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Abstract—To date, the automatic or semiautomatic transfor-
mation of huge amounts of multisource multiresolution space-
borne imagery into information still remains far below reasonable
expectations. The original contribution of this paper to existing
knowledge on the development of operational automatic remote
sensing image understanding systems (RS-IUSs) is fourfold. First,
existing RS-IUS architectures are critically revised. In this review
section, the two-stage stratified hierarchical RS-IUS model, origi-
nally proposed by Shackelford and Davis, is identified as a subclass
of the parent class of multiagent hybrid systems for RS image
understanding, which is potentially superior to the two-stage
segment-based RS-IUS architecture that is currently considered
the state-of-the-art in commercial RS image-processing software
toolboxes. Second, this paper highlights the degree of novelty of an
operational automatic near-real-time well-posed model-driven
application-independent per-pixel Landsat-like spectral-rule-
based decision-tree classifier (LSRC) recently presented in RS
literature. Third, five original downscaled implementations of
the LSRC system are proposed to be input with a multispectral
image whose spectral resolution overlaps with, but is inferior to,
Landsat’s. These five downscaled LSRC implementations are
identified as the Satellite Pour l’Observation de la Terre-like
SRC, the Advanced Very High Resolution Radiometer-like SRC,
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the Advanced Along-Track Scanning Radiometer-like SRC, the
IKONOS-like SRC, and the Disaster Monitoring Constellation-
like SRC, respectively. LSRC, together with its five downscaled
implementations, called the integrated SRC system of systems, is
eligible for use as the automatic pixel-based preliminary classi-
fication first stage of a two-stage stratified hierarchical RS-IUS
instantiation. Fourth, to sustain the feasibility of the new down-
scaled LSRC implementations, a novel vegetation spectral index
is introduced and discussed. In Part II of this paper, experimental
results are presented and discussed for the entire SRC family of
classifiers.

Index Terms—Decision-tree classifier, image classification, in-
ductive and deductive inference, prior knowledge, radiometric
calibration, remote sensing (RS).

I. INTRODUCTION

THE POTENTIAL of Earth observation (EO) from space
for the monitoring of the Earth’s environment and the de-

tection of its temporal variations at geographic extents ranging
from local (areas up to 100 000 km2) to regional (areas roughly
between 100 000 and 1 000 000 km2), continental, and global
scales is well known by user communities involved with urban-
growth assessment and planning, intelligence/surveillance
applications for national security and defense purposes, ecosys-
tem management, watershed protection, water balance calcula-
tions, risk management, and global change [1]–[4].

The expected impact of remote sensing (RS) imagery upon
the general public has increased after the recent announcement
by the Group on Earth Observations1 (GEO) that scientists and
decision makers around the world will soon have unrestricted

1GEO was launched in response to calls for action by the 2002 World Summit
on Sustainable Development and by the Group of Eight leading industrialized
countries [5]. GEO provides a framework for the coordination of efforts and
strategies to address common goals in EO. It comprises a voluntary partnership
of 77 governments and the EC, in addition to 56 intergovernmental, interna-
tional, and regional organizations with a mandate in EO or related issues that
have been recognized as Participating Organizations. In 2005, GEO launched a
“ten-year implementation plan” to establish its visionary goal of a Global Earth
Observation System of Systems (GEOSS) [6].
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access at no charge to the Landsat archive, the world’s most
extensive collection of continuously acquired RS spaceborne
imagery [1], [5], [6]. This news followed the decision of the
China–Brazil Earth Resources Satellite (CBERS) to distribute
its images free of charge starting from the year 2007. In turn,
the European Union (EU) announced a free data policy for
the Sentinel-2/-3 satellites whose launch is scheduled starting
from 2012.

While the cost-free access to large-scale low-spatial-
resolution (SR) (LR, above 40 m) and medium-SR (MR, from
40 to 15 m) spaceborne image databases is becoming a reality,
the demand for high-SR (HR, between 15 and 5 m) and very
high SR (VHR, below 5 m) commercial satellite imagery has
continued to increase in terms of both quantity and quality of
data, which has boosted the rapid growth of the commercial
VHR satellite industry [4].

These multiple drivers make urgent the need to develop
operational satellite-based measurement systems suitable for
automating the quantitative analysis of RS imagery. This ob-
jective has been a traditional goal of the RS community
involved with global land cover and land cover change pro-
grams, such as the Land Use and Land Cover Change (LUCC)
project and the National Aeronautics and Space Administration
(NASA) Land Cover and Land Use Change (LCLUC) program2

[2, pp. 451, 452]. The same visionary goal is envisaged un-
der ongoing international programs such as the following:
1) the Global Earth Observation System of Systems (GEOSS),
conceived by GEO [5], [6], that requires harmonization and
interoperability of EO data and derived information products
generated from a variety of sources at all scales—global,
regional, and local—and 2) the Global Monitoring for the
Environment and Security (GMES), an initiative led by the EU
in partnership with the European Space Agency (ESA), whose
aim is to guarantee the sustainability of integrated operational
services for EU security and environmental monitoring based
on EO data from multiple sources (satellite, airborne, and
in situ) and synergistic data products [7], [8].

Unfortunately, to date, the automatic or semiautomatic trans-
formation of huge amounts of multisource multiresolution RS
imagery into information still remains far below reasonable
expectations [9]. This well-known opinion by Zamperoni may
explain why, for example, the percentage of data downloaded
by stakeholders from the ESA EO databases is estimated at
about 10% [10].

In RS common practice, insufficient spaceborne image map-
ping capability may be due to two main factors.

1) Existing scientific and commercial RS image understand-
ing systems (RS-IUSs), including those which recently
gained noteworthy popularity such as eCognition [11]
and the Atmospheric Correction for satellite imagery

2The LUCC project was formally inaugurated by a 1996 Open Science Meet-
ing in Amsterdam as an initiative by the International Geosphere–Biosphere
Program–International Social Science Council working group [2, p. 3]. The
LUCC core project will continue through 2005. The NASA LCLUC program
started in 2003 to contribute to the U.S. Climate Change Science Program
2003 by developing interdisciplinary science with a high degree of societal
relevance, such as global environmental change, Earth systems, sustainability,
environment development, and conservation, among others [2, pp. 8, 18].

(ATCOR3) [12], score low in operational performance
which encompasses the following [13]–[15]: a) ease of
use (degree of automation; when a data-processing sys-
tem is automatic, it requires no user-defined parameter
to run; hence, its ease of use is unsurpassed); b) effec-
tiveness (e.g., classification accuracy); c) efficiency (e.g.,
computation time and memory occupation); d) economy
(cost; it increases monotonically with manpower, e.g.,
the manpower required to collect scene-specific training
samples); e) robustness to changes in input parameters;
f) robustness to changes in the input data set; g) maintain-
ability/scalability/reusability to keep up with the users’
changing needs; and h) timeliness (defined as the time
span between data acquisition and product delivery to the
end user; it increases monotonically with manpower). For
example, a low operational performance measurement
may explain why the literally hundreds of so-called novel
low (subsymbolic)- and high (symbolic)-level image-
processing algorithms presented each year in scientific
literature typically have a negligible impact upon com-
mercial RS image-processing software toolboxes [9].

2) The increasing rate of collection of RS data of enhanced
spatial, spectral, and temporal quality outpaces the capa-
bilities of both manual inspection and inductive machine
learning from supervised (labeled) EO data. The cost,
timeliness, quality, and availability of adequate reference
(training/testing) data sets derived from field sites, exist-
ing maps, and tabular data are currently considered the
most limiting factors on RS data product generation and
validation [2].

It is well known that one key to operational performance
is automating operations [14], [15]. In automating a data-
processing system, necessary, although not sufficient, condi-
tions are for input data to be [16] as follows.

1) Well behaved, namely, every input variable is expressed
in a community-agreed unit of measure and belongs to
a known domain of variation. In particular, EO-sensor-
derived data are well behaved when they are as follows.
a) Radiometrically calibrated, i.e., dimensionless digi-

tal numbers (DNs) are transformed into a radiomet-
ric unit of measure in agreement with the Quality
Assurance Framework for Earth Observation data
(QA4EO) initiative, led by the Committee of Earth
Observations3 (CEOS) Working Group on Calibration

3CEOS was created in 1984 in response to a recommendation by the
Economic Summit of Industrialized Nations Working Group on Growth,
Technology, and Employment’s Panel of Experts on Satellite Remote Sensing
[99]. This group recognized the multidisciplinary nature of satellite EO and
aims at optimizing benefits of spaceborne EO through cooperation among
its participants in mission planning and in the development of compatible
data products, formats, services, applications, and policies. CEOS became
the space arm of GEO in 2006. In that capacity, CEOS is playing an active
role in the establishment of GEOSS. CEOS members are, among others:
Agenzia Spaziale Italiana (ASI), British National Space Centre (BNSC), Cen-
tre National d’Etudes Spatiales (CNES), Deutsches Zentrum für Luft- und
Raumfahrt (DLR), European Commission (EC), ESA, European Organiza-
tion for the Exploitation of Meteorological Satellites (EUMETSAT), NASA,
National Oceanic and Atmospheric Administration (NOAA), Canadian Space
Agency (CSA), Instituto Nacional de Pesquisas Espaciais (INPE) and Indian
Space Research Organization (ISRO) .
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and Validation4 (WGCV) in the context of the GEOSS
program [17]. For example, an appropriate coordi-
nated program of calibration and validation (Cal/Val)
activities throughout all stages of a spaceborne mis-
sion, from sensor build to end of life, is considered
mandatory by the QA4EO initiative [17].

b) Geometrically corrected, i.e., projected onto a
community-agreed terrestrial reference system.

c) Validated, i.e., provided with quantitative, unequivo-
cal, and traceable measures of geometric and radio-
metric quality and uncertainty in agreement with the
QA4EO guidelines [17].

2) Well understood by the system developer, namely, every
input data source is provided with a clear physical mean-
ing and with a community-agreed data format.

To summarize, the first step in automating RS-IUSs should
be the achievement of the aforementioned necessary conditions
for input data. According to machine learning [18], computer
vision [19], RS literature [16], [20] and common sense (syn-
thesized by the expression “garbage in, garbage out”), this
achievement would augment the degree of prior knowledge of
an RS-IUS required to complement the intrinsic insufficiency
(ill posedness) of image features (refer to further Section II-A).
On the contrary, most (if not all) existing commercial and sci-
entific RS-IUSs do not require RS images to be radiometrically
calibrated and validated in terms of unequivocal geometric and
radiometric quality. As a consequence, these RS-IUSs adopt a
manual or, at best, semiautomatic data understanding approach
on a scene-by-scene basis (since one scene may represent, for
example, apples while a contiguous or overlapping scene may
represent, for example, oranges) [23], [24].

The original contribution of this paper to existing knowl-
edge on the development of operational automatic RS-IUSs is
fourfold.

1) A critical analysis of existing RS-IUS architectures and
implementation strategies provides this paper with a sig-
nificant survey value [11], [21], [25], [26].

2) The recently proposed operational automatic near-real-
time well-posed model-driven application-independent
per-pixel Landsat-like spectral-rule-based decision-tree
classifier (LSRC) is discussed to highlight its degree of
novelty [20], [27]. In agreement with the QA4EO guide-
lines, LSRC requires as input a seven-band Landsat-like
image radiometrically calibrated into top-of-atmosphere
(TOA) reflectance (TOARF) or surface-reflectance val-
ues, the latter being an ideal (atmospheric-noise-free)
case of the former.

4Initiated in 1984, the CEOS WGCV pursues activities to coordinate, stan-
dardize, and advance the calibration and validation of EO missions and their
data in the conviction that the space agencies and commercial satellite data
providers should present EO data in a way that would ensure the possibility
of comparing sensors and products [100]. Thus, CEOS WGCV, in partnership
with the Institute of Electrical and Electronics Engineers, was the natural GEO
choice to carry out the task of developing an international QA4EO initiative in
the context of GEOSS. Started in two GEO/CEOS workshops held in 2007 and
2008, the ongoing QA4EO initiative is conceived as an international EO Cal/Val
community-derived process to establish an international QA framework to
facilitate the harmonization and interoperability of EO data, metadata, derived
information products, and operations required to achieve them [17].

3) Five original downscaled implementations of the LSRC
system are proposed to be input with a radiometrically
calibrated multispectral (MS) image whose spectral reso-
lution overlaps with, but is inferior to, Landsat’s. In line
with the vision of an integrated multisource EO system
of systems, such as GEOSS [17], the pixel-based LSRC
system, together with its five downscaled implementa-
tions, hereafter identified as the integrated SRC system
of classifiers, can be considered as follows: a) sensor
independent, i.e., it employs as input an MS image ac-
quired by almost any of the existing or future planned
satellite optical imaging sensors and b) sensor resolution
independent, i.e., it works at the sensor (pixel) resolution.

4) To justify the scalability of LSRC to MS imaging sen-
sors featuring a spectral resolution inferior to Landsat’s,
spectral indexes found in existing literature are surveyed,
and a novel vegetation spectral index is proposed and
discussed.

To reach its multiple objectives, this paper is organized as
follows. Section II surveys related works on the subjects of
1) image understanding as an inherently ill-posed problem,
2) RS image radiometric calibration and atmospheric correc-
tion, 3) architectures and implementations of existing RS-
IUSs, and 4) the degree of novelty of the fully automated
LSRC approach. Section III presents five original downscaled
versions of LSRC. In RS common practice, limitations on the
applicability domain of the integrated SRC system of systems
are encountered when the radiometric correction of RS data
for sensor gain and offset effects is not reliable. Although it
is rarely the subject of concern in the RS community, this issue
is thoroughly discussed in Section IV. Another limitation on
the applicability domain of the integrated SRC system stems
from a theoretical inadequacy of the spectral resolution of
VHR optical sensors to cope with the dichotomous (one-class)
vegetation/nonvegetation classification problem. This subject
is investigated in Section V where a novel greenness index is
proposed. Conclusions are reported in Section VI. In Part II of
this paper, experimental results are presented and discussed for
the entire SRC family of classifiers.

