Computer Science Department Technical Report
University of California
Los Angeles, CA 90024-1596

PERFORMANCE ANALYSIS OF FINITE-BUFFERED
MULTISTAGE INTERCONNECTION NETWORKS
WITH DIFFERENT SWITCHING ARCHITECTURES

Tzung-1 Lin January 1991
CSD-910003



UNIVERSITY OF CALIFORNIA

Los Angeles

Performance Analysis of Finite-Buffered Multistage Interconnection Networks

with Different Switching Architectures

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Computer Science

by

Tzung-I Lin

1991



© Copyright by
Tzung-1 Lin

1991



The dissertation of Tzung-I Lin is approved.

Vite D Sre g

M. Ercegovac

M. Gerla

e Cpp2
- s

V’/‘ A

S —
/ kj S. Jacobsen

T
b U7

B. Rothschild

."'/

‘25{7'7 v‘%

Leonard Kleinrock, Committee Chair

"7”@”/

- —

University of California, Los Angeles

1990

1



To Mom and Dad, and all my family.

iii



TABLE OF CONTENTS

1 Introduction.. ... ..._ .. ... .. ... . . . . _ 1

2 Modelling of Processing Elements with Identical Traffic Patterns 8

2.1 Basic Models with a Hot Spot Traffic Pattern . . ... ..... . . 8
2.1.1  Architecture Description and Assumptions . . . .. ... .. 8
2.1.2 The Routing Model . . . .. . ... ... . ... ... .. . . 12
2.1.3 Analysis of Unbuffered MIN . . . . .. . ... ... . . . 12
2.14 Analysis of the Buffered MIN . .. ... . . ... . .. . . 20
2.1.5 Model Verification . . ... ......... .. .. . . . . 40
216 Conclusion. . . . ... ... .. .. .. ... 42

2.2 General Traffic Pattern Model . . . . . .. .. ... .. ... .. . 42
2.2.1 Imtroduction . . . ... ... .. ... . ... ... ... 42
2.22  Transformation Method . . . . .. ... .. ... ... . . . 43

3 Modeling of Processing Elements with Different Traffic Patterns 49

3.1 BasicModel . . ... ... ... ... 49
3.1.1 Problem Characteristics . . . ... ...... .. ... . . . 49

3.1.2  Superposition Method . . . . ... ... ... . .. ... . 52

3.2 Not Uniform Traffic Spots model . . . ... ... .. .. ... . . 56
3.2.1 Introduction . . . . ... ... L 56

3.22 Modelling Approach . . .. ... ... . ... ... . ... . 57

3.2.3 Model Results and Verifications . . . . ... .. ... ... . 61

3.3 Different Input Rate Model . . . ... ... ... . ... ... .. . 65

4 Persistent Blocking Model . . ... ... ... .. .. ... .. .. 68
4.1 Modelling Approach . . . ... .. ... ... ... .. .. .. .. . 68
42 Results. ... ... ... 72
4.3 Model Limitation . . . ... ... .. ... ... .. ... ... 78

5 Re-submission Model . . . . ... ... ... .. ... . . ... .. 79
3.1 Modelling Approach . . . .. ... ... ... .. ... .. ... 80
3.2 Results. .. ... ... ... 81
5.3 Extended Model. . .. .. ... . ... ... . ... .. . .. ... . 84
3.3.1 Rate Adjusted Model . . . .. . ... .. ... ....... . 84

9.3.2  Maximal Input Rate for a Given Loss Probability . . . . . . 87

iv



6 Delay Model Analysis . . . . ... ... . ... ... .. .. . . . 90
6.1 The Turn Back Switch Model with a Uniform Traffic Pattern ce .91

6.1.1 Turn Back Model . . .. . ... ... .. .. . ... . .. . 92

6.1.2 Modeling Approach . . . . ... ... ..., .. .. . . 93

6.1.3 Performance Measure . . . . .. ... .. ... ... .. _ . 102

6.1.4 Solution Algorithm . . . . . ... ... .. . ... .. ... 102

6.1.5 Results. .. .. ... ... . ... .. ... 104

6.2 The Turn Back Switch Model with a Non-uniform Traffic Pattern . 110
6.2.1 Modelling Approach . . .. .. ... ... . ... . ... .. 111

6.2.2  Solution Algorithm . . . .. ... ... ... ... .. ... . 117

623 Results. ... ... ... .. ... ... ... . ... ... 118

6.3 The Blocking Switch . . . . ... ... ... ... ... ... .. . 120
6.3.1 Modelling Approach . . . ... ... . ... .. .. ... 121

632 Results. ... ... ... ... ... ... . ... .. .. .. 123

6.4 RotatingSwitch . . . . .. ... .. ... 124

7 Summary and Future Research . . . . . .. ... .. .. . . . . .. 128
.1 Summary . ... .. 128
7.2 Future Research . . . . . .. ... ... ... .. ... ... . ... 131
References . . . . . . ... ... ... 132



LIST OF FIGURES

2.1 3 stage Banyan network with buffers at output ports of each switch 9

2.2 Probability of Acceptance for q=0.1case . . . ... ... ... . 16
2.3 The PA degradation percentage for q=0.1 case . . . . . .. ... . . 16
2.4 Probability of Acceptance for q=1.0 case . . . . .. ... ... . . . 17
2.5 The PA degradation percentage for q=1.0 case . . . . . .. .. . . . 17

2.6  Markov chain of a queue Qi ; extracted from the network where the
state variable represents the number of packets in that queue; K=4. 22
2.7 Improving the Probability of Acceptance by adding buffers for in-

terconnection networks with q=0.1 and a uniform traffic pattern . . 27
2.8 The PA improvement percentage by adding buffers for interconnec-

tion networks with q=0.1 and a uniform traffic pattern . . .. . .. 27
2.9 Improving the Probability of Acceptance by adding buffers for in-

terconnection networks with q=1.0 and a uniform traffic pattern . . 28
2.10 The PA improvement percentage by adding buffers for interconnec-

tion networks with q=1.0 and a uniform traffic pattern . . . . . . . 28

2.11 Improving the Probability of Acceptance by adding buffers for inter-
connection networks with q=0.1 and a non-uniform traffic pattern
((=0.9) . o o o 29

2.12 The PA improvement percentage by adding buffers for interconnec-
tion networks with q=0.1 and a non-uniform traffic pattern (r=0.9) 29

2.13 Improving the Probability of Acceptance by adding buffers for inter-
connection networks with q=1.0 and a non-uniform traffic pattern
(r=0.9) . . . . 30

2.14 The PA improvement percentage by adding buffers for interconnec-
tion networks with q=1.0 and a non-uniform traffic pattern (r=0.9) 30

2.15 The mean busy buffer size for a light traffic case (9=0.1) with K=8 32

2.16 The mean busy buffer size for a moderate traffic case (q=0.5) with )

K=8 . . 32
2.17 The mean busy buffer size for a moderate-to-heavy traffic case (q=0.7)
with K=8 . ... ... .. . 33
2.18 The mean busy buffer size for a heavy traffic case (q=1.0) with K=8 33
2.19 The Tree Build-up Time diagrams . . . . .. ... ... .. .... . 36
2.20 The upper bound of the tree build-up time for a 9-stage, 8 buffered
interconnection network . . . . ... ... ... ... ... ... .. 38
2.21 The mean delay for a 9-stage, 8 buffered interconnection network . 38
2.22 The analytical model vs. the simulation for a 9-stage, 8 buffered
interconnection network. The dotted lines are simulations. . . . . . 41

vi



2.23 The analytical model vs. the simulation for a 2-stage, 8 buffered
interconnection network . . . ... ... . ... . .

2.24 A General memory referencing pattern shown in terms of accessing
probabilities A; . . .. ... ...

3.1 (a) A 4x4 network with 4 switching points (e) in each stage. (b)-(f)
routing probability matrix . . ... ..., . ... . .. . .

3.2 Markov chain of the queueing process where the state variable rep-
resents the number of packets in the queve . . . . . .. . ... . ..

3.3 Throughput-Delay performance from analytical model vs. simulator
data . ...

64

3.4 Throughput comparison for a 64x64 Omega MIN under uniform traffic 64

4.1 The states of a server during its busy period. . . . . . ... ... ..
4.2 Comparison of results for a 6-stage, 4-buffered Banyan network with
and without the "memory™” behavior improvement . . . . . . . . . .
4.3 Throughput comparison for a 4-buffered, 6 stage Omega MIN with
a uniform traffic pattern . . . ... ...
4.4 Mean delay comparison for a 4-buffered, 6 stage Omega MIN with
a uniform traffic pattern . . .. ... ... ... ... ... ..
4.5 Throughput comparison for a 4-buffered, 6 stage Omega MIN with
EFOS trafficpattern . . . .. . . ...
4.6 Mean delay comparison for a 4-buffered, 6 stage Omega MIN with
EFOS trafficpattern . . . ... .. ... . ... ... ... . ..
4.7 Throughput comparison for an 8-buffered, 6 stage Omega MIN with

a uniform traffic pattern . . .. .. .. ... .. ... .. .. . .
4.8 Mean delay comparison for an 8-buffered, 6 stage Omega MIN with

a uniform traffic pattern . . . . ., . . ... ... ..
4.9 Throughput comparison for a 4-buffered, 10 stage Omega MIN with

uniform traffic pattern . . .. ... . .

4.10 Mean delay comparison for a 4-buffered, 10 stage Omega MIN with
uniform traffic pattern . . ... ... ... ... ... .. .

5.1  Analytical model vs. simulation for a 5 stage Omega under EFOS
traffic pattern . . . .. ... L
5.2 Analytical model vs. simulation for a 5 stage Omega under EFOS
trafficpattern . . . .. .. ... L
5.3 Analytical model vs. simulation for a 6 stage Omega under uniform
traffic pattern . . . . . ... L
5.4  Analytical model vs. simulation for a 6 stage Omega under uniform
trafficpattern . . . . ... L
5.5 Mean c-link length comparison for rate adjusted model . . . . . . .
5.6 Mean delay comparison for rate adjusted model . . .. ... ... .

vii



3.7

6.1
6.2

6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

6.11
6.12

6.13

6.14

6.15
6.16

6.17
6.18

Throughput-delay curve for rate adjusted model, 5 stage, EFOS
pattern . . . ... ... oL 88

4x4 interconnection network with turn back switch as building block 93
Markov chain for (a) simultaneous operation (b) no simultaneous

operation. . . . .. ....... .. ... ... ... 95
The recurrent relationship among variables in a particular path . . 101
Analytical model vs simulation for a 6-stage Omega . . . . . . . .. 106
Analytical model vs simulation for a 10-stage Omega . . . .. ... 106
Analytical model vs simulation for a 6 stage, 4 buffer Omega with

infinite buffer at PE under uniform traffic pattern . .. ... ..., 107
Analytical model vs simulation for a 6 stage, 4 buffer Omega with

infinite buffer at PE under uniform traffic pattern . . . ... .. .. 107
Feedback Model vs Combined Rate Model . . . .. ... ... . 108

Simultaneous model v.s. non-simultaneous model for a 6 stage Omega 109
Simultaneous model v.s. non-simultaneous model for a 10 stage

Omega . . ... ... ... .. .. 109
The recurrent relationship among variables in a particular path . . 112
The effect of feed back from different queues and different stages to
PEL . 114
Analytical model v.s. simulation for a 6 stage Omega under hot
spot traffic pattern . . . . ... ... . . ... .. . . . . .. . 119
Analytical model v.s. simulation for a 6 stage Omega under EFOS
pattern . . . . . .. Lo 119
Markov chain for a discrete time queueat PE . . . . . ... . . . 122
Blocking switch vs. turn back switch for a 6 stage Omega under
uniform traffic pattern . . ..., ... 123
A 2 stage 4x4 interconnection network with rotating switches . . . . 125
Analytical result for a 6 stage rotating switches under uniform traffic
pattern . . . . ..o 126

viil



ACKNOWLEDGEMENTS

I wish to thank Chun-Hsien Lu, Shiou-Pyn Shen and Asser Tantawi for their
discussions and comments which helps to clearify some of the problems. I am also
grateful to Li-Min Huang and Michelle Horng for their assistance in proofreading
the dissertation. I would also like to thank Kong Li, Pinghann Wang, Lih-Hsing Ke,
Chi-Cho Lin and many other friends for their four years companionship of studying
aboard. Most importantly, I would like to thank my committee chair, Professor
Leonard Kleinrock, and my family for their continuing support and encouragement,.

ix



VITA

October 4, 1961 Born, Taipei, Taiwan

1984 B.S. National Taiwan University
Department of Electrical Engineering

1988 M.5. University of California Los Angeles
Computer Science Departiment

PUBLICATIONS

T. Lin, “An Analysis of State Restoration in Distributed Systems” Masters Thesis,
UCLA Computer Science Department, 1988.

T. Lin and A. Tantawi, "Performance Evaluation of Packet-Switched Multistage
Interconnection Networks under a Model of Hot-Spot Traffic”, ORSA /TIMS
Joint National Mecting, Philadelphia, PA, October 29-31, 1990.

T. Lin and L. Kleinrock, "Performance Analysis of Finite-Buffered Multistage In-
terconnection Networks with a General Traffic Pattern”, submitted to ACM

SIGMETRICS 1991






ABSTRACT OF THE DISSERTATION

Performance Analysis of Finite-Buffered Multistage Interconnection Networks

with Different Switching Architectures

by

Tzung-1 Lin
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1991

Professor Leonard Kleinrock, Chair

We present analytical models for evaluating the performance of finite-buffered
packet switching multistage interconnection networks using blocking switches and
turn back switches under any general traffic pattern. Most of the previous research
work has assumed the case of no buffers, single buffer or infinite buffers, and all
of them assumed that processing elements have the same traffic pattern, either a
uniform traffic pattern or a specific hot spot pattern. However, their models cannot .
be applied very generally. There is a need for an analytical model to evaluate the
system performance under general conditions. Qur approach is to create a model
which approximates these networks, derive the system equations for this model,
and then solve these equations iteratively.

We first propose a decomposition and iteration model for a specific hot spot

pattern. This model is then generalized to handle general traffic patterns using a

xi



transformation method. A superposition method and a weighting factor are then
proposed to be used with the iteration model and the transformation method to
analyze the interconnection networks with a general traffic condition. where each
processing element has its own traffic pattern and input rate.

In order to account for the “memory” characteristic of a blocking switch which
causes persistent blocking of packets contending for the same output ports, we
propose an approximation method. Moreover, an analytical model is proposed to
analyze a re-submission interconnection network where each processing element
has a finite space to accept the rejected packets from the network. A rate adjusted
model is then proposed to reduce the time delay while maintaining the throughput
at the same level.

Finally, we develop an analytical model for interconnection networks using turn
back switches. The delay performance of packets passing through a particular path
is analyzed using recurrent equations. The performance of the turn back switches
and blocking switches are compared. This leads us to propose the “rotating switch”
which combines the advantages of the turn back switches and the blocking switches;
we then evaluate its performance relative to the blocking switch and the turn back

switch.



CHAPTER 1

Introduction

With the increasing demands for large computing power, parallel processing
has attracted a significant amount of research interest in recent years. One of the
problems we encounter with large parallel processing system is how to intercon-
nect thousands of Processing Elements (PE) and Memory Modules (MM). Many
interconnection networks are reviewed in [Sieg 79}, [Feng 81] and [Ahma 89]. The
Multistage Interconnection Network (MIN) was proposed as a cost effective al-
ternative to the more powerful, but more expensive crossbar (a fully connected
interconnection network). However, in the case of a non-uniform traffic pattern,
the interconnection network performance degrades significantly due to contention
for a favorite memory module (also known as the "hot spot”). With the presence
of a "hot spot”, a saturated tree is formed along all possible paths that lead to the
hot spot. This phenomenon is called tree saturation [Pfis 85]. Tree saturation
not only blocks packets destined for the favorite memory module, but also blocks
packets destined for the other memory modules. Modeling and analysis is thus
needed in order to understand the relationship between the traffic pattern and the
system performance. In addition, multistage interconnection networks have been
proposed for applications to fast packet switching networks [Turn 86] and applica-
tions to ATM (Asynchronous Transfer Mode) switches. The performance analysis
of multistage interconnection network thus becomes an important issue.

A considerable amount of performance analysis has been done on clocked,

packet-switched multistage interconnection networks. Most of the previous re-



search was limited to unbuffered or infinite buffered cases with a uniform traffic
pattern or a particular hot spot traffic pattern. An unbuffered MIN is an inter-
connection network where the switching elements do not have any buffer space for
storing packets. A buffered MIN is an interconnection network with either finite
buffers or infinite buffers in each switching element. According to the buffer size
and the traffic pattern, they can be categorized as follows :

Unbuffered MIN with a uniform traffic pattern : Patel proposed an
analytical model based on a recurrence equation [Pate 81). For an interconnection
network with kx k switches (a kxk switch is a kxk crossbhar switch}), the probability
that stage i is not empty, P, is given in terms of P,_; and the switching element
size k as follows :

Pi=1-(1-Piy- 1)

F; was used to calculate the probability of acceptance (PA) and the throughput.
Kruskal and Snir [Krus 83] solved for the asymptotic behavior of P (fori> 1)in

terms of the offered load q and the switching element size k :

2k
. 2k
(k—l)-%-l-T

P =

Although they also proposed an approximate formula for estimating the mean delay
for an interconnection network with an infinite queue in each switching element,
the simulation indicated a large discrepancy for a moderate traffic load.
Buffered MIN with a uniform traffic pattern : Dias and Jump [Dias 81]
analyzed both the unbuffered and finite-buffered network. They employed a prob-
abilistic approach to model the unbuffered case. A complicated iterative approach
was proposed for the finite-buffered case. They showed that the performance of a
buffered MIN is comparable to the performance of a crossbar. In addition, they

showed that the performance of a buffered MIN degrades slowly as the network



size grows. Furthermore, little performance improvement is achieved when they
added more than two buffers; i.e. two buffers are "enough”. Jenq proposed an
iterative model for a single buffered interconnection network [Jenq 83]. The single
buffer was placed at the input port of the switching element. Yoon, Lee and Liu
[Yoon 90] extended Jenq’s model to analyze an interconnection network with mul-
tiple buffers. Szymanski and Shaikh [Szym 89] proposed an approximate Markov
chain model for an interconnection network with finite buffered switching elements.
These models all assume that different queues in the same switching element are in-
dependent. This independence assumption causes the analytical models to predict
optimistic behavior. Kruskal, Snir and Weiss, [Krus 86] and [Krus 88], analyzed
an interconnection network with an infinite buffer size in each switching element.
They solved for the distribution of delay for the queue in the first stage as an
M/G/1 queue. Then they estimated the distribution of delays for later stages.
The queues in later stages were assumed to be identical.

