

4. Chosen ciphertext attack

Oscar's knowledge: some pairs (x1; y1 = ek(x1)); (x2; y2 = ek(x2)) : : : of which he can choose

4



y1; y2; : : :

Oscar's goal : obtain the key k.

1.5 Some Number Theory

Modulo operation:

Question: What is 12 mod 9?

Answer: 12 mod 9 � 3

or 12 � 3 mod 9.

De�nition 1.5.1 Modulo Operation

Let a; r;m 2 Z (where Z is a set of all integers) and m > 0. We write

a � r mod m if m divides r � a.

\m" is called the modulus.

\r" is called the remainder.

Some remarks on the modulo operation:

� How is the remainder computed?

It is always possible to write a 2 Z, such that

a = q �m + r; 0 � r < m

Now since a� r = q �m (m divides a� r) and a � r mod m.

Note that r 2 f0; 1; 2; : : : ; m� 1g.

Example:

a = 42; m = 9

42 = 4 � 9 + 6 therefore 42 � 6 mod 9.

5



� C programming command : \%" (C can return a negative value)

r = 42 % 9 returns r = 6

but r = -42 % 9 returns r = -6 ! if remainder is negative, add modulus m:

�6 + 9 = 3 � �42 mod 9

Ring:

De�nition 1.5.2 The \ring Zm" consists of:

1. The set Zm = f0; 1; 2; : : : ; m� 1g

2. Two operations \+" and \�" for all a; b 2 Zm such that:

� a + b � c mod m (c 2 Zm)

� a� b � d mod m (d 2 Zm)

Example: m = 9

Z9 = f0; 1; 2; 3; 4; 5; 6; 7; 8g

6 + 8 = 14 � 5 mod 9

6� 8 = 48 � 3 mod 9

6



De�nition 1.5.3 Some important properties of the ring Zm = f0; 1; 2; : : : ; m� 1g

1. The additive identity is the element zero \0": a + 0 = a mod m, for any

a 2 Zm.

2. The additive inverse \�a" of \a" is such that a+(�a) � 0 mod m: �a = m�a,

for any a 2 Zm.

3. Addition is closed: i.e., for any a; b 2 Zm, a+ b 2 Zm.

4. Addition is commutative: i.e., for any a; b 2 Zm, a+ b = b+ a.

5. Addition is associative: i.e., for any a; b 2 Zm, (a+ b) + c = a + (b+ c).

6. The multiplicative identity is the element one \1": a� 1 � a mod m, for any

a 2 Zm.

7. The multiplicative inverse \a�1" of \a" is such that a � a�1 = 1 mod m: An

element a has a multiplicative inverse \a�1" if and only if gcd(a;m) = 1.

8. Multiplication is closed: i.e., for any a; b 2 Zm, ab 2 Zm.

9. Multiplication is commutative: i.e., for any a; b 2 Zm, ab = ba.

10. Multiplication is associative: i.e., for any a; b 2 Zm, (ab)c = a(bc).

7



Some remarks on the ring Zm:

� Roughly speaking, a ring is a structure in which we can add, subtract, multiply, and

sometimes divide.

� De�nition 1.5.4 If gcd(a;m) = 1, then a and m are \relatively prime" and the

multiplicative inverse of a exists.

Example:

i) Question: does multiplicative inverse exist with 15 mod 26?

Answer: yes | gcd(15; 26) = 1

ii) Question: does multiplicative inverse exist with 14 mod 26?

Answer: no | gcd(14; 26) 6= 1

� The modulo operation can be applied whenever we want:

(a+ b) mod m = [(a mod m) + (b mod m)] mod m.

(a� b) mod m = [(a mod m)� (b mod m)] mod m.

Example: 38 mod 7 = ?

i) 38 = 34 � 34 = (81 mod 7) � (81 mod 7) � 4 � 4 = 16 � 2 mod 7.

ii) 38 = 6561 � 2 mod 7, since 6561 = 937 � 7 + 2.

As we see, it is almost always of computational advantage to apply the modulo reduc-

tion as soon as we can.

� The ring Zm, and thus the integer arithmetic with the modulo operation, is of central

importance to modern public-key cryptography. In practice, the integers are repre-

sented with 150{2048 bits.
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1.6 Simple Blockciphers

Recall:

Private-key Systems

Stream ciphersBlock ciphers

Figure 1.3: Classi�cation of private-key systems

Idea: The message string is divided into blocks (or cells) of equal length that are then

encrypted and decrypted.

Input: message string �X ! �X = x1; x2; x3; : : : ; xn, where each xi is one block.

Cipher: �Y = y1; y2; y3; : : : ; yn; with yi = ek(xi) where the key k is �xed.

9



1.6.1 Shift Cipher

One of the most simple ciphers where the letters of the alphabet are assigned a number as

depicted in Table 1.1.

A B C D E F G H I J K L M

0 1 2 3 4 5 6 7 8 9 10 11 12

N O P Q R S T U V W X Y Z

13 14 15 16 17 18 19 20 21 22 23 24 25

Table 1.1: Shift cipher table

De�nition 1.6.1 Shift Cipher

Let P = C = K = Z26. x 2 P, y 2 C, k 2 K.

Encryption: ek(x) = x+ k mod 26.

Decryption: dk(y) = y � k mod 26.

Remark:

If k = 3 the the shift cipher is given a special name | \Caesar Cipher".

Example:

k = 17,

plaintext:

X = x1; x2; : : : ; x6 = ATTACK.

X = x1; x2; : : : ; x6 = 0; 19; 19; 0; 2; 10.

encryption:

y1 = x1 + k mod 26 = 0 + 17 = 17 mod 26 = R

10



y2 = y3 = 19 + 17 = 36 � 10 mod 26 = K

y4 = 17 = R

y5 = 2 + 17 = 19 mod 26 = T

y6 = 10 + 17 = 27 � 1 mod 26 = B

ciphertext: Y �=y1; y2; : : : ; y6 = R K K R T B.

Attacks on Shift Cipher

1. Ciphertext-only: Try all possible keys (jkj = 26). This is known as \brute force attack"

or \exhaustive search".

Secure cryptosystems require a su�ciently large key space. Minimum requirement

today is jKj > 280, however for long-term security, jKj � 2100 is recommended.

2. Same cleartext maps to same ciphertext ) can also easily be attacked with letter-

frequency analysis.

11



1.6.2 A�ne Cipher

This cipher is an extension of the Shift Cipher (yi = xi + k mod m).

De�nition 1.6.2 A�ne Cipher Let P = C = Z26.

encryption: ek(x) = a � x+ b mod x.

key: k = (a; b) where a; b 2 Z26.

decryption: a � x+ b = y mod 26.

a � x = (y � b) mod 26.

x = a�1 � (y � b) mod 26.

restriction: gcd(a; 26) = 1 in order for the a�ne cipher to work since

a�1 does not always exist.

Question: How is a�1 obtained?

Answer: a�1 � a11 mod 26 (the proof for this is in Chapter 6)

or by trial-and-error for the time being.

12



Chapter 2

Stream Ciphers

Further Reading: [Sim92, Chapter 2]

2.1 Introduction

Remember classi�cation:

Private-key Systems

Stream ciphersBlock ciphers

Figure 2.1: Private-key cipher classi�cation

Block Cipher: �Y = y1; y2; : : : ; yn = ek(x1); ek(x2); : : : ; ek(xn),

e.g. the key does not change with every block

Stream Cipher: �Y = y1; y2; : : : ; yn = ez1(x1); ez2(x2); : : : ; ezn(xn)

with the \keystream" = z1; z2; : : : ; zn

13



i Z iZ

Xi XiYi

Figure 2.2: Most Popular Encryption/Decryption Function

Most popular en/decryption function: modulo 2 addition

Assume: xi; yi; zi 2 f0; 1g

yi = ezi(xi) = xi + zi mod 2! encryption

xi = ezi(yi) = yi + zi mod 2! decryption

Remarks:

1. Developed by Vernam in 1917 for Baudot Code on teletypewriters.

2. The modulo 2 operation is equivalent to a 2-input XOR operation.

Why are encryption and decryption identical operations? Truth table of modulo 2

addition:

a b c = a+ b mod 2

0 0 0 + 0 = 0 mod 2

0 1 0 + 1 = 1 mod 2

1 0 1 + 0 = 1 mod 2

1 1 1 + 1 = 0 mod 2

.

) modulo 2 addition yields the same truth table as the XOR operation.

3. Encryption and decryption are the same operation, namely modulo 2 addition (or

XOR).

Why? We show that decryption of ciphertext bit yi yields the corresponding plaintext

14



bit.

Decryption: yi + zi = (xi + zi)
| {z }

encryption

+ zi = xi + (zi + zi) � xi mod 2.

Note that zi + zi � 0 mod 2 for zi = 0 and for zi = 1.

Example: Encryption of the letter `A' by Alice.

`A' is given in ASCII code as 6510 = 10000012.

Let's assume that the �rst key stream bits are ! z1; : : : ; z7 = 0101101

Encryption by Alice: plaintext xi: 1000001 = `A' (ASCII symbol)

key stream zi: 0101101

ciphertext yi: 1101100 = `l' (ASCII symbol)

Decryption by Bob: ciphertext yi: 1101100 = `l' (ASCII symbol)

key stream zi: 0101101

plaintext xi: 1000001 = `A' (ASCII symbol)

2.2 One-Time Pad and Pseudo-Random Generators

De�nition 2.2.1 Unconditional Security

A cryptosystem is unconditionally secure if it cannot be broken even

with in�nite computational resources.

De�nition 2.2.2 One-time Pad (OTP)

A cryptosystem developed by Mauborgne based on Vernam's stream ci-

pher consisting of:

jPj = jCj = jKj,

with xi; yi; ki 2 f0; 1g.

encrypt ! eki(xi) = xi + ki mod 2.

decrypt ! dki(yi) = yi + ki mod 2.

15



Theorem 2.2.1 The OTP is unconditionally secure if keys are only

used once.

Remarks:

1. OTP is the only provable secure system:

y0 = x0 +K0 mod 2

y1 = x1 +K1 mod 2

...

each equality is a linear equation with 2 unknowns.

) for every yi, xi = 0 and xi = 1 are equally likely.

) holds only if K0; K1; : : : are not related to each other, i.e., Ki must be generated

trully randomly.

2. OTP are impractical for most applications.

Question: Can we \emulate" a OTP by using a short key?

0x1 xny0y1ynxn x0x1

Alice Bob

x

initial key (short)

key-stream
generator

zi

key-stream
generator

zi

Oscar

... ......

k k

Figure 2.3: Stream cipher model
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Classi�cation by key-stream generator:

a) \synchronous stream cipher"

zi = f(k)! pseudo-random generator (PRG).

b) \asynchronous stream cipher"

zi = f(k; yi�1; yi�2; : : : ; yi�N)! feedback of cipher.

c) The key issue is that Bob has to `match' the exact zi to get the correct message.

In order to do this, both key-stream generators have to be synchronized.

i

f( )

zi

yizixx
i

in asynchronous stream ciphers

yi

k

feedback path only

Encr.

=

Figure 2.4: Asynchronous stream cipher

It is important to note that key stream generators must not only possess good statistical

properties, which is true for other pseudo-random generatores as well, but they must also be

cryptographically secure:

De�nition 2.2.3 Cryptographically secure pseudo-random generators

A pseudo random generator (key stream generator) is cryptographically

secure if it is unpredictable. That is, given the �rst n output bits of the

generator, it is computatinally infeasible to compute the bits n+ 1; n+

2; : : :
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2.3 Synchronous Stream Ciphers

The keystream z1; z2; : : : is a pseudo-random sequence which depends only on the key.

2.3.1 Linear Feedback Shift Registers (LFSR)

An LFSR consists of m storage elements (
ip-
ops) and a feedback network. The feedback

network computes the input for the \last" 
ip-
op as XOR-sum of certain 
ip-
ops in the

shift register.

Example: We consider an LFSR of degree m = 3 with 
ip-
ops K2, K1, K0, and a feedback

path as shown below.

0 Z 1 Z 6

2K 1K 0K

Z 0Z 1Z 2 Z

mod 2 addition / XOR

CLK

........

Figure 2.5: Linear feedback shift register

K2 K1 K0

1 0 0

0 1 0

1 0 1

1 1 0

1 1 1

0 1 1

0 0 1

1 0 0
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Mathematical description for keystream bits zi with z0; z1; z2 as initial settings:

z3 = z1 + z0 mod 2

z4 = z2 + z1 mod 2

z5 = z3 + z2 mod 2
...

general case: zi+3 = zi+1 + zi mod 2; i = 0; 1; 2; : : :

Expression for the LFSR:

m-1C 0C1C

m-1K 1K 0K

........

........

CLK

OUTPUT

Figure 2.6: LFSR with feedback coe�cients

C0; C1; : : : ; Cm�1 are the feedback coe�cients. Ci = 0 denotes an open switch (no con-

nection), Ci = 1 denotes a closed switch (connection).

zi+m =
m�1X
j=0

Cj � zi+j mod 2; Cj 2 f0; 1g; i = 0; 1; 2; : : :

The entire key consists of:

k = f(C0; C1; : : : ; Cm�1); (z0; z1; : : : ; zm�1); mg

Example:

k = f(C0 = 1; C1 = 1; C2 = 0); (z0 = 0; z1 = 0; z2 = 1); 3g
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Theorem 2.3.1 The maximum sequence length generated by the LFSR

is 2m � 1.

Proof:

There are only 2m di�erent states (k0; : : : ; km) possible. Since only the current

state is known to the LFSR, after 2m clock cycles a repetition must occur. The

all-zero state must be excluded since it repeats itself immediately.

Remarks:

1.) Only certain con�gurations (C0; : : : ; Cm�1) yield maximum length LFSRs.