II. RELATED WORKS AND DEFINITIONS

In this section, the inherent ill posedness of the image un-
derstanding problem is highlighted while concepts related to
RS data radiometric calibration and atmospheric correction rel-
evant to the development of operational automatic RS-IUSs are
discussed. In addition, starting from the customary distinction
between a model and the algorithm used to identify it [28], this
section adopts the well-known divide-and-conquer problem-
solving paradigm [29] to review the model (architecture) de-
sign principles and inference (learning) mechanisms adopted
by existing RS-IUSs whose taxonomy comprises three major
families: 1) multiagent hybrid RS-IUSs; 2) two-stage segment-
based RS-IUSs; and 3) two-stage stratified hierarchical RS-
IUSs. Finally, this section examines the degree of novelty of
the automatic LSRC system eligible for use as the preliminary
pixel-based classification first stage of a two-stage stratified
hierarchical RS-IUS instantiation.
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A. Ill-Posed Image Understanding Problem

Any imaging sensor projects a [three-dimensional (3-D)]
scene onto a [two-dimensional (2-D)] image so that the main
role of a biological or artificial IUS is to backproject the infor-
mation in the image domain to that in the scene domain, i.e.,
to associate subsymbolic (2-D) image features with symbolic
(3-D) objects in the scene (e.g., buildings and roads) [19],
[30]–[32]. There is a well-known information gap between
symbolic information in the (3-D) scene and subsymbolic infor-
mation in the (2-D) image due to dimensionality reduction, e.g.,
occlusion phenomena. This is called the intrinsic insufficiency
of image features [19]. In other words, the problem of image
understanding is inherently ill posed and, consequently, very
difficult to solve [19].

This information gap is the same gap existing between
(subsymbolic, sensory, instantaneous, numerical, quantita-
tive, absolute, and asemantic) sensation and (symbolic, lin-
guistic, qualitative, vague, abstract, persistent, and stable)
perception, which has been thoroughly investigated in both phi-
losophy and psychophysical studies of perception. In practice,
“we are always seeing objects we have never seen before at the
sensation level, while we perceive familiar objects everywhere
at the perception level” [19].

This information gap is also related to the inherent ill posed-
ness of inductive inference. Starting from classical philosophy
to end up with machine learning, it is well known that the
general notion of inference (learning) comprises two types of
learning mechanisms known as “induction [i.e., progressing
from particular (e.g., training data) to general cases (e.g., es-
timated dependence or model)],” therefore called bottom–up,
fine to coarse, data driven, or learning by example, and “deduc-
tion [i.e., progressing from general (e.g., model) to particular
cases (e.g., output values)],” therefore called top–down, coarse
to fine, model driven, or learning by rule [33]. In particular,
“induction amounts to forming generalizations from particular
true facts. This is an inherently difficult (ill-posed) problem,
and its solution requires a priori knowledge in addition to data”
[33, p. 39].

To summarize, the ill-posed primary objective of any bio-
logical or artificial IUS is to construct one or more plausible
symbolic structural descriptions of the (3-D) scene depicted in a
(2-D) image by means of a combination of inductive
(bottom–up, fine to coarse, data driven, and learning by ex-
ample) and deductive (top–down, coarse to fine, model driven,
and learning by rule) inference mechanisms capable of filling
in the well-known information gap between 1) the intrinsically
insufficient subsymbolic (sensory, quantitative, and asemantic)
information (features) extracted from the image, namely, points
and regions or region boundaries, i.e., edges, and 2) sym-
bolic (linguistic, qualitative, abstract, and semantic) persistent
(stable) percepts (concepts, terms, classes of (3-D) objects,
(3-D) object models, or templates) representing (prior) knowl-
edge about the real (3-D) world, called the world model [19].

B. Radiometric Calibration and Atmospheric Correction

In spite of being regarded as common knowledge in the
RS community, the issue of radiometric calibration, i.e., the

transformation of dimensionless DNs into a physical unit of
measure related to a community-agreed radiometric scale, is
often neglected in literature and surprisingly ignored by RS
scientists, practitioners, and institutions involved with common
practice including large-scale spaceborne image mosaicking
and mapping [24], [34]–[36]. Since LSRC (discussed in further
Section II-D) requires as input an MS image that is radiometri-
cally calibrated into TOARF or surface-reflectance values, the
latter being an ideal (atmospheric-noise-free) case of the for-
mer, the subject of radiometric calibration is further developed
in this section to make this paper self-contained.

Acknowledged by a significant portion of existing literature,
such as the international QA4EO guidelines (see Section I),
radiometric calibration achieves the following objectives.

1) It ensures the harmonization and interoperability of mul-
tisource observational data and derived products required
by international programs such as the ongoing GEOSS
and GMES projects [5], [6], [8].

2) It makes RS data well behaved and well understood
[34], which paves the way for automating the quantitative
analysis of EO data [26], [37], as underlined by this paper
(refer to Sections I and II-D).

Radiometric calibration comprises a sequence of three steps.
1) Linear transformation of DNs into TOA radiance

(TOARD) values ≥ 0 [12]. This first calibration step is
also known as absolute radiometric calibration [38].

2) Nonlinear transformation of TOARD values into TOARF
values belonging to range [0, 1].

3) When atmospheric effects are taken into account, trans-
formation of either TOARD or TOARF values into
surface radiance L values ≥ 0 or surface-reflectance ρ
values belonging to range [0, 1], respectively. Unfortu-
nately, the problem of atmospheric correction is typically
ill or poorly posed. Consequently, it is very difficult to
solve and requires user’s supervision to make it better
posed [12].

These three preprocessing steps are discussed hereafter.
Absolute radiometric calibration [38] is the linear transfor-

mation of a pixel value DN(n, b) ≥ 0, with n = 1, . . . , N
and b = 1, . . . , Bnd, where N is the total number of pixels
and Bnd is the number of spectral channels (bands), into
a TOARD(n, b) value ≥ 0, expressed in a radiometric unit
of measure, either [W/(m2 × sr × μm)] (e.g., in the Landsat,
Satellite Pour l’Observation de la Terre (SPOT), Advanced
Spaceborne Thermal Emission and Reflection Radiometer
(ASTER), and QuickBird optical sensors) or [mW/(cm2 ×
sr × μm)] (e.g., in the IKONOS and Indian Remote Sensing
Satellite (IRS) optical sensors) [12], as a function of the gain
G(b) ≥ 0 and offset O(b) ≥ 0 calibration parameters for band
b = 1, . . . , Bnd, to be retrieved from the RS image metadata
file. For example, in the case of SPOT-1/-5 imagery [39]

0 ≤ TOARD(n, b) = [DN(n, b)/G(b)] + O(b),

n = 1, . . . , N ; b = 1, . . . , Bnd (1.1)

where the gain and offset parameters are identified, respec-
tively, as “〈PHYSICAL_GAIN〉” and “〈PHYSICAL_BIAS〉”
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in the SPOT metadata digital image map (DIMAP) file
format.

The model for obtaining dimensionless true terrain re-
flectance ρ(n, λ, t, lat, long) ∈ [0, 1] from the spectral radiance
at the sensor’s aperture TOARD(n, λ) may be expressed as
follows [40]:

ρ(n, λ, t, lat, long)

=
π · d(t)2 ·

(
TOARD(n,λ)−La(λ)

τuw(λ)

)

ESUN(λ) · cos (θz(t, lat, long)) · τdw(λ) + Ed(n, λ)
∈ [0, 1], n = 1, . . . , N (1.2)

where λ is the electromagnetic wavelength, (lat, long) is
the pixel position in geographic coordinates, and d(t) is the
Earth–Sun distance in astronomical units to be interpolated
from values found in literature as a function of the viewing
day and time t transformed into a Julian day value in the
range {1, 365} such that d(t) approximately belongs to range
1 ± 3.5% [41]. La(λ) ≥ 0 is the atmospheric upwelling radi-
ance scattered at the sensor by the atmosphere (called airlight
[42], equivalent to an additive term to be assessed by dark-
object subtraction techniques: If, by definition of a dark object,
ρ = (1.2) = 0, then the unknown variable La is equal to the
measured TOARD value [43]). Ed(n, λ) ≥ 0 is called diffuse
irradiance at the surface [40], ambient light, or indirect illumi-
nation [44] it contains no information on the surface properties
of the pixel and comprises two components.

1) In nonflat terrain areas, light is reflected from other
objects (e.g., adjacent slopes in rugged terrain) before
being reflected from the pixel under consideration. This
first component is called reflected terrain radiance and is
null in flat terrain [44].

2) In both flat and rugged terrain, radiation is reflected from
the neighborhood of the pixel under consideration, and
next, it is scattered by the atmosphere into the viewing
direction. This second component is called skylight [42]
or adjacency radiance [44].

Overall, Ed(λ) changes with wavelength and can provide a
relevant contribution to incident radiance [40], [43]. τuw(λ) ∈
[0, 1] and τdw(λ) ∈ [0, 1] are the path atmospheric trans-
mittances of the upwelling (ground-surface–sensor path) and
downwelling (Sun–ground-surface path) flows, respectively.
ESUN(λ) is the mean solar exoatmospheric (TOA, planetary)
irradiance found in literature [41] (e.g., in the SPOT meta-
data DIMAP file format, parameter ESUN(λ) is identified
as “〈SOLAR_IRRADIANCE_VALUE〉”), θz ∈ [0, 90◦] is the
Sun’s zenith angle in degrees, typically provided in the image
metadata file or computed from the data acquisition time t and
per scene or pixel-based lat–long coordinates, and the term
[ESUN(λ) cos(θz)] is called sunlight [42] or direct illumina-
tion [44] and represents the only radiation component reflected
from the pixel under consideration that contains “pure” infor-
mation on the surface properties of the pixel.

In (1.2), atmospheric effects are modeled by atmospheric
parameters τuw(λ) ∈ [0, 1], τdw(λ) ∈ [0, 1], and La(λ) ≥ 0. To
retrieve these atmospheric parameters, ancillary data (summary
statistics), rarely available in practice, should be collected at
several locations within the RS image footprint at the time

of RS image acquisition. This means that the problem of
atmospheric correction is typically ill or poorly posed. Conse-
quently, it is very difficult to solve and requires user’s super-
vision to make it better posed [12]. In practice, these authors
have observed that RS images radiometrically calibrated into
ρ values by several EU institutions mentioned hereafter in this
paper are affected by spectral distortion causing scene-derived
surface-reflectance spectra to disagree with reference surface-
reflectance signatures found in existing literature (e.g., refer
to [80, p. 273]) or in public domain spectral libraries such as
the U.S. Geological Survey (USGS) mineral and vegetation
spectral libraries, the Johns Hopkins University spectral library,
and the Jet Propulsion Laboratory mineral spectral library
[12], [73].

A reduction in interscene variability across time, space, and
sensors can be achieved by a simplification of (1.2) into dimen-
sionless TOARF values belonging to the range [0, 1]. Starting
from (1.2), TOARF values are computed as a function of the
electromagnetic wavelength for spectral band b = 1, . . . , Bnd,
by considering the following: 1) atmospheric effects negligi-
ble, such as for relatively “clear” scenes where τuw(λ) ≈ 1,
τdw(λ) ≈ 1, and La(λ) ≈ 0 [40], [43], and 2) flat and nonflat
neighboring terrain effects negligible, i.e., Ed(λ) ≈ 0 [40].
Thus, (1.2) becomes

TOARF (n, b, t, lat, long)

=
π · d(t)2 · TOARD(n, b)

ESUN(b) · cos (θz(t, lat, long))
∈ [0, 1],

n = 1, . . . , N ; b = 1, . . . , Bnd. (1.3)

Although often overlooked by RS scientists and practition-
ers, it is well known in existing literature that the radiometric
calibration of DNs into TOARF = (1.3) values features sev-
eral advantages over radiometric calibration into TOARD =
(1.1) values.

1) The former is recommended before calculating various
vegetation indexes (VIs) [45]. In fact, while the relation-
ships between the leaf area index (LAI) and a great va-
riety of well-known VIs calculated from TOARD values
are nonlinear, the relationships between LAI and the same
vegetation indexes calculated from TOARF are, in several
cases, reasonably linear.

2) By accounting for seasonal and latitudinal differences
in solar illumination, the former guarantees better in-
terimage comparability/interpretation (classification and
mapping) across time, space, and sensors [46], [47],
which is in line with the goals of EO data harmonization
and interoperability required by the GEOSS and GMES
programs.

3) The former is more consistent with the scenario of
low- and high-level image-processing capabilities to be
developed onboard future intelligent fourth-generation
EO satellites (FIEOSs) [48], [49]. The development
of FIEOSs, where onboard integration of sensors, data
processors, and communication systems is pursued,
should become a major scientific challenge to the RS
community within the next ten years [48].
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It is noteworthy that, when the diffuse irradiance at
the surface is omitted, i.e., Ed(λ) ≈ 0, then ρ|Ed(λ)≈0 =
(1.2)|Ed(λ)≈0 = f1(TOARD)|Ed(λ)≈0 can be expressed as
ρ|Ed(λ)≈0 = f2(TOARF ) as follows:

ρ(n, λ, t, lat, long)
∣∣
Ed(λ)=0

∈ [0, 1]

=TOARF (n, b, t, lat, long)· 1
τuw(λ)·τdw(λ)

− π ·d(t)2

ESUN(λ)·cos (θz(t, lat, long))
· La(λ)
τuw(λ)·τdw(λ)

=(1.3)·AtmphEffct1(λ)

− π ·d(t)2

ESUN(λ)·cos (θz(t, lat, long))
·AtmphEffct2(λ),

n=1, . . . , N ; b=1, . . . , Bnd (1.4)

where TOARF (n, b, t, lat, long) = (1.3) ∈ [0, 1],
AtmsphEffct1(λ) = {1/[τuw(λ) · τdw(λ)]} ≥ 1, and
AtmsphEffct2(λ)={La(λ)/[τuw(λ)·τdw(λ)]}≥La(λ)≥0.
Vice versa

TOARF (n, b, t, lat, long)
∣∣
Ed(λ)=0

∈ [0, 1]

=ρ(n, λ, t, lat, long)
∣∣
Ed(λ)=0

·[τuw(λ)·τdw(λ)]

+
π ·d(t)2

ESUN(λ)·cos (θz(t, lat, long))
·La(λ)

=
(1.2)

∣∣
Ed(λ)=0

AtmphEffct1(λ)

+
π ·d(t)2

ESUN(λ)·cos (θz(t, lat, long))
·AtmphEffct2(λ)
AtmphEffct1(λ)

,

n=1, . . . , N ; b=1, . . . , Bnd. (1.5)

Equation (1.4) shows that, if flat and nonflat neighboring
terrain effects are negligible, i.e., Ed(λ) ≈ 0, then the following
are true.