Unbuffered MIN with a non-uniform traffic pattern : Bhuyan studied
the performance of an interconnection network [Bhuy 85] with several non-uniform
traffic patterns using a probabilistic approach.

Buffered MIN with a non-uniform traffic pattern : Kim and Garcia
[Kim 90] proposed an analytical model for a single buffered MIN. Several non-
uniform traffic patterns were analyzed. They claimed that the single buffered MIN
could easily be extended to multiple buffers; however, they did not carry out this
extension.

Buffered MIN with a general traffic pattern : Kurisaki and Lang [Kuri 88]
proposed a Not Uniform Traffic Spots (NUTS) traffic pattern. The processing el-
ements were allowed to have different traffic patterns. The resulting overall traffic

pattern may seem uniform, but causes congested spots inside the network. The



performance was shown to be severely degraded. However, their approach was
a simulator which is not suitable for a large sized network. Willick and Eager
[Will 90] proposed an analytical model for an interconnection network with infi-
nite buffer size and general traffic conditions. Their model is good for the uniform
traffic pattern; it appears that it is not good for non-uniform traffic patterns. Their
model is based on a Mean Value Analysis; it has the potential to analyze the case

where each processing element has its own traffic pattern.

In general, we see that exact analytical models have been found for unbuffered
interconnection networks. However, for finite buffered networks with a non-uniform
traffic pattern, either a simulator or an iterative, approximate model was used to
analyze the system performance. The interdependence of finite buffered queues
with blocking makes an exact analysis very difficult. Our models also employ an
iterative approach to analyze the finite-buffered interconnection networks. How-
ever, this iterative approach provides a general framework which can be easily
extended to analyze various switching architectures with modifications incorpo-
rated in the approach.

We focus on either a Banyan interconnection network [Goke 73] or an Omega
interconnection network [Lawr 75]. These networks and some other popular net-
works have been shown to be equivalent [Feng 81]). The basic building block of
an interconnection network can be either a blocking switch or a turn back switch.
The difference between a blocking switch and a turn back switch is the way they

handle the conflicting packets which contend for limited buffer space.,

¢ The blocking switch at a given stage of the MIN will block an incoming

packet to that stage when there is no buffer space for that packet. This



packet then remains at the preceding stage and waits to try again in the
next cycle. Feedback information is needed to notify the preceding stage
that such a situation occurs. On receiving the blocking signal, the server in

the preceding stage stops sending a packet until the next cycle.

¢ The turn back switch rejects the packet if this situation occurs, and re-
submits it to the source (PE). Feedback information is not needed, and every

switch outputs one packet per cycle if it is not empty.

We concentrate on the analysis of the blocking switch in Chapters 2 to 5. The
modelling of the turn back switch is discussed in Chapter 6. The performance of
these two switches is also compared in Chapter 6.

We begin by proposing an analytical model which approximates the traffic
behavior in an interconnection network using blocking switches with a specific hot
spot traffic pattern. All processing elements are assumed to have the same traffic
pattern and input rate. An iterative approach is proposed in section 2.1 to solve for
the throughput and delay performance of a finite-buffered MIN. A general traffic
pattern model is proposed in section 2.2 in which a transformation method is
incorporated in the basic analytical model. The method transforms a given traffic
pattern into a set of routing probabilities which reflects the steady state behavior
of packets flowing through the network.

In the real world, however, each processing element can have its own traffic
pattern and input rate. This creates an even more general traffic pattern than the
traffic pattern that we discussed in section 2.2. A superposition method is pro-
posed in section 3.1 to be incorporated in the basic analytical model to analyze an

interconnection network whose processing elements have different traffic patterns.

(The Not Uniform Traffic Spot (NUTS) traffic patterns [Lang 88] are analyzed in



- section 3.2 as examples.) A weighting factor is incorporated in the superposition
method to handle the case where each processing element has its own input rate.
However, the model result is shown to be optimistic compared to the simulation.
The inherited ”memory” behavior in the blocking switch causes persistent blocking
which is not accounted for in the analytical model.

To account for the "memory” behavior of a blocking switch, we modify the
renewal routing choice assumption in the modelling approach. An approximation
method is proposed in Chapter 4 to account for the persistent blocking. The
simulation comparison indicates that the approximation method is very good in
capturing the persistent blocking effect for various traffic patterns. However, the
approximation method still does not capture the whole effect of persistent blocking
when the hot spot congestion is very severe.

In Chapter 5, we study a re-submission model which accounts for rejected traffic
in the blocking switch. A finite number of buffers are placed at the processing
elements to accommodate rejected packets (due to full buffers in the network).
It is shown in section 5.3 that a rate adjusted model can reduce the mean delay
without sacrificing the throughput. The maximal input rate which satisfies a given
loss probability is calculated in section 5.3.2.

In Chapter 6, we study a new model, namely the turn back switch model. We
first propose this turn back switch model for an interconnection network with a
uniform traffic pattern in section 6.1. Different assumptions and different modelling
approaches are discussed and compared. When the traffic pattern is not uniform,
the traffic pattern of the re-submitted traffic may be different from the given traffic
pattern. Hence the simple modelling approach in section 6.1 is not sufficient. A
different model is proposed for an interconnection network with a non-uniform

traffic pattern in section 6.2. The model employs an algorithm which traces the



re-submitted traffic in detail. We then change the traffic pattern to properly reflect
the presence of the re-submitted traffic. In order to compare the blocking switch
with the trun back switch, an infinite queue is added to the blocking switch model
in section 6.3. The throughput-delay curves of both switches indicates that both
switches have their advantages in a certain range of system load. This fact leads
us to suggest a new configuration, namely the rotating switch, which combines the
advantages of both switches. The throughput-delay curve of the rotating switch
is obtained and is compared to those of the blocking switch and the turn back
switch. The result shows that the rotating switch outperforms the other switches
at all system loads.

A summary is given in Chapter 7 with some concluding remarks, as well as

directions for future research.



CHAPTER 2

Modelling of Processing Elements with Identical Traffic Patterns

2.1 Basic Models with a Hot Spot Traffic Pattern

In this section, we propose three models to evaluate the performance of the
unbuffered MIN and the finite-buffered MIN with a hot spot traffic pattern. By
changing a parameter of the system, the models are reduced to the uniform traffic
case,

The architecture descriptions and the model assumptions are described in sec-
tion 2.1.1. In section 2.1.2, the routing model is described. The unbuffered MIN
is analyzed in section 2.1.3 with different hot spot traffic patterns. The asymp-
totic behavior for the unbuffered MIN with a hot spot traffic is also studied. The
buffered MIN is analyzed using an approximate model in section 2.1.4. The prob-
ability of acceptance, the average number of busy buffers and the average time
delay are evaluated. Our model of the buffered MIN is verified using simulation in

section 2.1.5. Finally, concluding remarks are given in section 2.1.6.

2.1.1 Architecture Description and Assumptions

In this paper, the interconnection network we consider is a clocked, packet-
switched finite-buffered Banyan network where each 2x2 switch has buffers of fi-
nite size K at its output ports (see Figure 2.1). There are N processing elements
and N memory modules interconnected by the n-stage (i.e. N = 2™) interconnec-

tion network. All the operations of input and output take place at the end of
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Figure 2.1: 3 stage Banyan network with buffers at output ports of each switch
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each cycle. The interconnection network accepts requests frpm the input nodes
(processing elements), then routes them to the output nodes (memory modules).
These requests will be returned from the output nodes through the interconnection
network in the reverse direction to the original requesting nodes. The "forward”
network and "backward” network are distinct, but are identical in topology. It is
sufficient to discuss the delay and throughput performance of the forward network
only.

Each packet generated at the processing elements carries an address tag with
a number of bits equal to the number of stages of the interconnection network.
The address tag is a binary representation of the destination address. The address
tag is generated according to a destination distribution (traffic pattern). (Each
processing element may have a different destination traffic pattern. If all the
processing elements have an identical traffic pattern, then the overall traffic pattern
for the memory modules is the same as this one. If each processing element has
its own traffic pattern, then the overall destination traffic pattern for the memory

modules is the superposition of the traffic patterns of the individual processing



elements.) The packet is then fed into the first stage of the network. The first
stage switch examines the first bit of the address tag; if it is a 0, the packet is
routed to the queue at the upper output port. If the first bit is a 1, the packet is
routed to the queue at the lower output port (see Figure 2.1). The packet then
waits in the queue until its turn to be transmitted to the next stage. The routing
process is repeated in each stage, thus sending the packet to its destination.

A blocking switch is assumed in which if a head-of-queue packet cannot go
to the next stage due either to a full buffer or a contention failure for a single
available position in this next stage, then it stays at the current queue and waits
for the next cycle to try again. The blocking phenomenon has an implied memory
characteristic in that a blocked packet will attempt to reach the same output port
again. This memory characteristic makes analytical modelling difficult. We discuss
an approximation method.to be incorporated into the analytical model to model
this memory characteristic in later sections.

When two packets from different queues in the same stage contend for the same
output queue in the next stage, a potential problem occurs. If there are more than
two spaces available at this output queue, the switch is assumed to be fast enough
to accept both packets in one cycle. If there is only one space available, a packet
1s randomly chosen to fill up this space; the other packet is then "blocked” (due
to a ”contention” failure) and stays at the original queue. However, if no space 1s
available in the next stage (i.e. the queue at the output port is full), then both
packets are blocked.

Packets are assumed to be of the same length (i.e. fixed size packets). A packet
1s generated by each processing element independently with probability ¢ in each
cycle. All processing elements are assumed to have this identical bernoulli input

process. This assumption is later relaxed by using weighting factors to allow each

10



processing element have its own input rate ¢;, 1 < j < N. We assume that there
is no buffer space at the processing elements. After being generated, a packet is
discarded if it cannot be delivered to the first stage of the interconnection network
either due to a full buffer or a contention failure. Discarded packets at the entry
to the network are not re-submitted. A packet, once accepted by the network,
is never discarded inside the network. The input process is independent of the
discarding process. (An extension of the model to allow blocked packets to be
stored in a finite-sized queue or an infinite queue is discussed in later chapters.)
From this assumption, the time delay of our performance measure is the total
time a packet spends in the network. Time delay is meaningful only for those
packets accepted into the network. The probability of acceptance (PA), another
performance measure, is the probability that a packet is accepted into the network
after it is generated. The normalized throughput is simply the probability of
acceptance multiplied by the input rate. Current work also includes an extension
to the case of multiple packet generation.

Each processing element has a memory module referencing pattern. A refer-
encing pattern is the set of probabilities that a packet accesses the various memory
modules. All previous work assumes that processing elements have the same refer-
encing pattern. We shall allow P.E.s to have their own traffic pattern in Chapter
3. The memory module is assumed to be fast enough to accept 1 packet per cycle
from switches at the last stage. This fast memory module assumption implies that
there is no blocking at the last stage since a dedicated link connects one memory
module to the output queue (see Figure 2.1). A slower memory module (e.g. 2 cy-
cles to accept a packet) will have a severe effect on the performance of the network.

Extension to slower memory models is underway.
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2.1.2 The Routing Model

In the real world, packets are routed according to their destination address.
However, in order to analyze the network analytically, we establish an abstract
flow model that can be used in an approximate analytical model that faithfully
reflects the steady state flow situation in the network. We propose a routing matrix
rii, 1 <1< n,1<j < N where 7y is the routing probability of the jth input port
in stage i. A packet entering a switch will be routed either to the upper output
queue with probability r;; or to the lower output queue with probability 1 —r; ;.
To simulate a uniform traflic pattern, we simply let all ri; be 0.5. With equal
probability of choosing output queues, no memory module is preferred. A special
hot spot pattern can be created by letting all r;; be an identical value different
than 0.5. For instance, by letting all r;; be 0.8 in a 10 stage network, 10.7% (=
(0.8)'%) of the total traffic will go to memory module 0 in a 1024-node network
with 2.7% (= 0.2(0.8)°) of the traffic going to each of the second highest referenced
memory modules (all memory modules with a single 1-digit in their address tag)
and other fractions of traffic to the other memory modules. The advantage of this
routing model is that by changing the value of r;; with proper mappings from real
traffic patterns, we can evaluate any general traffic pattern. We leave the case
of general r;; to be discussed in section 2.2 and in Chapter 3. Throughout this °

section, all r;; are assumed to have an identical value of r.

2.1.3 Analysis of Unbuffered MIN

In this section, we study the unbuffered MIN and we have two objectives.
The first is to solve for the probability of acceptance of a packet generated by

a processing element; the second is to show the effect any hot spot has on the
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throughput of the unbuffered MIN. The modelling approach employs a recurrence
equation similar to the one Patel proposed [Pate 81]. It is an exact solution to
the (approximate) model. The model assumptions and notation are presented in
section 2.1.3.1. The results are shown in section 2.1.3.2. In section. 2.1.3.3, the

asymptotic behavior of the probability of acceptance is discussed.

2.1.3.1 Assumptions and Analysis

We assume that the network under study is a clocked, packet-switching MIN,
There are N PE’s and N MM’s interconnected by an n-stage (ie. N = 27 )
interconnection network. All the operations of input and output take place at
the end of each cycle which is the instance when we observe the system. With
probability q, each PE generates a packet. The packet is submitted to the switch
in the first stage at the end of the cycle. With probability 1 — ¢ , the PE remains
idle. A packet is routed to an output port according to an address tag. Each switch
sends a packet to the next stage at the end of the cycle if it is not empty. If two
packets are contending for the same output port, one packet is randomly accepted
while the other is discarded (since there are no extra buffers). The contention
resolution is unbiased. The input generation process of the PE’s is independent
of packet discarding. The discarded packets are not re-submitted. As long as the
output port is not empty, the speed of the MM is assumed to be fast enough to
remove one packet from the output port of the last stage. We also assume that the
operation of the MIN is simultaneous, which means that if all the stages are non-
empty, then in the next cycle, all packets move to the next stage simultaneously.

In order to calculate the probability of acceptance, we must calculate P;;, the
probability that jth output port of stage i is not empty. Then P, ; is the probability

that jth queue in the last stage is not empty. Hence the summation of P, ; for all
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i’s is the total output rate of the network. Dividing the total output rate by the
total input rate, NV - ¢, we get the average probability of acceptance.

Let us designate the jth queue (in a column) in stage i as (:; and let P;; be
the probability that Q;; is not empty. We first determine the equations for P,
and Py 5, then we generalize this equation to a general P; ;. In the first switching
element of the first stage, there are two queues (namely Q,: and @, ,) that take
incoming packets from two processing elements. The probability that a PE is not
empty is q. Therefore the probabilities that @, and (12 are not empty are as

follows :

Pp=1-[1—gq-r]

P1,2=1—[1_CI'(1_7')]2

A processing element sends a packet to @}, ; with probability ¢g-r. Hence, (1—g-r)?
is the probability that (}1; does not receive a packet from either incoming source
(processing element). Thus Py (= 1 — (1 — ¢ r)?) is the probability that there
is a packet at Q1. Similarly, a processing element sends a packet to 1,2 with
probability ¢-(1—r). Hence P, ; (= 1—(1—g-(1—r))?) is the probability that there is
a packet at Q5. Since all processing elements are identical with packet generation
rate q, the queues of other switching elements in the first stage have the same
probability P, and P, that they are not empty. Hence for switching elements
in the first stage, the probability that the upper output port is not empty is Py,
and the probability that the lower output port is not empty is P, ;. With Banyan
interconnection, all upper output ports are interconnected to the first half of the
switching elements in the next stage, and all lower output ports are interconnected

to the second half of the switching elements. Therefore the equivalent source that
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feeds each of the output queues of switching elements in the first half of the second
stage has a rate equal to P, ;. Therefore the probability that any of the upper
output queues of the first half of the switching elements in the second stage is not
empty is £;; =1 —[1— P -r)%. Similarly, the probability that each of the lower
output queues of the first half of the switching elements in the second stage is not
empty is Ppp =1 —[1 = P;;-(1 =r)]% In general, P, acts as a source in stage i
that feeds a set of switching elements in stage i+1. Hence the probability that the
upper ports and the lower ports of these switching elements are not empty can be

found as follows :
P£+1,2j—1 =1- [1 - P.‘,j : 1"]2

Pigj=1-[1=Py-(1-r)’ (2.1)

Solving P, ; stage by stage, we get P, ; , for j=1 to N. Then the average probability

of acceptance (PA) is found as :

N1P J
— &=l 7 g 9.
PA N g (2.2)

where Ejv:l P, ; is the total output rate from the MIN, and N - ¢q is the total
input rate to the interconnection network. This is our recurrent solution for the

probability that a generated packet is eventually accepted.

2.1.3.2 Results

By substituting different values of r into the model, we get PA values of the
unbuffered MIN under different hot spot traffic patterns. The light traffic load
(g=0.1) case is shown in Figure 2.2.

From the figure, we see that the larger the network size, the worse the PA

degradation is when we increase the non-uniformity of the traffic. In F igure 2.3,
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we show the PA degradation percentage when we increase hot spot traffic from
r=0.5 gradually to r=0.9 for each stage. The reduction in PA for the r=0.9, 10-
stage case, compared to the r=0.5 case, is 71%. Since the traffic load is small,
when we have a small number of stages the contention probability is small, as well.
Thus, there is no significant difference in the values of PA’s for various values of r.
As we increase the network size, the difference between the PA’s begins to show
because the contention probability is high in a large network.

Increasing the offered traffic to q=1.0, the probability of collision for small
networks becomes high. Hence, even with a uniform traffic pattern, the PA of a
10 stage network drops to 0.27 in the heavy load case (q=1.0), compared to 0.8
in the light load case (q=0.1). Furthermore, PA is severely degraded by hot spots
under heavy traffic, as shown in Figure 2.4. If we compare the PA degradation
percentage of the light traffic case to the heavy traffic case, the degradation in the
heavy traffic case is more serious than in the light traffic case. An 80% degradation
in PA for the r=0.9, n=10 case indicates that a hot spot has a dramatic influence

on PA for an unbuffered MIN.