For example:

if m = 4 then (C0 = 1; C1 = 1; C2 = 0; C3 = 0) has length of 2m � 1 = 15

but (C0 = 1; C1 = 1; C2 = 1; C3 = 1) has length of 5

2.) LFSRs are sometimes speci�ed by polynomials.

such that the P (x) = xm + Cm�1x
m�1 + : : :+ C1x + C0.

Maximum length LFSRs have \primitive polynomials".

These polynomials can be easily obtained from literature (Table 16.2 in [Sch93]).

For example:

(C0 = 1; C1 = 1; C2 = 0; C3 = 0)() P (x) = 1 + x+ x4

2.3.2 Clock Controlled Shift Registers

Example: Alternating stop-and-go generator.
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LFSR3

LFSR2

CLK

Out2

Out3

Out4 = Zi (key stream)

LFSR1 Out1

Figure 2.7: Stop-and-go generator example
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Basic operation:

When Out1 = 1 then LFSR2 is clocked otherwise LFSR3 is clocked.

Out4 serves as the keystream and is a bitwise XOR of the results from LFSR2 and LFSR3.

Security of the generator:

� All three LFSRs should have maximum length con�guration.

� If the sequence lengths of all LFSRs are relatively prime to each other, then the

sequence length of the generator is the product of all three sequence lengths, i.e.,

L = L1 � L2 � L3.

� A secure generator should have LFSRs of roughly equal lengths and the length should

be at least 128: m1 � m2 � m3 � 128.
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2.4 Attacks

2.4.1 Known Plaintext Attack Against LFSRs

Assumption:

For a known plaintext attack, we have to assume that m is known.

Idea:

This attack is based on the knowledge of some plaintext and its corresponding ciphertext.

i) Known plaintext ! x0; x1; : : : ; x2m�1.

ii) Observed ciphertext ! y0; y1; : : : ; y2m�1.

iii) Construct keystream bits ! zi = xi + yi mod 2; i = 0; 1; : : : ; 2m� 1.

Goal:

To �nd the feedback coe�cients Ci.

Using the LFSR equation to �nd the Ci coe�cients:

zi+m =
m�1X
j=0

Cj � zi+j mod 2;Cj 2 f0; 1g

We can rewrite this in a matrix form as follows:

i = 0 zm = C0z0 + C1z1 + : : :+ Cm�1zm�1 mod 2:

i = 1 zm+1 = C0z1 + C1z2 + : : :+ Cm�1zm mod 2:
...

...
...

...
...

i = m� 1 z2m�1 = C0zm�1 + C1zm + : : :+ Cm�1z2m�2 mod 2:

(2.1)

Note:

We now have m linear equations in m unknowns C0; C1; : : : ; Cm�1. The Ci co-

e�cients are constant making it possible to solve for them when we have 2m

plaintext-ciphertext pairs.
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Rewriting Equation (2.1) in matrix form, we get:

2
666664

z0 : : : zm�1
...

...

zm�1 : : : z2m�2

3
777775
�

2
666664

c0
...

cm�1

3
777775
=

2
666664

zm
...

z2m�1

3
777775
mod 2 (2.2)

Solving the matrix in (2.2) for the Ci coe�cients we get:

2
666664

c0
...

cm�1

3
777775
=

2
666664

z0 : : : zm�1
...

...

zm�1 : : : z2m�2

3
777775

�1

�

2
666664

zm
...

z2m�1

3
777775
mod 2 (2.3)

Summary:

By observing 2m output bits of an LFSR of degree m and matching them to the

known plaintext bits, the Ci coe�cients can exactly be constructed by solving a

system of linear equations of degree m.

) LFSRs by themselves are extremely un-secure! However, combinations of them

such as the Alternating stop-and-go generator can be secure.
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Chapter 3

Some Results From Information

Theory

3.1 Levels of Security

De�nition 3.1.1 Unconditional Security

A cryptosystem is unconditionally secure if it cannot be broken even

with in�nite computational resources.

Theorem 3.1.1 The OTP is unconditionally secure if keys are only

used once.

3.2 Computational Security

For all known practical cryptosystems we have:

De�nition 3.2.1 Computational Security

A system is \computational secure" if the best possible algorithm

for breaking it requires N operations, where N is very large and known.
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Unfortunately, all known practical systems are only computational secure for known algo-

rithms.

De�nition 3.2.2 Relative Security

A system is \relative secure" if its security relies on a well studied, very

hard problem.

Example:

A system S is secure as long as factoring of large integers is hard (this is believed

for RSA).

3.3 Cryptography and Coding

There are three basic forms of coding in modern communication systems: source coding,

channel coding, and encryption. From an information theoretical and practical point of

view, the three forms of coding should be applied as follows:

Data
Source

Source
Coding

Channel
Coding

Channel

Channel
DecodingDecryption

Encryption

Source
Decoding

Data
Sink

removes
redundancy

adds
redundancy

introduces 
errors and 
eavesdropping

Figure 3.1: Communication coding system model
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3.4 Confusion and Di�usion

According to Shannon, there are two basic approaches to encryption.

1. Confusion | encryption operation where the relationship between cleartext and ci-

phertext is obscured. Some examples are:

(a) Shift cipher | main operation is substitution.

(b) German Enigma (broken by Turing) | main operation is smart substitution.

2. Di�usion | encryption by spreading out the in
uence of one cleartext letter over

many ciphertext letters. An example is:

(a) permutations | changing the positioning of the cleartext.

Remarks:

1. Today ! changing of one bit of cleartext should result on average in the change of

half the output bits.

x1 = 001010! encr. ! y1 = 101110.

x2 = 000010! encr. ! y2 = 001011.

2. Combining confusion with di�usion is a common practice for obtaining a secure scheme.

Data Encryption Standard (DES) is a good example of that.

Diff-1 Conf-1 Diff-2 Conf-2 Diff-N Conf-N

product
cipher

y_out...............x y’

Figure 3.2: Example of combining confusion with di�usion
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Chapter 4

Data Encryption Standard (DES)

General Notes:

� DES is by far the most popular private-key algorithm.

� It was published in 1975 and standardized in 1977.

� Expired in 1998.

4.1 Encryption

System Parameters:

! block cipher.

! 64 input/output bits.

! 56 bits of key.

Principle: 16 rounds of encryption.
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Initial
Permutation

Final
Permutation

Encryption
16

Encryption
1

K
1

K
16

K

YX

Figure 4.1: General Model of DES
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4.1.1 Overview

f

32

32

32

L R 00

Initial Permutation
IP(X)

Message  X

64

64

f

32

32

32

L R1 1

L R15 15

K 16

K 1

Transform  1

Final Permutation

Key  K

56

32

32

32

32

56

Cipher  Y = DES   (X)K

IP     (R    , L    )
-1

16 16

L R16 16

48

48

Transform  16

round 1

round 16

Figure 4.2: The Feistel Network
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4.1.2 Permutations

a) Initial Permutation IP.

IP

58 50 42 34 26 18 10 2

60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6

64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1

59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5

63 55 47 39 31 23 15 7

X

1 50 58 64

21 40

IP(X)

Figure 4.3: Initial permutation

b) Inverse Initial Permutation IP�1 (�nal permutation).

Note:

IP�1(IP (X)) = X.

4.1.3 Core Iteration / f-Function

General Description:

Li = Ri�1.
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-1
IP    (Z)

1

Z

40

Figure 4.4: Final permutation

Ri = Li�1 � f(Ri�1; ki).

The core iteration is the f-function that takes the right half

of the output of the previous round and the key as input.

E bit table

32 1 2 3 4 5

4 5 6 7 8 9

8 9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 1

S-boxes:

Contain look-up tables (LUTs) with 64 numbers ranging from 0 : : : 15.

Input: Six bit code selecting one number.

Output: Four bit binary representation of one number out of 64.
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i-1

S 1 S 8

Permutation  P

R i

L i-1

R i-1

Ki

page 75 in Stinson

confusion: obscures
ciphertext/cleartext
relationship

E(R     )

f-function

Expansion

4

6 6

4

48

48

48

8 * 4 = 32

32

32

32

32

Diffusion: Spreading influence

of single bits

Figure 4.5: Core function of DES
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Example:

S1

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S-Box 1

Input: Six bit vector with MSB and LSB selecting the row and four inner bits

selecting column.

b = (100101).

! row = (11)2 = 3 (forth row).

! column = (0010)2 = 2 (third column).

S1(37 = 1001012) = 8 = 10002.

Remark:

S-boxes are the most crucial elements of DES because they introduce a non-

linear function to the algorithm, i.e., S(a) XOR S(b) 6= S(a XOR b).

4.1.4 Key Schedule

Note:

7 1

P

7

64

1

P

P = parity bits

Figure 4.6: 64 bit DES block
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In practice the DES key is arti�cially enlarged with odd parity bits. These bits

are \stripped" in PC-1.

PC - 2

PC - 2

PC - 1

C 0 D0

LS1 LS1

LS2 LS2

LS16 LS16

C 16 D16

C 1 D

64

1

K 16

K 1

28

28 28

28 2848

48

28

56

56

56

K

Figure 4.7: DES key scheduler

The cyclic Left-Shift (LS) blocks have two modes of operation:

a) for LSi where i = 1; 2; 9; 16, the block is shifted once.

b) for LSi where i 6= 1; 2; 9; 16, the block is shifted twice.
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Remark:

The total number of cyclic Left-Shifts is 4 � 1 + 12 � 2 = 28. As a results of this

C0 = C16 and D0 = D16.

4.2 Decryption

One advantage of DES is that decryption is essentially the same as encryption. Only the

key schedule is reversed. This is due to the fact that DES is based on a Feistel network.

Question: Why does decryption work essentially the same as encryption?

a) Find what happens in the initial stage of decryption!

(Ld

0; R
d

0) = IP (Y ) = IP (IP�1(R16; L16)) = (R16; L16).

(Ld

0; R
d

0) = IP (Y ) = (R16; L16).

Ld

0 = R16.

Rd

0 = L16 = R15.

b) Find what happens in the iterations!

What are (Ld

1; R
d

1) ?

Ld

1 = Rd

0 = L16 = R15.

substitute into the above equation to get:

Rd

1 = Ld

0 � f(Rd

0; k16) = R16 � f(L16; k16).

Rd

1 = [L15 � f(R15; k16)]� f(R15; k16).

Rd

1 = L15 � [f(R15; k16)� f(R15; k16)] = L15.

in general: Ld

i
= R16�i and Rd

i
= L16�i;

such that: Ld

16 = R16�16 = R0 and Rd

16 = R0.

c) Find what happens in the �nal stage!

IP�1(Rd

16; L
d

16) = IP�1(L0; R0)
:
= IP�1(IP (X)) = X q.e.d.
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f

32

32

32

Key  K

56

32

32

32

32

f

32

32

32

Initial Permutation
IP

K16

K1

Transform  1

Transform  16

IP -1

Final Permutation

L R15 15
d d

d

L R1 1
d d

L R 00
d d

64

Cipher Y = DES(X)

X = DES    (Y) = DES     (DES(X))
-1-1

56

64

PC-1

L R16 16

48

48

64

d

Figure 4.8: Decryption of DES
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Reversed Key Schedule:

Question: Given K, how can we easily generate k16?

k16 = PC2(C16; D16) = PC2(C0; D0) = PC2(PC1(k)).

k15 = PC2(C15; D15) = PC2(RS1(C16); RS1(D16)) = PC2(RS1(C0); RS1(D0)).

4.3 Implementation

Note:

One design criteria for DES was fast hardware implementation.

4.3.1 Hardware

Since permutations and simple table look-ups are fast in hardware, DES can be implemented

very e�ciently [AM97, page 362].

Fastest Implementation:

) 9 Gbit/s as 0:6 �m technology ASIC [WPR+99] with 16 stage pipeline.

4.3.2 Software

Record: 130 Mbits/s by Biham [Bih97].

Typically: a few 10 Mbit/s.

4.4 Attacks

There have been two major points of criticism about DES from the beginning:

i) key size is too small,

ii) the S-boxes contained secret design criteria.
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PC - 2

K

PC - 1

C 0 C 16
= D 0 D 16

=

RS1 RS1

D 15C 15

RS2 RS2

RS15 RS15

PC - 2

PC - 2

C 1 D

56

1K 1

56

28

28 28

28 28

48

28

56

56

K 16
48 56

K 15
48

Figure 4.9: Reversed key scheduler for decryption of DES

4.4.1 Exhaustive Key Search

Known Plaintext Attack:

known: X and Y .

unknown: K, such that Y = DESk(X).
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idea: test all 256 possible keys ! DESki
(X)

?
= Y ; i = 0; 1; : : : ; 256 � 1.

4.4.2 Di�erential Cryptanalysis

Proposed by Biham/Shamir in 1990.

Principle:

To consider di�erences in plain and ciphertext pairs and deduce the likelihood

of certain keys.

16-round DES requirements:

With chosen plaintext, 247 (X,Y) pairs are needed.

With known plaintext, 255 (X,Y) pairs are needed.

237 arithmetic operations are needed.

Since each (X,Y) pair is 128 bits long, large storage is needed which makes this attack

highly impractical!

Remark: The DES S-boxes are optimized against di�erential cryptanalysis.

4.4.3 Linear Cryptanalysis

Proposed by Matsui in 1993 and presented at CRYPTO'94.

Principal:

To consider di�erences in plain and ciphertext pairs and deduce the likelihood

of certain key bits.

The actual attack was implemented:

! with 243 known plaintexts, the key was recovered in 50 days.

! using 12 HP RISC workstations running at 99MHz.