1) For a clear sky condition, when τuw(λ) ≈ 1, τdw(λ) ≈
1, and La(λ) ≈ 0 [40], [43], AtmsphEffct1(λ) ≈ 1
and AtmsphEffct2(λ) ≈ 0; thus, ρ=(1.2) ≈ (1.4) ≈
TOARF=(1.3) ≈ (1.5), i.e., surface-reflectance ρ values
can be computed from TOARF values when atmospheric
effects are a) accounted for, i.e., scene-specific pa-
rameters τuw(λ), τdw(λ), and La(λ) are retrieved
from ancillary data or b) considered negligible. In
other words, if Ed(λ) ≈ 0, then TOARF = (1.3) ≈
(1.5) ⊇ ρ = (1.2) ≈ (1.4). Intuitively, if Ed(λ) ≈ 0,
then TOARF (λ) ≈ ρ(λ) + AtmsphNoise(λ), where
term AtmsphNoise is zero for a clear sky condition.
This (obvious) concept will be further recalled by the
automatic LSRC system, described in Section II-D, and
the integrated SRC system of systems, described in
Section III, to be adopted as the automatic preliminary
classification first stage of a two-stage stratified hierar-
chical RS-IUS instantiation (refer to Section II-C3c).

2) If Ed(λ) = 0, when atmospheric effects are omit-
ted (ignored) independent of wavelength λ, i.e.,
AtmsphEffct1(λ) = 1 and AtmsphEffct2(λ) = 0
such that ρ=(1.2)=(1.4)=TOARF = (1.3) = (1.5),
numerical effects of the two simplified atmospheric
terms 1 ≤ AtmsphEffct1(λ) = 1 and 0 ≤ La(λ) ≤

AtmsphEffct2(λ) = 0 tend to counterbalance each
other, i.e., in (1.4), the first approximation causes an
underestimation of the true ρ value, whereas the second
approximation does the opposite. Across wavelengths,
this property improves the effectiveness of TOARF as an
estimator of the true ρ values.

3) When wavelength λ increases, TOARF provides a better
approximation of ρ. It is well known that light scattering
due to atmospheric conditions (haze, consisting of gas
molecules and water droplets) and aerosols (consisting
of liquid droplets and solid particles suspended in the
atmosphere and generated by either natural or anthro-
pogenic sources) is inversely proportional to the energy
wavelength λ, i.e., shorter wavelengths of the spectrum
are scattered more than the longer wavelengths [46].
Thus, a visible blue (B) channel is affected by scat-
tering across all atmospheric conditions ranging from
“very clear” (where scattering is proportional to a factor
λ−4) to “very hazy” (where scattering is proportional to
a factor λ−0.5) and cloudy (where complete scattering
occurs, proportional to a factor λ0) [43]. On the contrary,
in the medium-infrared (MIR) wavelengths, the amount
of atmospheric scattering is known to be “quite small
except for very hazy atmospheres and can be consid-
ered negligible” [43, p. 476]. In these various com-
binations of atmospheric conditions with wavelengths
ranging from very clear and clear atmosphere with vis-
ible wavelengths to any atmospheric condition occurring
with the MIR portion of the electromagnetic spectrum
unless it is very hazy, atmospheric effects can be omit-
ted (ignored), i.e., 1 ≤ AtmsphEffct1(λ) = 1 and 0 ≤
La(λ) ≤ AtmsphEffct2(λ) = 0, such that, if Ed(λ) =
0, then ρ = (1.2) = (1.4) = TOARF = (1.3) = (1.5).

C. RS-IUS Models and Implementations

This section reviews the model (architecture) design princi-
ples and inference (learning) mechanisms adopted by existing
RS-IUSs. The goal of this survey section is to provide an LSRC
and its original downscaled versions presented in Section III
as the core of this paper with a suitable RS-IUS architecture
eligible for use in operational satellite-based measurement
systems such as those envisaged by the GEOSS and GMES
programs.

1) Multiagent Hybrid RS-IUS Architecture: Multiagent hy-
brid RS-IUSs provide application-specific combinations of in-
ductive and deductive inference mechanisms. A multiagent
hybrid RS-IUS comprises the following modules (see Fig. 1).

1) (3-D) Scene domain knowledge (world model, refer to
Section II-A) [19]. It is represented with semantic or
concept nets defined as graphs, either directed or nonori-
ented, either cyclic or acyclic, consisting of nodes linked
by edges. Nodes represent concepts, i.e., classes of ob-
jects in the world, while edges represent relations (e.g.,
PART-OF, A-KIND-OF, spatial relations [either topologi-
cal, such as adjacency, inclusion, etc., or non-topological,
such as metric distance and angle], and temporal transi-
tions) between nodes [50], [97].
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Fig. 1. Multiagent hybrid systems for RS image understanding (derived from
[19, p. 36, Fig. 2.1]).

2) A Low-Level Vision Expert (LLVE) [19]. In general,
an LLVE can be applied either imagewide or within a
local image area specified by a Specialized Object Model
Selection Expert [(SOMSE); see the following item]
[19]. LLVE includes a battery of low-level subsymbolic
(asemantic) general-purpose domain-independent
inductive-learning (fine-to-coarse and bottom–up)
driven-without-knowledge inherently ill-posed image-
processing algorithms working at the signal level
(data driven). This set of low-level image-processing
algorithms may comprise edge-preserving noise filtering
[51], [52], either intensity- or color-based region/edge
detection [30], [53], texture-based region/edge detection,
region growing [54], region extraction from not-close
contours [55], etc. For simplicity’s sake, all these image-
processing operators are hereafter called segmentation
[19]. As output, the image-segmentation first stage
provides image features, namely, points and regions
(segments, (2-D) objects, and blobs [32], [56], [57]) or,
vice versa, region boundaries, i.e., edges, provided with
no semantic meaning.

3) A high-level interpretation second stage employing a
combination of top–down (model-driven) and bottom–up
(data-driven) inference mechanisms to establish the cor-
respondence between subsymbolic (2-D) image features
extracted from the image domain and symbolic (3-D)
object models stored in the world model to construct
plausible structural (semantic) descriptions of the de-
picted scene (refer to Section II-A). The combination
of top–down with bottom–up inference strategies [19]
a) provides better conditions for an otherwise ill-posed
driven-without-knowledge segmentation first stage and
b) allows one to restrict intensive processing to a small
portion of the image data, analogously to a focus of
visual attention in preattentive biological vision [101]–
[103]. The high-level processing second stage comprises
[19] the following: 1) a Spatial Reasoning Expert (SRE)
whose aim is to trigger the instantiation, within a candi-
date local area, of plausible generic (3-D) object models
found in the available world model, e.g., a house, and

2) a SOMSE which uses domain-dependent knowledge
about specific applications to perform the following:
a) prune the search space of specialized (3-D) object
models (e.g., rectangular house, L-shaped house, etc.)
linked by A-KIND-OF relations to the generic target
(3-D) object model (e.g., house) provided by SRE;
b) transform the 3-D appearance properties of the special-
ized object model into a selected set of 2-D appearance
properties based on the imaging sensor model; c) trans-
form a target spatial relation in fuzzy terms (e.g., in front
of) provided by SRE into a local area based on a trial-
and-error heuristic search with no concrete theoretical
basis; and d) provide a consistency examination between
quantitative absolute image features collected by LLVE
in a local area and the target 2-D appearance constraints.
In other words, the 2-D appearance properties must be
satisfied by image features extracted by LLVE from a
local area. Since the image structure in a local area is very
simple compared with that of the entire image, image
feature extraction performed by an object model-driven
and locational constrained LLVE can be very efficient and
reliable compared with that performed by the same LLVE
which is run imagewide at the first stage [19, p. 41].

Multiagent hybrid systems typically suffer from two main
limitations.

1) In addition to the intrinsic insufficiency of image fea-
tures, e.g., due to occlusion (refer to Section II-A), these
systems are affected by the so-called artificial insuffi-
ciency caused by the inherent ill posedness of the image-
segmentation problem. This means that, in RS common
practice, any first-stage image-segmentation algorithm is
simultaneously affected by both omission and commis-
sion segmentation errors. It is noteworthy that, although
the inherent ill posedness of image segmentation is ac-
knowledged by a reasonable portion of existing litera-
ture [19], [58]–[60], this is often forgotten by a large
segment of the RS community where, literally, dozens
of “novel” segmentation algorithms are published each
year [9].

2) Semantic nets lack flexibility and scalability to cope with
the users’ changing needs, i.e., they are unsuitable for
commercial RS image-processing software toolboxes and
remain limited to scientific applications.

Examples of multiagent hybrid RS-IUSs found in exist-
ing literature are the blackboard model [61], SIGMA [19],
ACRONYM [62], SPAM [63], AIDA [50], and ERNEST [64].

2) Two-Stage Segment-Based RS-IUS Architecture: Since
the mid-1980s, increasing awareness of the serious drawbacks
affecting ordinary top–down model-driven decision-tree clas-
sifiers developed by the symbolic artificial intelligence [65],
namely, intrinsic lack of flexibility (i.e., rules do not adapt to
change and the knowledge base may soon become obsolete) and
scalability (i.e., rule-based systems are impractical for complex
problems), urged RS scientists and practitioners to find adaptive
solutions to their changing needs (also refer to Section II-C1).
To date, in RS common practice and in commercial RS image-
processing software toolboxes [11], a two-stage segment-based
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Fig. 2. Two-stage segment-based RS-IUS architecture adopted, for ex-
ample, by the eCognition commercial software toolbox [11]. Preliminary
image simplification is pursued by means of an (ill-posed hierarchical)
image-segmentation approach which generates, as output, a segmented
(discrete) map, either single-scale or multiscale. Worthy of note is that first-
stage output subsymbolic informational primitives, namely, labeled segments
(2-D objects and parcels), e.g., segment 1, segment 2, etc., are provided with no
semantic meaning.

RS-IUS architecture (well known in existing literature as (2-D)
object-based image analysis (OBIA) [60]) has recently gained
remarkable popularity and is considered the state-of-the-art
[66], e.g., in VHR image understanding where geometric
attributes and spatial relationships are particularly important for
the recognition of man-made objects, such as buildings, roads,
and agricultural fields [19].

Unlike multiagent hybrid RS-IUSs, a two-stage segment-
based RS-IUS comprises an inherently ill-posed driven-
without-knowledge segmentation first stage in series with a
segment-based classifier unable to interact with the first-stage
segmentation to make it better posed. In particular, (see Fig. 2)
the two stages are as follows.

1) The inherently ill-posed driven-without-knowledge seg-
mentation first stage is as follows: a) affected by artificial
insufficiency which causes the simultaneous presence
of omission and commission segmentation errors (see
Section II-C1) and b) relies on segmentation parameters
to be user defined based on heuristics, i.e., it is difficult
to use. To reduce the number of empirical segmentation
parameters [98], commercial two-stage segment-based
RS-IUSs employ a multiscale (hierarchical) iterative seg-
mentation first stage [11]. As output, a hierarchical seg-
mentation algorithm generates multiscale segmentation
solutions in the hope that the target image will appear
correctly segmented at some scale. Unfortunately, the
quantitative multiscale assessment of segmentation qual-
ity indexes requires ground truth data at each scale that
are impossible or impractical to obtain in RS common
practice [67]. Therefore, the “best” segmentation map
must be selected by the user on an a posteriori basis from
the available set of multiscale segmentation solutions ac-
cording to heuristic, subjective, and/or qualitative criteria
analogous to those employed in the selection of prior
segmentation parameters. To conclude, the exploitation of
a hierarchical segmentation algorithm does not make the

driven-without-knowledge segmentation first stage easier
to use. In addition, hierarchical segmentation algorithms
are computationally intensive and require large memory
occupation.

2) A segment-based classification second stage can be im-
plemented either top–down (model driven), such as a
decision-tree classifier based entirely upon prior knowl-
edge of the (3-D) world [11], or bottom–up (data driven),
such as a supervised data learning classifier [29], [33],
[68]. In practice, under the guise of “flexibility,” two-
stage segment-based RS-IUS software toolboxes provide
RS experts and practitioners with overly complicated
options to choose from based on heuristics, i.e., they
are difficult to use [60]. In addition, the second-stage
classifier is unable to interact with the inherently ill-
posed driven-without-knowledge segmentation first stage
to make it better posed (see Section II-C1). Finally, as
input information primitives, the second stage classifier
employs subsymbolic (2-D) segments exclusively. This is
unnecessary and time consuming when pixel-based spec-
tral properties are sufficient for classification purposes.

To date, the conceptual foundation of OBIA, i.e., the rela-
tionship between inherently ill-posed subsymbolic (2-D) im-
age segments and symbolic (3-D) landscape objects, remains
affected by a lack of general consensus and research [60].

3) Two-Stage Stratified Hierarchical RS-IUS Architecture:
In recent years, Shackelford and Davis presented several im-
plementations of an original two-stage RS-IUS architecture
suitable for mapping VHR satellite images of urban areas [21],
[25], [26]. Starting from the customary distinction between a
model and the algorithm used to identify it [28], the family
of Shackelford and Davis RS-IUS implementations constitutes
an original subclass of the parent class of multiagent hybrid
RS-IUSs (see Section II-C1). This subclass is identified as the
two-stage stratified hierarchical RS-IUS architecture alternative
to the traditional two-stage segment-based RS-IUS model (see
Section II-C2).

a) Shackelford and Davis implementation: Suitable for
mapping a 1-m-resolution panchromatic (PAN)-sharpened MS
IKONOS image of urban areas, the Shackelford and Davis
two-stage RS-IUS implementation comprises, in cascade (see
Fig. 3), the following [21], [25], [26].

1) A pixel-based preliminary classifier implemented as a
supervised pixel-based plug-in (i.e., nonadaptive nonit-
erative) maximum likelihood (ML) classifier. It maps
each pixel into a discrete and finite set of semantic
labels. In place of ordinary land cover classes, these
labels identify land-cover-class sets [25], [26], i.e., “com-
bine” sets of primitive land cover classes. More specif-
ically, each class set is a logical OR combination of
primitive land cover classes affected by ML classifi-
cation confusion due to a significant amount of spec-
tral overlap. This is tantamount to saying that the ML
classification confusion between different class sets is
negligible, i.e., land-cover-class sets must be mutually
exclusive. In other words, the first-stage pixel-based
plug-in ML classifier implemented by Shackelford and
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Fig. 3. Two-stage stratified hierarchical RS-IUS implementation proposed by
Shackelford and Davis [21], [25], [26]. A preliminary spectral classification
first stage provides, as output, symbolic informational primitives featuring three
spatial types, namely, symbolic pixels in symbolic segments (2-D objects,
parcels, as connected sets of labeled pixels featuring the same label) in
symbolic strata (as image-wide sets of labeled pixels featuring the same label),
all provided with a symbolic (semantic) meaning (e.g., vegetation) easy to
understand by the application developer familiar with symbolic reasoning. In
this work, the plug-in pixel-based ML classifier, adopted by Shackelford and
Davis to instantiate the preliminary spectral classification first stage of a two-
stage stratified hierarchical RS-IUS architecture [21], [25], [26], is replaced by
a noniterative (one-pass) pixel-based fully automated decision-tree SRC system
of systems (refer to Section III).