2.1.3.3 Asymptotic Behavior

In this section, we discuss the asymptotic behavior of the probability of ac-
ceptance of the output port queues that are in the paths which lead to the hot
spot. We notice that along these paths, all the ports in the same stage behave the
same. Therefore, we can represent the queues in the same stage by a probability,

P;. Then the recurrence equation which relates probabilities in neighboring stages

18 :

Piyy=1—-(1-P;-r)?
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Pj:-l-—(].—Pj_l'T)z

Subtracting the second equation from the first one, we get the following :
Pipn = Py=2—r-(Pj+ P v+ (P, — Piy)

The first term on the right hand side in square brackets is always positive. Hence,
Pj is either an increasing function or a decreasing function. If P, is an increasing

function, then
1—(1—Pj'1")2>Pj

After some simple algebra, we find the asymptotic behavior of P; ( j > 1) as

follows :
2r—1
Pj < 2 (23)
A similar expression can be derived for the decreasing case :
2r—1
Fi>—; (2.4)

From equations (2.3),(2.4), we know that when r > 0.5, P; converges to 21 when j

approaches infinity which means that the output port that connects to the favorite
memory module converges to 231 for j > 1.

For the r < 0.5 case, we can show that P, approaches zero when j approaches

infinity as follows :

PJ‘+1=2T'Pj-—(T"PJ‘)2

PJ'+1 <2T"Pj

It turns out that P; converges to zero faster than g- (2r)7 for r < 0.5 case. This is

the probability for other memory modules when j > 1.
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We derive the asymptotic expression of P; for a MIN composed of k x k switches

by using the method in [Krus 83] . The result is as follows :

Py= 31— k=1 1 kr—1 -1/ 1 \; (2.5)
G EE A EFDER) D)

When k equals 2,we get

which is the convergence given in the previous discussion. If we let r = % (the

uniform traffic case), we get the following :

2k
T 2k
(k=1)xj+%

Py =

which is Kruskal’s result [Krus 83).

2.1.4 Analysis of the Buffered MIN

The finite-buffered MIN is now analyzed using an approximate iterative method.
The approximation comes from the decomposition of a network of queues into in-
dependent queues. The iteration is repeated until PA converges within 107% . In
section 2.1.4.1, the model assumption and model approach are both described. The
probability of acceptance (PA), the mean queue size of the tree and the average

time delay of a packet are determined in section 2.1.4.2.

2.1.4.1 Modeling Analysis

The proposed approximate analytical approach employs a decomposition and
iteration method. The real interconnection network is in fact a network of finite-
buffered queues with blocking. The dependency among queues, caused by the
blocking from stage to stage, makes the exact analysis intractable. We shall use a

similar approximation technique as that applied in tandem queues with blocking
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[Bran 88], [Case 79] and [Perr 86] where approximate analyses are used. The ap-
proximation method decomposes a queue in the tandem configuration with equiv-
alent input rates and blocking conditions. The Markov chain of the decomposed
queue is then solved; the steady state probabilities are then used as equivalent
input and blocking conditions for other queues. The iterative method decomposes
and analyzes the tandem queues one by one, then the whole process is repeated
until it converges, if it has a steady state. The concept of using this decomposition
and iteration approximation method in analyzing the finite-buffered Banyan net-
work is very similar to that of tandem queues. The only difference is that instead
of a single input source and a single output queue for each queue in the tandem
configuration, the interconnection network has 2 input sources and 2 output queues
for each queue in the network (except for the last stage queue where only 1 output
sink is presented, namely, the memory module). Therefore, when we solve for the
equivalent input rates and blocking conditions for a decomposed queue, we con-
sider the combined input from 2 input sources and the combined probability of
blocking from the 2 output queues. The approach is described below.

Let P, ;(k) be the steady state probability that there are k packets in the queue
Q:;- Let Qi1 ;1 and Qi_; ;2 be two input sources from stage i-1 that feed @, ;. Let
X{i] be the probability that there are i packets destined for @, from its two input |
sources (since each source at most sends one packet every cycle, hence 0 < i < 2).
We solve for the equivalent input rates for a queue Q; ; which is located at output

port 0 as follows:

X[1] = r[Pic1,j1(0)(1 = Pio1,12(0)) + Pisy 12(0)(1 — Pi_y j1(0))]
+2r(1 = r)(1 = Pioy,1(0))(1 ~ Pi_y,12(0))

X[2] = [r( = Picr,j1(0))] - [r(1 — Picy,j2(0))]
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Figure 2.6: Markov chain of a queue Q); ; extracted from the network where the

state variable represents the number of packets in that queue; K=4.
X[0]=1-X[1]- X[2] (2.6)

The first term in X[1] equation is the case that one queue in the previous stage is
empty, and the other is not. The non-empty one chooses the output port 0 with
probability 7. The second term is the case that both queues in the (i-1)th stage are
not empty, and one chooses output port 0 with probability » and the other chooses
another output port with probability 1 — r. The summation of probabilities in
both cases represents the probability that only one input packet feeds the queue.
The X[2] equation represents the case when both queues in the previous stage are
not empty and they both choose output port 0 with probability » (This calculation
assumes that the output port queue is the upper of the two; if it is the lower output
port queue, then the routing probability r is replaced by 1 — r).

Regarding the equivalent blocking condition, let B;; be the probability that a
packet in the jth queue in stage i is blocked at the end of a cycle. Let C;; be the
probability that the jth queue in stage ¢ is blocking a packet in stage 7 — 1. Let
@i+1,51 and Q41 ;2 be the two output queues of @; ; and let J;; be the other queue
that also feeds both @115 and Q41,52 (i.e. a possible contending queue for Qi

). Then the equivalent blocking condition for queue Q; ; 1s as follows :

Bij=r-Cipip+ (1 —r) Cigrp
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r
where C,;+1,J‘1 = Pi-f-l,jl(K) + 5 ' (1 - P,'J(U)) . ‘PH—l,jl(K - 1) (27)

The first term in the B;; equation represents the case when the packet at the
head of queue Q;; chooses Q4 ;; with probability r and is blocked by Qit1.1.
The second term represents the other case when the packet chooses Qi+1.52 and is
blocked. There are two situations in which a queue blocks a packet in the preceding
stage : firstly, when the queue is full, and secondly, when the queue has only one
more space and a contention from @;; wins the arbitration.

Given a set of initial values for the variables of the network, we ”extract” queue
(1,1 from the network (with the equivalent input rates and blocking conditions as
exist in the network) as an independent queue. The Markov chain for this queue
is then solved to get new values for the state probabilities. | A sample Markov
chain for the queue @;; is shown in Figure 2.6 where B represents the blocking
probability B;;. We repeat this process for other queues in the first stage, in
the order @12, @13,...Q1~. Using these new state probabilities as the new input
rates, we repeat the same process for all queues in the second stage in the order
Q21,Q@22,...Q2~. This process is then repeated for all stages. Now we have a
new set of values for network variables which can be used to compute the new
blocking probabilities. This new set of values is used in the next iteration to
compute another set of new values, etc.. The iteration process is repeated until
the difference of the probability of acceptance between two consecutive iterations
is below 107°.

The performance measures that are of interest are the probability of acceptance,
the normalized throughput and the average time delay. There are two ways to

calculate probability of acceptance. If we sum the output rate over all output
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ports and divide it by the total input rate, we get the probability of acceptance :

1l = Pni(0)]

PAy =
t qN

(2.8)

The total output rate over the input rate is the probability of acceptance at the
output port. From the input port, we solve for the probability that a packet
generated at the PE’s is discarded due to a full buffer or a contention failure at
the first stage. This discarding probability is By ; , which can be solved for using
equation (2.7). Hence,

PA,=1-DBy; (2.9)

Both values, although solved in different ways, should be equal when the MIN
reaches steady state. (This can be used to test for the correctness of the model.)
The normalized throughput is found by multiplying the probability of acceptance
by the input rate. We apply Little’s result { A - T = N) to calculate the average
time delay of a packet. When the network reaches steady state, we take the sum
of the mean queue sizes summed over the whole network using the steady state
probabilities of the queue size for each queue. Given the throughput and the
average numbers of customers in the system, the average time delay can be solved

for by applying Little’s result.

2.1.4.2 Results

In this section, we focus on four performance measures. The first measure is
the probability of acceptance for both a hot spot traffic pattern and a uniform
traffic pattern for both the unbuffered case and the buffered case. The effect of
buffering on PA is given. The second measure is the mean queue size of those
queues in the saturated tree. The motivation for this study is to see how the tree

is formed under the influence of hot spot traffic and offered load. Next, we study
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(an upper bound on) the tree build-up time. The last perofrmance measure that
we are interested in is the average time delay of a packet in the MIN.

PA Improvement

In this section, we compare PA values of the finite-buffered MIN to the PA
values of the unbuffered MIN which are taken from the first model solved in section
2.1.3. We increase the number of buffers gradually, for different network sizes (1
to 9 stages) under different traffic conditions.

The uniform light traffic case is shown in Figures 2.7 and 2.8. The performance
improvement is insignificant because the contention probability is small due to a
uniform, light traffic pattern. Adding one buffer provides the greatest improvement
because this buffer saves most of the collided packets which would be discarded in
the unbuffered case. For the unbuffered case, as the number of stages grows, we
see that the PA decreases (in fact, it decreases to zero as stage number approaches
infinity, P; < Z7l as discussed in section 2.1.3.3). By adding one buffer, we
improve the probability of acceptance to 0.98. We see an insignificant improvement
after adding two buffers when PA approaches 1. This agrees with what [Dias 81]
had claimed. We notice that for the single stage MIN, the PA for the unbuffered
and the single buffer case are equal. Although the unbuffered MIN has no buffer to
store the blocked packet, it has a room for temporarily keeping a packet. Thus it
is essentially a one buffer system. The difference between this and the single buffer
case is attributed to the fact that a collided packet is dropped in the unbuffered
case, but is stored in the buffered case. For the single stage MIN, the collision
for the unbuffered MIN happens only at the input of PE’s, and this is the same
situation as in buffered MIN. Therefore, the probabilities are equal. But for a
larger MIN, i.e. with more than one stage, packet discarding occurs through all

stages for the unbuffered MIN. The buffered MIN still maintains the property that
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packet discarding occurs only at the PE’s. Hence, storing blocked packets in the
buffered case improves the system performance. Figure 2.8 shows the improvement
percentage of PA by adding buffers compared to the unbuffered case.

In an uniform, heavy traffic case (Figures 2.9 and 2.10), if a MIN does not have
buffers to hold those collided packets, PA decreases significantly as the number of
stages grows due to the high contention probability under heavy traffic condition.
After adding buffers, PA improves significantly. Thus buffering becomes important
to improve the performance when the contention probability is high. PA jumps up
sharply by adding two buffers, but slows down when buffer size grows beyond that.
After adding roughly 4 buffers, the difference of PA’s between different network

sizes is very small because 4 buffers are enough to save most of the collided packets.

In Figures 2.11 and 2.12, we show how a hot spot pattern affects PA for the
unbuffered and the buffered MIN. Under the same light traffic condition, PA de-
creases significantly for the unbuffered MIN under the influence of a hot spot, as
compared to the uniform traffic case shown in Figure 2.7. For a 9-stage unbuffered
MIN, PA is 0.27 with a hot spot traffic pattern, compared to 0.82 with a uniform
traffic pattern. As expected, adding the first buffer makes a big difference for a
large MIN. The difference of PA’s for different size networks gets smaller when the )
buffer size grows, as in the uniform traffic case. However, the PA improvement
percentage is so high that for a 9-staged MIN, the percentage is over 250% for 8
buffers. Buffering improves the normalized throughput of a MIN under hot spot
traffic significantly even when the offered traffic is very light.

For the heavy traffic case under a hot spot influence, the PA value is shown in
Figures 2.13 and 2.14. In heavy traffic cases, even adding buffers cannot diminish

the difference of PA for different network sizes. However, the improvement for a 9
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stage MIN is still nearly 250% for the 8 buffers case. Buffering does not help much
for the heavy load case with a hot spot traffic pattern because the tree is quickly
saturated. The PA for a large network is not high even with 8 buffers added. For
a 9-staged, 8-buffered MIN, the PA is less than 0.2, This low packet acceptance is
due to tree saturation; hence most packets are discarded at the input to the MIN.
Unlike the uniform traffic case where PA can be improved to nearly 1 by adding 8
buffers, tree saturation dominates the performance of the MIN in the non-uniform,
heavy traffic case.

We conclude that a hot spot pattern degrades the performance significantly.
Buffering helps to improve the probability of acceptance in many cases. However,
buffering does not help much when the hot spot pattern is very severe.

The Average Number of Busy Buffers

In this section, the average number of busy buffers for those queues in the
saturated tree is found. Because tree saturation dominates the performance of the
MIN, understanding the evolution of the number of busy buffers helps to study
the behavior of tree saturation.

When the iterative model reaches steady state, we have the state probabilities
information for each queue in each stage. If we calculate the mean busy buffer
size for those queues in the tree, then we know how the tree evolves. Note that .
queues in the same stage are statistically identical. In figure 2.15 - 2.18, we show
the mean queue size for a 9-staged, 8-buffered MIN for different values of . by
changing the offered load in each chart.

When ¢=0.1, the offered traffic is so light that even adding a fraction of non-
uniformity by increasing r from 0.5 to 0.6, the average number of busy buffers for
an 8-buffered MIN is still below 1 for all stages. We notice that when r equals

0.7, a saturated tree begins to form starting from the hot memory module, and
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propagates back to stage 6. When r equals 0.9, all the queues in later stages are
full, but the first stage contains only 2 packets on the average. Therefore, PA is
still nearly 1 despite the fact that a small tree is formed.

When we increase the offered traffic to 0.5, the tree saturation begins to demon-
strate its influence over the performance of the MIN. The average busy buffer size
still remains below 1 for uniform traffic. A little increase in non-uniformity (r=0.6)
causes a tree to be formed for the last 7 stages. For r=0.9, even the queues in the
first stage are full. Tree saturation reduces the value of PA when r > 0.8 .

When the offered traffic is increased to 0.7, the average busy buffer size for
the uniform case is only 1. When r equals 0.6, the tree is saturated to the first
stage with a mean queue size equal to § at the first stage. PA for this case is still
high due to the small non-uniform traffic, where 40% of the traffic still flows into
queues outside the tree which helps keep traffic from being congested. The same
reasoning applies for the r=0.7 case where almost all the queues in all stages are
full, and the PA still remains high at 0.71.

Under heavy traffic conditions, a small increase in the hot spot traffic quickly
saturates the tree, reducing the probability of acceptance significantly except for
the r=0.5 case. When r=0.5, all packets have an equal probability of choosing any
output port. The heavy traffic causes the MIN to fill up to a moderate degree.
Note that the average busy buffer size decreases when the stage number increases.
An analogy to this situation is a highway traffic jam. The effect of blocking is
propagated back from the last stage to the first stage; therefore, the quenes in the
later stages contain fewer packets than do the ones in the earlier stages.

Depending on the values of q and r, tree saturation affects PA in various degrees.
In some cases, even when the tree is formed, the MIN still maintains a decent

value of PA. Adding more buffers might be able to compensate for the effect of

34



tree saturation, but it becomes impractical when the network size is large.

Tree Build-up Time

One interesting problem concerning the saturated tree is the tree build-up time
for different loads and different degrees of non-uniformity. Let us define 7} to be
the average time when the network first starts to drop packets at the input due to
blocking, and T, to be the average time for the system to stabilize. 7} is the time
when the saturated tree reaches the processing elements. This is the performance
measure in which we are interested. Applying Little’s result, we have the following

equation (see figure 2.19(a)) :

- N-T=Nyin+ Nirop + Nous

where after T cycles, on the average, ¢ - N - T} is the total number of packets
generated (remember that NV is the number of processing elements), Ny is the
average number of packets still in the network , Nd,.op is the average total number
of discarded packets due to blocking at the first stage and N, is the average
number of packets reaching their destinations. Starting from n-th cycle, packets
begin to reach their destination. The output rate is increased until at cycle T,
when the output rate equals the input rate ¢+ N - PA. This is the time when the
system stabilizes.

Instead of calculating an exact value for 77, we only come up with an upper
bound on T as follows. In Figure 2.19(b), N, is the average number of packets
that have reached the destination at time 7;. From the diagram, we come up with
the following equation :

¢-N-Ty <Npin+ N,

g-N-PA

g N -Ty < Nygn + 5

(Ty — n)
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Figure 2.19: The Tree Build-up Time diagrams
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Hence, the upper bound for T} is :

T
1S T N-(2=PA)

(2.10)

The shaded area in Figure 2.19(c) represents the difference between ¢V - Ty and
Narv + 9'—N2";A “(T1 — n). Notice that when PA is small, the system is quickly
saturated (hence a smaller shaded area) and thus we have a tight upper bound.
When PA is large, we tend to have a loose bound. For a uniform light traffic
load, the bound is not very accurate. However since our objective is to study the
saturated tree with a moderate-to-heavy congestion (in this case, PA is small),
equation (2.10) provides a good bound for T}. Using this upper bound, we obtain
the diagram of tree build-up time for different system parameters in Figure 2.20.
For a uniform traffic case (r=0.5), the only place where tree build-up occurs is when
the offered load is 1 packet/cycle. Again, since PA is close to 1, we have a very loose
upper bound. Taking (q,r) as a pair, there are 4 pairs, (0.2,0.9),(0.3,0.8),(0.5,0.7)
and (0.7,0.6) each representing the boundaries where the network is reaching a
saturated tree (compare to Figure 2.15-2.18). Another comparison is presented
with the result of average time delay in the following.

Average Time Delay

One other interesting performance measure is the average time delay for a
packet. In the buffered MIN, once a packet enters the network, it is guaranteed to
reach its destination. But in addition to the necessary service time at each stage,
one cycle per stage, buffering introduces waiting delays to the total system time.
By using Little’s formula, we get the average time delay. After reaching steady
state, we calculate the average total number of packets in the MIN. Therefore, by

applying Little’s result, we get the average time delay for a packet:

Nain

= — 2.
N-q-PA (2.11)
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‘The product N - ¢ is the total input rate generated. This value multiplied by PA
is the actual input rate to the MIN in steady state. The Ny represents the
average total number of packets in the MIN. The result is shown in Figure 2.21.
For the uniform traffic case, the average time delay for small offered traffic is
close to the necessary service time of 9 cycles. When the offered traffic increases
to 1.0, due to buffering, the time delay increases to 40 cycles. Refer to Figure
2.18, when q=1.0, the average number of busy buffers is roughly 4.5. We notice
that there is a trend to the curves. At first, the time delay rises as the offered
traffic increases. At a certain value of offered traffic, the curve begins to level
off. For example, this critical value of q for the 1=0.9 case is 0.2. After q=0.2,
the time delay seems to reach a steady state. Even though the offered traffic is
increased, the time delay does not increase much. The reason for this behavior
is that the tree has been formed when q=0.2 for the r=0.9 case. Which means
that, starting from q=0.2, most of the packets are blocked at the first stage, and
then discarded. Therefore the time delay does not change much by the increase of
offered load. Similar critical points for the cases of r=0.8, 0.7 and 0.6 are q=0.3,
0.5 and 0.7, respectively (compare to the points in Figure 2.20). There is a small
amount of increase in time delay after the critical points for these values of r due
to the further decrease in PA. These critical values are those points when PA is
getting steady from a dramatic decrease due to tree saturation. We can predict
for a large value of r, i.e. if the hot spot is very serious, that the tree is quickly
saturated and reaches a steady state. Hence, the delay is not further increased due
to the increase in offered traffic. With a small r, the tree is saturated slowly, PA
can be further decreased by increasing q after the critical point is reached. The
time delay 1s increased with a small amount after the critical point. The slope for

this increase is larger for r=0.6 than for r=0.7, and so on. This behavior is typical
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of queueing systems with finite buffers.