Remark: The S-box design of DES is not optimized for this attack.
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Date Proposed/implemented attack

1977 Di�e & Hellman, estimate cost of key search machine (underestimate)

1990 Biham & Shamir propose di�erential cryptoanalysis (247 chosen ciphertexts)

1993 Mike Wiener proposes detailed hardware design for key search machine:

average search time of 36 h @ $100,000

1993 Matsui proposes linear cryptoanalysis (243 chosen ciphertexts)

Jun. 1997 DES Challenge I broken, distributed e�ort took 4.5 months

Feb. 1998 DES Challenge II{1 broken, distributed e�ort took 39 days

Jul. 1998 DES Challenge II{2 broken, key-search machine built by the

Electronic Frontier Foundation (EFF), 1800 ASICs, each with 24

search units, $250K, 15 days average (actual time 56 hours)

Jan. 1999 DES Challenge III broken, distributed e�ort combined with EFF's

key-search machine, it took 22 hours and 15 minutes.

Table 4.1: History of full-round DES attacks

4.5 DES Alternatives

There exists a wealth of other block ciphers. A small collection of as of yet unbroken ciphers

is:

Algorithm Year Inventor X/Y bits Key Core Operation

AES 2000+ ? 128 128/192/256 ?

Triple DES 64 112 S-box

IDEA 90/92 Lai/Massey 64 128 modulo arithmetic

Cast 93 Adams/Tavares 64 64 variable S-boxes

Safer 94 Massey 64 64/128 modulo arithmetic
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For further reading, consult Chapters 13 and 14 in [Sch93].
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Chapter 5

Rijndael { The Advanced Encryption

Standard

5.1 History

5.1.1 Basic Facts about AES

� Successor to DES.

� The AES selection process was administered by NIST.

� Unlike DES, the AES selection was an open (i.e., public) process.

� Likely to be the dominant secret-key algorithm in the next decade.

� Main AES requirements by NIST:

{ Block cipher with 128 I/O bits

{ Three key lengths must be supported: 128=192=256 bits

{ Security relative to other submitted algorithms

{ E�cient software and hardware implementations
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� See http://www.nist.gov/aes for further information on AES

5.1.2 Chronology of the AES Process

� Development announced on January 2, 1997 by the National Institute of Standards

and Technology (NIST).

� 15 candidate algorithms accepted on August 20th, 1998.

� 5 �nalists announced on August 9th, 1999

{ Mars, IBM Corporation.

{ RC6, RSA Laboratories.

{ Rijndael, J. Daemen & V. Rijmen.

{ Serpent, Eli Biham et al.

{ Two�sh, B. Schneier et al.

� Monday October 2nd, 2000, NIST chooses Rijndael as the AES.

A lot of work went into software and hardware performance analysis of the AES candidate

algorithms. Here are representative numbers:
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Algorithm Pentium-Pro @ 200 MHz FPGA Hardware

(Mbit/sec) [WWGP00] (Gbit/sec) [EYCP00]

MARS 69 {

RC6 105 2.4

Rijndael 71 1.9

Serpent 27 4.9

Two�sh 95 1.6

Table 5.1: Speeds of the AES Finalists in Hardware and Software
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5.2 Rijndael Overview

Rijndael
128

yx

k
128/192/256

128

Figure 5.1: AES Block and Key Sizes

� Both blocksize and keylength of Rijndael are variable. Sizes shown in Figure 5.2 are

the ones required by the AES Standard. The number of rounds (or iterations) is a

function of the key length:

Key lengths (bits) nr = # rounds

128 10

192 12

256 14

Table 5.2: Key lenghts and number of rounds for Rijndael

� However, Rijndael also allows blocksizes of 192 and 256 bits. For those blocksizes the

number of rounds must be increased.

Important: Rijndael does not have a Feistel structure. Feistel networks do not encrypt

an entire block per iteration (e.g., in DES, 64=2 = 32 bits are encrypted in one iteration).

Rijndael encrypts all 128 bits in one iteration. As a consequence, Rijndael has a comparably

small number of rounds.
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Rijndael uses three di�erent types of layers. Each layer operates on all 128 bits of a block:

1. Key Addition Layer: XORing of subkey.

2. Byte Substitution Layer: 8-by-8 SBox substitution.

3. Di�usion Layer: provides difussion over all 128 (or 192 or 256) block bits. It is split

in two sub-layers:

(a) ShiftRow Layer.

(b) MixColumn Layer.

Remark: The ByteSubstitution Layer introduces confusion with a non-linear operation.

The ShiftRow and MixColumn stages form a linear Di�usion Layer.

5.3 Some Mathematics: A Very Brief Introduction to

Galois Fields

\Galois �elds" are used to perform substitution and di�usion in Rijndael.

Question: What are Galois �elds?

Galois �elds are �elds with a �nite number of elements. Roughly speaking, a �eld is a

structure in which we ca add, subtract, multiply, and compute inverses. More exactly a �eld

is a ring in which all elements except 0 are invertible.

Fact 5.3.1 Let p be a prime. GF (p) is a \prime �eld," i.e., a Galois �eld with a

prime number of elements. All arithmetic in GF (p) is done modulo p.

Example: GF (3) = f0; 1; 2g
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Key Addition Layer

MixColumn Sublayer

Key Addition Layer

Key Addition Layer

ByteSubstitution Layer

ShiftRow SubLayer

r

round nr

y

ByteSubstitution Layer

ShiftRow SubLayer
Diffusion Layer

x

rounds 1 ... n   - 1

Figure 5.2: Rijndael encryption block diagram

addition

+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

additive inverse

�0 = 0

�1 = 2

�2 = 1
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multiplication

� 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

multiplicative inverse

0�1 does not exist

1�1 = 1

2�1 = 2, since 2 � 2 � 1 mod 3

Theorem 5.3.1 For every power pm, p a prime and m a positive integer, there exists

a �nite �eld with pm elements, denoted by GF (pm).

Examples:

- GF (5) is a �nite �eld.

- GF (256) = GF (28) is a �nite �eld.

- GF (12) = GF (3�22) isNOT a �nite �eld (in fact, the notation is already incorrect

and you should pretend you never saw it).

Question: How to build \extension �elds" GF (pm), m > 1 ?

Note: See also [Sti95, Section 5.2.1]

1. Represent elements as polynomials with m coe�cients. Each coe�cient is an element

of GF (p).

Example: A 2 GF (28)

A! A(x) = a7x
7 + � � �+ a1x + a0; ai 2 GF (2) = f0; 1g

2. Addition and subtraction in GF (pm)

C(x) = A(x) +B(x) =
P

i=m�1

i=0
cix

i; ci = ai + bi mod p

Example: A;B 2 GF (28)
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A(x) = x7+ x6+ x4+ 1

B(x) = x4+ x2+ 1

C(x) = x7+ x6+ x2

3. Multiplication in GF (pm): multiply the two polynomials using polynomial multipli-

cation rule, with coe�cient arithmetic done in GF (p). The resulting polynomial will

have degree 2m� 2.

A(x) �B(x) = (am�1x
m�1 + � � �+ a0) � (bm�1x

m�1 + � � �+ b0)

C 0(x) = c0
2m�2

x2m�2 + � � �+ c0
0

where:

c0
0

= a0b0 mod p

c0
1

= a0b1 + a1b0 mod p

...

c0
2m�2

= am�1bm�1 mod p

Question: How to reduce C 0(x) to a polynomial of maximum degree m� 1?

Answer: Use modular reduction, similar to multiplication in GF (p). For arithmetic

in GF (pm) we need an irreducible polynomial of degree m with coe�cients from GF (p).

Irreducible polynomials do not factor (except trivial factor involving 1) into smaller

polynomials from GF (p).

Example 1: P (x) = x4+x+1 is irreducible over GF (2) and can be used to construct

GF (24).

C = A �B ) C(x) = A(x) �B(x) mod P (x)

A(x) = x3 + x2 + 1

B(x) = x2 + x

C 0(x) = A(x) �B(x) = (x5 + x4 + x2) + (x4 + x3 + x) = x5 + x3 + x2 + 1
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x4 = 1 � P (x) + (x + 1)

x4 � x + 1 mod P (x)

x5 � x2 + x mod P (x)

C(x) � C 0(x) mod P (x)

C(x) � (x2 + x) + (x3 + x2 + 1) = x3

A(x) �B(x) � x3

Note: in a typical computer representation, the multiplication would assign the follow-

ing unusually looking operations:

A � B = C

(1 1 0 1) � (0 1 1 0) = (1 0 0 0)

Example 2: x4 + x3 + x+ 1 is reducible since x4 + x3 + x+ 1 = (x2 + x+ 1)(x2 + 1).

4. Inversion in GF (pm): the inverse A�1 of A 2 GF (pm)� is de�ned as:

A�1(x) � A(x) = 1 mod P (x)

) perform the Extended Euclidean Algorithm with A(x) and P (x) as inputs

s(x)P (x) + t(x)A(x) = gcd(P (x); A(x)) = 1

) t(x)A(x) = 1 mod P (x)

) t(x) = A�1(x)

Example: Inverse of x2 2 GF (23), with P (x) = x3 + x+ 1

t0 = 0, t1 = 1

x3 + x + 1 = [x]x2 + [x + 1] t2 = t0 � q1t1 = �q1 = �x = x

x + 1 = [1]x+ 1 t3 = t1 � q2t2 = 1� q2x = 1� x = x + 1

x = [x]1 + 0

) (x2)�1 = t(x) = t3 = x + 1
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Check: (x + 1)x2 = x3 + x = (x + 1) + x � 1 mod P (x) since x3 � x + 1 mod P (x).

Remark: In every iteration of the Euclidean algorithm, you should use long division (not

shown above) to uniquely determine qi and ri.

5.4 Internal Structure

In the following, we assume a block length of 128 bits. The ShiftRow Sublayer works slightly

di�erently for other block sizes.

5.4.1 Byte Substitution Layer

� Splits the incoming 128 bits in 128=8 = 16 bytes.

� Each byte A is considered an element of GF (28) and undergoes the following substi-

tution individually

1. B = A�1 2 GF (28) where P (x) = x8 + x4 + x3 + x + 1

2. Apply a�ne transformation de�ned by:

0
BBBBBBBBBBBBBBBBBBBBBBB@

c0

c1

c2

c3

c4

c5

c6

c7

1
CCCCCCCCCCCCCCCCCCCCCCCA

=

0
BBBBBBBBBBBBBBBBBBBBBBB@

1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1

1
CCCCCCCCCCCCCCCCCCCCCCCA

0
BBBBBBBBBBBBBBBBBBBBBBB@

b0

b1

b2

b3

b4

b5

b6

b7

1
CCCCCCCCCCCCCCCCCCCCCCCA

+

0
BBBBBBBBBBBBBBBBBBBBBBB@

0

1

1

0

0

0

1

1

1
CCCCCCCCCCCCCCCCCCCCCCCA

where (b7 � � � b0) is the vector representation of B(x) = A�1(x).

52



� The vector C = (c7 � � � c0) (representing the �eld element c7x
7 + � � �+ c1x + c0) is the

result of the substitution:

C = ByteSub(A)

The entire substitution can be realized as a look-up in a 256�8-bit table with �xed

entries.

Remark: Unlike DES, Rijndael applies the same S-Box to each byte.

5.4.2 Di�usion Layer

� Unlike the non-linear substitution layer, the di�usion layer performs a linear operation

on input words A;B. That means:

DIFF(A)� DIFF(B) = DIFF(A+B)

� The di�usion layer consists of two sublayers.

ShiftRow SubLayer

1. Write an input word A as 128=8 = 16 bytes and order them in a square array:

Input A = (a0; a1; � � � ; a15)

a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15
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2. Shift cyclically row-wise as follows:

a0 a4 a8 a12 0 positions

a5 a9 a13 a1 ��� �! 3 positions right shift

a10 a14 a2 a6 �� �! 2 positions right shift

a15 a3 a7 a11 � �! 1 position right shift

MixColumn SubLayer

Principle: each column of 4 bytes is individually transformed into another column.

Question: How?

Each 4-byte column is considered as a vector and multiplied by a 4� 4 matrix. The matirx

contains constant entries. Multiplication and addition of the coe�cients is done in GF (28).

0
BBBBBBBB@

c0

c1

c2

c3

1
CCCCCCCCA
=

0
BBBBBBBB@

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

1
CCCCCCCCA

0
BBBBBBBB@

b0

b1

b2

b3

1
CCCCCCCCA

Remarks:

1. Each ci; bi is an 8-bit value representing an element from GF (28).

2. The small values f01; 02; 03g allow for a very e�cient implementation of the coe�cient

multiplication in the matrix. In software implementations, multiplication by 02 and

03 can be done through table look-up in a 256-by-8 table.

3. Additions in the vector-matrix multiplication are XORs.

5.4.3 Key Addition Layer

Simple bitwise XOR with a 128-bit subkey.

54



5.5 Decryption

Unlike DES and other Feistel ciphers, all of Rijndael layers must actually be inverted.

Key Addition Layer

Inv ShiftRow SubLayer inverse of round nr

inverse of rounds n  -1, ..., 1r

Inv ByteSubstitution Layer

x

Inv ByteSubstitution Layer

Key Addition Layer

y

Key Addition Layer

Inv MixColumn Sublayer

Inv ShiftRow SubLayer

Figure 5.3: Rijndael decryption block diagram
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Chapter 6

More about Block Ciphers

Further Reading:

Section 8.1 in [Sch93].

Note:

The following modes are applicable to all block ciphers ek(X).

6.1 Modes of Operation

6.1.1 Electronic Codebook Mode (ECB)

K

eX0 X1 X2 Y YY0 1 2 e-1

K

X0 X1 X2

Figure 6.1: ECB model

General Description:

e�1k (Yi) = e�1k (ek(Xi)) = Xi; where the encryption can, for instance, be DES.
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Problem:

This mode is susceptible to substitution attack because same Xi are mapped to same Yi.

Example: Bank transfer.