Davis is well posed. Given the structural content of urban
scenes depicted in VHR spaceborne imagery, five class
sets are identified (see Fig. 3): a) either grass or tree;
b) either road or building or impervious surface; c) either
water or shadow; d) bare soil; and e) others (outliers,
e.g., clouds). In line with the Congalton requirements, this
classification scheme is mutually exclusive and totally
exhaustive [69, p. 12].

2) A battery of land-cover-class (3-D object model)-specific
(knowledge-driven) hierarchical classifiers incorporating
the “stratified” or “layered” approach which is typically
adopted in decision trees [18], [21], [25], [26]. This
battery consists of (see Fig. 3) the following: a) stratified
context-sensitive (e.g., texture) feature-extraction mod-
ules and b) stratified land-cover-class-specific fuzzy-
rule-based classification modules employing a
convergence-of-evidence mechanism.

b) Advantages of the two-stage stratified hierarchical
RS-IUS architecture: In comparison with the parent class of
multiagent hybrid RS-IUSs (refer to Section II-C1), the sub-
set class of two-stage stratified hierarchical RS-IUSs fea-
tures one major advantage. While primitive (2-D) objects
employed by the former are subsymbolic (asemantic) seg-
ments (e.g., segment 1, segment 2, etc.), the latter employs
primitive (2-D) objects comprising symbolic pixels in sym-
bolic segments in symbolic strata. In practice, by providing
RS application developers and domain experts with semantic
(symbolic) primitive (2-D) objects in the image domain, the
two-stage stratified hierarchical RS-IUS architecture facilitates
the instantiation of multiagent hybrid systems for RS image
understanding.

In comparison with the two-stage segment-based RS-IUS
architecture (refer to Section II-C2), the two-stage stratified hi-

erarchical RS-IUS model features several potential advantages
which are listed as follows.

1) A pixel-based preliminary classification first stage fea-
tures several advantages over a first-stage driven-without-
knowledge segmentation algorithm.
a) The former is not affected by the well-known uncer-

tainty principle according to which, for any contextual
(neighborhood) property, we cannot simultaneously
measure that property while obtaining accurate lo-
calization [67], [104]. In other words, by working
at the sensor SR, the pixel-based preliminary clas-
sification first stage offers a capability of detecting
small but genuine image details that is potentially
superior (at least not inferior) to that of any context-
sensitive inherently ill-posed segmentation algorithm.
In addition, by working at the sensor resolution, the
former mapping approach is SR independent.

b) As output, a pixel-based preliminary classifier iden-
tifies mutually exclusive class sets, hereafter called
spectral-based semiconcepts [105] that, by definition,
are affected by no spectral overlap. This is tantamount
to saying that a pixel-based preliminary classifier is
well posed and capable of removing any source of ar-
tificial insufficiency (uncertainty and unreliability) of
subsymbolic image features traditionally introduced
by a first-stage ill-posed driven-without-knowledge
segmentation algorithm (refer to Section II-C1). A
spectral-based semiconcept is a semantic conjecture
based solely on the per-pixel (noncontextual) color
(spectral, i.e., chromatic and achromatic) properties.
For example, if the “color” (spectral signature) of
a pixel is, for example, green/brown/blue/white in
the visible electromagnetic spectrum, then that pixel
is likely to belong to a spectral-based semiconcept,
equivalent to a color-based semantic conjecture, called
vegetation/bare soil or built-up/water/cloud or snow,
respectively, whose information granularity is equal or
coarser than that of its primitive land cover classes
(concepts in the (3-D) world) such as, for example,
forest or grassland both mapped onto spectral cat-
egory vegetation. In practice, spectral-based semi-
concepts are suitable for filling in the well-known
information gap (intrinsic insufficiency) between con-
cepts in the (3-D) scene and subsymbolic features in
the (2-D) image (refer to Section II-A). Since spectral-
based semiconcepts are affected by no spectral over-
lap, they are reliable (robust) and eligible for splitting
into their primitive land cover classes at a further
hierarchical RS data-processing level when additional
sources of contextual evidence (e.g., textural, morpho-
logical, etc.) are taken into consideration.

c) While driven-without-knowledge segmentation pro-
vides ill-posed image segments as subsymbolic
primitive (2-D) objects, a pixel-based preliminary
classification first stage generates as output symbolic
primitive (2-D) objects comprising symbolic pixels
in symbolic segments in symbolic strata. These three
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spatial types are not alternative, but they coexist and
can be selected according to the needs of the second-
stage battery of application-specific satellite-based
measurement systems (refer to the following).

2) In series with the preliminary image classification first
stage, a battery of second-stage stratified class-specific
hierarchical classification modules enforces a well-
known divide-and-conquer problem-solving approach
traditionally employed by decision-tree classifiers [18].
The idea of stratification is well known in statistics. For
example, in stratified sampling, the sampling frame is
divided into nonoverlapping groups or strata, e.g., geo-
graphical areas. A sample is taken from each stratum,
and when this sample is a simple random sample, it is
referred to as stratified random sampling. The advantage
is that “stratification will always achieve greater preci-
sion provided that the strata have been chosen so that
members of the same stratum are as similar as possible in
respect to the characteristic of interest” [70]. A possible
disadvantage is that identifying appropriate strata may
be difficult. The second-stage battery of stratified class-
specific hierarchical classification modules consists of the
following (see Fig. 3).
a) Stratified class-specific context-sensitive (e.g., tex-

ture, morphological, and geometric) feature-extraction
modules. For example, the stratified or layered ap-
proach is adopted to make an inherently ill-posed
segmentation algorithm better posed (locational con-
strained) [19]. In particular, a second-stage class-
specific stratified segmentation algorithm can be
employed when a target land cover class is character-
ized by salient geometric (morphological and shape)
properties to be computed segment based. This is typ-
ically the case of man-made objects, such as buildings,
roads, and agricultural fields, whose geometric at-
tributes are particularly important for their recognition
(see Fig. 3).

b) Stratified class-specific fuzzy-rule-based classification
modules employing constructive reasoning [19]. In
practice, constructive reasoning is pursued through
evidence accumulation (convergence of evidence) by
means of fuzzy membership functions (e.g., elon-
gatedness is high) and fuzzy operators (fuzzy-AND,
fuzzy-OR, etc.) [25], [26]. It is noteworthy that if–then
rules combining symbolic and subsymbolic sources
of evidence can be, first, easily modeled by a hu-
man domain expert who is naturally acquainted with
symbolic reasoning and, second, implemented seam-
lessly in a two-stage stratified hierarchical RS-IUS
architecture. For example, a ship detection rule can be
written in natural language by a human expert based
on the convergence of context-insensitive preliminary
automatically detected spectral-based symbolic strata
(see Section II-D) with geometric, morphological, and
spatial properties, either topological (e.g., adjacency)
or nontopological (e.g., spatial distance), as follows:
A (2-D) image segment detected by a well-posed seg-
mentation algorithm in the preliminary classification

map domain whose elongatedness is (fuzzy) high,
whose length is between 3 and 300 m (e.g., equivalent
to 3–300 pixels in a 1-m-resolution image), whose
spectral signature belongs to the bare soil or built-up
preliminary spectral category (refer to Section II-D),
and which is adjacent to a large water or shadow body
or in the vicinity of a large water or shadow body is
likely to belong to the (3-D) object class ship (refer
to Fig. 15 in Part II of this paper). It is noteworthy
that, in this example, spectral categories bare soil or
built-up and water or shadow are required as prelim-
inary semantic types whose levels of specialization
are inferior to that of the (3-D) object class ship in
a hierarchical decision-tree structure.

3) In a two-stage stratified hierarchical RS-IUS architecture,
the world model is twofold.

a) A first-stage world model stored in the pixel-based
preliminary classifier. It consists of spectral-based
semiconcepts described in terms of the terminology
defined in the (3-D) world (e.g., either water or
shadow).

b) A second-stage world model consisting of semantic
nets whose nodes [(3-D) object models] incorporate
the stratified or layered approach. This means that,
in addition to the 3-D appearance properties (e.g.,
the length of a ship is between 3 and 300 m), an
object model comprises, among its attributes, a list
of color-based semiconcepts equivalent to a model-
specific locational constraint based on color properties
(focus of attention by stratification, e.g., the spectral
signature of a ship belongs to the either bare soil or
built-up spectral category automatically detected in
the preliminary classification first stage).

These considerations imply that the degree of prior knowl-
edge required to complement the intrinsic insufficiency of
(2-D) image features (see Section II-A) embedded in the
two-stage stratified hierarchical RS-IUS model is superior
to that adopted by the two-stage segment-based RS-IUS
architecture (see Section II-C2). As a consequence, the former
RS-IUS architecture is eligible for finding a better solution to
the ill-posed image-understanding problem than the latter.

c) Enhanced two-stage stratified hierarchical RS-IUS
implementation: The main drawback of the two-stage stratified
hierarchical RS-IUS implementation proposed by Shackelford
and Davis is its request for supervised training data at every
hierarchical stage [21], [25], [26]. Unfortunately, the cost,
quality, and availability of adequate training labeled (reference)
samples are the most limiting factor on the applicability of
scene-by-scene inductive supervised data learning algorithms
(e.g., artificial neural networks [29], [33]) to RS data under-
standing problems whose input data set can be acquired across
time, space, and sensors (refer to Section I) [71].

To reduce to zero the need for supervised training data of
the plug-in ML classifier implemented by Shackelford and
Davis as the preliminary spectral classification first stage, the
fully automated LSRC system can be adopted instead (refer to
Section II-D).
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D. LSRC

Recently proposed to the RS community, LSRC is an au-
tomatic top–down per-pixel spectral prior-knowledge-based
decision-tree classifier requiring, as input, a radiometrically
calibrated seven-band Landsat-like image [20], [27], [72]. The
degree of novelty of LSRC is fivefold.

1) LSRC requires neither user-defined parameters nor ref-
erence data samples to map a radiometrically cali-
brated MS imagery acquired across time, space, and
sensors, such as the Landsat-4/-5 Thematic Mapper
(TM), the Landsat-7 Enhanced TM (ETM)+, the ASTER,
and the Moderate Resolution Imaging Spectroradiometer
(MODIS). Therefore, LSRC is termed “fully automated”
[106]. To the best of our knowledge, no multisource
multiresolution fully automated optical image mapping
system alternative to LSRC exists in RS literature.

2) LSRC is a pixel-based one-pass (noniterative) decision-
tree classifier that is not adaptive to data, i.e., LSRC
is model based (refer to Section I) where (3-D) object
models belonging to the (3-D) world model (refer to
Section II-A) rely upon prior spectral knowledge exclu-
sively. The LSRC prior spectral knowledge base consists
of decision rules generated from endmember collection
spectra extracted from a wide variety of real-world MS
satellite images that are radiometrically calibrated into
TOARF = (1.3) values rather than surface-reflectance
ρ = (1.2) values adopted by competing approaches in
the domain of RS spectral-pattern (shape) matching
[73]–[75], such as the Environment for Visualizing Im-
ages (ENVI), licensed by ITT Industries, Inc. [73], and
ATCOR3 [12]. It is noteworthy that, when indirect illumi-
nation is negligible, i.e., if Ed(λ) ≈ 0, then TOARF =
(1.3) ⊇ ρ = (1.4), the latter being an ideal case of the
former when atmospheric effects are considered negli-
gible (refer to Section II-A). Therefore, the reference
dictionary of endmember spectra in TOARF values em-
ployed by LSRC adopts well-known ground-measured
or library surface-reflectance spectra as a specific (ideal
and atmospheric-noise-free) case [12], [73]. This is tan-
tamount to saying that, in agreement with the QA4EO
initiative (see Section I), the only requirement of the
operational automatic LSRC is to employ, as input, a
well-behaved MS image radiometrically calibrated into
either TOARF = (1.3) or ρ = (1.2) values. As a con-
sequence, LSRC may benefit from, but requires no in-
herently ill-posed atmospheric-correction preprocessing
stage (refer to Section II-B). In other words, LSRC
considers atmospheric correction an optional MS image
preprocessing step unlike competing classification ap-
proaches employing surface-reflectance spectra, such as
ATCOR3 [12], for which the solution of the ill-posed
atmospheric-correction problem becomes mandatory. At
best [when it introduces no spectral distortion (refer to
Section II-B)], a mandatory atmospheric-correction stage
decreases the overall operational performance measure-
ment of an RS data product generation and delivery chain,
due to a decrease in the degree of automation, an increase

of costs required to gather ancillary data, and an overall
increase of timeliness (refer to Section I).

3) In LSRC, for each family of reference spectral signatures
in TOARF values (e.g., vegetation), a human spectral ana-
lyst employs an original two-step spectral signature mod-
eling procedure [27]. In particular, the spectral (pattern)
shape of the target family of reference signatures is mod-
eled in terms of, first, interband relations, e.g., band 1 ≥
band 2 with a 10% tolerance, i.e., band 1 ≥ (0.9 ∗ band 2)
and, second, per-band intensity/range of variation, e.g.,
band 1 is either high or medium. Worthy of note is that,
unlike LSRC, ordinary spectral-pattern (shape) matching
classifiers, such as the spectral angle mapper (SAM)
which is well known for its relative insensitiveness to illu-
mination and albedo effects [73]–[75], ignore intensities
of input data vectors. The aforementioned LSRC two-step
spectral signature modeling strategy generates, as output,
a two-layer hierarchy of fuzzy production rules (if–then
rules) per spectral category equivalent to a decision-
making mechanism based on accumulation of evidence
(convergence of evidence) [27]. In LSRC, accumulation
of evidence decreases the total amount of effort spent
in the search among alternative hypotheses of plausible
spectral-based semiconcepts and increases the reliability
of the constructive image understanding procedure.