2.1.5 Model Verification

Our approach to analyzing the unbuffered MIN was to calculate the probability
of a non-empty output port using a recurrence equation. No approximation method
was used to solve for PA. Therefore, it is an exact solution to the model. Since
the model is not used to approximate any real world application, no simulatton
was implemented to verify the error range of the model. If we were to write a
simulation based on the same assumption, both results should be identical due to
the exact solution.

However, the model of the buffered MIN is an approximate model. The ap-
proximation comes from the decomposition of coupled queues. Therefore, it is
necessary to verify how good the model is to the real case. In our simulation, we
keep track of the state change of each queue at every stage. We begin with the
output to MM’s, then change the state of those queues in the last stage according
to input process and output process at this stage. The procedure continues to
the succeeding stages until stage 1. This procedure can be viewed as a time-sliced
calculation of all queues in one cycle. We repeat this procedure for the first 2000
cycles in order to let the MIN reach steady state. Then we count the input packets
and output packets starting with the 2001th cycle for another 3000 cycles, and
calculate PA by dividing the number of output packets by the number of input
packets. The results of simulation, as compared to the model results, are shown
in Figure 2.24 for 9-staged, 8-buffered MIN. The error range for the model results
are within 2.6%. Most points are within 1% for a broad range of values of r and q.
A similar comparison for 2-staged, 8-buffered MIN is shown in Figure 2.25. with

error range less than 2.5%. The simulation results show that the approximation is
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very good. For the small buffer case, the error range is within 2% for both large
and small MIN. From the simulation, we are confident that the proposed model is

a very good approximation to the coupled system.

2.1.6 Conclusion

We proposed models to solve for the unbuffered MIN and the buffered MIN. A
routing model was suggested which makes systematic analysis possible for the per-
formance of a MIN under hot spot traffic. The routing model covers uniform and
non-uniform traffic cases, and provides a broad range of hot spot traffic patterns.
The hot spot traffic pattern created from the routing model is different patterns
studied by other researchers. Asymptotic behavior of the probability of acceptance
for the unbuffered MIN was studied. An explicit expression was given which gov-
erns the asymptotic behavior. The performance of the unbuffered MIN and the
buffered MIN were compared for various offered traffic, stages and patterns. We
also studied the evolution of tree saturation in terms of the average number of
busy buffers in the queues of the tree. The average time delay of a packet was
then found. The model of the buffered MIN was verified through simulation. The

model result shows a very good agreement with the simulation data.

2.2 General Traffic Pattern Model

2.2.1 Introduction

One limitation of the previous model is that only specific output traffic patterns
can be evaluated. This limitation is due to the choice of using a single routing
probability r for all switching elements. Although the model can give us some

insight as to how hot spots affect the system performance, it is not good enough.
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In reality, we are usually given a traffic pattern which does not conform to our
special traffic patterns. Indeed, the traffic pattern can have two or three hot spots.
In this section, we investigate the particular characteristics of the previous model
in order to extend it to handle general traffic patterns.

The way that we evaluated the finite-buffered MIN in section 2.1 was to de-
compose the network of blocking queues into independent queues with equivalent
input rates and blocking probabilities. The final solution was found by repeating
this decomposition process for all switches until the value of PA converged. Since
each queue is evaluated independently, the restriction of using a single routing
probability r for all switches in all stages seems unnecessary. Hence let us now
relax this requirement by allowing the value of r to vary in every stage. In section
2.2.2, we present the method to transform a given traffic pattern into a set of values
of r; ; such that after traffic is fed into the MIN, the routing probabilities in differ-
ent switches and stages creates the exact given traffic pattern. However, we will
not show the resulting model at this point since there are some other limitations
that need to be relaxed. We will incorporate this transformation method with a
superposition method (to be discussed in section 3.1) to model the situation where
processing elements have different traffic patterns. Then an analysis of the NUTS

traflic pattern (to be discussed in section 3.2) is presented as an example.

2.2.2 Transformation Method

The model assumptions are the same as in section 2.1 except that each queue
can have a different routing probability. Since we want to transform a given traffic
pattern into routing probabilities, the components of the pattern must be given in
a numerical form such that they can be computed and transformed into routing

probabilities in the switches. Hence, we specify the given traffic pattern to be the
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set of MM accessing probabilities of a processing element. The sum of these access-
ing probabilities, from MM(0) to MM(N-1), is equal to one. With the assumption
that all PEs have the same traffic pattern, we only need one transformation to
solve for the routing probabilities. If PEs have different traffic pattern, then the

transformation is performed as many times as the number of different patterns(see

3.1.2).

2.2.2.1 The First Attempt

One way to approach the generalization is to let the switching elements in each
stage ¢ have a routing probability r; of choosing the 0-output port. A packet, with
n 0’s in its destination address, will choose n consecutive 0-output ports to go
to MM(0). In terms of routing probabilities, the probability of accessing MM(0),
namely Ag, is :

L
AD = H ry
=1

Similarly, the probability of accessing MM(1) is :

n=-1
Al == (1 —T‘")' H?",‘

=1

Therefore given A¢ and A,, we are able to solve for r, by dividing the two accessing

probabilities :
AO _ Tn
A 1—-r,
Ao
Tp = ———
Ay + Ay

Given the accessing probabilities Ay to Anx_-1, we choose the n largest ones
among these N values (N = 2"), and transform them using the same technique
as shown to solve for routing probabilities in every stage. The limitation of this

method is that we have to choose the n largest among the N values. This implies
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that this method is only an approximation. When the N values are very close, there
will be a significant discrepancy. Hence the question remains as how good is the
approximation. There will be certain conditions under which the approximation
works well. We must adjust the values of r; to further reduce the discrepancy.
From this argument we simply state that this method extends the specific traffic
pattern somewhat further, but not to a very general extent.

Although this attempt did not solve the problem properly, it did inspire us
to the next approach which uses a similar transformation method but with more

generality.

2.2.2.2 The General Traffic Pattern (GTP) Transformation

One problem of the first attempt is that we neglected the other N —n accessing
probabilities, i.e. not all of the given constraints are satisfied. One characteristic
of the routing is that before the first stage, all packets look the same. After the
first stage routing, they break into two different groups of packets. One has the
first address bit 0 and the other has the first address bit 1. The group with the
first address bit 0 is routed to the upper output ports of switching elements in the
first stage. According to Banyan interconnection, they are fed to the first half of
the switching elements in the second stage. The group with the first address bit
1 is fed to the second half of the switching elements in the second stage. After
being routed in the second stage, packets are divided into four groups, and so on.
Hence, we put two routing probabilities in second stage, four routing probabilities
in the third stage, and so on. In such a way, we identify N accessing probabilities
(actually N-1 values since the sum of N accessing probabilities is 1) to solve for
N-1 unknowns.

Let us take a 3 stage Banyan network as an example, as shown in Figure
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Figure 2.24: A General memory referencing pattern shown in terms of accessing

probabilities A;

2.26. Observe the path taken by a packet, generated by processing element 0. If
there exists a steady state output referencing pattern, given in terms of accessing
probabilities A;, then a packet chooses memory module 0 with probability 4, =
T11° 721 - Ta1. Similarly, a packet chooses memory module 1 with probability A, =
r11 721 (1 — r3;). Using these two equations, we can find r3, in terms of A, and
A;.

Ao
rq = ———
2 Ao+ Ay

The other routing probabilities can be found in a similar way :

Ay
A+ As

v
As
et A
ro = Ap + Ay
Ao+ AL+ Ay + A3

T3z =
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_ Ag+ As
—A4+A5+A-6+A7

_ Ao+ AL+ Ay + A,

T Ag+ A+ A+ A3+ Ad+ As + As + Ay

Thus we solve the simultaneous equations for Tij, we implement the GTP

T2

11

transformation method in the following recursive PASCAL program :

procedure traffic-trace(s, posi, count : integer; var psum : real);
var
fl, portt : integer;
denom, nom : real;
begin
count:=count+1;
si=s div 2;
if posi > (penum div 2) then fl:=1 else f1:=0;
posi:=port{posi);
if fl=1 then portt:=posi-1 else portt:=posi;
if count < stagen then
begin
traffic-trace(s, portt, count, psum);
denom := psum;
traffic-trace(s, portt+1, count, psum);
nom:=denom-+psum;
end
else
begin
denom:=pac[portt];

nom :=denom+pac[portt+1];
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end;
if denom <> 0 then r[count,posi]:=denom/nom:;
psum:=nom;

end;

Thus we fully utilize all the given information to solve for the routing probabil-
ities. By applying this transformation method on top of the framework of section
2.1, we can evaluate any given output pattern for the probability of acceptance
and the average system time. However, we are still restricted to the case where all

PE’s use the same MM referencing pattern. This we relax in the next chapter.
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CHAPTER 3

Modeling of Processing Elements with Different Traffic Patterns

The analytical model in Chapter 2 assumes that all processing elements have
the same traffic pattern. However, it might not always be true in real world
applications. It is more likely that each processing element has its own traffic
pattern and offered load. In section 2.2, we presented a transformation method to
model a general output traffic pattern where all processing elements have the same
general output traffic pattern. In this Chapter, we generalize the traffic conditions
such that each processing element has its own output traffic pattern and offered
load. The basic model is presented in section 3.1 where a superposition method
is proposed to model different traffic patterns for processing elements with the
same offered load. Section 3.2 applies both methods (transformation from section
2.2 and superposition from section 3.1) to evaluate system performance of the
Not Uniform Traffic Spot traffic pattern [Lang 88]. In section 3.3, we propose a
- method, which incorporates a weighting factor into the transformation and the
superposition methods, to model the case where each processing element has its

own offered load. This represents the most general case in traffic condition.

3.1 Basic Model

3.1.1 Problem Characteristics

Using the transformation method in section 2.2 to transform each traffic pattern

individually for all N PE’s, we get N sets of routing probabilities. Depending on
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where it comes from, a packet chooses the output port according to the specific
routing probability. Therefore, the modelling approach for the Different Traffic
Pattern Model is to determine the appropriate overall routing probability for each
switching point. Since there are many traffic flows, each with its rpattern, we
keep track of all possible paths taken by each traffic flow. Take a 2-stage, 4x4
interconnection network for example, as shown in Figure 3.1(a). Let ry, [¢,7] be the
routing probability of the jth switching point at stage i for packets generated from
the processing element k. Using the processing element 1’s traffic pattern, the
transformation method that we proposed in section 2.5 generates ry [¢,7]’s. These
r1[t, j] are assigned to the switching points along the paths that packets from the
processing element 1 take (as shown in Figure 3.1(b)). The traffic pattern of the
processing element 2 is then transformed into a set of routing probabilities, r, 2, 1]s.
They are assigned to the proper switching points accordingly (as shown in Figure
3.1(c)). The routing probability sets of the processing elements 3 and 4 are solved
for and are assigned to the routing matrix in Figure 3.1 (d) and (e). Next we

calculate the routing probabilities of each switching point, r(i, 7], as follows :

r[L,1] = m(1,1] r[2,]] = nldltralzl]
t[1,2] = (1, 2] r[2,2] = Tal22lfral22]
r{1,3] = 21, 3] r[2,3] ="n1l2ra(23]
r[1,4] = rq[1,4] r[2,d] = 22 2.4]-;1-,,[2,4]

The routing probability matrix in Figure 3.1(f) is the overall routing probability
matrix for the switching elements.
Unlike the result in section 2.2 where there is only one routing probability for

each switching element, we now have two routing probabilities for each switching
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if f1=1 then portt:=posi-1 else portt:=posi;
if count < stagen then
begin
traffic-trace(s, portt, count, psum);
denom := psum;
traffic-trace(s, portt+1, count, psum);
nom:=denom-+psurm;
end
else
begin
denom:=pac[portt];
nom :=denom-+pac[portt+1J;
end;
if denom <> 0 then
begin
c[count,posi]:=c[count,posi]+1;
rlcount, posi/:=rfcount, posi]+denom /nom;

end ;

if (denom=0) and (nom <> () then c[count,posi]:= clcount,posi]+1;

psum:=nom;

end;

This procedure is basically the same as the one we presented in section 2.5

except that we put in some extra lines (shown in italic font) to account for the

accumulation of the routing probabilities. Each switching pint has two variables :
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cfij] is the counter for the jth switching points in stage i and r[i,j] is the accumu-
lated routing probability whose mean will be the probability for a packet choosing
the 0-ouput queue in steady state. c[i,j] is increased by one if there is traffic from
a processing element passing through this switching point. However, r(i,j] is accu-
mulated only when the 0-output queue is on the path taken by the packets from
a processing element whose traffic pattern is currently being transformed. The
variable denom is the amount of traffic from the previous stage passing through
a 0-output queue, and the variable nom is the traffic coming from the previous
stage (not necessarily passing through this queue). If denom is not 0, then there is
traffic from the previous stage passing through this 0-output queue. We increment
the counter by 1 and accumulate the routing probability. If denom is 0 and nom
is not 0, then all traffic coming from the previous stage goes to the 1-output queue
in the switching element, we only increment the counter without accumulating
any routing probability. If both variables are 0, then there is no traffic coming
from the previous stage, and hence there is no need to increment the counter or to
accumulate the routing probability.

For every PE we call the procedure traffic-trace to trace all possible paths and
accumulate the routing probability along the path. After each PE’s traffic pattern
is transformed, we divide the accumulated routing probability by the counter for )
each switching point individually. The control flow is represented in the following

program :

for i:=1 to penum do
begin
pattern-bitr (i-1);

s:=i-1;
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psurn:=0;
posi:=i;
traffic-trace (s,posi,0,psum);
end;
for j:=1 to penum do
begin
for i:=1 to stagen do
begin
if tc[i,j]=0 then r[i,j]:=0 else rfi,jl:=tr[i,j]/tcfi,j];
end;

end;

The procedure pattern-bitr contains the MM accessing probabilities of each pro-
cessing element. This given traffic pattern of a processing element is transformed
(by using procedure traffic-trace) into a routing probabilities set. The routing
probabilities are accumulated at switching points which the traffic from the PE
passes. When all the processing elements’ traffic patterns are transformed into
routing probabilities and these values are accumulated at switching points, we
take the mean of these routing probabilities to determine the routing probabilities
matrix which approximates the steady state behavior of the given traffic patterns.
Then this routing probability matrix is used in the decomposition and iteration
model that we proposed in Chapter 2 to evaluate any general traffic condition. We

shall use this method in the next section to solve for the NUTS traffic patterns.
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3.2 Not Uniform Traffic Spots model

3.2.1 Introduction

The model in section 2.1 deals mainly with a hot spot traffic pattern in which
a favorite MM creates a saturated tree. However, if we let each PE have a different
traflic pattern, it is possible to have a system whose pattern shown at the MM
side is uniform, but with some congested spots inside the interconnection network.
This behavior was first discussed in [Lang 88], and was named the Not Uniform
Traffic Spots (NUTS). The problem is completely different from the traditional hot
spot problem in that there is no hot MM which attracts traffic. It is the pattern
of each PE that creates conflicting paths inside the network. Among the possible
patterns, a few were discussed as examples in [Lang 88] : bit reversal, Even-First,
Odd-Second (EFOS). In a bit reversal pattern, each processing element send all
its traffic to a memory module whose address is the bit-reversed address of the
PE. In an EFOS pattern, all even-addressed PE’s send packets uniformly to the
first half of the MM’s and all odd-addressed PE’s send their packets uniformly to
the second half of the MM’s. The simulator result of these patterns are shown in
the paper for 6 stage Omega-MIN with buffer size 4. However, due to the limited
speed and capacity, the simulator is not suitable for analyzing a large network.

In section 3.2.2, we present an analytical model using the transformation method
and superposition method to evaluate the NUTS patterns. The analytical results
of EFOS, bit-reversal and uniform traffic are compared to Lang’s simulator data.
Model verification is discussed in section 3.2.3. The simulation indicates that the
analytical model is too optimistic. The cause of the discrepancy is discussed and
verified through simulation. In Chapter 4, an approximation method is used to

resolve the discrepancy.
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3.2.2 Modelling Approach

The NUTS traffic pattern is basically a general traffic pattern such that each

PE has a different traffic pattern. The control flow of the model js shown as follows

PROGRAM General Traffic Pattern;
begin
input stage number, buffer size;
for all PEs do
call procedure pattern-bitr; /*assign traffic patterns*/
call procedure traffic-trace; /*transformation method* /
endfor;
for all i,j do /*superposition method*/
rfi,j):=rfi,j} div ¢fi,j];
endfor;
call procedure buffer-min /*solve for PA, time delay*/

end;

The procedure pattern-bitr and traffic-trace are explained in previous sections.
The procedure buffer-min is the model in section 2.1.4 with routing probability r
substituted by r[i, j] to handle the general traffic conditions. The program begins
with initializing system parameters. Then we apply the given traffic patterns of all
PEs to create the routing probabilities for the model. Using the parameters and
the routing probabilities, we decompose the network of blocking queues and solve

for their steady state probabilities. This process is iterated until PA converges.
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Figure 3.2: Markov chain of the queueing process where the state variable repre-

sents the number of packets in the queue

In order to compare the result of the analytical model with the simulator data
in [Lang 88], we have to make sure the assumptions in both cases are the same.
There are two different assumptions :

(1) input process In section 2.1.4, a concurrent handling of input/output was
assumed, in which two input packets and an output packet can move in and out of
the queue at the same time. However, the simulator assumes that if two incoming
packets find only one available buffer space, only one is accepted regardless of what
the output process might be (blocked or not). If the buffer is full, no packets will
be accepted at any time. These rules, together with the blocking probability and
the input probabilities (see section 2.1.4.1), determine the Markov chain of a queue
decomposed from the network. The Markov chain is shown in Figure 3.2 where B
is the blocking probability and X[i] is the probability that i packets are entering
the queue.