4 51 2 3Block #

Bank A
Amount

$
Receiving
Account #

Receiving
Bank B

Sending
Account #

Sending

Figure 6.2: ECB example

1. Tap encrypted line to bank B.

2. Send $1:00 transfer to own account at bank B repeatedly ! block 4 can be identi�ed

and recorded.

3. Replace in all messages to bank B block 4.

4. Withdraw money and 
y to Paraguay.

Note: This attack is possible only for single-block transmission.

6.1.2 Cipher Block Chaining Mode (CBC)

Beginning: Y0 = ek(X0 � IV ).

X0 = IV � e�1k (Y0) = IV � e�1k (ek(X0 � IV )) = X0.

Encryption: Yi = ek(Xi � Yi�1).

Decryption: Xi = e�1k (Yi)� Yi�1.

Question: How does it work?

Xi = e�1k (ek(Xi � Yi�1))� Yi�1.

Xi = (Xi � Yi�1)� Yi�1.
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Yi-1Yi-1

e

k

IV

Yi-1

Xi

Yi-1

Yi

Xi

i=0

e

k

-1

IV
i=0

Figure 6.3: CBC model

Xi = Xi. q.e.d.

Remark: The Initial Vector (IV) can be transmitted initially in cleartext.

6.1.3 Cipher Feedback Mode (CFB)

Assumption: block cipher with b bits block width and message with block width l, 1 �

l � b.

e

k b : l Y i-1 Y i-1 b : l

e

k

X i
Y i

X i

l l l
z

i

z
i

~z
i

~

z
i

l

l
l

SR SR
bb

l

l

bb

l

Figure 6.4: CFB model
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Procedure:

1. Load shift register with initial value IV.

2. Encrypt ek(IV ) = ~z0.

3. Take l leftmost bits: ~z0 ! z0.

4. Encrypt data: Y0 = X0 � z0.

5. Shift the shift register and load Y0 into the rightmost SR position.

6. Go back to (2) substituting e(IV ) with e(SR).

6.1.4 Counter Mode

Notes:

� Another mode which uses a block cipher as a pseudo-random generator.

� Counter Mode does not rely on previous ciphertext for encrypting the next block.

) well suited for parallel (hardware) implementation, with several encryption blocks

working in parallel.

� Counter Mode stems from the Security Group of the ATM Forum, where high data

rates required parallelization of the encryption process.

Description of Counter Mode:

1. An n-bit initial vector (IV) is loaded into a (maximum length) LFSR. The IV can be

publically known, although a secret IV (i.e., the IV is considered part of the private

key) turns the counter mode systems into a non-deterministic cipher which makes

cryptoanalysis harder.

2. Encrypt block cipher input.
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LFSR

ek

n

n

n

n

X Y

Figure 6.5: Counter Mode model

3. The block cipher output is considered a pseudorandom mask which is XORed with the

plaintext.

4. The LFSR is clocked once (note: all input bits of the block cipher are shifted by one

position).

5. Goto to Step 2.

Note that the period of a counter mode is n � 2n which is very large for modern block

ciphers, e.g., 128 � 2128 = 2135 for AES algorithms.

6.2 Key Whitening

e

k

X Y

k k

i i

12 3

Figure 6.6: Whitening example
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Encryption: Y = ek1;k2;k3(X) = ek1(X � k2)� k3.

Decryption: X = e�1k1
(Y � k3)� k2.

popular example: DESX

6.3 Multiple Encryption

6.3.1 Double Encryption

Note: The keyspace of this encryption is jkj = 2k � 2k = 22k.

However, using the meet-in-the-middle attack, the key search is reduced signi�cantly.

z
X Ye

k

e

e (X)

j

 = z e
-1

k
(Y) = z

ki
i
(1)

j
j
(2)

n
k

ki

Figure 6.7: Double encryption and meet-in-the-middle attack

Meet in the middle attack:

Input ! some pairs (x0; y0), (x00; y00), : : :.

Idea ! compute z
(1)
i = eki

(x0) and z
(2)
j = e�1

kj
(y0).

Problem ! to �nd a matching pair such that z
(1)
i = z

(2)
j .

Procedure:

1. Compute a look-up table for all (z
(1)
i ; ki), i = 1; 2; : : : ; 2k and store it in memory.

Number of entries in the table is 2k with each entry being n bits wide.
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2. Find matching z
(2)
j .

(a) compute e�1
kj
(y0) = z

(2)
j

(b) if z
(2)
j is in the look-up table, i.e., if z

(1)
i = z

(2)
j , check a few other pairs (x00; y00); (x000; y000); : : :

for the current keys ki and kj

(c) if ki and kj give matching encryptions stop; otherwise go back to (a) and try

di�erent key kj.

Question: How many additional pairs (x00; y00); (x000; y000); : : : should we test?

General system: l subsequent encryptions and t pairs (x0; y0); (x00; y00); : : :.

1. In the �rst step there are 2lk possible key combinations for the mapping E(x0) =

e(� � � (e(e(x0)) � � �) = y0 but only 2n possible values for x0 and y0. Hence, there are

2lk

2n

mappings E(x0) = y0. Note that only one mapping is done by the correct key!

n

2n

2

Y’

2lk
mappings E(x’) = y’

X’

Figure 6.8: Number of mappings x0 to y0 under l-fold encryption
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2. We use now a candidate key from step 1 and check whether E(x00) = y00. There are 2n

possible outcomes y for the mapping E(x00). If a random key is used, the likelyhood

that E(x00) = y00 is
1

2n

If we check additionally a third pair (x000; y000) under the same \random" key from step

1, the likelyhood that E(x00) = y00 and E(x000) = y000 is

1

22n

If we check t� 1 additional pairs (x00; y00); (x000; y000); : : : (x(t); y(t)) the likelyhood that a

random key ful�lls E(x00) = y00, E(x000) = y000; : : : is

1

2(t�1)n

n

2n

2

mappings E(x’’) = y

Y’’X’’

Figure 6.9: Number of mappings x00 to y

3. Since there are 2lk

2n
candidate keys in step 1, the likelyhood that at least one of the

candidate keys ful�lls all E(x00) = y00, E(x000) = y000; : : : is

1

2(t�1)n

2lk

2n
= 2lk�tn

Example: Double encryption with DES. We use two pairs (x0; y0); (x00; y00). The likelyhood

that an incorrect key pair ki; kj is picked is

2lk�tn = 2112�128 = 2�16
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If we use three pairs (x0; y0); (x00; y00); (x000; y000), the likelyhood that an incorrect key pair

ki; kj is picked is

2lk�tn = 2112�192 = 2�80

Computational complexity:

Brute force attack: 22k.

Meet in the middle attack: 2k encryptions + 2k decryptions = 2k+1 computations

and 2k memory locations.
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6.3.2 Triple Encryption

Option 1:

Y = ek1(e
�1

k2
(ek1(X))); if k1 = k2 ! Y = ek1(X).

Option 2:

Y = ek3(ek2(ek1(X))); where jkj � 22k

Option 2 should be preferred.

e

k

e

k

e

k

z
Y

1

1 2 3

X

Figure 6.10: Triple encryption example

Note:

Meet in the middle attack can be used in a similar way by storing zi results in

memory. The computational complexity of this approach is 2k � 2k = 22k.

65



Chapter 7

Introduction to Public-Key

Cryptography

7.1 Principle

Quick review of private-key cryptography

k d k
e Y

k k

XX

Figure 7.1: Private-key model

Two properties of private-key schemes:

1. The algorithm requires same secret key for encryption and decryption.

2. Encryption and decryption are essentially identical (symmetric algorithms).
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Analogy for private key algorithms

Private key schemes are analogous to a safe box with a strong lock. Everyone

with the key can deposit messages in it and retrieve messages.

Main problems with private key schemes are:

1. Requires secure transmission of secret key.

2. In a network environment, each pair of users has to have a di�erent key resulting in

too many keys (n � (n� 1)� 2 key pairs).

New Idea:

Make a slot in the safe box so that everyone can deposit a message, but only the

receiver can open the safe and look at the content of it. This idea was proposed

in [WD76] in 1976 by Di�e/Hellman.

Idea: Split key.

(encryption)
private partpublic part
(decryption)

K

Figure 7.2: Split key idea

Protocol:

1. Alice and Bob agree on a public-key cryptosystem.

2. Bob sends Alice his public key.

3. Alice encrypts her message with Bob's public key and sends the ciphertext.

4. Bob decrypts ciphertext using his private key.
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pub

K
pr

K
pub K

pub
K

pr,( ) = K

K (X)

2.)

3.)

4.)

Y
Y

Alice Oscar Bob

X = d (Y)

X

Y = e

Figure 7.3: Public-key encryption protocol

7.2 One-Way Functions

All public-key algorithms are based on one-way functions.

De�nition 7.2.1 A function f is a \one-way function"

if:

(a) y = f(x)! is easy to compute,

(b) x = f�1(y)! is very hard to compute.

Example: Discrete Logarithm (DL) one-way Function

2x mod 127 � 31

x =?

De�nition 7.2.2 A trapdoor one function is a one-way

function whose inverse is easy to compute given a side

information such as the private key.

7.3 Overview of Public-Key Algorithms

There are three families of Public-Key (PK) algorithms of practical relevance:

1. Integer factorization algorithms (RSA, ...)
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2. Discrete logarithms (D{H, DSA, ...)

3. Elliptic curves (EC)

) Generally speaking, public-key algorithms are much slower than private-key algorithms.

) Public-Key algorithms are mainly used for key establishment and digital signatures and

not for bulk data encryption.

Algorithm Family Bit length of the operands

Integer Factorization (RSA) 1024

Discrete Logarithm (D{H, DSA) 1024

Elliptic curves 160

Block cipher 80

Table 7.1: Bit lengths for security level of approximately 280 computations for successful

attack.

7.4 Important Public-Key Standards

a) IEEE P1363. Comprehensive standard of public-key algorithms. Collection of IF, DL,

and EC algorithm families, including in particular:

{ Key establishment algorithms

{ Key transport algorithms

{ Signature algorithms

Note: IEEE P1363 does not recommend any bit lengths or security levels.
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b) ANSI Banking Security standards.

ANSI# Subject

X9.30{1 digital signature algorithm (DSA)

X9.30{2 hashing algorithm for RSA

X9.31{1 RSA signature algorithm

X9.32{2 hashing algorithms for RSA

X9.42 key management using Di�e-Hellman

X9.62 (draft) elliptic curve digital signature algorithm (ECDSA)

X9.63 (draft) elliptic curve key agreement and transport protocols

c) U.S. Government standards (FIPS)

FIPS# Subject

FIPS 180-1 secure hash standard (SHA-1)

FIPS 186 digital signature standard (DSA)

FIPS JJJ (draft) entity authentication (asymetric)
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7.5 More Number Theory

7.5.1 Euclid's Algorithm

Basic Form

Given r0 and r1 with one larger than the other, compute the gcd(r0; r1).

Example 1:

r0 = 22; r1 = 6.

gcd(r0; r1) =?

r

r

r

0

1

2

3

2 2

6 6 6 44
�����
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�����
�����

�����
�����
�����
�����

4r

gcd(6,4) = gcd(4,2)

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

gcd(22, 6) = gcd(6, 4) = gcd(4, 2) = gcd(2, 0) = 2

2

2

4 2

gcd(22,6) = gcd(6,4)

gcd(4,2) = 2

Figure 7.4: Euclid's algorithm example

Example 2:

r0 = 973; r1 = 301.

973 = 3 � 301 + 70.

301 = 4 � 70 + 21.

70 = 3 � 21 + 7.

21 = 3 � 7 + 0.

gcd(973; 301) = gcd(301; 70) = gcd(70; 21) = gcd(21; 7) = 7.
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Algorithm:

input: r0, r1

r0 = q1 � r1 + r2 gcd(r0; r1) = gcd(r1; r2)

r1 = q2 � r2 + r3 gcd(r1; r2) = gcd(r2; r3)
...

...

rm�2 = qm�1 � rm�1 + rm gcd(rm�2; rm�1) = gcd(rm�1; rm)

rm�1 = qm � rm + 0 y gcd(r0; r1) = gcd(rm�1; rm) = rm

y - termination criteria
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Extended Euclidean Algorithm

Theorem 7.5.1 Given two integers r0 and r1, there exist two other integers s and t

such that s � r0 + t � r1 = gcd(r0; r1).

Question: How to �nd s and t?

Use Euclid's algorithm and express the current remainder ri in every iteration in the form

ri = sir0 + tir1. Note that in the last iteration rm = gcd(r0; r1)
!
= smr0 + tmr1 = sr0 + tr1.

index Euclid's Algorithm rj = sj � r0 + tj � r1

2 r0 = q1 � r1 + r2 r2 = r0 � q1 � r1 = s2 � r0 + t2 � r1

3 r1 = q2 � r2 + r3 r3 = r1 � q2 � r2 = r1 � q2(r0 � q1 � r1)

= [�q2]r0 + [1 + q1 � q2]r1 = s3 � r0 + t3 � r1
...

...
...

i ri�2 = qi�1 � ri�1 + ri ri = si � r0 + ti � r1

i+ 1 ri�1 = qi � ri + ri+1 ri+1 = si+1 � r0 + ti+1 � r1

i+ 2 ri = qi+1 � ri+1 + ri+2 ri+2 = ri � qi+1 � ri+1

= (si � r0 + t1 � r1)� qi+1(si+1 � r0 + ti+1 � r1)

= [si � qi+1] � si+1]r0 + [t1 � qi+1 � ti+1]r1

= si+2 � r0 + ti+2 � r1
...