4) LSRC automatically detects, as output, spectral-based
semiconcepts which, by definition, are affected by no
spectral overlap (refer to Section II-C3b). While (3-D)
land cover classes (e.g., deciduous forest) are provided
with a superior semantic meaning, but are difficult to
detect automatically, (2-D) spectral-based semiconcepts
(e.g., vegetation), which are provided with an inferior
semantic meaning, are detected automatically by LSRC
[27]. For example, LSRC maps every pixel-based seven-
band Landsat-like data vector onto a discrete and finite set
of 46 spectral categories belonging to six parent spectral
categories (supercategories) which are listed as follows
(according to their order of detection): a) cloud; b) either
snow or ice; c) either water or shadow; d) vegetation;
e) either bare soil or built-up; and f) outliers [27]. It is
worthy of note that each aforementioned spectral cate-
gory is named after the set of (3-D) land cover classes
providing the reference ensemble of spectral signatures
(refer to point 2) earlier in this paper) associated with
that spectral (color) behavior. For example, let us con-
sider the realistic case where, at the Landsat sensor-
specific spectral and spatial resolutions, LSRC assigns
a spectral-based semiconcept either bare soil or built-
up to unlabeled pixels depicting an instance of the (3-D)
object class (concept) ship (refer to Section II-C3b of this
paper and Fig. 15(a) in Part II of this paper). By assigning
a per-pixel MS data vector belonging to an instance of
the (3-D) class ship with a (2-D) color-based semicon-
cept either water or shadow, LSRC means that an input
unlabeled data vector looks like, i.e., shares the same MS
properties as, the family of reference spectral signatures
generated from the land-cover-class set either water or
shadow. By no means should this mapping occurrence
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Fig. 4. (a) Zoomed image of the city of Bologna, Italy, extracted from a
Landsat 7 ETM+ image (path 192, row 029, acquisition date: June 20, 2000),
radiometrically calibrated into TOARF values and shown in false colors [(R)
band TM5, (G) band TM4, (B) band TM1]. (b) Output map, shown in pseudo-
colors, generated by LSRC from the radiometrically calibrated image shown in
(a). Water and shadow areas are in blue, clouds are in white, snow and ice are in
light blue, vegetation types are in different shades of green, rangeland types are
in different shades of light green, and barren land types are in different shades of
brown and gray. (c) Binary mask showing, in white, spectral categories found in
(b) related to vegetated land covers. (d) “Intelligent” greenness index generated
from (a), masked by (c), whose value is exactly zero for nonvegetated surface
types.

be considered a classification error where an instance of
the (3-D) object class (concept) ship is (mis)labeled by
LSRC as belonging to the OR combination of (3-D) object
classes (concepts) bare soil and built-up.

5) In terms of operational performance, LSRC scores high.
According to [27], it can be considered as follows:
a) fully automated (see earlier discussion); b) accurate
(see Fig. 4); c) near real time (e.g., it requires approx-
imately 5 min to process a Landsat scene on a desktop
computer provided with a dual-core Pentium processor);
d) robust to changes in the input image acquired across
time, space, and sensors; e) capable of providing a pre-
liminary classification map whose semantic granularity
is much finer than that provided by the ML first stage
of the Shackelford and Davis RS-IUS implementations
(see Section II-C3a); and f) not affected by the well-
known salt-and-pepper classification noise effect which
traditionally affects ordinary pixel-based classifiers, i.e.,
LSRC is successful in modeling the within-stratum vari-
ance. These functional attributes make LSRC eligible
for use as the preliminary pixel-based classification first
stage in a two-stage stratified hierarchical RS-IUS archi-
tecture (see Section II-C3c). This means that, in a two-

stage stratified hierarchical RS-IUS instantiation (see
Fig. 3) employing LSRC as its pixel-based preliminary
classification first stage, second-stage traditional algo-
rithms capable of learning from either unlabeled or
labeled data, such as unlabeled data clustering and
image-segmentation algorithms, which incorporate the
stratified or layered approach are expected to perform
better than or the same as their traditional nonstratified
counterparts. This is tantamount to saying that an op-
erational automatic LSRC system is preliminary and by
no means alternative to traditional algorithms capable
of learning from either unlabeled or labeled data (e.g.,
the spectral-pattern matching classifier SAM [73]–[75]),
which can be enhanced by incorporating the stratified or
layered approach.

To conclude, by mapping an MS image into a discrete and
finite set of color-based semiconcepts [see point 4) earlier] at a
degree of user’s supervision equaling zero [see point 1) earlier]
and in near real time [see point 5) earlier], LSRC reverses
the meaning of a well-known observation, namely, one image
(featuring a high degree of nonsymbolic pictorial information)
is worth a million words (which, instead, are useful in symbolic
reasoning). The high degree of novelty of LSRC proves that,
in computer vision, one (2-D) symbolic information primitive
(semiconcept) in the image domain is worth a thousand sub-
symbolic image features, namely, points and regions or region
boundaries, i.e., edges.

Among existing commercial software toolboxes, the popular
ATCOR3 classifier [12], which exploits a traditional endmem-
ber collection spectra in surface-reflectance ρ values, can be
considered a realistic semiautomatic alternative to the opera-
tional automatic LSRC system. In ATCOR3, the pixel-based
spectral classification of the reflectance cube (SPECL) is based
upon template spectra at the Landsat TM reference wavelengths
(i.e., 0.48, 0.56, 0.66, 0.83, 1.6, and 2.2 μm). Families of
template spectra represent land cover classes such as bright
sand, sand/bare soil, asphalt/man-made, green vegetation, yel-
low vegetation, dark vegetation, and water. If the pixel-based
spectral reflectance signature agrees within a 10% margin at the
reference wavelengths with one of the class template spectra,
then that pixel is labeled with that class index; otherwise, it is
assigned to class unknown. It is noteworthy that, unlike LSRC,
SPECL is input with a spaceborne MS image preprocessed as
follows.

1) The raw DNs are transformed into TOARD values based
on the radiometric calibration metafile.

2) TOARD values are transformed into surface-reflectance
values after an empirical atmospheric-correction stage
where the user selects a combination of the following:
a) an atmosphere (visibility in kilometers or, vice versa,

optical depth, e.g., a summer atmosphere);
b) an aerosol (e.g., maritime/rural/urban/desert aerosol);
c) a water vapor column (in centimeters, e.g., tropical

conditions/midlatitude summer/dry summer, spring,
or fall/dry desert or winter).

3) An empirical bidirectional reflectance distribution func-
tion effect correction stage, equivalent to an empirical
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TABLE I
SPECTRAL RESOLUTION OF THE LANDSAT-5 TM AND LANDSAT-7 ETM+ SENSORS IN COMPARISON WITH

SPECTRAL RESOLUTIONS OF THE ASTER TERRA AND MODIS SATELLITE SENSORS

nonstratified topographic correction [20], where a pixel-
based illumination angle is computed as a function of the
following: a) a digital elevation model and b) the solar
zenith angle.

To summarize, LSRC totally differs from ATCOR3 in the
following: 1) the physical unit of endmember collection spectra
(respectively, TOARF versus ρ values); 2) the semiautomatic
ill-posed atmospheric-correction preprocessing stage (optional
for the former and compulsory for the latter); and 3) the clas-
sification stage (consisting of a two-stage decision-tree classi-
fier in the former [refer to point 3) in the earlier discussion]
and a metrological measure of vector pair matching in the
latter).

III. DOWNSCALED LSRC SYSTEM IMPLEMENTATIONS

When both past and ongoing EO satellite optical missions
are taken into consideration, existing literature considers the
Landsat-5 TM and Landsat-7 ETM+ combination of spatial
and spectral resolutions fine enough for addressing most of
the environmental and ecological problems [74]. A significant
portion of the RS community considers the Landsat data of
such a tremendous scientific utility as to urgently require a
follow-on mission to Landsat-75 [2, p. 451]. In agreement with

5Launched in April 1999, Landsat-7 ETM+ continues to acquire data glob-
ally. The Scan Line Corrector failure in April 2003 has affected ground cover-
age and the switch to Bumper Mode operations in April 2007 has degraded the
internal geometry accuracy of the data, but the radiometry has been unaffected.
Launched in March 1984, Landsat-5 TM continues to acquire global data. A
technical failure of one of the transmitters in 1987 means that only data acquired
within an acquisition circle of a ground station can be downlinked. The TM
scanner was switched to Bumper Mode operations in April 2002 which has
degraded the internal geometry accuracy of the data, but the radiometry has
been unaffected [76]. A major system failure of the Landsat-5 TM mission is
considered very likely to occur within the year 2010 [107].

this portion of the RS community, both LSRC and ATCOR3
adopt the Landsat spectral resolution as a community-agreed
reference standard (refer to Section II-D) [27].

To be input with RS images acquired by spaceborne and
airborne data sources (identified hereafter as “slave” sensors)
different from the Landsat sensor series (identified as the refer-
ence standard or “master” sensor), it is possible to perform the
following.

1) Upscale the LSRC rule set to MS images, radiometrically
calibrated into TOARF values, whose spectral resolution
is superior to Landsat’s, e.g., MODIS (250-, 500-, and
1000-m SR), ASTER (15–30-m SR), and aerial hyper-
spectral sensors such as the Specim AISA DUAL, the
Itres SASI 600 and CASI 1500, and the Galileo Avionica
SIM-GA (refer to Table I).

2) Apply LSRC as it is to MS images, radiometrically cali-
brated into TOARF values, featuring the Landsat spectral
resolution, e.g., CBERS-2B (20-m SR; unfortunately,
CBERS-2B is affected by serious radiometric calibration
problems).

3) Downscale the LSRC rule set to MS images, radiomet-
rically calibrated into TOARF values, whose spectral
resolution is inferior to Landsat’s, i.e., when one or more
Landsat spectral bands are not present [e.g., SPOT-4/-5
(refer to Table II)].

In practice, to find a correspondence between the master and
the slave spectral response sensitivity curve, each individual
Landsat band must be mapped onto bands of the slave sensor,
if any. Two mapping cases occur.

1) Across the target Landsat spectral bandwidth, the spectral
response of the slave sensor is equal to zero. In this case,
the target Landsat band is removed from the downscaled
LSRC rule set.
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TABLE II
SPECTRAL RESOLUTION OF THE LANDSAT-5 TM AND LANDSAT-7 ETM+ SATELLITE SENSORS IN COMPARISON WITH THE SPECTRAL RESOLUTIONS OF

THE SPOT-4 HRVIR, SPOT-5 HRG, SPOT-4/-5 VMI, ENVISAT AATSR, NOAA AVHRR, AND MSG SATELLITE SENSORS

2) The Landsat band-specific spectral response sensitivity
curve can be approximated by a linear combination
of the slave band-specific spectral response sensitivity
curves (e.g., refer to Table I). Since a spectral response
sensitivity curve determines the amount of at-sensor
radiance TOARD = (1.1) and, as a consequence, at-
sensor reflectance TOARF = (1.3), the approximation
of the Landsat band-specific sensitivity curve introduces
an approximation of the reference TOARF values. To be
considered negligible by the downscaled LSRC version,
this approximation must fall below the band-specific
range of spectral change assigned by LSRC to each
spectral category (refer to Section II-D). If this approx-
imation is within tolerance, then 1) the selected linear
combination of bands in the slave image is performed
in the calibration preprocessing phase, i.e., before run-
ning the downscaled LSRC version, and 2) the target
Landsat band is maintained in the downscaled LSRC
rule set.

In comparison with LSRC, capable of detecting 46 spec-
tral categories [27], a downscaled LSRC version affected by
the loss of one or more Landsat bands may be affected
by the following: 1) a loss of spectral indexes [e.g., VI,
bare soil index, etc. (refer to Section V)] and their fuzzy
sets (e.g., VI is high, medium, or low) that cannot be com-
puted (refer to Table III in [27]); 2) a loss of so-called
spectral rules [e.g., band 1 ≥ (0.9 ∗ band 2)] that cannot
be computed or coincided (refer to Table IV in [27]); and
3) a loss of spectral categories [e.g., either snow or ice (refer
to Section II-D)] that cannot be computed or coincided (refer to
Table V in [27]).

Let us identify the seven Landsat-like bands employed
as input by LSRC as follows: ETM1 for visible B (0.45–
0.52 μm), ETM2 for visible green [(G); 0.52–0.60 μm], ETM3
for visible red [(R); 0.63–0.69 μm], ETM4 for near IR [(NIR);
0.76–0.90 μm], ETM5 for MIR1 (1.55–1.75 μm), ETM7 for

MIR2 (2.08–2.35 μm), and ETM6 for thermal IR [(TIR);
10.4–12.5 μm] (refer to Table I). Starting from [27], where
enough information is provided to the reader for the seven-band
LSRC implementation to be reproduced, the five downscaled
versions of LSRC suitable for employing, as input, an MS
image, radiometrically calibrated into TOARF values, acquired
by almost any of the existing or future planned satellite optical
imaging sensors (for example, refer to Tables I and II) whose
spectral resolution overlaps with, but is inferior to Landsat’s,
can be implemented as follows.

1) Four-band SPOT-like SRC (SSRC). The four spectral
channels are G, R, NIR, and MIR1. The removed Landsat
bands are B, MIR2, and TIR.
a) The target satellite sensors are the SPOT-4 High

Resolution Visible and IR (HRVIR) (MS: 20-m SR,
PAN: 10-m SR), SPOT-5 High Resolution Geomet-
ric (HRG) (MS: 10-m SR, PAN: 2.5 ÷ 5 m SR),
SPOT-4/-5 Vegetation Monitoring Instrument (VMI)
(1.1-km SR), the IRS-1C/-1D Linear Imaging Self-
Scanner (LISS)-III (23.5-m SR), IRS-P6 LISS-III
(23.5-m SR), and IRS-P6 Advanced Wide Field
Sensor (AWiFS) (56-m SR).

b) The number of SSRC output spectral types reduces
from 46 to 32, approximately equal to a 30% loss with
respect to LSRC’s.

c) The expected effects of the loss in spectral resolution
are the following.
i) The loss of the B channel is expected to decrease

the capability of detecting haze, smoke plumes, and
water types [43], [46]. For the remaining spectral
categories, the weights of the B channel are low
in the LSRC decision-rule set to be insensitive to
atmospheric effects (refer to Section II-B) [27], i.e.,
the importance of the B channel is not relevant
in LSRC excluding the detection of classes haze,
smoke plumes, and (in part) water.
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TABLE III
IN THE x-AXIS: EQUIDISTANT BAND INDEXES MONOTONICALLY INCREASING WITH SPECTRAL WAVELENGTH, FROM VISIBLE B TO MIR (ALSO

REFER TO TABLES I AND II). IN THE y-AXIS: TOARF VALUES IN RANGE [0, 1] × 100 OF OPEN-SEA-WATER SPECTRAL SIGNATURES EXTRACTED

FROM THE SAME SEA WATER REGION OF INTEREST LOCATED ACROSS THE FOUR RS IMAGES SHOWN IN FIGS. 8(A), 9(A), 10(A) AND 11(A). ABOUT

THE ADOPTED NOTATION, ETM1 IDENTIFIES A LANDSAT-7 ETM+ BAND 1-LIKE IMAGE, AND SO ON, UP TO BAND ETM7, RANGING FROM VISIBLE B
TO MIR, WHEREAS BAND ETM6, DEALING WITH THE TIR, IS OMITTED. FOR EXAMPLE, A SPOT-2/-5 BAND 1 IS APPROXIMATELY EQUIVALENT IN

TERMS OF SPECTRAL SENSITIVITY CURVE TO ETM2, AN ASTER BAND 1 IS APPROXIMATELY EQUIVALENT TO ETM2, ETC.