(2) output choice The model in section 2.1.4 assumes that in every cycle,
the packet at the head of the queue chooses output ports according to the routing
probability #; ; independent of the choice in the previous cycle. A new decision is
made in every cycle. However, it is not the case in a real system. The simulator

model assumes that, if a packet is blocked in the previous cycle, it will choose
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the same output in the following cycles until it gets through. This implies that a
blocked packet has a "memory” in choosing the output. In the following model,
we temporarily make the renewal assumption. This renewal assumption makes
the model result optimistic, and thus causes a discrepancy when compared to the

simulation. Further analysis and modeling of this problem is to be discussed in

Chapter 4.

3.2.2.1 Bit-Reversal Model

When every source sends its packets to the destination whose address is its
own address bit-reversed, it creates a traffic pattern that is uniform at the memory
modules, but congested inside the network. A source with address 0011010, for
instance, sends all its packets to the destination with address 0101100. From
the MM sides, it looks like a uniform pattern since no hot MM exists. Every
MM receives the same amount of trafic. But the routing paths resulting from
this particular pattern are overlapped. Several hot traffic spots are formed inside
the switches. The throughput is thus significantly reduced. Given the source
address s, the following procedure pattern-bitr creates the bit reversal pattern
. Tt first transforms a PE’s address into binary form bit by bit. The destination
address is calculated using these bits, and the value is assigned to the variable
temp. Then the accessing probability pac[temp + 1] is set to one, with all other
accessing probabilities set to zero. This procedure is used in the control flow shown
in section 3.1.2 to set the accessing probabilities for the specific pattern that we

want to model.

procedure pattern-bitr(s : integer); /* Bit-Reversal Pattern */

var
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1, bit, temp : integer;
begin

for i:= 1 to penum do
pac[i):=0;

temp:=0;

for i:=1 to stagen do

begin
bit:=s-(s div 2) *2;
s:=s div 2;
temp:=temp+expni(2,stagen-i)*bit;

end;

pac[temp+1]:=1;

end;

3.2.2.2 EFOS Model

The EFOS traffic pattern is created by routing packets from the even-addressed
source to the first half of the destinations uniformly and packets from the odd-
addressed source to the second half of the destinations uniformly. For example, in
a 64x64 MIN, the processing elements with the addresses 2, 4, ... 64 send packets to
the memory modules 1, 2, ... 32 with an accessing probability o. The processing
elements with the addresses 1, 3, ..., 63 send packets to the the memory modules
33, 34 ..., 64 with an accessing probability . The following procedure creates the
EFOS traffic pattern. By placing this procedure in the General Traffic Pattern

program, we are able to evaluate system performance of the EFOQS traffic pattern.
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procedure pattern-bitr(s integer);
var
1, temp : integer;
begin
fori:= 1 to penum do
pacli]:=0;
temp:=penum div 2;
if (s mod 2)=0 then
begin
fori:=1 to temp do
pac(i]:=1/temp;
end
else
begin
for i:=temp+1 to penum do
pac[i]:=1/temp;
end;

end;

3.2.3 Model Results and Verifications

Since the proposed analytical model employs several approximate methods, it
is important to study how these approximations affect the model accuracy. There

are two approximations in the modelling approach :
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o decomposing a queue from a network of queues with blocking to be an inde-

pendent queue.
® using a general routing matrix to model the steady state flows.
e renewal routing probabilities.

The first approximation is obvious since dependent queues are decomposed into
equivalent independent queues and solved individually. Some accuracy is lost be-
cause our model neglects the dependency and coupling among the queues. The
second approximation method simulates the steady state behavior of a traffic pat-
tern with a routing probability set. Hence packets are routed according to this
routing probability set in the model, instead of their address tags in the real world.
The third approximation allows packets to choose their output ports independently
at every cycle according to the routing probabilities This renewal routing choice
allows a blocked packet to choose a different output port in the next cycle. This re-
newal assumption renders the analytical model optimistic since it "allows” blocked
packets to be routed around a congested queue. In the real world, blocked packets
repeatedly access the same destination, and most likely, these blocked packets will
be blocked again (especially when the traffic is not uniform).

The results of the analytical model for a 64 x 64 Omega MIN with buffer
size 4 are plotted in Figure 3.3 along with the simulator data from Lang 88).
All curves are shown with the input rate starting from 0.1 to 1.0 except for the
bit-reversal case where extra 9 points between 0.1 and 0.2 are plotted. Both the
analytical result and the simulator result for the bit-reversal pattern are nearly
the same. The bit-reversal pattern severely reduces system throughput to 0.125.
As predicted , the analytical model is very optimistic due to the independent

routing choices it allows. When severe blocking is presented due to contention,
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the blocked packets will choose the same output queues repeatedly in the real
world while the renewal choice in the analytical model allows the blocked packets
to choose other queues. This inherited ”memory” structure in blocking switches
severely degrades the performance since it is likely to have persistent contention
for a queue once a contention occurs. The discrepancy between the analytical
result and the simulation data is caused mainly by this memory characteristic
of the blocking switch. In the simulator data, however, a packet blocked in a
previous cycle will be sent to the same output port. And thus the time delay will
be higher, and the throughput will be lower than the analytical model with the
renewal assumption.

To verify the conjecture in explaining the discrepancy, we first verify the cor-
rectness of the analytical model. We then change the assumption regarding the
output choice in the simulation (i.e. to account for the "memory” behavior of a
packet). If the revised simulation agrees with the simulator data, then we can be
sure that the discrepancy indeed comes from the different assumption about the
output choices. To verify the general traffic pattern model, the simulation program
in section 2.1.5 is not sufficient since only one value of the routing probability was
used. With the simulation program revised according to the assumptions in section
3.2.2, we will be able to verify the analytical model by adding a 2-dimensional ar-
ray of the routing probabilities r[z, j]. For detailed algorithm of how the simulation
works, refer to section 2.1.5.

Figure 3.4 shows the throughput comparison of the analytical model and the
simulation program based on the same assumption. The simulation results are
shown to be in good agreement with the analytical model. The correctness of the
model has been confirmed. Next, we change the output choice assumption in the

newly revised simulation to account for the fact that packets do memorize their
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previous destination addresses. Again, good agreement was obtained in comparing
the simulation and the simulator result. This proves the conjecture that we made.
As a result, we claim that the analytical result in section 3.2.2 is optimistic in
heavy load. We would try to use another approach in Chapter 4 fo model the

switch with ”"memory”.

3.3 Different Input Rate Model

This is the most general model of traffic patterns in that every PE has its own
input rate. In real world, some PEs may be very active while some are not active at
all. Hence, different input rates and different traffic patterns of the PE’s may give
a completely random form of generalization. The modelling approach considers
the weighting factor when we compute the routing probabilities. The following
procedure traffic-trace is taken directly from section 3.1.2 with the addition of

the weighting factor rate(i), the new variable introduced representing the input

rate of PE(i) :

procedure traffic-trace(s, posi, count : integer; var psum : real);
var

fl, portt : integer;

denom, nom : real;
begin

count:=count-+1;

s:=s div 2;

if posi > (penum div 2) then fl:=1 else f1:=0;

posi:=port(posi);

if f1=1 then portt:=posi-1 else portt:=posi;
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if count < stagen then
begin
traffic-trace(s, portt, count, psum);
denom := psum;
traffic-trace(s, portt+1, count, psum);
nom:=denom-+psum;
end
else
begin
denom:=pac[portt];
nom :=denom-+pac[portt+1};
end;
if denom <> 0 then
begin |
c[count, posif:=cfcount,posi/+rate(i);
rfcount, posi]:=rfcount,posi]+(denom/nom)*rate(i);
end ;
if (denom=(0)) and (nom <> 0)) then c/count,posi]:= cfcount,posi/+rate(i);
psum:=nom;

end;

The weighting factor rate(z) is shown in bold face. The reason we choose rate(t) as
the weighting factor is that the amount of the traffic affects the routing probability.
A traffic from a heavy loaded PE is an influential factor in the routing probability.

A traffic from a lightly loaded PE is less influential than the former. Hence, it
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element, each for one switching point. The reason is that when all PEs have the
same pattern, the routing probabilities for both switching points in the switching
element are the same. Therefore there is no need to distinguish between them.
However, when the processing elements have different traffic patterns, the situation
above is no longer true, and we have to distinguish between them in order to keep

track of the correct traffic lows.

3.1.2 Superposition Method

According to the discussion in the previous section, we take a traffic pattern of
a PE and route a packet through all possible paths. Then the routing probabilities
are determined using the transformation method. The routing probabilities are
accumulated at switching points along the paths that packets take. By repeating
this transformation and accumulation process for all PEs (for their traffic patterns,
respectively), we then take the mean of the routing probabilities to find the proper
routing probabilities set to approximate the given traffic patterns. We present the

superposition method in the following program :

procedure traffic-trace(s, posi, count : integer; var psum : real);
var

f1, portt : integer;

denom, nom : real;
begin

count:=count+1;

s:=s div 2;

if posi > (penum div 2) then fl:=1 else f1:=0;

posi:=port(posi);
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becomes an appropriate choice for the weighting factor. Whenever we compute
a routing probability from a particular source, before accumulating the value, we
multiply the value by the weighting factor to reflect the appropriate share of the
load it brings to this switch. After we repeat this procedure for all PEs, we get
the appropriate routing probabilities by dividing the accumulated values by the
counter. Hence, by placing this procedure in the general traffic pattern model in
3.1, we can solve for the different input rate model.

The method for modeling different input rates will simply be listed here without
any example. The reason is that this method is straight forward and there is no

need to model any real system to prove its correctness.
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CHAPTER 4

Persistent Blocking Model

4.1 Modelling Approach

Since the basic model is a renewal process, we continue to model the memory
behavior as a renewal process. However, the behavior of a blocked packet, after
its first blocking, is such that the routing choice no longer obeys the renewal
probability r; ;. Biasing the routing probabilities to account for this does not help
since 1t changes the memory referencing pattern. The routing probabilities were
created to reflect the steady state memory referencing pattern; therefore, it is
necessary to keep the values unchanged.

Although an exact model of this persistent blocking behavior would require that
we keep track of how many times a packet has been blocked at a given node, we
choose an approximation which captures the "first order” effect of this persistent
blocking using the following two state model : when the queue is not empty, we
model the server as being either in the "new” state or the "blocked” state. When a
packet first comes into the server, the server is in the new state. The server enters
the blocked state when the packet is blocked, and it remains in the blocked state
until the blocked packet finally goes through to the next stage. This cycle repeats
until the server empties the queue and becomes idle. Observe that the server is
inactive when it is in blocked state. During the new state, the server obeys the
renewal behavior choosing an output port according to the routing probability

ri;. Hence, we can approximate a blocking switch with "memory” characteristics
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Figure 4.1: The states of a server during its busy period.

by a finite buffer queue with a reduced service rate. The reduced portion is the
probability that the server is in the blocked state.

The diagram in Figure 4.1 shows how the server alternates between the new
state and the blocked state during its busy period. Let b be the probability that a
new packet is blocked when it tries to go to the next stage. Let ¢ be the probability
that a blocked packet is blocked again when it tries to go to the same destination.
Then for our approximation, the steady state probability that the server is in the

blocked state, Pyjockeq, can be solved in terms of b and c¢ :

_b
1—c+5b

Potocked =
where b is the blocking probability (for which we used the notation B; ; in section
2.1.3). Once blocked, it is more likely that a blocked packet gets blocked again;
therefore, the value of ¢ is selected to be larger than the value of b. In fact, when a
packet is in the blocked state, the length of the destination queue in the next cycle °
will be either K (full buffer) or K-1 (only one space available). If we disregard how
many times it has been blocked previously, there will be only two cases : either
the blocked packet faces a full queue or a queue with one space left. In the first
case, with probability ﬁm, the packet will be blocked again. In the second
case, with probability Flﬁ%_r}(]—_ﬂ’ the packet will face possible contention from the

other queue in the same stage which feeds this destination queue. Incorporating

these two probabilities in equation (2.7), ¢ can be found in a similar way :
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c=r-Cina+(1—r) Ciyr o

where Ciiy ;1 is the conditional probability that the jl-th queue in stage i+1 is
blocking a packet in stage i given that it blocked a packet in a previous cycle :

Fiy1.(K)
Pip1i(K) + Py ju(K — 1)

Piprjn(K - 1)
P p(K)Y + Py (K - 1)

Pytockea 15 the probability that the server is in the blocked state. During this

Ci+1,j1 =

+5-(1=P(0))-

period, the server is inactive. Therefore, we may use this probability to approxi-
mate the blocking switch with "memory” characteristic. At the beginning of each
cycle, the server tosses a coin which comes up heads with probability Pyiockea, 1in
which case the server will be blocked (inactive). If there is a packet at the server, it
stays idle until the next cycle when the coin will be tossed again. With probability
1 — Piiocked, the server will be active. The queue length then determines whether
the server will send a packet or not. If there are packets in the queue, the server
takes the first packet and routes it according to the routing probability.
Incorporating the probability Pyjockeq into our basic iteration model, the ap-
proach is then similar to the one that was described in section 2.1.4 except that
the equivalent input rates and blocking probability are different from equations
(2.6) and (2.7). Note that the effective input rate to a queue will be changed
when Pijookeq is included in the model. In the original model, when a queue is
not empty (probability 1 — P, ;(0)), it tries to transmit a packet to the destination
in stage i+1. When Py,ckeq is used to approximate the persistent blocking, the
probability that a queue will try to transmit a packet to the next stage is now
(1 = Putockea) - (1 — P, j(0)). When the server is "active” (probability 1 — Pyockeq)
and is not empty (probability 1 — P, ;(0)), it will transmit a packet to the next

stage.
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Let us define Pf{ 7(0) to be the effective probability that @;; will not send a
packet (either the server is empty or the server is blocked). Let P ;piocked to be
the probability that @; ; is in the blocked state. Then the effective input rates for

a queue, ¢ ; in this persistent blocking model are similar to the ones in section

2.14.1:

Re;fif'jl (0) = 1 — (1 = Py j1ptocked) - (1 — Pi_y j1 (0))

R-e_f{f,jg(o) =1 = (1 = Pi_y japtocked) - (1 — Pi_y j2(0))

X[1] = rlPH 5 (0)(1 = P 1(0)) + P 5 (0)(1 ~ PP, (0))]
+2r(1 = r)(1 = P 1(0)(1 = P 5(0))
X2 = [r(1 = P00 [r(1 = PR, (0))]
X[0]=1-X[1] - X[2] (4.1)
And the equivalent blocking probability B; ; can be found as follows :
Bij=r-Ciiji+(1—-r) Citrj2

where Ciyr 1 = P jp(K) + = - (1~ R'f{f(o)) “Pip1 (K —1) (4.2)

SN

Using these equivalent input rates and blocking probability in the model in
section 2.1.4, we can evaluate a persistent blocking MIN with a special hot spot
traffic pattern. Incorporating the transformation method and the superposition

method (i.e. replace r with r;;’s), we can evaluate any general traffic pattern with

a persistent blocking behavior.
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4.2 Results

We ran our model incorporating this new technique to handle the memory
behavior for the same 6-stage Omega network with buffer size 4 under both the
uniform traffic and the EFOS traffic pattern. The result is shown in comparison
with the former model in Figure 4.2. The improved model greatly reduces the
discrepancy between the simulation and analytical model results.

For a detailed study, we compare the improved analytical results with simula-
tion in Figures 4.3-4.10. The confidence range of these simulations is 95%. The first
case shown in Figure 4.3 and 4.4, is for a 4-buffered, 6 stage Omega network with
a uniform traffic pattern. In Figure 4.3, the throughput is compared with various
offered loads and in Figure 4.4, the average time delay is compared. The offered
load is varied from 0.1 pkt/cycle to 1.0 pkt/cycle for each processing element. For
offered loads within the range of small loss probability (q < 0.7 pkt/cycle), the
simulations verify the accuracy of the analytical results. Beyond this load (when
packets begin to be discarded), the analytical results are slightly optimistic.

Figure 4.5 and 4.6 show the case of a 4-buffered, 6 stage Omega network with
an EFOS traffic pattern. Throughput and average time delay are plotted against
offered load, respectively. The non-uniformity of this pattern severely degrades the
performance. The throughput graph shows very good correspondence between an-
alytical results and simulations. For offered load within the low-loss range (g < 0.4
pkt/cycle), delay performance of the analytical result is very accurate. However,
delay performance of analytical results are still slightly optimistic in heavy load
cases.

The third case is included to determine whether the analytical model performs

well with a larger buffer. The result for an 8-buffered, 6 stage Omega network
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Figure 4.2: Comparison of results for a 6-stage, 4-buffered Banyan network with

and without the "memory” behavior improvement

with a uniform traffic pattern is shown in Figure 4.7 and 4.8. Except in heavy
load (q=0.9 and 1.0), analytical results measure well when compared to simula-
tions. The throughput and delay performance are optimistic when the total input
enters the range of heavy load. This simulation indicates that the analytical model
performs well for networks with other buffer sizes.