...
...

m rm�2 = qm�1 � rm�1 + rm rm = gcd(r0; r1) = sm � r0 + tm � r1

Now: s = sm, t = tm

Recursive formulae:

s0 = 1, t0 = 0

s1 = 0, t1 = 1

si = si�2 � qi�1 � si�1, ti = ti�2 � qi�1 � ti�1; i = 2; 3; 4 : : :
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Remark:

a) Extended Euclidean algorithm is commonly used to compute the inverse element in

Zm. If gcd(r0; r1) = 1, then t = r�11 mod r0.

b) For fast software implementation, the \binary extended Euclidean algorithm" is more

e�cient [AM97] because it avoids the division required in each iteration of the extended

Euclidean algorithm shown above.

7.5.2 Euler's Phi Function

De�nition 7.5.1 The number of integers in Zm rela-

tively prime to m is denoted by �(m).

Example 1:

m = 6; Z6 = f0; 1; 2; 3; 4; 5g

gcd(0; 6) = 6

gcd(1; 6) = 1  

gcd(2; 6) = 2

gcd(3; 6) = 3

gcd(4; 6) = 2

gcd(5; 6) = 1  

�(6) = 2
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Example 2:

m = 5; Z5 = f0; 1; 2; 3; 4g

gcd(0; 5) = 5

gcd(1; 5) = 1  

gcd(2; 5) = 1  

gcd(3; 5) = 1  

gcd(4; 5) = 1  

�(5) = 4

Theorem 7.5.2 If m = pe11 � p
e2
2 � : : : � p

en
n , where pi are

prime numbers and ei are integers, then:

�(m) =
nY

i=1

(peii � p
ei�1
i )

.

Example:

m = 40 = 8 � 5 = 23 � 5 = p
e1
1 � p

e2
2

�(m) = (23 � 22)(51 � 50) = (8� 4)(5� 1) = 4 � 4 = 16

Theorem 7.5.3 Euler's Theorem

If gcd(a;m) = 1, then:

a�(m) � 1 mod m

.

Example:

m = 6; a = 5

�(6) = �(3 � 2) = (3� 1)(2� 1) = 2

5�(6) = 52 = 25 � 1 mod 6
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Chapter 8

RSA

1. Most popular public-key cryptosystem.

2. Invented by Rivest/Shamir/Adleman in 1977 at MIT.

3. Patented until 2000.
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8.1 Cryptosystem

Set-up Stage

1. Choose two large primes p and q.

2. Compute n = p � q.

3. Compute �(n) = (p� 1)(q � 1).

4. Choose random b; 0 < b < �(n), with gcd(b;�(n)) = 1.

Note that b has inverse in Z�(n).

5. Compute inverse a = b�1 mod �(n):

b � a � 1 mod �(n):

6. Public key: kpub = (n; b).

Private key: kpr = (p; q; a).

Encryption: done using public key, kpub.

y = ekpub(x) = xb mod n.

x 2 Zn = f0; 1; : : : ; n� 1g.

Decryption: done using private key, kpr.

x = dkpr(y) = ya mod n.

Example:

Alice sends encrypted message (x = 4) to Bob after Bob

sends her the public key.
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Alice Bob

(1) choose p = 3; q = 11

(2) n = p � q = 33

(3) �(n) = (3� 1)(11� 1) = 2 � 10 = 20

(4) choose b = 3; gcd(20; 3) = 1

x = 4
kpub(3;33) � (5) a = b�1 = 7 mod 20

y = xb mod n = 43 = 64 � 31 mod 33
y=31�! x = ya = 317 � 4 mod 33

Why does RSA work?

We have to show that: dkpr(y) = dkpr(ekpub(x)) = x.

dkpr = ya = xba = xab mod n.

a � b � 1 mod �(n)() a � b � 1 + t � �(n); t is an integer.

dkpr = xab = xt��(n) � x1 = (x�(n))t � x mod n.

if x�(n) � 1 mod n then dkpr = (x�(n))t � x = 1t � x = 1 � x = x mod n.

1. Case: gcd(x; n) = gcd(x; p � q) = 1

Euler's Theorem: x�(n) � 1 mod n, q.e.d.

2. Case: gcd(x; n) = gcd(x; p � q) 6= 1

either x = r � p or x = s � q; r; s are integers such that; r < q, s < p.

assume x = r � p) gcd(x; q) = 1

x�(n) = x(q�1)(p�1) = x�(q)(p�1) = (x�(q))p�1 = 1 mod q

x�(n) = 1 + c � q; where c is an integer

x � x�(n) = x+ x � c � q = x+ r � p � c � q = x+ r � c � p � q = x+ r � c � n
x � x�(n) � x mod n
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x�(n) � 1 mod n, q.e.d.

8.2 Computational Aspects

8.2.1 Choosing p and q

Problem: Finding two large primes p, q (each > 250 bits).

Principle:

Pick a large integer and apply primality test. In practice, a \Monte Carlo" test

developed by Miller-Rabbin (pg. 136 in [Sti95]) is used. Note that a primality

test does NOT require factorization.

Miller-Rabin Algorithm:

Input: p or q and arbitrary number r < p; q.

Output 1: Statement \p; q is composite" ! always true.

Output 2: Statement \p; q is prime" ! true with probability > 0:75.

In practice, the above algorithm is run 3 times (for a 1000 bit prime) and upto 12 times (for

a 150 bit prime) [AM97, Table 4.4 page 148] with di�erent parameters r. If the answer is

always \p is prime", then p is with very high probability a prime.

P(p is composite ) � 0:25t where t = number of tries.

Question: What is the likelihood that a randomly picked integer p or q is prime?

Answer: P(p is prime ) � 1
ln(p)

.

Example: p � 2250 ! (250 bits).

P(p is prime ) = 1
ln(2250)

� 1
173

.
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8.2.2 Choosing a and b

kpub = b; condition: gcd(b;�(n)) = 1; where �(n) = (p� 1) � (q � 1).

kpr = a; where a = b�1 mod �(n).

Pick arbitrary b (large!) and compute:

1. Euclidean Algorithm: s � �(n) + t � b = gcd(b;�(n))

2. Test if gcd(b;�(n)) = 1

3. Calculate a:

Question: What is t � b mod �(n)?

t � b = (�s)�(n) + 1

) t � b � 1 mod �(n)

) t = b�1 = a mod �(n)

Remark:

It is not necessary to �nd s for the computation of a.

8.2.3 Encryption/Decryption

encryption: ekpub(x) = xb mod n = y.

decryption: dkpr(y) = ya mod n = x.

Question: How many multiplications are required for computing x8?

Answer: x � x = x2| {z }
1

; x2 � x2 = x4| {z }
2

; x4 � x4 = x8| {z }
3

.

if 0 < b < �(n) then O(�(n)) � O(n).

Question: How many multiplications are required for computing x13?

Answer: x � x = x2| {z }
SQ

; x2 � x = x3| {z }
MUL

; x3 � x3 = x6| {z }
SQ

; x6 � x6 = x12| {z }
SQ

; x12 � x = x13| {z }
MUL

.
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Square-and-multiply algorithm

First: binary representation of the exponent ! xB ; B � 15

B = b3 � 23 + b2 � 22 + b1 � 21 + b0

B = (b3 � 2 + b2)2
2 + b1 � 2 + b0 = ((b3 � 2 + b2)2 + b1)2 + b0

xB = x((b3�2+b2)2+b1)2+b0

Step xB

#1 xb3�2

#2 (xb3�2 � xb2)

#3 (xb3�2 � xb2)2

#4 (xb3�2 � xb2)2 � xb1

#5 ((xb3�2 � xb2)2 � xb1)2

#6 ((xb3�2 � xb2)2 � xb1)2 � xb0

Example: x13 = x11012 = x(b3;b2;b1;b0)2

#1 xb3�2 = x2 SQ

#2 x2 � xb3 = x2 � x = x3 MUL

#3 (x3)2 = x6 SQ

#4 x6 � x0 x6 � 1 = x6

#5 (x6)2 = x12 SQ

#6 x12 � xb0 = x12 � x = x13 MUL

Complexity: [log2 n] � SQ + [1
2
log2 n] �MUL.

Comparison: B = 21000

Straight forward exponentiation: 21000 � 10300 multiplications

! computationally impossible.

Square-and-multiply: 1:5 � log2(21000) = 1500 multiplications and squarings

! relatively easy.
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Remark: Remember to apply modulo reduction after every multiplication and squaring

operation.

Algorithm [Sti95]: computes xB, where B =
Pl�1

i=0 bi2
i

1. z = x

2. for i = l � 1 downto 0 do:

(a) z = z2 mod n

(b) if (bi = 1) then z = z � x mod n

8.3 Attacks

8.3.1 Brute Force

Given y = xb mod n, try all possible keys a; 0 � a < �(n) to obtain x = ya mod n. In

practice jKj = �(n) � n > 2500 ) impossible.

8.3.2 Finding �(n)

Given n; b; y = xb mod n, �nd �(n) and compute a = b�1 mod �(n).

) computing �(n) is believed to be as di�cult as factoring n.

8.3.3 Finding a directly

Given n; b; y = xb mod n, �nd a directly and compute x = ya mod n.

) computing a directly is believed to be as di�cult as factoring n.
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8.3.4 Factorization of n

Given n; b; y = xb mod n, �nd p � q = n and compute:

�(n) = (p� 1)(q � 1)

b = a�1 mod �(n)

x = ya mod n

! This approach is the only attack believed to be practical.

Factoring Algorithms:

1. Quadratic Sieve (QS): speed depends on the size of n; record: in 1994 factoring of

n =RSA129, log10n = 129 digits, log2n = 426 bits.

2. Elliptic Curve: similar to QS; speed depends on the size of the smallest prime factor

of n, i.e., on p and q.

3. Number Field Sieve: asymptotically better than QS; record: in 1996 factoring of

n =RSA140; log10n = 140 digits; log2n = 466 bits.

Algorithm Complexity

Quadratic Sieve O(e(1+o(1))
p

ln(n) ln(ln(n)))

Elliptic Curve O(e(1+o(1))
p

2 ln(p) ln(ln(p)))

Number Field Sieve O(e(1:92+o(1))(ln(n))1=3(ln(ln(n)))2=3)

84



number month MIPS-years algorithm

RSA-100 April 1991 7 quadratic sieve

RSA-110 April 1992 75 quadratic sieve

RSA-120 June 1993 830 quadratic sieve

RSA-129 April 1994 5000 quadratic sieve

RSA-130 April 1996 500 generalized number �eld sieve

RSA-140 February 1999 1500 generalized number �eld sieve

RSA-155 August 1999 8000 generalized number �eld sieve
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8.4 Implementation

� Hardware: 1024 bit decryption in less that 5 ms.

� Software: 1024 bit decryption in 43 ms; 1024 bit encryption in 0.65 ms

� hybrid systems, consisting of public-key and private-key algorithms: most commonly

used in practice

1. key exchange and authentication with (slow) public-key algorithm

2. bulk data encryption with (fast) block ciphers
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Chapter 9

The Discrete Logarithm (DL)

Problem

� DL is the underlying one-way function for:

1. Di�e-Hellman key exchange.

2. DSA (digital signature algorithm).

3. ElGamal encryption/digital signature scheme.

4. Elliptic curve cryptosystems.

5. : : : : : :

� DL is based on �nite groups.

9.1 Some Algebra

Further Reading: [Big85].
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9.1.1 Groups

De�nition 9.1.1 A group is a set G of elements together with a binary operation

\o" such that:

1. If a; b 2 G then a � b = c 2 G ! (closure).

2. If (a � b) � c = a � (b � c) ! (associativity).

3. There exists an identity element e 2 G:

e � a = a � e = a ! (identity).

4. There exists an inverse element ~a, for all a 2 G:

a � ~a = e ! (inverse).

Examples:

1. G= Z = f: : : ;�2;�1; 0; 1; 2; : : :g

� = addition

(Z;+) is a group with e = 0 and ~a = �a

2. G= Z

� = multiplication

(Z;�) is NOT a group since inverses ~a do not exist except for a = 1

3. G=C (complex numbers u+ iv)

� = multiplication

(C;�) is a group with e = 1 and

~a = a�1 =
u� iv

u2 + v2

De�nition 9.1.2 \Z�
n" denotes the set of numbers i, 0 � i < n, which are relatively

prime to n.
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Examples:

1. Z�
9
= f1; 2; 4; 5; 7; 8g

2. Z�
7
= f1; 2; 3; 4; 5; 6g

Multiplication Table

� mod 9 1 2 4 5 7 8

1 1 2 4 5 7 8

2 2 4 8 1 5 7

4 4 8 7 2 1 5

5 5 1 2 7 8 4

7 7 5 1 8 4 2

8 8 7 5 4 2 1

Theorem 9.1.1 Z�
n forms a group under modulo n multiplication. The identity ele-

ment is e = 1.

Remark:

The inverse of a 2 Z�
n can be found through the extended Euclidean algorithm.

9.1.2 Finite Groups

De�nition 9.1.3 A group (G, �) is �nite if it has a �nite number of g elements.

We denote the cardinality of G by jGj.

Examples:

1. (Zm;+): a+ b = c mod m

Question: What is the cardinality ! jZmj = m

Zm = f0; 1; 2; : : : ; m� 1g
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2. (Z�
p ;�): a� b = c mod p; p is prime

Question: What is the cardinality ! jZ�
p j = p� 1

Z�
p = f1; 2; : : : ; p� 1g

De�nition 9.1.4 The order of an element a 2 (G; �) is the smallest positive integer

o such that a � a � : : : � a = ao = 1.

Example: (Z�
11
;�), a = 3

Question: What is the order of a = 3?

a1 = 3

a2 = 32 = 9

a3 = 33 = 27 � 5 mod 11

a4 = 34 = 33 � 3 = 5 � 3 = 15 � 4 mod 11

a5 = a4 � a = 4 � 3 = 12 � 1 mod 11

) ord(3) = 5
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De�nition 9.1.5 A group G which contains elements � with maximum order

ord(�) = jGj is said to be cyclic. Elements with maximum order are called gen-

erators or primitive elements.