TABLE IV
REFERENCE SPECTRAL SIGNATURE IN TOARF VALUES (STRETCHED

INTO RANGE {0, 255}): VEGETATED ARABLE LAND

TABLE V
REFERENCE SPECTRAL SIGNATURE IN TOARF VALUES

(STRETCHED INTO RANGE {0, 255}): RANGELAND
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ii) The loss of the MIR2 channel is expected to de-
crease the capability of discriminating bare soil
types, particularly burned areas. For example, sev-
eral burned-area indexes employ MIR2 in compari-
son with the NIR channel [77]. However, in general,
the weights of the MIR2 channel are low in the
LSRC decision-rule set, employing a convergence-
of-evidence approach [27], i.e., the importance of
the MIR2 channel is not relevant in LSRC.

iii) The loss of the TIR channel is expected to increase
the spectral confusion between light-toned (highly
reflective) soil types, particularly in mountainous
(and cold) areas, with classes thick and thin clouds
(identified as TNCL and TKCL, respectively [27])
and either snow or ice spectral classes (identified as
SN and ICSN, respectively [27]).

2) Four-band Advanced Very High Resolution Radiome-
ter (AVHRR)-like SRC (AVSRC). The four spectral
channels are R, NIR, MIR1, and TIR. The removed
Landsat bands are B, G, and MIR2.
a) The target satellite sensors are the National Oceanic

and Atmospheric Administration (NOAA) AVHRR
in satellite numbers 15–17 (1.1-km SR) and the Ex-
ploitation of Meteorological Satellites (EUMETSAT)
Meteosat Second Generation (MSG, which is geosta-
tionary, acquired every 15 min, with 3-km SR).

b) The number of AVSRC output spectral types reduces
from 46 to 39, approximately equal to a 15% loss
with respect to LSRC’s. It is noteworthy that AVSRC
guarantees the best compromise (ratio) between the
number of detected spectral categories and acquired
spectral channels as further proof of the relevance of
and complementarity between the visible, NIR, MIR,
and TIR portions of the electromagnetic spectrum.

c) The expected effects of the loss in spectral resolution
are the following.
i) The loss of the B and G channels is expected to

decrease the capability of detecting haze, smoke
plumes, and water types (refer to the earlier discus-
sion about SSRC).

ii) About the loss of the MIR2 channel, refer to the
earlier discussion about SSRC.

3) Five-band Advanced Along-Track Scanning Radiometer
(AATSR)-like SRC (AASRC). The five spectral channels
are G, R, NIR, MIR1, and TIR. The removed Landsat
bands are B and MIR2.
a) The target satellite optical sensors are the ENVISAT

AATSR (1-km SR), the European Remote Sensing
Satellite (ERS)-1 ATSR-1 (1-km SR), and the ERS-2
ATSR-2 (1 km SR).

b) The number of AASRC output spectral types is the
same as AVSRC’s and therefore equal to 39 and
approximately equal to a 15% loss with respect to
LSRC’s. This is due to the fact that the weight of
channel G, which is present in AASRC but missing
in AVSRC, is low in the LSRC decision-rule set based
on convergence-of-evidence principles (refer to earlier
discussion about SSRC).

c) For the expected effects of the loss in spectral resolu-
tion, refer to earlier discussion about AVSRC.

4) Four-band IKONOS-like SRC (ISRC). The four spectral
channels are B, G, R, and NIR. The removed Landsat
bands are MIR1, MIR2, and TIR.
a) The target satellite optical sensors are VHR, HR, and

MR optical sensors, such as GeoEye-1 (MS: 1.64-m
SR, PAN: 0.41-m SR), WorldView-2 (MS: 1.84-m
SR, PAN: 0.46-m SR, and to be launched in 2009),
QuickBird-2 (MS: 2.44-m SR, PAN: 0.61-m SR),
PLEIADES-1/-2 (MS: 2.8-m SR, PAN: 0.7-m SR, and
to be launched by the Centre National d’Etudes
Spatiales (CNES) in 2009), IKONOS-2 (MS: 4-m SR,
PAN: 1-m SR), OrbView-3 (MS: 4-m SR, PAN: 1-m
SR), KOrean MultiPurpose SATellite (KOMPSAT)-2
(MS: 4-m SR, PAN: 1-m SR), TopSat (MS: 5-m SR,
PAN: 2.5-m SR), RapidEye 1–5 (6.5-m SR, whose
band 4, dealing with the Red Edge portion of the
electromagnetic spectrum [45], is ignored by ISRC),
FORMOsa SATellite (FORMOSAT)-2 (MS: 8-m SR,
PAN: 2-m SR), Astrium SPOT-6/-7 (MS: 8-m SR, PAN:
2-m SR, and to be launched in 2012 and 2017,
respectively), Advanced Land Observing Satellite
(ALOS) Advance Visible and Near IR Radiometer
type 2 (AVNIR-2) (10-m SR), and the Project for
On-Board Autonomy-2 Compact High Resolution
Imaging Spectrometer (PROBA; 20-m SR, to be
launched in 2009; unfortunately, this sensor is not
provided with an onboard calibration system and must
rely on vicarious calibration) [78].

b) The number of ISRC output spectral types reduces
from 46 to 25, approximately equal to a 45% loss with
respect to LSRC’s.

c) The expected effects of the loss in spectral resolution
are the following.
i) The loss of the MIR1 channel is expected to de-

crease the accuracy and reliability of the separa-
tion of 1) snow from cloud [80] and 2) vegetation
and rangeland from bare soil types (also refer to
Section V). Since its wavelengths are sensitive to
water absorption, MIR1 is sensitive to both vege-
tation moisture content and soil moisture [79]. For
example, in [79], the channel MIR1 is described as
the best Landsat band overall.

ii) About the loss of the MIR2 channel, refer to earlier
discussion about SSRC.

iii) The simultaneous loss of the TIR and MIR chan-
nels is expected to increase the spectral confusion
between light-toned soil types with clouds and snow
(refer to the previous discussion about SSRC).

d) The discrete and finite sorted set of color-based semi-
concepts detected by ISRC comprises five parent
spectral categories (supercategories), which are listed
next according to their order of presentation [to be
compared with the six parent categories employed
by LSRC (see Section II-D)]: 1) either snow or ice
or cloud or light-toned bare soil; 2) either water or
shadow; 3) vegetation; 4) either bare soil or built-up;
and 5) outliers.
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5) Three-band Disaster Monitoring Constellation (DMC)-
like SRC (DSRC). The three spectral channels are G,
R, and NIR. The removed Landsat bands are B, MIR1,
MIR2, and TIR.
a) The target satellite optical sensors are the Landsat-1/

-2/-3/-4/-5 Multispectral Scanner [(MSS) 79-m SR,
where band 3 of the MSS, dealing with the Red
Edge portion of the electromagnetic spectrum [45],
is ignored by DSRC), IRS-P6 LISS-IV (5.8-m SR),
SPOT-1/-2 HRV (MS: 20-m SR, PAN: 10-m SR), and
DMC, namely, Alsat-1 (32-m SR), Deimos-1 (22-m
SR), Beijing-1 (MS: 32-m SR, PAN: 4-m SR),
UK-DMC (32-m SR), UK-DMC2 (22-m SR), and
Nigeria Sat-1 (32-m SR) SLIM6 instrument.

b) The number of DSRC output spectral types is the
same as ISRC’s, which is equal to 25 and approxi-
mately equal to a 45% loss with respect to LSRC’s.
This is due to the fact that the weight of channel B,
which is present in ISRC but missing in DSRC, is low
in the LSRC decision-rule set based on convergence-
of-evidence principles (refer to aforementioned dis-
cussion about SSRC).

c) For the expected effects of the loss in spectral resolu-
tion, refer to the previous discussion about ISRC. For
the loss of the B band, refer to earlier discussion about
SSRC.

It is noteworthy that, since LSRC is pixel based, i.e., it
works at the sensor resolution, the integrated SRC system of
systems, comprising LSRC together with its five downscaled
versions, can be considered multisource and multiresolution, in
agreement with the visionary goals of a GEOSS [17].

IV. LSRC SCALABILITY TO THE SPOT AND IRS
SATELLITE SENSOR SERIES: THE PROBLEM OF

ABSOLUTE RADIOMETRIC CALIBRATION

ZERO-VALUE OFFSET PARAMETERS

The GEO-CEOS international QA4EO guidelines require the
following: 1) an appropriate coordinated program of Cal/Val
activities throughout all stages of a spaceborne mission, from
sensor build to end of life, and 2) metrological/statistically
based quality indicators, provided with a degree of uncertainty
in measurement, to be established for every sensor-derived
data product [17]. For example, the radiometric calibration
uncertainty of TOARD values generated from the Landsat-5
MSS, Landsat-5 TM, and Landsat-7 ETM+ sensors is known
to be between 5% and 10% [82]. Unfortunately, in existing
literature, these authors were unable to find any radiometric
quality and uncertainty estimate of the popular SPOT and IRS
sensor series [83]. Despite the fact that it is rarely a subject
of concern by the RS community [84], the lack of SPOT and
IRS data quality assurance represents a potential limitation on
the applicability domain of the operational automatic integrated
SRC system of systems and, in general, on the development of
operational satellite-based measurement systems [for which the
rule “garbage in, garbage out” holds (see Section I)]. Therefore,
in agreement with the international QA4EO guidelines, this
section further investigates the radiometric quality and stability
of the SPOT and IRS sensor families.

To the best of our knowledge, offset parameters B(b), b =
1, . . . , Bnd, provided by the SPOT metadata DIMAP file to be
employed in (1.1), appear to be constant with time and equal
to zero. This is acknowledged by SPOT Image in a personal
communication [81] and, to some respect, by existing literature.
For example, in [12], Richter writes that, in the SPOT metadata
files, “the standard offset values are zero.” In [38], which
specifically deals with the SPOT-4 VEGETATION and HRVIR
onboard calibration systems and vicarious calibration methods
over test sites, the offset calibration term B(b) is omitted
from (1.1). This means that, in the words of an anonymous
referee, the SPOT DNs “are assumed to be already equalized
and corrected by a dark-object current.” If so, a B(b) “offset
parameter is used only if, after the DN equalization step, a
dynamic adaptation is required.” If no dynamic adaptation
is applied, then B(b) = 0, which appears to be always the
case. This referee’s explanation is not supported by the text in
[38] where keywords such as “offset,” “dark (object),” “black
(object),” and “equalization” are absent.

Based on the authors’ experience, zero-value offset parame-
ters are always retrieved from the IRS metadata files, too. In
[12], Richter writes that, in the three optical sensors carried
onboard the IRS-P6 platform, the bias “nominal value is zero. . .
the calibration coefficient seem to be constant with time, i.e.,
independent of the scene, based on laboratory calibration.”

The first author of this paper also observed zero-value offset
parameters in seven out of seven RapidEye image metadata files
available.

To summarize, according to the authors’ experience sup-
ported by Richter’s observations, a list of currently ongoing
European and non-European EO satellite optical imaging sen-
sor series employing, in practice, absolute calibration zero-
value offset parameters is provided as follows: 1) SPOT-1/-2
HRV; 2) SPOT-4 HRVIR; 3) SPOT-5 HRG; 4) SPOT-4/-5 VMI
1 and 2; 5) IRS-1C/-1D LISS-III; 6) IRS-1C/-1D WiFS; 7) IRS-
P6 LISS-III; 8) IRS-P6 AWiFS; and 9) RapidEye.

Are the SPOT and IRS zero-value offset parameters, which
are apparently generated from laboratory calibration (according
to the Richter conjecture), validated in terms of calibration
quality and uncertainty in agreement with the QA4EO initia-
tive? This subject is discussed in the following sections (about
RapidEye imagery, our radiometric quality indexes cannot be
considered statistically significant).

A. SPOT

In literature, Richter states that, in the SPOT metadata files,
“the standard offset values are zero. Occasionally, however, for
SPOT-4/-5 data, a slightly negative offset has to be introduced
for band 4 (1.6-μm MIR) in cases when the scene water
reflectance is too high (it should be close to zero)” [12, p. 100].
In [38], it is stated that “the absolute calibration consists in
estimating and monitoring the parameter Ak for the kth spectral
band considered. For many applications, the most important
thing is not the absolute calibration but the relative calibration
between images of the same instrument at different dates (mul-
tidate calibration), images acquired simultaneously in different
spectral bands (interband calibration), and images acquired
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by two different sensors (namely, SPOT-4 VEGETATION and
HRVIR sensor intercalibration).” The authors of this paper,
together with an anonymous referee, disagree with this quoted
statement. In the words of this anonymous referee, “absolute
calibration is the establishment of the ‘Gain’ and ‘Offset,’
not simply a ratio” (generated from relative calibration). In
line with the Richter experience (refer to previous discussion)
[12], these authors have observed that, in several SPOT-4 and
SPOT-5 scenes radiometrically calibrated into TOARF values,
computed by (1.1) and (1.3) as a function of the absolute radio-
metric calibration parameters retrieved from the SPOT DIMAP
metadata files, scene-derived land-cover-class-specific spectral
signatures in TOARF values 1) may fall well outside the range
of change of the same land-cover-class-specific TOARF values
detected across time and space by a plethora of spaceborne
optical sensors, such as those listed in Tables I and II, and
2) appear to be inconsistent with library or ground-measured
surface-reflectance spectra [73], [80] that should fall (as ideal
atmospheric-noise-free instances) within the range of variation
of scene-derived land-cover-class-specific spectral signatures
in TOARF values affected by atmospheric effects (refer to
Sections II-D and III). These two types of inconsistencies
are illustrated in the following example, which is represen-
tative of many similar cases personally experienced by the
authors.

Four open-sea-water-specific (equivalent to a dark object)
spectral signatures in TOARF values, shown in Table III, are
extracted from the same region of interest located across a
multisensor image data set consisting of a Landsat-7 ETM+,
one SPOT-5 HRG, one ASTER, and one SPOT-2 HRV im-
age of the Low Casamance mangrove ecosystem in Senegal
acquired on November 6, 2000, March 8, 2006, February 28,
2004, and March 1, 2006, respectively (see Figs. 1(a), 2(a),
3(a) and 11(a) in Part II of this paper). In the target region
of interest, no sun-glint phenomenon occurs, and atmospheric
scattering appears negligible in the visible and NIR portions of
the electromagnetic spectrum sensitive to the presence of haze
and aerosols, whereas the amount of atmospheric scattering
occurring at the MIR region of the electromagnetic spectrum
is known to be “quite small except for very hazy atmospheres
and can be considered negligible” [43, p. 476]. In Table III,
the Landsat channels 1 to 7, identified as ETM1 to ETM7,
respectively, are adopted as a reference in the comparison
of multisensor channels featuring (approximately) the same
sensitivity curve [e.g., a Landsat-like band 7 is synthesized
by an OR combination of channels 5, 6, 7, and 8 by ASTER
(refer to Table I)]. In other words, these authors realize that the
spectral bandwidth of the individual bands affects the amount
of at-sensor radiance, but differences in the spectral band-
width are considered negligible here. In addition, intersensor
TOARD and TOARF value comparison should take calibration
uncertainties into account, in agreement with guidelines for
evaluating uncertainty of measurement found in the QA4EO
documentation [17]. For example, the calibration uncertainty
of the Landsat-7 ETM+ TOARD values are ±5% [82]. Unfor-
tunately, in existing literature, these authors were unable to find
any calibration uncertainty estimate for the ASTER and SPOT
sensors involved with the present comparison.