We show the analytical results of a large sized network in Figure 4.9 and 4.10,
namely a 4-buffered, 10 stage (1024x1024) Omega network with a uniform traffic
pattern. Again, the analytical model is slightly optimistic when offered load ex-
ceeds the maximal attainable output. This indicates that the model is suitable for

large sized networks as well.
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4.3 Model Limitation

Even though the approximation methods that we proposed for a General Traffic
Pattern model provides a very good analysis of systems performance with the
uniform and EFOS general traffic patterns, the methods do not perform well when
the traffic pattern is a severe hot spot traffic pattern. This indicates that the model
works well only for a traffic pattern with a moderate persistent blocking. It still
does not capture the true effect of persistent blocking. We leave this as a future

research topic.
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CHAPTER 5

Re-submission Model

In the previous model, we made the assumption that discarded packets are not
re-submitted. Although this assumption did simplify our attempt to evaluate a
complicated system, but it is not always realistic. In the ISDN application, for ex-
ample, the voice packets, if discarded due to contention, are not re-submitted. But
in many multiprocessor applications, a discarded packet will re-enter the MIN try-
ing to reach its destination. In the real world, packets discarded before they enter
the network will be queued. This queueing period introduces an extra delay over
that experienced in the analytical model without re-submission. In addition to the
extra delay, a model without re-submission avoids the stability problem. Therefore
it is important to understand the delay performance and the stability problem. An
analytical model which re-submits the discarded packets is needed. The modelling
approach is described in section 5.1. The analytical model is verified in section
5.2. Several extensions based on the analytical model are discussed in section 5.3.
A model which adjusts its input rate according to the system status is discussed .
in section 5.3.1. We show that proper adjustment of the input rate can reduce
delay while maintaining the throughput at the same level. An extended model
which determines the operating point under a given loss probability is discussed

in section 5.3.2.
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5.1 Modelling Approach

A finite number of buffers are placed at each processing element for the pur-
posed re-submission. Following Kurisaki & Lang’s terminology [Lang 88], let us
define this queue as a c-link (communication link). When a new packet is gen-
erated, it is placed at the end of the c-link. The c-link server tries to send the
head-of-line packet to the first stage. If the queue in the first stage 1s full, then
the packet is blocked. It will try to send it to the same queue in the next cycle.
If the queue in the first stage has one buffer space available, and there is another
processing element trying for the same queue, a contention occurs. If the packet
loses the contention, it is blocked. The processing element generates a new packet
in a cycle with probability ¢. If the processing element generates a new packet
and takes up the last buffer space of the c-link, then the c-link has reached its full
capacity. The c-link will send a signal to the processing element to notify it that
the buffer is full. On receiving the full-buffer signal, the processing element stops
generating new packets, and waits for further signals from the ¢-link to resume the
new packet generation. When the c-link finally outputs a packet, a buffer space
becomes available. The c-link sends a resume signal to the processing element.
The processing element then resumes the new packet generation in the next cycle
with probability g.

We extend the General Traffic Pattern Model that we proposed in Chapter
4 such that a c-link queue is accounted for. Instead of n queues, there are n+1
queues in the tandem structure. The processing element generates a packet with
probability ¢. Notice that there is no need to model the stopping-resuming process
of the processing element. When the c-link is full, it will not take any more packets.

Those packets generated by the processing element during the time when the c-
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link is full are simply ignored and thrown away. When the c-link becomnes available
again, it will accept new packets that are generated by the processing element at a
rate ¢. Therefore, the situation is the same whether we allow the processing element
to stop or not. The modelling approach is similar to the General Traffic Pattern
Model. The process of evaluating the Markov chain of the c-link is incorporated
in each iteration. If we let the c-link size to be the same as the finite buffer size in
each switching element, then the Markov chain of the c-link is identical to the one
that we show in Figure 3.2.

The model begins with the evaluation of the c-link’s Markov chain. The offered
load ¢ is taken as input process. The blocking probability is taken from the first
stage (in the first iteration, this blocking probability is 0 since the queues in the
network are yet to be evaluated).. The Markov chain of the c-link is evaluated.
The steady state probability of the c-link is taken as the input process to the queue
in the first stage. The Markov chain of the queue in the first stage is evaluated.
We evaluate the Markov chain of all queues in each stage. Then we iterate the

evaluation process until the throughput converges.

5.2 Results

We let the c-link size be equal to the finite buffer size 4 in the network. A 5-
stage Omega network with EFOS traffic pattern is modelled. The result is shown
in Figure 5.1 and Figure 5.2 in comparison with the simulation. Figure 5.1 is
the mean delay comparison to a simulation with a 95 % confidence range. The
analytical model is slightly optimistic with a heavy system load. The throughput
comparison indicates that the model is very good at predicting the performance.

We ran the model for a 6-stage Omega under a uniform traffic pattern, the

results are compared to the simulation in Figures 5.3 and 5.4. Both the through-
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put and the mean delay are slightly optimistic with a heavy system load. The
sirnulation indicates that the analytical model is very accurate in the stable range
of operations.

Both the mean delay curves in Figures 5.1 and 5.3 rise rapidly and level off
gradually. The quick rise is the point when the offered load is approaching the
maximal capacity. Therefore the queues in the network and the c-link are quickly
filled up. When the new packets begin to be discarded due to lack of room in the
c-link, the delay curve starts to level off. If the c-link is an infinite queue, the curve
explodes to infinity. We will show the c-link length and the c-link delay in a heavy

traffic case in the next section.

5.3 Extended Model

We would like to focus on several questions regarding the operating points, the

loss probability and the stability problem.

5.3.1 Rate Adjusted Model

In general, when the mean delay rises rapidly, the c-link is most likely saturated.
At this point, it is meaningless to have a large offered load. Even though the
processing element is signaled to stop generating new packets when the c-link is
full, as soon as the c-link is able to accept packets, the processing element resumes
the generation of the packets again at a rate greater than the system capacity .
The c-link quickly saturates again, and thus creating a long delay.

In reality, when the offered load exceeds the system capacity, a rate adjustment
mechanism must be employed to reduce the offered load. In this section, we would
change the offered load when it exceeds the system capacity. The following is

an iteration mechanism that reduces the offered load repeatedly until the loss

84



B mean c-link length
g mean c-link length -- rate adjusted model

mean clink length

0.1 9.2 0.3 9.4 0.5 2.6 0.7 0.8 0.9 1
offered load

Figure 5.5: Mean c-link length comparison for rate adjusted model

30 9
Il mean delay
B mean c-link delay
l mean delay -- rate adjusted model
[ mean c-link delay -- rate adjusted model
20 -

Mean Delay

OO
OO
OO
VNN
e

NI RO
HENHIOIHI
TR IHITTHTHINHIN]

tHIITEIN

o TUEIHNHIm

0.1 0.2 0.3 0.4 Q.3
Offered Load

o)
[
~J
<
fes]
[=)
O

Figure 5.6: Mean delay comparison for rate adjusted model

85



probability is below a certain value.

PA :=1
REPEAT
q:=q - PA
procedure General Traffic Pattern;
begin
input stage number, buffer size;
for all PEs do
call procedure pattern-bitr; /*assign traffic patterns*/
call procedure traffic-trace; /*transformation method*/
endfor;
for all i,j do /*superposition method*/
rfij]:=rli,j] div c[ij;
endfor;
call procedure buffer-min /*solve for PA, time delay*/
end;

UNTIL 1 - PA <001

The assignment, q:=q - PA, adjusts the offered load gradually. For example,
if the model begins with an offered load 0.9 in an EFOS traffic pattern, then the
model first solves for the PA (Probability of Acceptance) as 0.4. Obviously, the
loss probability (1-PA) is too high. Therefore, we adjust the offéred load to be
0.4 x 0.9 = 0.36, which is the throughput value. We iterate the General Traffic
Pattern Model again, and keep adjusting the value of the offered load until the

loss probability is below a certain value.
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A 5-stage Omega network with a c-link size of 4 and a finite buffer size of 4,
with an EFOS traffic pattern is analyzed and the result is shown in Figure 5.5. The
model terminates when the loss probability is below 0.01. The mean c-link lengths
of the initial offered load and the adjusted load are compared. For the light-load
cases (0.1 - 0.3), the loss probability is less than 0.01 when the first iteration of the
General Traffic Pattern Model terminates, hence the rate is not adjusted. When
the system load exceeds the system capacity (g > 0.4), the offered load is adjusted.
Since the EFOS traffic pattern is a severely congested traffic pattern, the model
quickly converges. All cases (1 > ¢ > 0.4) terminate in the second iteration when
the loss probability is less than 0.01. The mean c-link length is shown in Figure 5.6,
which compares the values of the first iteration (original values) and the second
iteration (terminal values). If the rate is not adjusted, the mean c-link length is
almost full in every case. The length increases sharply for q=0.4 and 0.5. Then,
it slowly levels off. The mean delay is thus high. If we adjust the offered load, the
mean c-link length becomes very small. For an offered load greater than 0.3, the
mean c-link length is less than 1. Therefore by qdjusting the offered load, we are
able to reduce the mean delay significantly while maintaining a high throughput.

The mean delay and the c-link delay of the original model and the rate ad-
justment model are compared in Figure 5.6. Note that the difference between the
mean delay and the c-link delay is the delay experienced in the network. The delay
experienced in the network for the original model and for the rate adjusted model
are nearly the same. This indicates that the delay we manage to reduce is the

c-link delay. The mean delay is cut from 20 to 12 for an offered load of 1.0.

5.3.2 Maximal Input Rate for a Given Loss Probability
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There is a maximal system capacity for a given traffic pattern, a c-link size
and a finite buffer size. Depending on the requirement of loss probability and the
mean delay, an operating point can be determined such that a desirable system
performance is achieved. We ran the rate adjusted model with the convergence
condition 1 ~ PA < 0.0001. We begin with an offered load of 0.9; the Loss
probability, the throughput and the mean delay are recorded in every iteration.
We choose three sets of data which represent the cases where the loss probability

is less than 0.01, 0.001 and 0.0001, respectively. They are listed as follows.

loss probability | 0.589 { < 0.01 | < 0.001 | < 0.0001
offered load 0.9 0.37 0.361 0.357
throughput 0.37 | 0.367 | 0.361 0.357

delay 20.367 | 11.862 { 10.277 9.802
iteration numbers 1 2 10 30
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On the second iteration, the loss probability converges within 0.01. However,
it takes 10 iterations to converge to 0.001 with the throughput 0.361 and the mean
delay 10.277. It takes 30 iterations to converge within 0.0001. These points are
plotted in Figure 5.7. We show the original model as a solid line. The results of
the first 10 iterations are plotted in small circles. Those four points where loss
probability converges within 0.01, 0.001 and 0.0001 are plotted in small boxes. If
an application requires a minimum loss probability, then the maximal input rate
can be determined by using the rate adjusted model. If the performance objective
is to find the operating point where the Power [Klei 79], Ehf_;:%‘;mi’ 18 maximized,

the convergence condition can be changed such that it converges when the Power,

%%M, cannot be improved.

89



CHAPTER 6

Delay Model Analysis

The blocking switch models were discussed in Chapter 2 to Chapter 3. Both
the throughput and the overall mean delay were found. In this Chapter, we con-
centrate an analysis on the turn back switch. A turn back switch differs from a
blocking switch in that when a contention occurs where there i1s not enough buffer
space for contending packets, instead of being blocked, packets are turned back to
be re-submitted at the processing elements. This removes the persistent blocking
behavior of the blocking switch, thus we predict that the system performance of
a turn back switch should be better than a blocking switch in heavy loads. When
a rejected packet is not turned back to the original source (processing element),
instead, it is rotated to join the end of the local queue, we call this new config-
uration a rotating switch. The motivation for the rotating switch comes from
the comparison of blocking switch and turn back switch (to be discussed in section
6.4).

In section 6.1, we first propose an analytical model for the turn back switch with
a uniform traffic pattern. The analytical model is based on a recurrence equation.
The mean delay of a particular path is determined by using the recurrence equation.
Different Markov chains, resulted from different assumptions of the queue, are
discussed. Two different approaches are proposed : a Combined Rate Model with
a straightforward solution and a Feedback Model with an iterative approach. Both
models are analyzed and compared. The advantages of both models are discussed.

In section 6.2, we extend the Feedback model to analyze a turn back switch with
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a non-uniform traffic pattern. The exact feedback traffic is calculated. Since the
feedback of non-uniform traffic pattern may change the original traffic pattern, we
determine the traffic pattern in each iteration with the exact feedback traffic. Two
example traffic patterns : a hot spot and a EFOS traffic pattern are analyzed. We
compare the system performance of the turn back switch to the blocking switch
in section 6.3. The result shows that each switch is better than the other switch
in a certain range of system load. This fact leads us to the new configuration, the
rotating switch. The rotating switch model is proposed and the result is compared

to the turn back switch and the blocking switch in section 6.4.

6.1 The Turn Back Switch Model with a Uniform Traffic Pattern

A turn back switch differs from blocking switch in that when a contention
occurs where there is not enough buffer space for contending packets, instead of
being blocked, p-ackets are rejected and are re-submitted at the processing elements
(see belows). This assumption allows the queue at each switching element to output
one packet per cycle when it is not empty, regardless of the status of queues in the
next stage. Therefore a given queue is independent of conditions at the next stage.
This independence simplifies the modelling of a turn back switch since there is no
interdependence among queues in different stages. The only information we need
to solve for at each queue is the set of input rates from the previous stage.

For multistage interconnection networks using the turn back switch as a basic
building block, if the original traffic pattern is not uniform, re-submitting the
rejected packets into the network changes the traffic pattern seen by those packets
re-entering the network. Modelling becomes complicated when the traffic pattern
is modified in this fashion. The modelling approach must then keep track of each

rejected traffic flow from different queues at different stages to assure that they
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are re-submitted at the correct processing elements.

In this section, we propose an analytical model to calculate the mean system
time for packets passing through the network with a uniform traffic pattern. The
model takes advantages of a recurrence relationship. This basic approach is ex-
tended to model general traffic patterns in a later section.

First we describe a turn back switch. The Markov chain of the queue in the
switching element is solved for in terms of input parameters. We then propose
an analytical model based on a recurrent equation to solve for the mean system
time and the throughput. A straightforward model and an iterative model are
analyzed. We also discuss two different Markov models regarding the assumptions
of the queue. The analytical results are verified through simulation for different

network sizes.

6.1.1 Turn Back Model

In this section, we discuss a class of n stage interconnection networks (e.g.
Banyan, Omega) with K finite buffers at each of its switching element’s output
ports (see section 2.1.2). The difference from the previous chapters is that these
switching elements are 2x2 turn back switches. An infinite queue is added to each
processing element in order to accept rejected packets such that any possible loss
of rejected traffic is prevented.

The processing element generates new packets according to a Bernoulli arrival
process and assigns them to a destination according to a destination distribution
(traffic pattern). These new packets are submitted to an infinite queue at each
processing element. The head-of-line packet at the server of the infinite queue is
submitted into the network at the end of a cycle. The maximum number of packets

that can possibly arrive at the finite-buffered queue is two since there are only two
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Figure 6.1: 4x4 interconnection network with turn back switch as building block

input links. A packet entering the first stage selects an output port according to its
address tag, and joins at the end of the output queue at the first stage. However,
if there are two packets heading for the same queue, a contention occurs. If there
is enough space, the queue accepts both packets. If there is only one space left,
then one packet is randomly chosen to be accepted, and the other is rejected. The
rejected packet returns to the originating source (processing element) immediately
and joins the tail of this infinite queue. Since a turn back switch always outputs
a packet as long as it is not empty, it can always accept at least one packet per
cycle. Hence the situation when both packets find no space and are both rejected
1s not possible in a turn back switch. The infinite queue is assumed to be able to
accept as many rejected packets as necessary in one cycle, in addition to accepting

newly generated packets.

6.1.2 Modeling Approach

We discuss the analytical model for the turn back switch by focussing on the
following 3 different components of the system : the finite buffered queue inside

the network, the infinite queue at the PE’s and the path that packets take to reach
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their destination.

6.1.2.1 Markov Model for Finite-Buffered Queue

Depending on the assumption of the operations of sending and receiving pack-
ets, there are two different Markov chains for the finite-buffered queue inside the
network. When the queue is in state 0, it either moves to state 1 if there is only
one incoming packet at the end of the cycle, or moves to state 2 if there are two
incoming packets. While in state 1, the queue moves back to state 0 when there
is no input packet. The queue remains at state 1 when there is only one incoming
packet. This is due to the fact that a queue outputs a packet as long as it is not
empty. It only moves to state 2 when there are two incoming packets. All other
states have the same transitions except state K-1 and state K. At the end of a cycle
in state K-1, two incoming packets see only one buffer left. At the same time, the
server 1s sending the first packet to the next stage. We develop two models with
different assumptions of the queue. The difference between lies in whether the
queue can perform simultaneous operations to remove one packet at the head of

the queue and to accept two incoming packets at the same time while in state K-1.

Simultaneous Model When the queue is in state K-1, if there are two packets
coming in at the end of a cycle, then both packets can be accepted. The head-
of-line packet is sent to the next stage, thus the queue reaches state K. When the
queue is in state K and there are two incoming packets, simultaneous operations
guarantee that one packet can be accepted while the other one must be rejected.
While in state K, the queue moves back to state K-1 if there is no input at the
end of the cycle. We define x[i] to be the probability of i incoming packets. The

Markov chain for this simultaneous model is shown in Figure 6.2 (a). The steady
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Figure 6.2: Markov chain for (a) simultaneous operation (b) no simultaneous op-

eration.

state probability can be solved as :

={0] - =[2]

1- ()

1 — z[0]
z[0]

z(2]

£

P - B

B G

Non-simultaneous Model Since all operations take place at the end of the
cycle, if the queue is of length K-1, then there can be only one packet be accepted.
Therefore if two packets are coming at the end of the cycle, one packet must be
reject ed. In this case, the state K can never be reached because there is always
one output per cycle. While in state K-1, a queue either remains at state K-1

(when there is at least one incoming packet) or moves back to state K-2 (when
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there is no incoming packet) in the next cycle. The non-simultaneous assumption
is a realistic one, and is the same assumption we used in the blocking switch model
we discussed in Chapter 3. The Markov chain is shown in Figure 6.2 (b). The

steady state probabilities can be solved as follows -

z[0] - =[2]
p o= ZHZTE
L
1 — z[0]
O
_oEly L <K
PK = 0

In order to compare the result of the turn back switch to that of the block-
ing switch, we choose the same assumption, i.e. no simultaneous operations, in
our model for pérformance evaluation. Throughout this chapter, unless otherwise
mentioned, the finite-buffered queue in the turn back switch will assume the basic
operation that we described in the non-simultaneous model. We shall compare the
performance of analytical models employing these two queuing disciplines in later

sections.

6.1.2.2 Input Model for the Infinite Queue at PE

The arrival process to the infinite queue at PE is assumed to be a bernoulli
process with parameter q. The server is a deterministic server with service time
one. This makes the infinite queue a discrete time, Geo/D/1 queue with feedback
from the network. It is complicated to calculate the exact transition probability
from one state to another, therefore the resulting Markov chain is difficult to solve

for. Hence, we use a continuous time M/D/1 queue with feedback to approximate
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this Geo/D/1 queue with feedback. The Poisson arrival rate to this infinite queue
is q pkt/cycle. The deterministic service time is 1. The stable condition for this
infinite queue is that the combined rate of new packets, q, plus the feedback rate
of rejected packets is less than 1.

We propose two modelling approaches to calculate the combined rate into the

infinite queue : the Combined Rate Model and the Feedback Model.