Example: 2 is a primitive element in Z�
11

jZ�
11
j = jf1; 2; 3; 4; 5; 6; 7; 8; 9; 10gj= 10

a = 2

a2 = 4

a3 = 8

a4 = 16 � 5

a5 = 10;

a6 = 20 � 9

a7 = 18 � 7

a8 = 14 � 3;

a9 = 6

a10 = 12 � 1

a11 = 2 = a.

) ord(a = 2) = 10 = jZ�
11
j

) (1) jZ�
11
j is cyclic

) (2) a = 2 is a primitive element

Observation (important): 2i; i = 1; 2; : : : ; 10 generates all elements of Z�
11

i 1 2 3 4 5 6 7 8 9 10

2i 2 4 8 5 10 9 7 3 6 1
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Some properties of cyclic groups:

1. The number of primitive elements is �(jGj).

2. For every a 2 G: ajGj = 1.

3. For every a 2 G: ord(a) divides jGj.

Proof only for (2): a = �i

ajGj= (�i)jGj = (�jGj)i
:
= 1i = 1.

Example: Z�
11
; jZ�

11
j = 10

1. �(10) = (2� 1)(5� 1) = 1 � 4 = 4

2. a = 3! 310 = (35)2 = 12 = 1

3. homework : : :
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9.2 The General DL Problem

Given a cyclic subgroup (G; �) and a primitive element �. Let

� = � � � : : : �| {z }
i times

= �i

be an arbitrary element in G.

General DL Problem:

Given G, �; � = �i, �nd i.

i = log�(�)

Examples:

1. (Z11;+); � = 2; � = 2 + 2 + : : :+ 2| {z }
i times

= i � 2

i 1 2 3 4 5 6 7 8 9 10 11

2i 2 4 6 8 10 1 3 5 7 9 0

Let i = 7: � = 7 � 2 � 3 mod 11

Question: given � = 2, � = 3 = i � 2, �nd i

Answer: i = 2�1 � 3 mod 11

Euclid's algorithm can be used to compute i thus this example is NOT a one-way

function.

2. (Z�

11;�); � = 2; � = 2 � 2 � : : : � 2| {z }
i times

= 2i

� = 3 = 2i mod 11

Question: i = log2(3) = log2(2
i) = ?

Very hard computational problem!
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9.3 Attacks for the DL Problem

1. Brute force:

check:

�1 ?
= �

�2 ?
= �

...

�i ?
= �

Complexity: O(jGj) steps.
Example: DL in Z�

p � p�1
2

tests

minimum security requirement ) p� 1 = jGj � 280

2. Shank's algorithm (Baby-step giant-step) and Pollard's-� method:

Further reading: p. 165 in [Sti95].

Complexity: O(
q
jGj) steps (for both algorithms).

Example: DL in Z�

p �
p
p steps

minimum security requirement ) p� 1 = jGj � 2160

3. Pohlig-Hellman algorithm:

Let jGj = p1 � p2 � � � pl|{z}
largest prime

Complexity: O(
p
pl) steps.

Example: DL in Z�

p : pl of (p� 1) must be � 2160

minimum security requirement ) pl � 2160

4. Index-Calculus method:

Further reading: [AM97].

Applies only to Z�

p and Galois �elds GF(2k)

Complexity: O (e(1+O(1))
p

ln(p) ln(ln(p))) steps.

Example: DL in Z�

p : minimum security requirement ) p � 21024
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Remark: Index-Calculus is more powerful against DL in Galois Fields GF(2k) than

against DL in Z�

p .

9.4 Di�e-Hellman Key Exchange

Remarks:

� Proposed in 1976 in Di�e-Hellman paper.

� Used in many practical protocols.

� Can be based on any DL problem.

9.4.1 Protocol

Set-up:

1. Find a large prime p.

2. Find a primitive element � of Z�

p or

of a subgroup of Z�

p .

Protocol:

Alice Bob

pick kprA = aA 2 f2; 3; : : : ; p� 1g pick kprB = aB 2 f2; 3; : : : ; p� 1g

compute kpubA = bA = �aA mod p compute kpubB = bB = �aB mod p

bA�!

bB �

kAB = b
aA
B = (�aB )aA kAB = b

aB
A = (�aA)aB

Session key kses = kAB = �aB �aA = �aA�aB mod p.
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9.4.2 Security

Question: Which information does Oscar have?

Answer: �; p; bA; bB.

Di�e-Hellman Problem:

Given bA = �aA mod p; bB = �aB mod p, and � �nd �aA�aB mod p.

One solution to the D-H problem:

1. Solve DL problem: aA = log�(bA) mod p.

2. Compute: baAB = (�aB)aA = �aA�aB mod p.

Choose p � 21024.

Note:

There is no proof that the DL problem is the only solution to the D-H problem!

However, it is conjectured.

96



Chapter 10

Elliptic Curve Cryptosystem

Further Reading:

Chapter 6 in [Kob94].

Book by Alfred Menezes [Men93].

Remarks:

� Relatively new cryptosystem, suggested independently:

! 1987 by Koblitz at the University of Washington,

! 1986 by Miller at IBM.

� It is believed to be more secure than RSA/DL in Z�

p , but uses arithmetic with much

shorter numbers (� 160 { 256 bits vs. 1024 { 2048 bits).

� It can be used instead of D-H and other DL-based algorithms.

Drawbacks:

� Not as well studied as RSA and DL-base public-key schemes.

� It is conceptually more di�cult.

� Finding secure curves in the set-up phase is computationally expensive.
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10.1 Elliptic Curves

Goal: To �nd another instance for the DL problem in cyclic groups.

Question: What is the equation x2 + y2 = r2 over reals?

Answer: It is a circle.

x

2

y

r

Figure 10.1: x2 + y2 = r2 over reals

Question: What is the equation a � x2 + b � y2 = c over reals?

Answer: It is an ellipsis.

x

y

Figure 10.2: a � x2 + b � y2 = c over reals

Note:

There are only certain points (x,y) which ful�ll the equation. For example the

point (x = r; y = 1) ful�lls the equation of a circle.

98



De�nition 10.1.1 The elliptic curve over Zp, p > 3, is a set of all pairs (x, y) 2 Zp

which ful�ll:

y2 � x3 + a � x + b mod p

where

a; b;2 Zp

and

4 � a3 + 27 � b2 6= 0 mod p

Question: How does y2 = x3 + a � x + b look over reals?

Q

x

y

Q+Q=2Q

P+Q

P

Figure 10.3: y2 = x3 + a � x+ b over the reals

Goal: Finding a (cyclic) group (G, �) so that we can use the DL problem as a one-way

function.

We have a set (points on the curve). We \only" need a group operation on the points.
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Group G: Points on the curve given by (x, y).

Operation �: P +Q = (x1; y1) + (x2; y2) = R = (x3; y3).

Question: How do we �nd R?

Answer: First geometrically.

a) P 6= Q! line through P and Q and mirror point of third interception along the x-axis.

b) P = Q) P +Q = 2Q! tangent line through Q and mirror point of second intersec-

tion along the x-axis.

Point Addition (group operation):

x3 = �2 � x1 � x2 mod p

y3 = �(x1 � x3)� y1 mod p

where

� =

8><
>:

y2�y1
x2�x1

mod p ; if P 6= Q

3x2
1
+a

2y1
mod p ; if P = Q

Remarks:

� If x1 � x2 mod p and y1 � �y2 mod p, then P + Q = O which is an abstract point

at in�nity.

� O is the neutral element of the group: P+O= P ; for all P .

� Additive inverse of any point (x; y) = P is P+(�P ) = O such that (x; y)+(x;�y) = O.

Theorem 10.1.1 The points on an elliptic curve together with O have

cyclic subgroups.
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Remark: Under certain conditions all points on an elliptic curve form a cyclic group as

the following example shows.

Example: Finding all points on the curve E: y2 � x3 + x + 6 mod 11.

#E = 13.

primitive element ! � = (2; 7)) generates all points.

2� = � + � = (2; 7) + (2; 7) = (x3; y3)

� =
3x2

1
+a

2y1
= (2 � 7)�1(3 � 4 + 1) = 3�1 � 13 � 4 � 13 � 4 � 2 = 8 mod 11

x3 = �2 � x1 � x2 = 82 � 2� 2 = 60 � 5 mod 11

y3 = �(x1 � x3)� y1 = 8(2� 5)� 7 = �24� 7 = �31 � 2 mod 11

2� = (2; 7) + (2; 7) = (5; 2)

3� = 2� + � = : : :

...

12� = 11�+ � = (2; 4)

13� = 12�+ � = (2; 4) + (2; 7) = (2; 4) + (2;�4) = O

14� = 13�+ � =O+� = �

...

All 12 non-zero elements together with O form a cyclic group.

� = (2; 7) 2� = (5; 2) 3� = (8; 3)

4� = (10; 2) 5� = (3; 6) 6� = (7; 9)

7� = (7; 2) 8� = (3; 5) 9� = (10; 9)

10� = (8; 8) 11� = (5; 9) 12� = (2; 4)

Table 10.1: Non-zero elements of the group over y2 � x3 + x+ 6 mod 11

Remark: In general, �nding of the group order #E is computationally very complex.
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10.2 Cryptosystems

10.2.1 Di�e-Hellman Key Exchange

The cryptosystem is completely analogous to D-H in Z�

p .

Set-up:

1. Choose E: y2 � x3 + a � x + b mod p.

2. Choose primitive element � = (x�; y�).

Protocol:

Alice Bob

choose kprA = aA 2 f2; 3; : : : ;#E � 1g choose kprB = aB 2 f2; 3; : : : ;#E � 1g

compute kpubA = bA = aA � � = (xA; yA) compute kpubB = bB = aB � � = (xB; yB)
bA�!
bB �

compute aA � bB = aA � aB � � = (xk; yk) compute aB � bA = aB � aA � � = (xk; yk)

kAB = xk 2 Zp kAB = xk 2 Zp

Security:

Di�e-Hellman problem for elliptic curves

8><
>:

Oscar knows: E; p; �; bA = aA � �; bB = aB � �

Oscar wants to know: kAB = aA � aB � �

One possible solution to the D-H problem for elliptic curves:

1. Compute discrete logarithm:

Given � and � + � + : : :+ �| {z }
aA times

= bA, �nd aA.

2. Compute aA � bB = aA � aB � �.
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Attacks:

� Only possible attacks against elliptic curves are the Pohlig-Hellman scheme together

with Shank's algorithm or Pollard's-Rho method.

) #E must have one large prime factor pl

) 2160 � pl � 2250.

� So-called \Koblitz curves" (curves with a; b 2 f0; 1g)

� For supersingular elliptic curves over GF(2n), DL in elliptic curves can be solved by

solving DL in GF(2k�n); k � 6.

) stay away from supersingular curves despite of possible faster implementations.

� Powerful index-calculus method attacks are not applicable (as of yet).

10.2.2 Menezes-Vanstone Encryption

Set-up:

1. Choose E: y2 � x3 + a � x+ b mod p.

2. Choose primitive element � = (x�; y�).

3. Pick random integer a 2 f2; 3; : : : ;#E � 1g.

4. Compute a � � = � = (x�; y�).

5. Public Key: kpub = (E; p; �; �).

6. Private Key: kpr = (a).
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Encryption:

1. Pick random k 2 f2; 3; : : : ;#E � 1g. Compute k � � = (c1; c2).

2. Encrypt ekpub(x; k) = (Y0; Y1; Y2).

Y0 = k � �! point on the elliptic curve.

Y1 = c1 � x1 mod p! integer.

Y2 = c2 � x2 mod p! integer.

Decryption:

1. Compute a � Y0 = (c1; c2).

a � Y0 = a � k � � = k � � = (c1; c2).

2. Decrypt: dkpr(Y0; Y1; Y2) = (Y1 � c
�1
1 mod p; Y2 � c

�1
2 mod p) =

(x1; x2).

Remark: The disadvantage of this scheme is the message expansion factor:

# bits y

# bits x
=

4dlog2 pe

2dlog2 pe
= 2

10.3 Implementation

1. Hardware:

� Approximatly 0.2 msec for an elliptic curve point multiplication with 167 bits on

an FPGA [OP00].

2. Software:

� One elliptic curve point multiplication a � P in less than 10 msec over GF(2155).

� Implementation on 8-bit smart card processor without coprocessor available
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Chapter 11

ElGamal Encryption Scheme

11.1 Cryptosystem

Remarks:

� Published in 1985.

� Based on the DL problem in Z�

p or GF(2k).

� Extension of the D-H key exchange for encryption.

Protocol:

Alice Bob

choose private key kprA = aA choose private key kprB = aB

compute kpubA = �aA mod p = bA compute kpubB = �aB mod p = bB
bA�!
bB �

kAB = b
aA
B = �aAaB mod p kAB = b

aB
A = �aBaA mod p

y = x � kAB mod p
y
�!

x = y � k�1AB mod p
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ElGamal:

Set-up:

1. Choose large prime p.

2. Choose primitive element � 2 Z�

p .

3. Choose secret key a 2 f2; 3; : : : ; p� 2g.

4. Compute � = �a mod p.

5. Public Key: Kpub = (p; �; �).

6. Private Key: Kpr = (a).

Encryption:

1. Choose k 2 f2; 3; : : : ; p� 2g.

2. Y1 = �k mod p.

3. Y2 = x � �k mod p.

4. Encryption: = ekpub(x; k) = (Y1; Y2).

Decryption:

x = dkpr(Y1; Y2) = Y2(Y
a
1 )

�1 mod p:
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Question: How does the ElGamal scheme work?

dkpr(Y1; Y2) = Y2(Y
a
1 )

�1

= x � �k((�k)a)�1 ! but � = �a

= x(�a)k((�k)a)�1

= x � �ak � ��ak

= x
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Remarks:

� ElGamal is essentially an extension of the D-H key exchange protocol.