Table III shows that, in the proposed qualitative example,
1) SPOT-5 TOARF values fall well outside the range of change
of the corresponding TOARF values detected by the Landsat-7
ETM+, ASTER, and SPOT-2 optical sensors; the relative in-
crease in the band-specific SPOT-5 TOARF values with respect
to the other sensors’ values may be as high as 200% for band
ETM2 up to 700% for band ETM5, which is far above the typi-
cal calibration uncertainty of spaceborne optical sensors (below
10% for the several Landsat sensors, as discussed previously),
and 2) SPOT-5 TOARF values do not include, as their ideal
atmospheric-noise-free realizations, surface-reflectance values
of clear and turbid water types found in existing literature (e.g.,
refer to [80, p. 273]).

Overall, these authors have observed that SPOT-4/-5 overes-
timation of TOARD/TOARF values may occur imagewide at
varying geographic positions and solar elevation angles. There-
fore, SPOT-4/-5 radiometric overestimation is not due to geo-
metric effects or local surface conditions and is far superior to
typical values of calibration uncertainty (see earlier discussion).
To summarize, the nature of SPOT-5 radiometric calibration
inaccuracy appears to be accidental and scene dependent, such
as out-of-band leakage effects [85].

B. IRS

About the calibration quality of the IRS sensor series, Richter
observed that, in the three optical sensors carried onboard
the IRS-P6 platform, the bias “nominal value is zero. . . the
analysis of a couple of scenes showed that a nonzero bias
is required to obtain reasonable surface-reflectance spectra. . .
A fine tuning of the calibration coefficients may be neces-
sary to obtain better agreement between scene-derived surface-
reflectance spectra and library or ground measured spectra” [12,
p. 104]. In line with this statement by Richter, these authors
have encountered several IRS image instances whose radio-
metric calibration quality appears troublesome. Nonetheless,
based on experimental evidence collected over more than two-
thousand SPOT and IRS images processed in the framework
of the IMAGE2006 European mosaic project conducted by the
EC-Joint Research Center as part of the EU GMES Fast-Track
Service Land Monitoring project [86], these authors consider
the combination of nonzero gain parameters with zero-value
offset parameters more accurate and stable in IRS imagery
rather than in the SPOT-4/-5 images. As a consequence, in the
IMAGE2006 mosaic project, IRS images have been preferred
to SPOT-4/-5 imagery whenever the former were available and
free of clouds (refer to Fig. 16 in Part II of this paper).

C. Comments

In agreement with the new QA4EO guidelines, the current
vagueness about the SPOT and IRS calibration quality and
uncertainty should be the subject of further inquiries by the RS
community at the earliest opportunity and at the highest official
level, such as the GMES bureau and the CEOS WGCV. On a
personal basis, for the sake of truth and in the interest of the
RS community involved with the development of operational
satellite-based measurement systems, the first author of this
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paper would personally welcome a comment by SPOT Image
and the Indian Space Research Organisation about the afore-
mentioned SPOT and IRS Cal/Val-related issues.

In common practice, until the calibration quality and un-
certainty of SPOT-4/-5 and IRS data remains unknown, a
community-agreed RS data preprocessing protocol comprising
a relative calibration step in series with the absolute radiometric
calibration of SPOT-4/-5 (and maybe IRS) imagery should
be considered mandatory. For example, a user-driven standard
dark-object subtraction, typically used to remove the additive
atmospheric scattering (haze) effects [43], can be scheduled in
series with (1.1), e.g., refer to [79]. In dark-object subtraction
techniques, the DN to subtract from each band may be the
band minimum, an average based upon a user-defined region of
interest (typically, a water body of invariant spectral properties,
a shadow area, or a black object featuring 0% reflectance),
or a specific value to be user defined (e.g., selected from the
DN frequency histogram of the whole RS image) [43], [73].
In this experiment, if a dark-object subtraction is employed in
series with the linear equation (1.1), then the SPOT-5 image
in TOARF = (1.3) values, shown in Fig. 2(a) in Part II of
this paper, provides an SRC map, shown in Fig. 2(b) in Part II
of this paper, consistent with the SRC maps, shown in
Figs. 1(b), 3(b) and 11(b) in Part II of this paper, generated from
the radiometrically calibrated Landsat, ASTER, and SPOT-2
images, respectively.

If no relative calibration step is scheduled in series with the
absolute radiometric calibration of SPOT-4/-5 (and maybe IRS)
imagery, the SPOT-4/-5 (and maybe IRS) unknown radiometric
quality and uncertainty must be coped with by scene-by-scene
data-processing approaches which are intrinsically unsuitable
for applications such as follows:

1) quantitative estimates of either physical (e.g., LAI) or
biochemical variables [e.g., fraction of absorbed photo-
synthetically active radiation (FAPAR)], such as those
provided in the frame of the VEGETATION For Africa
(VGT4AFRICA) project,6 led by the Flemish Institute for
Technological Research NV (VITO), based on the SPOT-
4/-5 VEGETATION sensor series [82];

2) operational automatic generation of standardized, ad-
vanced, and validated information products (e.g., clas-
sification maps) generated across time (e.g., image time
series), space (e.g., image mosaics), and sensors as those
required by the GEOSS and GMES programs;

3) photointerpretation of image data sets acquired across
time and space in scientific applications such as land
cover change detection at geographic scales ranging from
local (areas up to 100 000 km2) to global.

The obvious drawback of a SPOT-4/-5 (and maybe IRS) data-
processing chain which includes a manual or semiautomatic
missing offset parameter retrieval subsystem is that its opera-
tional performance measurement [in terms of ease of use, cost,

6The VGT4AFRICA project received funding from the 6th Framework
Program (FP6) of the European Commission. The VGT4AFRICA project aims
at setting up an operational and timely distribution system of VEGETATION
data (http://www.spot-vegetation.com) from the SPOT satellites and high-level
derived products to all African countries in the framework of GMES [8].

and timeliness (refer to Section I)] becomes inferior to that
of alternative spaceborne data sensors provided with complete
and reliable absolute radiometric calibration offset and gain
parameters.

V. LSRC SCALABILITY TO VHR SATELLITE SENSORS:
THE PROBLEM OF VIs

Unfortunately, according to [27], the spectral resolution of
popular VHR spaceborne optical sensors, such as GeoEye-1,
IKONOS-2, QuickBird-2, and OrbView-3, which ranges from
visible B to NIR wavelengths (from approximately 0.45 to
0.90 μm), seems unsuitable to support a downscaled version of
LSRC. This is due to the well-known fact (but often forgotten in
RS common practice [36]) that the lone normalized difference
VI (NDVI), defined as

NDV I ∈ [−1, 1] = (NIR − R)/(NIR + R) (1.6)

by measuring the contrast between channels NIR and R,
is unable, per se, to guarantee a robust (i.e., reliable and
image independent) discrimination between vegetation and
nonvegetation surface types [27], [45], [87]. Incidentally, the
one-class dichotomous vegetation/nonvegetation classification
problem represents the first decision level in any dichoto-
mous hierarchical RS data classification taxonomy such as the
Coordination of Information on the Environment (CORINE)
[34], the USGS classification hierarchy [42], and the Food
and Agriculture Organization of the United Nations (FAO)
Land Cover Classification System (LCCS) [88]. In other
words, if the vegetation/nonvegetation dichotomous classifi-
cation of an RS image is not reliable, the land-cover-class
taxonomies listed previously cannot be applied in RS common
practice.

In general, with regard to spectral VIs, it is well known that
the following are true.

1) In general, band ratioing causes a loss in spec-
tral resolution, which is a drawback in MS image
classification [40].

2) Starting from a given canopy radiative transfer model,
the so-called operational statistical methods provide an
estimate of canopy biophysical/biochemical variables,
such as the LAI and the FAPAR absorbed by canopy, from
a variety of MS VIs [45, p. 286]. The basic assumption
about VIs is that some algebraic combination of RS
spectral bands should be as follows:
a) sensitive to target vegetation factors such as vegetation

structure (leaf density and distribution) and the state of
vegetation cover (leaf water content, leaf chlorophyll
content, age, mineral deficiencies, parasitic attack,
etc.);

b) insensitive to other nonvegetation factors affecting
spectral reflectance, namely, soil background proper-
ties, solar/viewing geometry, and atmospheric condi-
tions.

3) Various VIs, to be linearly related to LAI, require DNs
to be converted into TOARF rather than TOARD values
[45, p. 271] (also refer to Section II-B). Unfortunately,
this recommendation is rarely heeded by RS practitioners.
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4) The advantages of NDVI are the following.
a) NDV I ∈ [−1, 1]; thus, it is dimensionless and finite

ranged and, therefore, intuitive and easy to use.
b) It can be effective in predicting surface properties

when vegetation canopy is not too dense or too sparse
[45, p. 250].

5) The well-known limitations of NDVI are the following.
a) If a canopy is too sparse (i.e., the LAI is low), the

background signal (e.g., soil reflectance) can change
the NDVI significantly.

b) If the canopy is too dense (i.e., LAI is large), NDVI
saturates.

c) The relationship between LAI and NDVI, the latter
being computed from TOARD or TOARF, is nonlinear
[45, p. 271].

6) The dimensionless vegetation ratio index

V RI ∈ (0,∞) = NIR/R = (1 + NDV I)/(1 − NDV I)
(1.7)

is much slower to saturate than NDVI when a canopy is
dense, i.e., it can enhance the contrast between soil and
vegetation while minimizing the effects of illumination
conditions (shadow areas). However, it is affected by soil
reflectance underneath the canopy [45, p. 252]. Nonethe-
less, it has also been used for estimating LAI. In practice,
VRI is inversely related to the chlorophyll absorption
minimum which decreases with the canopy chlorophyll
absorption, i.e., VRI increases with the canopy chloro-
phyll content.

7) As a consequence of the drawbacks listed earlier, several
soil-adjusted VIs (SAVIs) have been proposed. For ex-
ample, second derivatives around the red edge inflection
point [(REIP); defined as the wavelength where the first
derivative of the spectral reflectance curve reaches its
maximum value], located between visible R and NIR
spectra (called red edge reflectance characteristics), are
proven to be linearly related (much better than VRI and
NDVI) to LAI regardless of the canopy background (e.g.,
burned and unburned [45, p. 278]).

In line with the aforementioned statements and moving fur-
ther from [27],7 an intuitive strategy to remove soil effects from
VRI is to replace VRI, equivalent to a first-order derivative,
with a second-order derivative centered on the NIR waveband
as follows (obviously, three bands are needed):

(Downward) Concavity centered on the NIR waveband

= Greenness(R,NIR,MIR) ∈ [0,∞)

= max {0, (NIR/R) + (NIR/MIR1.55−1.75)

−(R/MIR1.55−1.75)}
≥ 0 (1.8)

7In [27, p. 2585], it is written that “vegetation-specific spectral properties
require conditions (V is � NIR) and (NIR � MIR), equivalent to con-
ditions (NDVI is high) and (NDBSI is low),” where the normalized differ-
ence bare soil index (NDBSI) is defined as NDBSI = (MIR1.55−1.75 −
NIR)/(MIR1.55−1.75 + NIR).

such that the following are satisfied.

1) Equation (1.8) is alternative to the greenness second
linear function in the (sensor-specific, prior-knowledge-
based, and image-independent) Tasseled Cap transforma-
tion of data generated by the Landsat-5 TM [18, p. 204] or
Landsat-7 ETM+ [45, p. 260] (also refer to [27, Table 2])
sensors, where greenness is approximately equivalent to
a contrast between channels NIR/(visible bands OR the
MIR channel).

2) The first term in (1.8), i.e., V RI = (NIR/R) ∈ (0,∞),
features the well-known properties described previously.
It is related to the greenness second linear function in the
Tasseled Cap transformation of the Landsat data (refer to
the previous comment).

3) The second term in (1.8), i.e., (NIR/MIR1.55÷1.75), is
inversely related to the normalized difference of the bare
soil index (NDBSI) adopted in [27] and directly related to
the so-called Aerosol-Free VI AFV I = (NIR − 0.66 ∗
MIR1.55÷1.75)/(NIR+0.66 ∗ MIR1.55÷1.75)∈ [−1, 1]
[45, p. 257]. However, unlike the first term in (1.8),
which is sensitive to the canopy chlorophyll content, this
second term is inversely related to the water absorption
minimum which decreases with canopy water absorption,
i.e., the term (NIR/MIR1.55−1.75) increases with the
canopy water content [45]. It is to be pointed out that
AFVI is very similar to the Gao normalized difference
water index NDWIGao = (NIR − MIR)/(NIR +
MIR) ∈ [−1, 1], where the term water index is rather
vague and, unfortunately, quite misleading as it rather
deals with canopy water content [89], [90]. In turn,
NDWIGao is equivalent to the so-called Wilson
normalized difference moisture index NDMIWilson,
where the term moisture is also rather vague, as it does
not refer to soil moisture but to canopy water content [91].
The second term in (1.8) is also related to the wetness
third linear function in the Tasseled Cap transformation
of the Landsat data, particularly in the case of data
from the Landsat-5 TM [18, p. 204], which appears as a
contrast between channels (visible OR NIR)/MIR.

4) The third term in (1.8), i.e., (R/MIR1.55−1.75), is di-
rectly related to the wetness Tasseled Cap component
[45, p. 260], to the normalized difference snow in-
dex adopted in [27], and to the so-called modi-
fied normalized difference water index defined by
McFeeters as NDWIMcFeeters = (G − MIR)/(G +
MIR) ∈ [−1, 1] [91], suitable for separating water from
built-up land (whose response in the MIR band tends to be
greater than or equal to the response in visible G, unlike
that of water). It is noteworthy that, in (1.8), the negative
third term (also called snow index) is adopted to reduce
the greenness index value in snow/ice areas where the
second term (NIR/MIR1.55−1.75) would rather tend to
be quite large. The drawback of introducing this negative
third term is that (1.8) loses sensitivity in detecting vege-
tation in shadow areas.