Combined Rate Mode! For a uniform traffic pattern, the re-submitted packets
still have the same traffic pattern as do the newly generated packets. Therefore,
it is reasonable to combine them into a total input rate of q. This assumption
simplifies the modelling approach such that there is no need to calculate the exact
feedback rate to the processing element. When contention occurs, the rejected
packet is thrown away since we have already made the assumption that it will join
the new packet generating process at a total input rate q. For the stable range
of operation ( 0 < ¢ < 1), we have the mean delay, Tp, for passing through this

infinite queue as follows :

P = q
Bl0] = 1-p
2—p
To 2-2.p

However, if the given pattern is not uniform, then the feedback packets may not
see the same traffic pattern as so the new packets. They are more likely to bring
a different pattern to join the processing element. For instance, in the hot spot
traffic case, most of the resubmitted packets are packets that are heading for

the hot destination, therefore, the traffic pattern these resubmitted packets see is
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completely different from the given pattern. The disadvantage of this approach
is that it can not properly reflect the changes of traffic pattern when the given
pattern is not uniform. Hence for the non-uniform traffic pattern, we need a

modelling approach that takes care of the feedback traffic separately.

Feedback Model The second approach calculates the exact feedback traffic.
This is especially useful when the traffic pattern is not uniform. Let the rate of
the feedback traffic be d, let the new packet generation rate be g, for the stable

range of operation (0 < ¢ + d < 1), we have the mean delay, T, as the following :

p = g+d
B0} = 1-p
2—p
T =
0 2—2-p

For uniform traffic patterns, the throughput-delay curves found by using these two
approaches should be identical.

In this section, both approaches will be analyzed and compared. We show later
that the Combined Rate Model gives a simple solution. But for detailed perfor-
mance measures, the Feedback Model provides the information needed, especially
for those cases where the system is near saturation. An extended analysis based on
the Feedback Model to evaluate the resubmitted traffic in the non-uniform traffic

case will be discussed in section 6.2.

6.1.2.3 Recurrent Path

Unlike the blocking switch where interdependence among queues in different

stages makes the model solvable only through iterations, the turn back switch
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does not have a similar interdependence because it returns the rejected packets
to the processing element. Therefore the steady state probability of a queue in
the network can be solved directly. Observing the relationship among queues
in different stages, we see that a queue depends only on its previous queue (for
input), and is independent of the queue in the next stage since there is no blocking.
Therefore, we use the input rate q (Combined Rate Model) or q+d (Feedback
Model) and routing probability r (in uniform traffic case, r=0.5) to calculate z[],
the probability that there are i incoming packets. The input process to the infinite

queue at stage 0 for the Combined Rate Model is :
z0]=1—g¢

Let P[j] be the probability that a queue in stage i contains j packets. We ap-
proximate the discrete time Geo/D/1 queue as a continuous time M/D/1 queue.

Therefore we have Py[0] =1 — ¢. Then the input to a queue in the first stage is :

z2] = (r-(1— B[0]))®
z[l] = 2-r-(1=PR0])- (1 —r-(1 = P[0]))
z[0] = 1-2z[1] —z[2]

= (1=r-(1-R0]))*

Using the Markov chain shown in Figure 6.2, we can solve for the steady-state
probabilities of the number of packets in the first stage queue. Similarly, we use
1 — P[0} as the input parameter for the queue in the second stage. In general, the

input process to a queue in stage i is :

2] = (r- (1= Poaf0]))’
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afl) = 2-r-(1=Pf0])- (1 —r- (1~ Py[0])
z[0] = 1-=zl) - z[2]

= (1—r-(1~ P_,4[0)))?

The steady state probabilities for queues in all stages can be solved accordingly.
For uniform traffic patterns, all queues in the same stage are identical. There-
fore, we only need to concentrate the calculation on one path, as shown in Figure
6.3. Let T, be the mean of the random variable representing the time needed to
pass through a queue in stage i. Let d; be the conditional rejecting probability for
a packet given that it attempts to enter stage i+1 and is rejected due to a con-
tention. Let S; be the mean of the random variable representing the accumulated
system time after a packet enters stage i+1. A packet starts out from the end of
the infinite queie at the PE (stage 0). After it spends Tj cycles at the queue, the
packet is sent to the queue in stage 1. However, there might be a contention such
that the packet is rejected due to the fact that there is not enough buffer space left
in the first stage queue. If the packet is rejected before it enters stage 1, it returns
to join the end of the queue in stage 0, and spends another T}, before it tries again
for stage 1. A packet may repeat this process many times until it finally meets no
contention or wins a contention, and enters stage 1. A packet enters stage 1 with
the accumulated system time S;. A packet repeats this process stage by stage until
it reaches stage n. Since there is no contention at the output of stage n, packets
reach the destination after spending 7}, cycles. This repeated process of rejecting
and resubmitting can be represented in the following recurrent equations in terms
of the accumulated system time S;, the conditional rejecting probability d; and

queueing time 7} :
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The explicit expression for S; in terms of T and d; is as follows :
1 Tm

S" - t~m
mzzl =0 (1 - di+1—j)

Therefore, the average system time for passing through the network, 5, is :

Sn = Sn—1+Tn

n-—-1 T
= n—m-— - + Tn
2 (1 —d,;)

m=1 11;=0

Once the d,’s and T:'s are found, the average system time for a turn back switch
can be solved. T; is the mean time a packet passes a queue In stage i. Since we

have the state probabilities for each queue, we use Little’s result to solve for T :

k- P[k}

T; =
NEE
The rejecting probability d; can be found as follows :

di= 5 PualK —1]-7- (1 - o)

which is the case when there is a contention and there is not enough space to take

both, the packet is rejected with probability 0.5.
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6.1.3 Performance Measure

The performance measures that we are interested in are throughput and mean
delay. The mean delay of a turn back switch, S, is shown in the previous section.

The throughput can be calculated as follows :

throughput = 1 — P,[0]

6.1.4 Solution Algorithm

For different modelling approaches, the Combined Rate Model and the Feed-

back Model, the solution algorithm is different.

6.1.4.1 Combined Rate Model

We take the combined offered load ¢ to solve for the infinite queue as a con-
tinuous time M/D/1 (as discussed in section 6.1.2.2). Using 1 — Po[0] as the input
load to the first stage, we solve for the steady-state probability for the first stage,
Py[j], and T3,d; and S,. Similarly, we solve for all stages. The algorithm is shown

as follows :

solve Fy[0], T
FOR i:=1 to n DO
solve P[j],0<j < K
solve T}, d;_,
solve S;_;
ENDFOR
solve S, and 1 - P,[0]

We vary the value of ¢ to plot the throughput-delay curve.
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6.1.4.2 Feedback Model

We cannot get the detailed information we desire near the saturation area
using the Combined Rate Model. Therefore, a detailed calculation of feedback
traffic is needed in order to precisely trace the feedback effect. In the following we
concentrate the feedback effect on Qo1

Let @);; be the jth queue in stage i. Observe that for packets in the first stage
queue, it can be from two different, sources (see Figure 6.1). If a packet is rejected
before it enters @, it either came from Qo1 or Qoa. Hence with probability
0.5, the rejected packet returns to Qo;. The same argument applies to a packet
rejected at @)y ;. Therefore the total returning rate from stage 1 back to @y, is just
the rejecting probability at stage 1. Let dfi, ;] be the probability that a packet is
rejected at the jth queue in stage i. Then the rejecting probability for the uniform

traflic case is as follows :
.. i
i, = PIK] - (3 - (1 = Py [O]))

For a packet rejected at (2,1, it either came form @11 or @13. A packet from
@11 came from either Qg or Qoz- Hence with probability 0.25, the rejected
packet returns to Qg 1. The possible paths which fan out from (o.1 have 4 possible
rejecting points at stage 2. Therefore the total rejected traffic from stage 2 back to .
Qo,1 is the rejecting probability at stage 2. To mcorporate this feedback traffic to
the input process, we add an iterative process to compute the rejecting probability
in each stage, and add it to the offered load. A new offered load is determined
at the end of each iteration. The iterative process terminates when the rejected
traffic converges. The iterative algorithm to solve for the throughput-delay curve

is as follows :

pP=9q
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REPEAT
for stage 0, solve Py[0], Ty
FOR i:=1 ton DO
solvePi[j,0<j < K
solve T}, d;_;
solve S;_,;
ENDFOR
solve 5, and 1 — P,[0]
p=p+ i, ds, ]
UNTIL p converges

For uniform traffic, the Feedback Model needs only the iterative process. How-
ever, for non-uniform traffic, queues in the same stage are not necessarily identical.
Hence a more complicated tracing algorithm is needed to trace each branching flow.

This will be discussed in Section 6.2.

6.1.5 Results

In this section, we would like to compare our analytical model to simulation re-
sults. A medium sized network (6 stage) and a large sized network (10 stage) will be
compared to their respective simulations. The Feedback Model and the Combined
Rate Model is compared against each other. A brief summary of their advantages
and disadvantages is given. The simultaneous model and non-simultaneous model

are compared for different model assumptions on sending and receiving packets.
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6.1.5.1 Analytical Model vs. Simulation

We ran the Feedback Model for a 6-stage Omega network with buffer size 4
under uniform traffic pattern. The results are plotted against simulations in Figure
6.4. The throughput-delay curve climbs slowly until it reaches the saturation point,
then the delay climbs up rapidly. The maximum throughput we can get for the 6
stage Omega is 0.769 when the combined rate reaches 0.99. In Figure 6.6 and 6.7,
we show throughput vs offered load and mean delay vs offered load, respectively
with a 95 % confidence range simulation result. The simulation shows that the
analytical model is very close to the simulation.

For a larger sized network, we ran the Combined Rate Model for a 10-stage
Omega network with finite-buffer size 4 under uniform traffic. The result, is shown
in Figure 6.5 together with the simulation result. The maximum throughput the
10-stage Omega can achieve is 0.721 which is lower than the 6-stage Omega. The
reason is that I;ackets suffer more contention since there are 4 more stages. The

simulation verifies the analytical model in a large sized network.

6.1.5.2 Feedback Model vs Combined Rate Model

Next, we compare the performance of models using different assumptions. For
different assumptions on an infinite queue at PE, the Feedback Model is compared
to the Combined Rate Model in Figure 6.8. There is not much difference until
late in the saturation area. The curve is basically the same for the uniform traffic
pattern as predicted. The reason that those 2 curves do not match near the
saturation area is that the combined rate model jumps from 0.9 to 0.99. If we were
to run more detailed rates (0.91 to 0.99), then these 2 curves would likely match,

The advantage of the Combined Rate Model is its simplicity and its straightforward
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solution algorithm. However, the exact amount of feed back traffic can not be
determined. The advantage of the Feedback Model is that it gives more information
about the resubmitted traffic. The corresponding amount of rejecting traffic from
a given offered load can be solved for. In addition, the Feedback Model can be
used to determine the maximal allowable input rate to operate within the stable

range. This model can be extended to evaluate non-uniform traffic patterns.

6.1.5.3 Simultaneous Model vs Non-simultaneous Model

In this section, the simultaneous model is compared to the non-simultaneous
model for different assumptions on sending and receiving packets. Two different
sized networks, 6 stage and 10 stage, are evaluated. The modelling approach
we use is the Combined Rate Model. The results are shown in Figures 6.9 and
6.10. For light load, throughput-delay curve for both models are almost the same.

For medium to heavy load, the simultaneous model yields higher throughput. This
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behavior is more obvious when the network size gets larger. The reason behind this
behavior is that when the queue reaches state K-1, the non-simultaneous model
rejects one packet and accept another if there are two incoming packets. The
Simultaneous Model, however, accepts both, and therefore increases its maximum

queue length to K.

6.2 The Turn Back Switch Model with a Non-uniform Traffic Pattern

In section 6.1, we proposed a simple modelling approach for performance mod-
elling of a turn back switch under a uniform traffic pattern. The simplicity lies
in the fact that the rejected packets have the same traffic patterns as the new
packets do. Hence we can combine them into a single input source without dis-
tinguishing them. However, for non-uniform traffic pattern, this technique cannot
be employed. The feedback traffic (rejected packets) does not have the same non-
uniform traffic ]_;)a,ttern as the new packets do. The contention and rejecting place
more emphasis on the heavily referred memory models. Hence the rejected packets
tend to have a more severe non-uniform pattern than the new packets do. These
two different sources are combined to create a new traffic pattern. Modelling of
turn back switch under non-uniform traffic pattern requires the ability to analyze
this new traffic pattern.

The Feedback Model, as discussed in section 6.1.4.2, distinguishes the feedback
packets from the new packets. However, each path originating from stage 0 to
stage n of a general traffic pattern can be different, thus the modelling approach
using the Feedback Model needs to be extended to a general model. An extension
of the basic Feedback Model to the general traffic model is discussed in section
6.2.1. For a particular path, general equations of the mean system time S, are

given. The effect of rejecting packets from this particular path is calculated such
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that a total feed back traffic can be found. A recursive algorithm for finding all
possible paths is given, together with the solution algorithm. Results are verified

through the simulation for 2 general traffic patterns : EFOS and hot spot pattern.

6.2.1 Modelling Approach
6.2.1.1 Mean Delay Equations for a Particular Path

For the non-uniform traffic pattern, each path from stage 0 to stage n can be
different. Depending on the address tag, packets may experience different delays by
taking different paths. In the following, we concentrate on a particular path that
a packet takes j(0),7(1),...7(n) where j(z) is a variable representing the position
of the queue in stage ¢ along the path.

Let T; j(;) be the random variable representing the time needed to pass through
7(4)’s queue in stage i. Let d; ;i) be the conditional rejecting probability for the
packet after it leaves stage i and before it enters stage 1+1. Let S; be the random
variable representing the accumulated system time after a packet enters stage i+1.
For a packet passing through this particular path, its mean delay can be calculated

as

T .
S[) —_ DvJ(O)
1 = do j(0)
- -r'-Fl (3 .
S = S+ 1) I1<i<n
1 —di;i)

S, = Sn—1+Tn,j(n)

The explicit expression for S; in terms of T; ;) and d; ;i) can be shown as follows:

Si = Xl: t—m Tm,j(m)

met ILZo (1 = digrk ji1-4))

Therefore, the average system time for passing through this particular path is :
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Sn = Sn—l + Tn,j(n)

n—1

= Z Tm.j(m)

met IIE20 T (1 = duck jnmk))

+ Tojtn)

This set of S; equations is used to calculate S, in the following algorithm :

procedurePATH-DELAY

begin
for stage 0, solve B 5[0, Tp (0
FOR i:=1 to n DO
solvePF, ;)[k],0 < k < K
solve T ;i), di_1,j(i-1)
solve §;_,
ENDFOR
solve S, and 1 — P, ;(,[0]
end

6.2.1.2 Path Finding Algorithm

Once the address of a path is given, the mean delay of this particular path can
be calculated using PATH-DELAY. To calculate the mean delay for the overall
traffic, the mean delays for all possible paths are calculated and averaged over their
proportions. A recursive algorithm that traces all possible paths starting from one

processing element is outlined here :
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procedure PATH-TRACE (i,j,portion)
begin
i(i)=k;
IF ¢« <n THEN
use j(i) to find its destination, des, in stage i+1 (i.e. j(i+1))
use des to find its routing probability routing
PATH-TRACE (i+1, des, portion - routing)
PATH-TRACE (i+1, des+1, portion - (1-routing))
ELSE
use the path information j(i)’s as inputs, call PATH-DELAY
accurnulate total delay rby Sn.j(n)" portion

end

To find all possible paths that originate from processing element k, we call the
above algorithm, PATH-TRACE(0, k,1). It is a depth-first algorithm such that
the path from processing element k to memory module 1 is reached first. It then
reaches memory module 2, and so on. After the trace reaches memory module
2", the algorithm terminates. The mean delays along different paths are properly
calculated and accumulated according to their contribution to the total delay. The
variable portion is the product of the routing probabilities from stage 1 to stage
n along the path. So, when the path reaches stage n, the mean delay is calculated
and multiplied by portion. The weighted delay is then added to the total delay.
This algorithm calculates the mean delay for packets originating from processing

element k.
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Figure 6.12: The effect of feed back from different queues and different stages to
PE 1

6.2.1.3 Updating Traffic Pattern

The main difference between non-uniform traffic modelling and uniform traffic
modelling is the changing pattern. The network starts out with a given traffic
pattern. After contention and rejecting occur, a new pattern is generated. This
process repeats until it reaches a steady state. The non-uniform traffic pattern
evolves from the original traffic pattern to some intermediate patterns and finally
settles down to a new steady-state pattern. Unlike the Feedback Model in uniform
traffic pattern modelling, each feedback traffic may be different. Not only does
the stage number make a difference, the position in the same stage also makes a
difference. Therefore, the modelling approach for non-uniform traffic pattern is
more complicated than the Feedback Model we discussed in section 6.1.4.2.