�
Y2 = x1 � �

k

Y3 = x2 � �
k

9>=
>; if x1 is known, �

k can be found from Y2.

Thus for every message block xi choose a new k!

� Message expansion factor

# of y bits

# of x bits
=

2dlog 2pye

dlog 2pxe
= 2

.

11.2 Computational Aspects

11.2.1 Encryption

Y1 = �k mod p

Y2 = x � �k mod p

9>=
>; apply the square-and-multiply for exponentiation

11.2.2 Decryption

x = dkpr(Y1; Y2) = Y2(Y
a
1 )

�1 mod p.

Question: How can (Y a
1 )

�1 be computed e�ciently?

Derivation: b 2 Z�

p :

be = bq(p�1)+r = (bp�1)q � br

= 1q � br mod p

= br mod p

) e = r mod (p� 1)
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Thus, be � be mod (p�1) mod p, where b 2 Z�

p and e 2 Z

The above derivation can be used for decryption:

(Y a
1 )

�1 = Y �a
1 = Y

�a mod (p�1)
1 mod p

= Y
p�1�a
1 mod p

Note: Y
p�1�a
1 mod p can be computed using the square-and-multiply algorithm.

11.3 Security of ElGamal

Oscar knows: p; �; � = �a; Y1 = �k; Y2 = x � �k.

Oscar wants to know: x

� He attempts to �nd the secret key a:

1. a = log� � mod p hard, DL problem.

2. x = Y2(Y
a
1 )

�1 mod p easy.

� He attempts to �nd the random exponent k:

1. k = log� Y1 mod p hard, DL problem.

2. Y2 � �
�k = x easy.

� In both cases Oscar has to compute the DL problem in �nite �elds (Z�

p or GF(2k)).

He can use index-calculus method which forces us to implement schemes with at least

1024 bits.
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Chapter 12

Digital Signatures

Protocols use:

� Private-key algorithms.

� Public-key algorithms.

� Digital Signatures.

� Hash functions.

� Message Authentication Codes.

as building blocks. In practice, protocols are often the most vulnerable part of a cryp-

tosystem. The next two chapters deal with digital signature, message authentication codes

(MACs), and hash functions.
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12.1 Principle

The idea is similar to a conventional signature where a given message x gets a unique digital

signature which is a function of the message and is attached to the message.

message

f(message) = f(x)signature

x

Figure 12.1: Digital signature and message block

message space

true if y = sig(x)

false if y == sig(x)Kpub

ver    (x, y)= 

K

x

pr
sig    (x) = y

signature space

y

Figure 12.2: Digital signature and message domain
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Basic protocol:

1. Bob signs his message x with his private key kpr:

) y = sigkpr(x).

2. Bob sends (y; x) to Alice.

3. Alice runs the veri�cation function verkpub(x; y) with Bob's public key.

Properties of digital signatures:

� Only Bob can sign his document (with kpr).

� Everyone can verify the signature (with kpub).

� Authentication: Alice is sure that Bob signed the message.

� Integrity: Message x cannot be altered since that would be detected through veri�ca-

tion.

� Non-repudiation

12.2 RSA Signature Scheme

Set-up: kpr = (p; q; a); kpub = (n; b).

General Protocol:

1. Bob computes: y = sigkpr(x) = ekpr(x) = xa mod n.

2. Bob sends (x; y) to Alice.

3. Alice veri�es:

verkpub(x; y) = dkpub(y) = yb

8><
>:

= x ) true

6= x ) false
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Question: Why does it work?

dkpub(y) = dkpub(ekpr(x)) = x:

Remark:

� The role of public/private key are exchanged if compared with RSA public-key encryp-

tion.

� This algorithm was standardized in ISO/IEC 9796.

Drawback:

Oscar can generate a valid signature for a random message x:

1. Choose signature y 2 Zn.

2. Encrypt: x = ekpub(y) = yb mod n! outcome x cannot be controlled.

3. Send (x; y) to Alice.

4. Alice veri�es: verkpub(x; y): y
b � x mod n) true.

12.3 ElGamal Signature Scheme

Remarks:

� ElGamal signature scheme is di�erent from ElGamal encryption.

� Digital Signature Algorithm (DSA) is a modi�cation of ElGamal signature scheme.

� This scheme was published in 1985.
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Set-up:

1. Choose a prime p.

2. Choose primitive element � 2 Z�

p .

3. Choose random a 2 f2; 3; : : : ; p� 2g.

4. Compute � = �a mod p.

Public key: kpub = (p; �; �).

Private key: kpr = (a).

Signing:

1. Choose random k 2 f0; 1; 2; : : : ; p�2g; such that gcd(k; p�1) = 1.

2. Compute signature:

sigkpr(x; k) = (
; �); where


 = �k mod p

� = (x� a � 
)k�1 mod p� 1

Public veri�cation:

verkpub(x; (
; �)) = �
 � 
�
8><
>:

= �x mod p valid signature

6= �x mod p invalid signature

Question: Why does this scheme work?

�
 � 
� = (�a)
(�k)(x�a�
)k
�1 mod (p�1) mod p

= �a�
 � �k�k�1(x�a�
) mod p

= �a�
�a�
+x = �x
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Chapter 13

Hash Functions

13.1 Introduction

The problem with digital signatures is that long messages require very long signatures. We

would like for performance as well as for security reasons to have one signature for a message

of arbitrary length. The solution to this problem are Hash functions.

kpr
y = 

sig    (z)
kpr

z )i-1||xi(hz

sig    (z)

i

y is of fixed length

=

x

z z is of fixed length

x is of arbitrary length

x

Figure 13.1: Hash functions and digital signatures
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Remarks:

� z, x don't have the same length.

� h(x) has no key.

� h(x) is public.

Basic Protocol:

Alice Bob

1) z = h(x)

2) y = sigkpr(z)

3) (x;y) �
4) z = h(x)

5) verkpub(z; y)

Potential hash function properties

a) One-way: for (almost) all given output z, it is impossible to �nd any input x such that

h(x) = z.

b) Weak collision resistant: given x, and thus h(x), it is impossible to �nd any x0 such

that h(x) = h(x0).

c) Strong collision resistant: it is impossible to �nd any two pairs x; x0 such that

h(x) = h(x0).
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Requirements for a hash function (Adopted from [Sta95])

1. h(x) can be applied to x of any size.

2. h(x) produces a �xed length output.

3. h(x) is relatively easy to compute in software and hardware.

4. h(x) is one-way.

5. h(x) is weak collision resistant.

6. h(x) is strong collision resistant.

Discussion:

� (1) | (3) are practical requirements

� (4) if h(x) is not one-way, Oscar can compute x from h(x) in cases where x is encrypted.

� (5) if h(x) is not weak collission free, Oscar can replace x with x0.

Alice Oscar Bob

z = h(x)
(x;y) � y = sigKpr

(z)
(y;x0) �

z = h(x0) = h(x)

verKpub
(z; y) = true

� (6) if h(x) is not strong collission free, Oscar runs the following attack:

a) Choose legitimate message x1 and fraudulent message x2
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b) Alter x1 and x2 at \non-visible" location, i.e. replace tabs through spaces, append

returns, etc., until h(x0

1) = h(x0

2) (Note: e.g. 64 alteration locations allow 264

versions of a message with 264 di�erent hash values).

c) Let Bob sign x0

1 ! (x0

1; sigKpr
(h(x0

1))

d) Replace x0

1 ! x0

2 and (x0

2; sigKpr
(h(x0

2))

13.2 Security Considerations

Question: How many people are needed at a party so that there is a 50% chance that at

least two people have the same birthday?

In general, given a large set with n di�erent values:

P (no collission among k random elements) =
�
1� 1

n

�
| {z }
k = 2 elt.

�
1� 2

n

�

| {z }
k = 3 elt.

� � �
 
1� k � 1

n

!

| {z }
k elt.

=
k�1Y
i=1

�
1� i

n

�

Often n is large (n = 365 in birthday paradox, n = 2160 in hash functions).

Recall:

e�x = 1� x +
x2

2!
� x3

3!
+ � � �

if x << 1

e�x � 1� x

Thus,

P (no collision) �
k�1Y
i=1

e�
i
n = e�

1
n e�

2
n e�

3
n � � � e� k�1

n

k�1Y
i=1

e�
i
n = e�

1+2+3+���+k�1
n
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Rewriting the exponent with the help of the following identity:

1 + 2 + 3 + � � �+ k � 1 = k(k � 1)=2

We obtain,

P (no collission) � e�
k(k�1)

2n

De�ne � as

P (at least one collission)
DEF
= � � 1� e�

k(k�1)
2n

1� � � e�
k(k�1)

2n

ln (1� �) � �k(k � 1)

2n

k(k + 1) � �2n ln (1� �) = 2n ln
�

1

1� �

�

If k >> 1, then

k2 � k(k � 1) � 2n ln
�

1

1� �

�

k �
s
2n ln

�
1

1� �

�

Example:

k(� = 0:5) �
s
2n ln

�
1

1� 0:5

�
=
p
2 ln 2

p
n = 1:18

p
n

) A collission in a set of n values is found after about
p
n trials with a probability of 0.5.

In other words, hash funtion with 40 bit output ) collission after �
p
240 = 220 trials.

) In order to provide collision resistance in practice, the output space of the hash function

should contain at least 2160 elements, that is, the hash function should have at least 160

output bits. Finding a collision takes then roughly
p
2160 = 280 steps.
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13.3 Hash Algorithms

Overview:

customized
e.g. MD4 family

modular arithmetic based

Hash Algorithms

block cipher based
(rare, often unsecure)

Figure 13.2: Family of Hash Algorithms

a) MD4{family

1. SHA-1

Output: 160 bits ) input size for DSS.

Input: 512 bit chunks of message x.

Operations: bitwise AND, OR, XOR, complement and cyclic shift.

2. RIPE-MD 160

Output: 160 bits.

Input: 512 bit chunks of message x.

Operations: same as SHA but runs two algorithms in parallel whose

outputs are combined after each round.
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b) Hash functions from block ciphers

i-1

xi 

H i g(Hi-1 )e xi ( ) xi =

H

n

H i

n

m

K
e

y

g

Figure 13.3: Hash Functions from Block Ciphers

where g is a simple n-to-m bit mapping function (if n = m, g can be the identity

mapping)

Last output Hl is the hash of the whole message x1,x2,: : :,xl

Also secure are:

{ Hi = Hi�1 � exi
(Hi�1)

{ Hi = Hi�1 � xi � eg(Hi�1)(xi)

Remark:

For block ciphers with less than 128 bit block length, di�erent techniques

must be used (Sec. 9.4.1 (ii) in [AM97])
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Chapter 14

Message Authentication Codes

(MACs)

Other names: \cryptographic checksum" or \keyed hash function".

Private-key based.

14.1 Principle

MAC  (x) = y ; verification
?

KMAC  (x)

K

message space

x
y

signature space

"signing"

Figure 14.1: MAC and message domain
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Protocol:

Alice Bob

1) y = MACK(x)

2)
(x;y)
 �

3) y0 = MACK(x)

y0
?
= y

Properties:

1. Generate signature for a given message.

2. Private-key based: signing and verifying party must share a secret

key.

3. Accepts messages of arbitrary length and generates �xed size sig-

nature.

Properties 2 and 3 are di�erent from digital signatures.

Idea: To use block-cipher's one of the chaining modes to generate signature.

14.2 MACs from Block Ciphers

CBC mode:

y0 = ek(x0 � IV ) = ek(x0 � 0000 : : :)

yi = ek(xi � yi�1)

X = x0; x1; : : : ; xm�1

MACk(x) = ym�1
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Y i-1

Y i-1

i=1 IV

e

k

Y i-1

Y i-1i = n

i=1 IV

nX   , ... , X   , X2 1 nX   , ... , X   , X2 1Y n

nY’

Y n

nX   , ... , X   , X2 1

Y i

k

e

?

Figure 14.2: MAC in a CBC mode

Veri�cation: Run the same process on the receiving end.

Remark: CBC with DES is standardized (ANSI X9.17).

14.3 HMAC

� Popular in modern protocols such as SSL.

� Attractive property: HMAC can be proven to be secure under certain assumptions

about the hash function. \Secure" means here that the hash function has to be broken

in order to break the HMAC.

� Basic idea: Hash a secret key K together with the message M and consider the hash

output the authentication tag for the message: H(KjjM).

� Details:

HMACK(M) = H [(K+ � opad)jjH [(K+ � ipad)jjM ]]

where

K+ = K padded with zeros on the left so that the result is b bits in length (where b

is the number of bits in a block).

124



ipad = 00110110 repeated b=8 times.

opad = 01011010 repeated b=8 times.
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Chapter 15

Security Services

15.1 Attacks Against Information Systems

Information
source

Information
destination

(a) Normal flow (b) Interruption

(d) Modification(c) Interception

(e) Fabrication
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Remarks:

� Passive attacks: (c) ! interception.

� Active attacks: (b) ! interruption, (d) ! modi�cation, (e) ! fabrication.

15.2 Introduction

Security Services are goals which information security systems try to achieve. Note that

cryptography is only one module in information security systems.

The main security services are:

� Con�dentiality/Privacy. Information is kept secret from all but authorized parties.

� (Message/Sender) Authentication. Ensures that the sender of a message is who she/he

claims to be.

� Integrity. Ensures that a message has not been modi�ed in transit.

� Non-repudiation. Ensures that the sender of a message can not deny the creation of

the message.

� Identi�cation/Entity Authentication. Establishing of the identity of an entity (e.g. a

person, computer, credit card).

� Access Control. Restricting access to the resources to privileged entitites.

