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Abstract. In this letter we discuss a least squares version for supeator machine (SVM)
classifiers. Due to equality type constraints in the forriafg the solution follows from
solving a set of linear equations, instead of quadratic gmgning for classical SVM’s. The
approach is illustrated on a two-spiral benchmark clasgifia problem.
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1. Introduction

Recently, support vector machines (Vapnik, 1995; Vapn98h; Vapnik,
1998b) have been introduced for solving pattern recogmipooblems. In
this method one maps the data into a higher dimensional ispate and
one constructs an optimal separating hyperplane in thisespehis basically
involves solving a quadratic programming problem, whiladient based
training methods for neural network architectures on thgeothand suf-
fer from the existence of many local minima (Bishop, 1995gf&aAssky &
Mulier, 1998; Haykin, 1994; Zurada, 1992). Kernel funcand parameters
are chosen such that a bound on the VC dimension is minimizaér, the
support vector method has been extended for solving fumagtimation
problems. For this purpose Vapnik's epsilon insensitivesiéunction and
Huber's loss function have been employed. Besides therliceese, SVM’s
based on polynomials, splines, radial basis function netsvand multilayer
perceptrons have been successfully applied. Being basebeostructural
risk minimization principle and capacity concept with puwembinatorial
definitions, the quality and complexity of the SVM solutionesd not de-
pend directly on the dimensionality of the input space (Mapt995; Vapnik,
1998a; Vapnik, 1998Db).

In this paper we formulate a least squares version of SVM'<las-
sification problems with two classes. For the function eation problem a
support vector interpretation of ridge regression (Goluldh Loan, 1989)
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has been given in (Saunders et al., 1998), which considesisigqtype con-
straints instead of inequalities from the classical SVMrapph. Here, we
also consider equality constraints for the classificatioobfem with a for-
mulation in least squares sense. As a result the solutitowsldirectly from
solving a set of linear equations, instead of quadratic garogning. While in
classical SVM’s many support values are zero (non-zercegatorrespond to
support vectors), in least squares SVM’s the support vadweproportional
to the errors.

This paper is organized as follows. In Section 2 we reviewediasic
work about support vector machine classifiers. In Sectione3discuss the
least squares support vector machine classifiers. In Sedtiexamples are
given to illustrate the support values and on a two-spirathenark problem.

2. Support vector machines for classification

In this Section we shortly review some basic work on suppecter machines
(SVM) for classification problems. For all further detailg wefer to (Vapnik,
1995; Vapnik, 1998a; Vapnik, 1998b).

Given a training set oN data points{yk,xk}’lz‘zl, wherex, € R" is the
k-th input pattern angy € R is the k-th output pattern, the support vector
method approach aims at constructing a classifier of the:form

N
y(x) = sigr{kz Ok YicW(X %) + b (1)
=1

whereay are positive real constants ahds a real constant. Fap(-,-) one
typically has the following choicesp(x, %) = X} X (linear SVM); W(x,X) =
(X' x+1)9 (polynomial SVM of degred); W(x,xc) = exp{ —||x — x||3/0?}
(RBF SVM); W(x, %) = tanHk X} x+ 6] (two layer neural SVM), where, K
and6 are constants.

The classifier is constructed as follows. One assumes that

Wio(x)+b>1, if yy=+1 @
W) +b< -1, if yy=-1
which is equivalent to

where¢(-) is a nonlinear function which maps the input space into adrigh
dimensional space. However, this function is not expiicdbnstructed. In
order to have the possibility to violate (3), in case a sdpaydyperplane in
this higher dimensional space does not exist, variafl@se introduced such

that
VW) +B > 1 &, k=1..N @
& >0, k=1..N.
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According to the structural risk minimization principlehet risk bound is
minimized by formulating the optimization problem:

: 1 1 N
min J1 (W, &x) = =W w+cC 5
Wzkjl( &) = W W k;ﬁk 5)
subject to (4). Therefore one constructs the Lagrangian

Ly(W, b, &; ay, Vi) = J1(W, &) — Zak{YK WO (%) +b] — 1+ &} — szE.k

k=1
(6)
by introducing Lagrange multipliersy, > 0, v > 0 (k = 1,...,N). The
solution is given by the saddle point of the Lagrangian by gotimg

max min £1(w, b, &; oy, Vi ). 7
max min 1(W, b, &k; Ok, Vk) (7)

One obtains 3
=0 — w= 3R ayid (%)
% =0 S oy=0 ®)

az L _—0 -5 0<og<c k=1,.,N

which leads to the solution of the following quadratic pragming problem

MaxQ (Ctk; ¢ (% Z Yivi ¢ (%) ooty + z a  (9)

ko1 0kyk =0
O0<ax<c k=1..N.

The functiond (k) in (9) is related then td)(x, x) by imposing
00T O (%) = WX %), (10)

which is motivated by Mercer's Theorem. Note that for the tewer neural
SVM, Mercer’s condition only holds for certain parametelues ofk and®.
The classifier (1) is designed by solving

such that

1
maxQ Qe Y(Xe X)) = — 5 Z Vi W%, %) o + zak (11)

subject to the constraints in (9). One doesn’t have to calewt nor ¢ (x) in
order to determine the decision surface. Because the nmedsaciated with
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this quadratic programming problem is not indefinite, thieson to (11) will
be global (Fletcher, 1987).