To understand the feedback effect on PE 1, let us examine a 3-stage, 8x8 MIN.
Let d[i,j] be the rejecting probability of jth queue at stage 1, as we defined in

section 6.1.4.2. Let pacli] be the probability of accessing memory module i. A
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traffic pattern is defined through the values of pacfi]. The impact the rejected
traffic has on the traffic pattern of PE 1 of a 3-stage MIN is shown in Figure
6.12. At stage 0, PE | submits the new packets to the network with a traffic
pattern that sends a portion a of the new traffic to memory module 1 and sends a
portion b of the new traffic to each of the other memory modules (a+7-6=1). A
rejecting may occur at @, ; with probability d[1,1}. Memory modules 1 to 4 are the
possible destinations for a rejected packet at @11. The rejected packet may head
for memory module 1 with probability i3 With probability ﬁ, the rejected
packet is destined for memory modules 2, 3 or 4. Therefore, the feedback traffic
resulting from contention at queue 1,1 (with probability d[1,1]} only contributes
to the traffic pattern of memory module 1 to 4 . A packet rejected at @, , (with
probability df1,2]) has memory modules 5 to 8 as its possible destinations. The
rejected packet is destined to one of these four memory modules with an equal
probability i. Therefore, a rejecting that occurs at (1,2 contributes uniformly to
memory module 5 to 8. The effect of rejecting packets from different queues at
different stages on the traffic pattern for a 3 stage network is outlined in Figure
6.12. However, a rejected packet at stage 1 does not necessarily come from PE
1. Since the contention involves 2 different sources, the rejected packet returns to
PE 1 with probability 3. Similarly, a rejected packet at (02,1 may be destined for

memory module 1 with probability -5 or destined for memory module 2 with -af;_—b

Since packets from 4 PE’s may possibly be involved with a rejecting that occurs
at stage 2, the rejected packet returns to PE 1 with probability 1. Therefore, with

the given traffic pattern, the resulting new patterns for PE 1 are :

a

a+b

2] S 1 a31]

pac[l]:=a-q+—a——-d[1,l]‘%+ 1

a-+3b

WDy~ o

b 1 a 1
pac[?] -—bq'-l-md[l,].]§+md[2,1]z+1d[3,2]
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pac3] = b- g+ — b 4,1 S+ d2 t1-d3,3). -;_

pacld] = b- q+-—+”E A1 5+ 5 di2,2)- l+1 3,41
pac(s] :=b-q+i-d[1,2]--;—+%-d[2,3]-%+1-d[3,5]-%
pac[6]:=b-q+i-d[l,2]-% £ df2.3). —+1-d[3,6]-%
pac[?]:zb-q—}-%-d[l,?]-%-{—% [2,4]-i-+1-d[3,7]-%
pac[8]:=b-q+i-d[1,2]-% > dl2,4]- i+1-d[3,8]-%

The new traffic patterns for other PE’s can be calculated in a similar way.
The new traffic pattern is then used to generate another new traffic pattern.
This process repeats until it converges. The complete algorithm that determines

the temporary, new traffic pattern is as follows :

procedure ROUTE-TRACE (i,j)
begin
use j to find its destination, des, in stage i+1
calculate d[i+1, des| and d[i+1, des+1]
IF : <n—-1THEN
ROUTE-TRACE (i+1, des)
ROUTE-TRACE (i+1, des+1)
calculate new accessing probabilities

end

We call this procedure ROUTE-PATH(0,1) to begin the calculation for the new
pattern of PE 1. If the processing elements are not identical, ROUTE-PATH(0,j)

are called for all processing elements j’s. If processing elements are identical, then

ROUTE-PATH(0,1) is called only once to find the new traffic pattern.
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6.2.2 Solution Algorithm

The turn back switch model uses a routing probability set to represent the
steady state traffic flow. The transformation and superposition methods that we
proposed in Chapter 2 and 3 are used to transform a given non-uniform traffic
pattern to a set of routing probabilities. Then, the modelling approaches that
we propose in this section are incorporated into the following complete solution

algorithm to solve for a turn back switch mode]:

INITIALIZATION
p=q
repeat
for all j’s 1 < j < 27, solve P,;[0] and Ty ;
for i:=1 to n do
for j:=1 to 2" do
solve P, ;[k], 0 <k < K
solve T; ;
endfor
endfor
for j:=1 to 2" do
call PATH-TRACE (0,j,1)
accurmnulate mean delay and throughput
endfor
for j:=1 to 2" do
call ROUTE-TRACE (0,j)
accumulate new accessing probabilities and new input load p

endfor
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use new traffic pattern, solve new routing probabilities

until throughput converges or p > 1

The algorithm begins with an initialization program that sets the initial values
of variables, and uses transformation and superposition methods to calculate the
routing probability set. Then the iterative process begins with the initial load
and initial traffic pattern to calculate mean delay and throughput for the network.
A new traffic pattern and new offered load (combined both the new packets and
rejected packets) are calculated. This iterative process stops when the throughput
value converges or when the offered load exceeds 1. The first condition is the case
when the system reaches steady state. The second condition is the case when the
system reaches the unstable region.

This analytical model for the non-uniform traffic pattern incorporates the trans-
formation and superposition methods that we proposed for general traffic pattern
modelling in Chapter 2 and 3; therefore it not only is suitable for non-uniform
traffic patterns, but also it can be used to evaluate any general traffic conditions,
for examples, different traffic patterns for processing elements, different input rates
for processing elements, etc. We shall show the flexibility of this analytical model .
by evaluating two traffic patterns, hot spot traffic and EFOS traffic, and verifying

them with simulation.

6.2.3 Results

The analytical model for the non-uniform traffic pattern is used to evaluate a
hot spot traffic pattern which sends % of the traffic to memory module 1 and gl-é of

the traffic uniformly to other memory modules in a 6 stage Omega network. The
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result is shown in Figure 6.13 with simulation data. The comparison shows good
correspondence between analytical results and simulation data.

For a general traffic pattern, we choose the EFOS traffic pattern. Analytical
results for turn back switch under EFOS pattern are verified through simulation
as shown in Figure 6.14. The comparison indicates that the analytical model is
quite accurate.

From these 2 examples, we see that the analytical model for a MIN using turn
back switch as basic building block is a very good model under any general traffic

patterns. For a uniform traffic pattern, a simpler model can be found in section

6.1.

6.3 The Blocking Switch

The blocking switch model has been discussed in Chapters 2 and 3. However,
the model did r-10t include an infinite queue at the PE. The model only deals with
packets that enter the network. Packets which are unable to enter the network
are rejected. In order to compare the performance of the blocking switch with
the turn back switch, the blocking switch model should be modified such that
it includes an infinite queue at PE to accommodate those rejected packets. The
modelling approach for this modification is described in section 6.3.1. A method to
calculate the mean delays of a particular path is also discussed. The performance

comparison of the blocking switch and the turn back switch is discussed in section

6.3.2.
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6.3.1 Modelling Approach
6.3.1.1 Infinite Queue Model

We modify the general traffic pattern model that we proposed in section 3.2.5
to incorporate an infinite queue at the processing element. The PE generates
a new packet and places it at the end of the infinite queue. The server of the
infinite queue tries to submit the head-of-line packet into the network in every
cycle. If there is buffer space in stage 1, the packet is accepted by the queue in
stage 1. If there is no space available, the packet stays in the infinite queue and
tries again in the next cycle. When the network reaches a steady state, the infinite
queue server will have a steady state blocking probability that a given packet is
blocked in a cycle. Let ¢ be the probability that a new packet is generated in one
cycle. Let b be the blocking probability that a packet in the server is blocked.
The infinite queue begins at state 0. It moves to state 1 when there is a new
packet being generated (with probability q). The queue moves from state 1 to
state 2 if there is one incoming packet and the packet in the server is blocked.
The transition probability for this case is ¢ - b. The queue returns to state 0 if
there is no new packet coming and the packet in the server is not blocked. The
transition probability is (1 — ¢) - (1 — 4). Since this discrete time, discrete state
queue can only make unit step transitions, it remains at state 1 with probability
1 —g-b—(1~g)-(1—0b). The other states have the same transitions as the state
1 does. The Markov chain for this discrete time, discrete state queue is shown in

Figure 6.15. The steady state probabilities can be solved as follows :

Ppo= 1~

gb .

1
R (e

B O k>1
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Figure 6.15: Markov chain for a discrete time queue at PE

The mean queue length is :

Zk P, = (1“‘51)

1-b—g¢ q
Using Little’s result, we get the mean delays :
Including this delay in the blocking switch model that we proposed in Chapter 2
and 3, we get the mean delay for a packet passing through the queue at PE and

the interconnection networks.

6.3.1.2 Delay Calculation along a Particular Path

In section 6.2.1.1, we proposed a method to calculate the mean delay along a
particular path in an interconnection network using turn back switches. It provides
more information in addition to overall system delays. The method is especially
useful if the traffic pattern is not uniform. The delay of a particular path of interest
can be determined.

The mean delay of a particular path in an interconnection network using the
blocking switch can also be determined. Given a path, j(0), 5(1), ...j(n) where j(7)
represents the index of a queue in stage i, the mean delay can be determined by

summing the delays in each stage. When the system reaches steady state, the
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Figure 6.16: Blocking switch vs. turn back switch for a 6 stage Omega under

uniform traffic pattern

state probabilities of each queue are known. We first calculate the mean queue
length using the steady state probabilities. The throughput of each queue can be
calculated using Py and the queue’s blocking probability. We then apply Little's
result to each queue to solve for the mean delay. Summing the delays along the

particular path, we get the mean delay for a particular path.

6.3.2 Results

We compare the blocking switch model to the turn back switch model in Fig-
ure 6.16. For light load, the blocking switch has lower delay than the turn back
switch does. When the system load is small, the contention probability is very
small; therefore persistent blocking does not cause severe system degradation. If
a contention occurs, the turn back switch rejects the packet and resubmits it at

PE while the blocking switch simply blocks it. Since the contention probability is
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small, the blocked packet is most likely to get through in next cycle while in the
turn back switch, it has to begin from stage 0. Hence, a packet suffers more delay
in a turn back switch when the system load is small. However, the throughput-
delay curve of blocking switch jumps up rapidly when the system 1oad reaches
its maximal capacity. When the system load reaches 0.68, the throughput-delay
curve of the blocking switch crosses the curve of the turn back switch and quickly
reaches saturation. The turn back switch performs better under heavy system
load. The maximal throughput the turn back switch can achieve is 0.769. The
reason that the turn back switch performs better in heavy load is due to rejecting
the collided packets. Rejecting packets removes the persistent blocking behavior,
the main reason behind the saturated tree. A blocked packet keeps blocking other
packets as long as it occupies the server. A rejected packet returns to PE, thus the
packet that was behind it will not be persistently blocked as the blocking switch

does. Therefore a higher throughput can be achieved.

6.4 Rotating Switch

Observing the different advantages the blocking switch and the turn back switch
have in different load ranges, we propose a new switching element that shares the
advantages of the both blocking switch and the turn back switch. The advantage of
the blocking switch lies in the light system load range. During this range, a packet
losing a contention is blocked locally, instead of being rejected and returned to the
processing element. Thus a lower delay can be achieved. The advantage of the
turn back switch is the removal of persistent blocking. The new switching scheme
we propose combines both advantage. We would like to retain the locality principle
of the blocking switch and the rejecting scheme of the turn back switch.

A rotating switch is basically a kind of turn back switch. When a contending
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packet finds no buffer space or loses a contention, it is rejected. The difference
between a rotating switch and a turn back switch is where to re-submit the re-
Jected packet. The turn back switch resubmits it to processing element queue.
The rotating switch rotates the rejected packet from the server to the end of the
queue. This rejecting scheme not only removes the persistent blocking, but also
re-submits a rejected packet in a local queue. The two different advantages that
a blocking switch and a turn back switch each has are now combined in the ro-
tating switch. Therefore the performance of the rotating switch should be better
than the performance of both the blocking switch and the turn back switch. A
rotating switch retains the rejecting operation (removing the persistent blocking)
and rotates the rejected packet to the end of the queue (locality principle). The
configuration of a rotating switch is shown in Figure 6.17.

The Markov chain of a rotating switch is exactly the same one as discussed
in Figure 3.2. Instead of being blocked, a packet is rotated to the end of the
queue. For a uniform traffic pattern, the rotating scheme means that in each cycle
a packet in the server has a renewal choice of destination. The rotated packet is

treated as a new packet being submitted to the end of the queue. Therefore the
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modelling of the rotating switch is simple : we use the analytical model proposed
in Chapter 3, with the addition of an infinite queue at the processing elements.
The infinite queue is modelled as a discrete time queue as we discussed in section
6.3.1.1. The model in Chapter 3 assumes that a packet has a renewal output choice
in every switch. The analytical result is shown in Figure 6.18. The network that
we modelled is a 6 stage, finite buffer size 4 in each switching element and an
infinite queues at PE’s.

As predicted, the throughput-delay curve is better than the curves of the block-
ing switch and the turn back switch. For light load cases (g < 0.5), the rotating
switch is almost the same as the blocking switch. A packet losing a contention
is either blocked locally or rotate to the end of local queue. Since the blocking
probability for these two models are the same, re-inserting the packet at the server

or at the end of the queue has the same delay performance. However, since the
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blocking switch still has a small probability of persistent blocking, the blocking
switch has a slightly higher delay when the offered load lies in the range between
0.4 and 0.5 (the difference is too small to be shown on the figure). Increasing the
system load, the rotating switch is much better than the blocking switch. The
reason is the removal of persistent blocking. In heavy system load cases, persistent
blocking severely degrades system performance.

The rotating switch is better than the turn back switch in every aspect. When
the system load is heavy, the rotating switch outperforms the re-submission switch.
The maximal throughput the rotating switch can achieve is 0.832. The turn back
switch can only achieve 0.76. The difference between these two models is where
to re-submit. We expect the turn back switch to have a higher delay due to re-
submission at processing elements. A rejected packet has to go through contention
and rejecting again in each stage. Surprisingly, the rotating switch has a higher
throughput than the turn back switch. This better throughput performance results
from the different Markov chain assumption. When a queue reaches state K-1, the
rotating switch can reach state K (full buffer) in next cycle. For the turn back
switch, the queue can only remain at state K-1 or move down to state K-2 (see
the discussion in section 6.1.2.1). The rotating switch can accept only one packet
when it is in state K-1. But the packet in the server might be blocked, and
resubmitted to the end of the queue. The queue thus moves to state K. In the
same situation, the turn back switch rejects the packet and re-submits it to the
processing element, hence state K is never reached. Therefore the rotating switch
has a higher throughput than the turn back switch.

The rotating switch combines the advantages of the locality principle (blocking
switch) and the removal of persistent blocking (reject switch). As a result, the

throughput-delay curve is better than the other two switches.
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CHAPTER 7

Summary and Future Research

7.1 Summary

In this dissertation, several analytical models were proposed to approximate a
finite-buffered interconnection network with general traffic patterns and different
switching architectures. These models were analyzed using an iterative approach.
The blocking switch models were presented in Chapter 2, 3, 4 and 5. A turn back
switch model was presented in Chapter 6.

A decomposition and iteration model was proposed in Chapter 2 to analyze an
interconnection network with both a specific hot spot traffic pattern and a uniform
traflic pattern. It was shown that contention for the same output queue degrades
the system performance in the unbuffered case. With a finite number of buffers
added at the output ports of each switching element, the system performance was
improved significantly with a uniform traffic pattern. However, buffering does not
improve the system performance to a satisfactory degree when a severe hot spot
traffic pattern was presented. This indicates that buffering cannot resolve the hot.
spot problem. Additional means for controlling the hot spot is needed.

In all these models, we used an iterative approach to solve for the probability of
acceptance and mean delay were solved. The saturated tree was analyzed through
the calculation of the mean busy buffer size in the tree. A method for calculating
the upper bound of the tree build up time was proposed and compared to other

analytical results. With the renewal routing choice assumption, the simulation in-
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dicated that the decomposition and iteration model is very accurate for networks
of any size. The analytical model was extended to analyze an interconnection net-
work with any general traffic pattern. A transformation method was proposed to
transform a given traffic pattern (in terms of accessing probabilities)r into a set of
routing probabilities. The routing probabilities reflect the steady state behavior
of the traffic pattern. Incorporating the transformation method in the decompo-
sition and iteration model, the performance of an interconnection network whose
processing elements have the same general traffic pattern can be analyzed.

A superposition method was proposed in Chapter 3 to analyze an intercon-
nection network whose processing elements have their own traffic patterns. The
Not Uniform Traffic Spot (NUTS) traffic patterns were analyzed as examples. The
NUTS traffic pattern is a special pattern which seems uniform outside the network,
but forms congested spots along the overlapping paths inside the network. With-
out the renewal routing choice assumption, the simulation indicated a significant
discrepancy between the analytical model and the simulation result. The discrep-
ancy was attributed to the model’s failure to capture the persistent blocking effect.
A weighting factor was proposed to be incorporated in the superposition method
to analyze an interconnection network whose processing elements have their own
input rates.

An approximation was proposed to capture the persistent blocking effect in
Chapter 4. The steady state probability during which a server is blocked was
calculated. We then assumed that a server is inactive with this probability. The
simulation showed that this approximation greatly diminished the discrepancy be-
tween the simulation and the analytical model. The approximation is very accurate
for both a uniform traffic pattern and a EFOS traffic pattern. However, the ap-

proximation does not totally capture the effect of persistent blocking with a severe
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hot spot traffic pattern. This remains as a future research topic.

An extension of the general traffic pattern model was proposed in Chapter 5
where each processing element has a finite number of buffers to accommodate the
rejected packets. Simulation indicated the model was very accurate. Furthermore,
a rate adjusted model was proposed to reduce the mean delays while maintaining
the throughput. The mean queue length and the mean delays of models with
and without the rate adjusted method were compared. It indicated a significant
reduction in mean delay and mean queue length were achieved without sacrificing
throughput performance. The maximal allowable input rate to satisfy a given loss
probability was also determined.

An analytical model for a turn back switch was proposed in Chapter 6. A
recurrence equation for the mean delay was proposed for an interconnection net-
work with a uniform traffic pattern. A solution algorithm which combines both
the Markov chain analysis and the mean delay calculation was discussed. The
simulation showed that the re-submission model was very accurate for networks of
different sizes. A detailed evaluation of the feedback traffic was proposed for an
interconnection network with a non-uniform traffic pattern. The feedback traffic
changes the overall traffic pattern if the original traffic pattern is not uniform. An
iterative model which changes the traffic pattern in each iteration according to
the feedback information was proposed. A hot spot traffic pattern and a EFOS
traffic pattern were analyzed. The simulation showed good agreement for both
traffic patterns. The turn back switch model was compared to the blocking switch
model. The throughput-delay curve showed that each switching architecture is
good in a certain range of offered load. This led us to propose a new switching
architecture, the rotating switch, which combines the advantages of both the turn

back switch and the blocking switch. An analytical model for this new switching
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architecture was proposed, and it performance was compared to both the turn
back switch and the blocking switch. The throughput-delay curve indicated that
the rotating switch ouiperforms both the turn back switch and the blocking switch
in every range of system load. The rotating switch model was analyzed only for an
interconnection network with a uniform traffic pattern. An extended model which
iteratively changes the traffic pattern to account for the feedback traffic is to be

done in the future.

7.2 Future Research

There are some interesting problems for future research.

The first is to compare the three analytical models with different switching
architectures for the rate adjusted case. This will show the performance of each
model under the range of stable operation.

It is necessary to have a model for slow memory modules. The memory modules
in real world are not necessarily fast enough to take out a packet every cycle. Thus
a relaxation on the speed of the memory modules is needed such that each memory
module has its own speed.

In real world applications, a processing element, might generate a message which
contains several packets destined for the same memory module. This can be mod-
elled as bulk arrivals to the processing element.

There may be different priority classes of packets as inputs in the real world.
The controlling mechanisms for different switching architecture in order to achieve
performance goals is an important issue which should be investigated.

Finally, the modelling and the methodology to control or to prevent hot spots

from degrading the system performance is needed.
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