Remark: Message Authentication implies data integrity; the opposite is not true.

15.3 Privacy

Tool: Encryption algorithm.
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a) Private-Key

k d k
e Y

k k

XX

Provides:

�privacy

�message authentication and thus

�integrity

�no non-repudiation

9>>>>>=
>>>>>;

only if Bob can distinguish

between valid and invalid X

and if there are only two parties.

Remark:

In practice, authentication and integrity are often achieved with MACs

(Chapter 14)

b) Public-Key

kpub_Be           (x)

kpub_B

e

kpr_B

XX
Y dkpub_B kpr_B

Provides:

- privacy

- integrity (if invalid x can e detected)

- no message authentication
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15.4 Integrity and Sender Authentication

Recall: Sender authentication implies integrity.

15.4.1 Digital Signatures

h(x) sig

Kpr_A

y = sig        (h(x))
Kpr_A

verh(x)

Kpub_A

(x, y)(x, y)
x

x

y

true / false

x

x

Provides:

- integrity

- sender authentication

- non-repudiation (only Alice can construct valid signature)

15.4.2 MACs

y

x

x

(x, y)

x

(x, y)

y

true / false

x

MAC MAC

KK

Provides:
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- integrity

- authentication

- no non-repudiation

15.4.3 Integrity and Encryption

h(x)

eK (x, y)

h(x)

y

compare

y’

x

x K

d

y
K

e
(x, y)

x

Provides:

- privacy

- integrity

- authentication

- no non-repudiation

Remark:

� Instead of hash functions, MACs are also possible. In this case: c = eK1
(x;MACK2

(y)).

� This scheme adds strong authentication and integrity to an encryption-protocol with

very little computational overhead.
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Chapter 16

Key Establishment

16.1 Introduction

key agreement

Both parties generate
secret key jointly

Secret key establishment

secret key and distributes

key distribution

One party generates

it

Figure 16.1: Key establishment schemes

Remark:

Some schemes make use of trusted authority (TA) which is trusted by and can

communicate with all users.
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16.2 Private-Key Approaches

16.2.1 The n
2 Key Distribution Problem

TA generates a key for every pair of users:

Example: n = 4 users.

TA

A B

CD

secure channels

KCDKBDKAD

K

CD

ADKACKAB KBCKAB KBD

KAC KBC K

Figure 16.2: The role of the Trusted Authority

Drawbacks:

� n secure channels are needed

� each user must store n� 1 keys

� TA must transmit n(n� 1) keys

� TA must generate n(n�1)
2
�

n2

2
keys

� every new network user makes updates at all other user as of necessary ) scales badly
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16.2.2 Key Distribution Center (KDC)

TA is a KDC: TA shares secret key with each user and generates session keys.

a) Basic protocol:

- ks = session key between Alice and Bob

- kA;KDC = secret key between Alice and KDC (Key encryption key, KEK)

- kB;KDC = secret key between Bob and KDC (Key encryption key, KEK)

Alice KDC Bob
ekA;KDC (ks)=yA
 �

ekB;KDC (ks)=yB
�!

ks = dkA;KDC(yA) ks = dkB;KDC(yB)

y = eks(x)
y
�! x = dks(y)

Remarks:

{ TA stores only n keys

{ each user U stores only one key

b) Modi�ed (advanced) protocol:

Alice KDC Bob

1a) yA = ekA(ks)

1b) yB = ekB(ks)

2) (yA;yB)
 �

3) ks = dkA(yA)

4) y = eks(x)
5) (y;yB)
�! 7) ks = dkB(yB)

6) x = dks(y)

Remark: This approach is the basis for Kerberos.
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16.3 Public-Key Approaches

16.3.1 Man-In-The-Middle Attack

D-H key exchange revised

Set-up:

- �nd large prime p

- �nd primitive element � 2 Zp

Protocol:

Alice Bob

pick kprA = aA 2 f2; 3; : : : ; p� 2g pick kprB = aB 2 f2; 3; : : : ; p� 2g

compute kpubA = bA = �aA mod p compute kpubB = bB = �aB mod p

bA�!
bB �

kAB = baAB = �aAaB mod p kAB = baBA = �aAaB mod p

Security:

1. passive attacks

) security relies on Di�e-Hellman problem thus p > 21000.

2. active attack

) Man-in-the-middle attack:

Alice Oscar Bob

�a

�!
�o

�!

�o
 �

�b
 �

kAO = (�o)a = �ao kAO = (�a)o kBO = (�o)b = �bo

kBO = (�b)o

y0 = ekAO(x)
y0

�! x = dkAO(y
0)

y00 = ekBO(x)
y00

�! x = dkBO(y
00)
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Remarks:

� Oscar can read and alter x without detection.

� Underlying Problem: public keys are not authenticated.

� Man-in-the-middle attack applies to all Public-key schemes.

16.3.2 Certi�cates

Certi�cates bind ID information (e.g., name, social security number) to a public key through

digital signatures.

General structure of certi�cates:

1. Each user U :

� ID(U) = ID information such as user name, e-mail address, SS#, etc.

� private key: KprU

� public key: KpubU

2. Certifying Authority (CA):

� secret signature algorithm sigTA

� public veri�cation algorithm verTA

� certi�cates for each user U:

C(U) = (ID(U); KprU ; sigTA(ID(U); KprU))

General requirement: all users have the correct veri�cation algorithm verTA with TA's public

key.
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Figure 16.3: General structure of the certi�cate C(U)

  - Algorithm
  - Parameters

Period of Validity:
  - Not Before Date
  - Not After Date

Subject’s Public Key:
  - Algorithm
  - Parameters
  - Public Key

Algorithm Identifier:

Signature

Version

Serial Number

Issuer

Subject

Figure 16.4: Detailed structure of an X.509 certi�cate
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Remarks:

� Certi�cate structures are speci�ed in X.509, authentication services for the X.500 di-

rectory recommendation (CCITT).

16.3.3 Di�e-Hellman Exchange with Certi�cates

Idea: As standard D-H, but each users's public key is authenticated by a certi�cate.

Alice Bob

KpubA = bA KpubB = bB

KprA = aA KprB = aB
C(B)=(ID(B);bB ;sigCA(ID(B);bB))

 �
C(A)=(ID(A);bA;sigCA(ID(A);bA))

�!

1.) verCA(ID(B); bB) 1.) verCA(ID(A); bA)

2.) kAB = b
aA
B = �aBaA = �aAaB 2.) kAB = b

aB
A = �aAaB

Remaining major problems with CAs:

1. The CA's public key must initially be distributed in an authenticated manner!

2. Identity of user must be established by CA.

3. Certi�cate Revocation Lists (CRLs) must be distributed.

16.3.4 Authenticated Key Agreement

Idea: Alice and Bob sign their own public keys. Signatures can be correctly veri�ed through

certi�cates.
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Set-up:

� public veri�cation key for verTA

� public prime p

� public primitive element � 2 Zp

Protocol:

Alice TA Bob
C(A)=(ID(A);verA ;sigTA(ID(A);verA))

 �
C(B)=(ID(B);verB ;sigTA(ID(B);verB))

�!

1.) kprA = aA

2.) kpubA = bA = �aA mod p
bA�!

3.) kprB = aB

4.) kpubB = bB = �aB mod p

5.) kAB = b
aB
A = �aAaB mod p

(C(B);bB ;yB)
 � 6.) yB = sigB(bB; bA)

7.) verTA(C(B)): true/false

8.) verB(yB): true/false

9.) kAB = baAB = �aAaB mod p

10.) yA = sigA(bA; bB)
(C(A);yA)
�!

11.) verTA(C(A)): true/false

12.) verA(yA): true/false

Remark:

This scheme is also known as station-to-station protocol and is the basis for

ISO 9798-3.
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Chapter 17

Case Study: The Secure Socket Layer

(SSL) Protocol

Note:

This chapter describes the most important security mechanisms of the SSL Pro-

tocol. For more details references [Sta99] and Netscape's SSL web page are

recommended.

17.1 Introduction

� SSL was developed by Netscape.

� TLS (Transport Layer Security) is the IETF standard version of SSL. TLS is very close

to SSL.

� SSL provides security services for end-to-end applications.

� Most applications must be SSL enabled, i.e., SSL is not transparent.

� SSL is algorithm independent: for both public-key and symmetric-key operations, sev-

eral algorithms are possible. Algorithms are negotiated on a per-session basis.
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HTTP

IP

FTP SMTP

SSL  or  TLS

TCP

Figure 17.1: Location of SSL in the TCP/IP protocol stack.

� SSL consists of two main phases:

Handshake Protocol : provides shared secret key using public-key techniques and

mutual entity authentication.

Record Protocol : provides con�dentiality and message integrity for application

data, using the shared secret established during the Handshake Protocol.
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17.2 SSL Record Protocol

The SSL Record Protocol provides two main services:

1. Con�dentiality: SSL payloads are encrypted with a symmetric cipher. The keys are for

the symmetric cipher and they must be established during the preceding handshake

protocol.

2. Message Integrity: the integrity of the message is provided through HMAC, a message

authentication code.

17.2.1 Overview of the SSL Record Protocol

�������
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�������

��
��
��
��

���������
���������
���������
���������

���������
���������
���������
���������

record header

Application data

Fragment

Add MAC

Encrypt

Append SSL

Figure 17.2: Simpli�ed operations of the SSL Record Protocol

Description:

� Fragmentation: the message is devided into blocks of 214 bytes.

� MAC: a derivative of the popular HMAC message authentication code. HMACs are

based on hash functions.

MAC = H(secret-key jj pad2 jj
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H(secret-key jj pad1 jj seq-num jj fragment-length jj fragment))

where:

H = hash algorithm; either MD5 or SHA-1.

secret-key = shared secret session key.

pad1 = the byte 0x36 (0011 0110) repeated 48 times (384 bits) for MD5 and 40

times (320 bits) for SHA-1.

pad2 = the byte 0x5C (0101 1100) repeated 48 times for MD5 and 40 times for

SHA-1.

seq-num = the sequence number of the message.

fragment-length = length of the fragment (plaintext).

fragment = the plaintext block for which the MAC is computed.

� Encrypt: the following algorithms are allowed:

1. Block ciphers:

{ IDEA (128-bit key)

{ RC-2 (40-bit key)

{ DES-40 (40-bit key)

{ DES (56-bit key)

{ 3DES (168-bit key)

{ Fortezza (80-bit key)

2. Stream ciphers:

{ RC4-40 (40-bit key)

{ RC4-128 (128-bit key)
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17.3 SSL Handshake Protocol

Remark: Most complex part of SSL, requires costly public-key operations

17.3.1 Core Cryptographic Components of SSL

random, cipher suite

CLIENT SERVER

PHASE  3

PHASE  2

PHASE  1

key exchange parameters

certificate

certificate

key exchange parameters

random, cipher suite

Figure 17.3: Simpli�ed SSL Handshake Protocol

Explanation:

� Phase 1: establish security capabilities.

random : 32-bit timestamp concatenated with 28-byte random value. Used

as nonces and to prevent replay attacks during the key exchange.

cipher suite : several �elds, in particular:
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1. Key exchange method.

(a) RSA: the secret key is encrypted with the receiver's public RSA-

key. Certi�cates are required.

(b) Authenticated Di�e-Hellman: Di�e-Hellman with certi�cate.

(c) Anonymous Di�e-Hellman: Di�e-Hellman without authentica-

tion.

(d) Fortezza

2. Secret-key algorithm (see Section 17.2).

3. MAC algorithm (MD5 or SHA-1).

� Phase 2: server authentication and key exchange.

Certi�cate : authenticated public key for any key exchange method except

anonymous Di�e-Hellman.

Key exchange parameters : signed public-key parameters, depending on

the key exchange method.

� Phase 3: see Phase 2.
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Chapter 18

Introduction to Identi�cation Schemes

Examples for electronic identi�cation situation:

1. Money withdrawal from ATM machine (PIN).

2. Credit card purchase over telephone (card number).

3. Remote computer login (user name and password).

Distinction between identi�cation (or entity authentication) and message authentication:

� Identi�cation schemes are performed online.

� Identi�cation schemes do not require a meaningful message.

Basis for identi�cation techniques:

1. Something known (password, PIN)

2. Something possessed (chipcard)

9>=
>; cryptography based

3. Something inherent to a human individual (�ngerprint, retina pattern)
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Overview:

ID techniques

strong identification

(passwords, PINs)

private-key public-key

use challenge-response (CR) protocols

zero-knowledge

weak identification

Figure 18.1: Identi�cation Techniques

) passwords and PINs are weak since they violate requirement 1 below.

Goals (informal de�nition):

1. Alice wants to prove her identity to Bob without revealing her

identifying information to a listening Oscar. (\strong identi�ca-

tion")

2. Also, Bob should not be able to impersonate Alice.

To achieve these goals, Alice has to perform a proof of knowledge which in general involves

a challenge-and-response protocol.
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18.1 Private-key Approach

Challenge-and-response (CR) protocol:

Assumption: Alice and Bob share a secret key kAB and a keyed one-way function f(x).

Alice Bob

1) generate challengex

x
 �

2) y = fkAB(x)
y
�!

3) y0 = fkAB(x)

4) veri�cation: y
?
= y0

Example:

a) fk(x) = DESk(x).

b) fk(x) = H(kjjx).

c) fk(x) = xk mod p.

Remarks:

� CR protocols are standardized in ISO/IEC 9798.

� There are many variations to the above protocol, e.g., including time stamps or serial

numbers in the response.

� Instead of block ciphers, public-key algorithms and keyed hash functions can be used.

Variant with time stamp (TS)
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Alice Bob

1) y = ekAB(TS; ID(Bob))
y
�!

2) (TS 0; ID0(Bob) = e�1kAB(y)

TS
?

� time
?

� TS + �
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