Furthermore, one can show that hyperplanes (3) satisfyi@ganstraint
|wl||> < a have a VC-dimensioh which is bounded by

h < min([r?a®],n) +1 (12)

where[.] denotes the integer part amdis the radius of the smallest ball
containing the point®(x;),...,¢(Xn). Finding this ball is done by defining
the Lagrangian

N
Lo(r, g, M) =12 = 5 M(r? = [10(x) —ql3) (13)
k=1

whereq is the center of the ball ankl are positive Lagrange multipliers. In
a similar way as for (5) one finds that the center is equaj 0, Axd (),
where the Lagrange multipliers follow from

N

MaxQ(M d (X Z 005 TOLOMN + 5 Md(%) 0 (%) (14)

k=1

S he=1
Ae>0.k=1,...N.

Based on (10)(; can also be expressed in termsuyafx,x ). Finally, one
selects a support vector machine with minimal VC dimensipadiving (11)
and computing (12) from (14).

such that

3. Least squares support vector machines

Here we introduce a least squares version to the SVM claskifilormulat-
ing the classification problem as:

_ 1 13
Mr?ggjs(V\/, b,e) = EW W+ VE kzleﬁ (15)

subject to the equality constraints
YW d (%) +b] =1 &, k=1,..,N. (16)

One defines the Lagrangian

La(w,b,€,0) = J5(w,b,€) Zak{yk Wio(x)+bl—1+a}  (17)
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where oy are Lagrange multipliers (which can be either positive ogaie
tive now due to the equality constraints as follows from thehK-Tucker
conditions (Fletcher, 1987)).

The conditions for optimality

(

9a=0 > W=y b (%)
%—%:0 — ZEZldkyk:O

s — 0 — yw'd(x)+b -1+ =0, k=1,..,N

\ OJay

can be written immediately as the solution to the followirey ef linear
equations (Fletcher, 1987)

100]-Z"7[w 0
000|-YT||b 0
oovi| 1 |]e|T]o (19)
ZY 1| 0O a 1

whereZ = [&(x0) Ty1; ;0 () TYN]L Y = [ya; - yn], 1=[1;...;1]), e=[ex;...;en],
o = [0y;...;0N]. The solution is also given by

ORI

Mercer’s condition can be applied again to the ma@ix ZZ" where

0| YT
Y | ZZT+y 1

Qu = Yy o(%) Td(x)
= YN WX, %) D

Hence the classifier (1) is found by solving the linear setgpfagions (20)-
(21) instead of quadratic programming. The parameterseokéinels such as
o for the RBF kernel can be optimally chosen according to (TBg support
valuesay are proportional to the errors at the data points (18), winilthe
case of (14) most values are equal to zero. Hence one coulel igteak of a
support value spectrum in the least squares case.

4. Examples

In afirst example (Fig.1) we illustrate the support valugsafinearly separa-
ble problem of two classes in a two dimensional space. Tleeddithe circles
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indicated at the training data is chosen proportionallyhi @absolute values
of the support values. A linear SVM has been taken withl. Clearly, points
located close and far from the decision line have the largegport values.
This is different from SVM'’s based on inequality constraintvhere only
points that are near the decision line have non-zero suppbres. This can
be understood from the fact that the signed distance fromirat gpto the
decision line is equal tow" x4 b) /||w|| = (1 — &)/ (yk||w||) anday = ye in
the least squares SVM case.

In a second example (Fig.2) we illustrate a least squargsosupector
machine RBF classifier on a two-spiral benchmark problenre.tfd&ining data
are shown on Fig.2 with two classes indicateddyand’s’ (360 points with
180 for each class) in a two dimensional input space. Painbefween the
training data located on the two spirals are often consilasetest data for
this problem but are not shown on the figure. The excellenegdization
performance is clear from the decision boundaries showrherfigures. In
this cases = 1 andy = 1 were chosen as parameters. Other methods which
have been applied to the two-spiral benchmark problem, asdhe use of
circular units (Ridella et al., 1997), have shown good penénce as well.
The least squares SVM solution on the other hand can be folitfdlaw
computational cost and is free of many local minima, beirgygblution to
a convex optimization problem. For two-spiral classifioatiproblems the
method gives good results over a wide parameter rangeaoidy values.

5. Conclusions

We discussed a least squares version of support vector neaclassifiers.
Due to the equality constraints in the formulation, a setr@fdr equations has
to be solved instead of a quadratic programming problemchtér condition
is applied as in other SVM’s. For a complicated two-spiraksification prob-
lemitis illustrated that a least squares SVM with RBF kerseéadily found
with excellent generalization performance and low comipartal cost.
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Figure 1. Example of two linearly separable classes in a two-dimeraitput space. The

size of the circles indicated at the training data is chosepagationally to the absolute value

of the support values.
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Figure 2. A two-spiral classification problem with the two classesdatied by 'o’ and "*" and
180 training data for each class. The figure shows the extglneralization performance for
a least squares SVM machine with RBF kernel.
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