To summarize, the greenness index computed via (1.8) is
quite different from the greenness Tasseled Cap component
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of the Landsat-5 TM [18, p. 204] or Landsat-7 ETM+
[45, p. 260] imagery (also refer to [27, Table II]). Rather, it
should be considered an original combination of three well-
known spectral indexes whose physical meaning is sometimes
fuzzy in existing RS literature, namely, as follows:

1) a canopy chlorophyll absorption index;
2) a canopy water absorption index;
3) a snow/water ratio index.

It is noteworthy that the algebraic sum of the first two terms
of (1.8) is equivalent to a second-order derivative, centered
on the NIR waveband, monotonically increasing with both
canopy chlorophyll content and canopy water content. As a
consequence, from a theoretical standpoint and in line with
[45, p. 278], this sum is expected to be linearly related (much
better than VRI and NDVI) to LAI, irrespective of canopy
background (e.g., burned and unburned).

A sensor-specific implementation of (1.8) can benefit from
the approximation of a second- and first-order derivative of the
discrete wavebands (as reported in [45, p. 278]). For example,
in the Landsat case, (1.8) becomes

Greenness

= [2./(1.650−0.660)]

∗ [(NIR0.76÷0.90−Red0.63÷0.69)/(0.830−0.660)

+(NIR0.76÷0.90−MIR1.55÷1.75)/(1.650−0.830)]

− [(Red0.63÷0.69−MIR1.55÷1.75)/(1.650−0.660)]

(1.9)

where
0.660 μm full width at half maximum (FWHM) value of band

(E)TM3 (Visible R) in the range [0.63, 0.69] μm;
0.830 μm FWHM of band (E)TM4 (NIR) in the range [0.76,

0.90] μm;
1.650 μm FWHM of band (E)TM5 (MIR1) in the range [1.55,

1.75] μm.
Let us compare the greenness estimate computed via (1.8)

against two traditional VISs, namely, NDVI and VRI, gen-
erated from four reference spectral signatures radiometrically
calibrated into TOARF values linearly stretched from range
[0, 1] into range {0, 255} (see Tables IV–VII and Fig. 5).
Tables VIII and IX show that the proposed greenness index
is the least affected by the variable soil reflectance underneath
the vegetation canopy. In fact, if the canopy is dense (i.e., if
LAI is large), the greenness index boosts without saturating
(better than VRI) in both absolute and relative terms (refer to
Tables VIII and IX, respectively). The difference in greenness
values between the dense and the sparse canopy (rangeland) is
superior (in both relative and absolute terms) to that in the VRI
domain, while the difference in greenness values between the
sparse canopy and the bare soil remains superior (in absolute
terms, 1.48 versus 1.18) to that in the VRI domain.

To summarize, R, NIR, and MIR wavelengths are equally
important in computing the second derivative of canopy re-
flectance around the REIP [45]. In other words, all these
bands are fundamental in pursuing the reliable detection of the

TABLE VI
REFERENCE SPECTRAL SIGNATURE IN TOARF VALUES

(STRETCHED INTO RANGE {0, 255}): PLOWED FIELDS

TABLE VII
REFERENCE SPECTRAL SIGNATURE IN TOARF VALUES

(STRETCHED INTO RANGE {0, 255}): SNOW

dichotomous vegetation/nonvegetation classification problem
which constitutes the basis of any hierarchical classification
taxonomy (e.g., the USGS classification hierarchy [42] and
FAO’s LCCS [88]). This consideration implies the following.

1) Due to their lack of spectral resolution, VHR and
HR satellite sensors, such as GeoEye-1, WorldView-2
(to be launched), QuickBird-2, PLEIADES-1/-2 (to be
launched), IKONOS-2, OrbView-3, KOMPSAT-2, Top-
Sat, RapidEye, FORMOSAT-2, Astrium SPOT-6/-7 (to
be launched), and ALOS AVNIR-2 (refer to Section III),
are expected to be difficult to classify with a high de-
gree of confidence by a preliminary automated spectral
knowledge-based classifier starting from the dichoto-
mous vegetation/nonvegetation classification problem
[42], [88]. In fact, an automatic RS image spectral-
rule-based decision-tree classifier, as is LSRC, must rely
upon uncorrelated and redundant sources of spectral ev-
idence to generate plausible semantic conjectures based
on convergence-of-evidence inference strategies. Thus,
to compensate for their scantiness in spectral resolution,
VHR imagery may require a two-stage classification sys-
tem comprising, in cascade, a pixel-based preliminary
classification first stage and a second-stage stratified im-
age data-driven classifier, either semiautomatic or self-
supervised, such as [92], or a second-stage stratified
class-specific rule-based classifier exploiting contextual
properties (refer to Section II-C3b).

2) Next-generation satellite sensors, such as FIEOSs (refer
to Section II-B) [48], [49], should provide a careful
combination of spatial and spectral resolution fine enough
to allow the automatic solution of the dichotomous
vegetation/nonvegetation mapping problem found at the
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Fig. 5. Reference spectral signatures in TOARF values (scaled into the discrete range {0, 255}). (From left to right and top to bottom) Vegetated arable land,
rangeland, ploughed fields, and snow. Refer to Tables IV–VII, respectively.

TABLE VIII
VIS EXTRACTED FROM REFERENCE SPECTRAL SIGNATURES IN TOARF

VALUES (STRETCHED INTO RANGE {0, 255}): VEGETATED ARABLE

LAND, RANGELAND, PLOWED FIELDS,
AND SNOW CASE STUDIES

TABLE IX
STANDARDIZED VIS (FEATURING ZERO MEAN AND UNIT VARIANCE)

EXTRACTED FROM THE SET OF REFERENCE SPECTRAL SIGNATURES IN

TOARF VALUES (STRETCHED INTO RANGE {0, 255}): VEGETATED

ARABLE LAND, RANGELAND, PLOWED FIELDS,
AND SNOW CASE STUDIES

first decision level in hierarchical RS image classification
taxonomies, such as the USGS [42] and the FAO LCCS
[88]. In particular, any increase in SR across visible
and NIR channels while removing the MIR band(s) is
expected to reduce the accuracy and degree of confidence
of the one-class vegetation mapping capability, which
may be the case for the future PLEIADES-1/-2 and
Astrium SPOT-6/-7 missions in comparison with ongoing
SPOT-4/-5 sensors.

VI. SUMMARY AND CONCLUSION

This paper has reviewed several RS-IUS architectures found
in existing literature. A novel family of RS-IUSs, called the
Shackelford and Davis two-stage stratified hierarchical RS-IUS
model, has been highlighted. An innovative operational fully
automated LSRC system, recently presented in RS literature,
has been considered eligible for use as the automatic pixel-

based preliminary classification first stage in a two-stage strati-
fied hierarchical RS-IUS architecture. As input, LSRC requires
a seven-band Landsat-like image radiometrically calibrated into
TOARF or surface-reflectance values, the latter being an ideal
(atmospheric-noise-free) case of the former.

To be input with RS images acquired by spaceborne and
airborne data sources different from the Landsat sensor series,
five original downscaled versions of LSRC, identified as SSRC,
AVSRC, AASRC, ISRC, and DSRC, have been proposed.
Comprising LSRC, together with its five novel downscaled
implementations, the integrated operational automatic SRC
system of systems employs as input a radiometrically calibrated
MS image acquired by almost any of the ongoing or future
planned satellite optical missions.

Several general conclusions of potential interest to the RS
community stem from this paper.

1) There is experimental evidence that the absolute cali-
bration of SPOT-4/-5 (and, perhaps, IRS) images into
TOARD values and, as a consequence, TOARF and
surface-reflectance values may not be considered reliable
due to the lack of offset parameters in these image cal-
ibration metadata files. This means that, in many prac-
tical cases, an additional relative calibration step (e.g.,
dark-object subtraction) is recommended in series with
the SPOT-4/-5 (and, perhaps, IRS) absolute radiometric
calibration stage (refer to Section IV).

2) A novel greenness index, better correlated to LAI than
the ordinary NDVI, is computed from an MS image
radiometrically calibrated into TOARF values (refer to
Section V).

3) Satellite sensors provided with visible B, G, and R
channels plus a NIR channel, such as the popular VHR
satellite sensors GeoEye-1, IKONOS-2, and QuickBird-2
[plus many others (see previous discussion)], feature an
average interband correlation qualitatively estimated as
high (≥ 0.8; refer to the qualitative partition of cor-
relation values into fuzzy sets low, medium, and high
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by Congalton [69]) across the three visible portions of
the electromagnetic spectrum (also refer to experimental
work in Part II of this paper). Thus, these sensors are
expected to be difficult to deal with by a preliminary
automatic spectral knowledge-based classifier, such as
SRC, which must rely upon uncorrelated and redundant
sources of spectral evidence to generate plausible se-
mantic conjectures based on a convergence-of-evidence
inference strategy. In particular, when no MIR channel
is available, a) the dichotomous vegetation/nonvegetation
class recognition capability based on spectral proper-
ties alone lacks accuracy and reliability [refer to earlier
point 2)] and b) the spectral separation between snow
and clouds becomes extremely difficult or impossible, as
clearly acknowledged by existing literature [80]. There-
fore, to separate vegetation from nonvegetation and snow
from clouds, additional image features, such as texture
and shape, are expected to be taken into consideration by
the battery of second-stage stratified class-specific classi-
fication modules employed in two-stage stratified hierar-
chical RS-IUS instantiations suitable for automatic VHR
image interpretation (refer to Section II-C3). In general,
irrespective of SR, when spectral resolution diminishes,
the length and computational complexity of the process-
ing chain implemented in automatic RS-IUS instantia-
tions increase. For the same reasons, it is possible to
conclude that future planned EU satellite missions, such
as PLEIADES-1/-2 and the follow-on missions Astrium
SPOT-6/-7, are moving farther away than the SPOT-4/
-5 sensor series from the development of onboard auto-
matic image-processing capabilities required by so-called
future fourth-generation intelligent EO satellites (refer to
Section V).

Specific conclusions about the integrated SRC system of
systems are listed next (refer to Section IV).

A) To the best of our knowledge and in line with the interna-
tional QA4EO guidelines, the integrated SRC system of
systems constitutes the sole example of an operational
fully automated RS image mapping system requiring
neither user-defined parameters nor reference data sam-
ples to run upon a radiometrically calibrated MS image
acquired across time, space, and sensors.

B) From the computational point of view, SSRC, AVSRC,
AASRC, ISRC, and DSRC, featuring a downscaled
LSRC rule set, are expected to be more efficient than the
near-real-time LSRC which requires less than 5 min for
calibration and classification of a Landsat scene in a C++
programming language implementation.

C) Due to its inferior spectral resolution, SSRC is provided
with a spectral category discrimination capability infe-
rior to LSRC’s by about 30% (from 46 to 32 spectral
categories).

D) Due to its inferior spectral resolution, AVSRC is pro-
vided with a spectral category discrimination capability
inferior to LSRC’s by about 15% (from 46 to 39 spectral
categories). AVSRC also applies to MSG images that
are geostationary and acquired every 15 min. This opens

a wide scenario of real-time image-mapping applica-
tions for early warning systems such as flood detection,
cloud detection, fire detection, smoke-plume detection,
etc., as possible alternatives to or in combination with
the MSG products and services currently supported by
EUMETSAT [93].

E) AASRC is provided with the same spectral category
discrimination capability of AVSRC. AASRC may be
of specific interest to ESA whose aim is to develop a
semantic-based query of the AATSR image data archive
in the Service Support Environment portal [94].

F) Due to its inferior spectral resolution, ISRC is provided
with a spectral category discrimination capability infe-
rior to LSRC’s by about 45% (from 46 to 25 spectral
categories). Provided with no MIR channel, its spectral
resolution can be considered theoretically insufficient to
separate, with high accuracy and reliability, vegetation
from nonvegetation and snow from clouds based on
spectral properties alone [see earlier comment 3)]. On the
other hand, owing to the VHR of its input imagery, ISRC
paves the way, together with SSRC (see aforementioned
comments), to the automatic classification of VHR im-
agery where man-made structures and infrastructures are
distinguishable, e.g., refer to [21], [26], [32], [47], [61],
[95], and [96]. The proposed automatic VHR RS-IUS
instantiation consists of a two-stage stratified hierarchi-
cal RS-IUS architecture whose preliminary classification
first stage is implemented as an automatic integrated
SRC system of systems (refer to Section II-C3). This
VHR image understanding approach is alternative to
OBIA, which is currently considered the state-of-the-art
in commercial image-processing software toolboxes.

G) Due to its inferior spectral resolution, DSRC is provided
with a spectral category discrimination capability equal
to ISRC’s, therefore inferior to LSRC’s by about 45%
(from 46 to 25 spectral categories). Like ISRC, it is
provided with no MIR channel; therefore, its spectral
resolution can be considered theoretically insufficient to
separate, with high accuracy and reliability, vegetation
from nonvegetation and snow from clouds based on
spectral properties alone [see comment 3)]. DSRC can
be theoretically employed with RS imagery consisting
of only two channels, namely, one visible and one NIR
channel.

Worthy of note is that, in recent years, a recreational (artistic
and cosmetic) rather than scientific (quantitative) application
of VHR (e.g., IKONOS-2 and QuickBird-2) and HR (e.g.,
SPOT-4/-5) spaceborne imagery has experienced a remarkable
growth in popularity among RS scientists, practitioners, and
nonscience user communities due to the development of Web-
based geobrowsers, such as Google Earth, NASA’s World
Wind, and Microsoft’s Virtual Earth. The aim of commercial
Web-based map servers and geobrowsers is to use geography
as a way of searching and viewing spatial information, i.e.,
to search for information provided with a geographic foot-
print [108]. To reach their goal, geobrowsers must rely upon
multisource multiresolution RS image databases at global scale

Authorized licensed use limited to: CNR AREA RICERCA DI BOLOGNA. Downloaded on February 22,2010 at 05:36:33 EST from IEEE Xplore.  Restrictions apply. 



1322 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 48, NO. 3, MARCH 2010

whose location error is below a given project requirement,
but whose radiometric quality may be even inferior to that
required by manual scene-by-scene interpretation of RS image
mosaics which is, in turn, inferior to the radiometric calibration
required by operational satellite-based measurement systems
(see Section I). For this reason, commercial geobrowsers, such
as Google Earth, employ large-scale VHR satellite image data-
bases whose entries are three-band images, in RGB true colors,
that are not radiometrically calibrated [66]. This means that,
if, in agreement with the QA4EO initiative, the radiometric
calibration of spaceborne imagery becomes an RS data pre-
processing requirement shared by all RS data applications, both
scientific and recreational, then the automatic interpretation of
RS images, e.g., the detection of man-made structures in VHR
satellite images, can be made available to a vast public through
commercial 3-D Earth viewers and geobrowsers.
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