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Abstract

In this paper, we tackle the problem of understanding
the temporal structure of complex events in highly varying
videos obtained from the Internet. Towards this goal, we
utilize a conditional model trained in a max-margin frame-
work that is able to automatically discover discriminative
and interesting segments of video, while simultaneously
achieving competitive accuracies on difficult detection and
recognition tasks. We introduce latent variables over the
frames of a video, and allow our algorithm to discover and
assign sequences of states that are most discriminative for
the event. Our model is based on the variable-duration hid-
den Markov model, and models durations of states in addi-
tion to the transitions between states. The simplicity of our
model allows us to perform fast, exact inference using dy-
namic programming, which is extremely important when we
set our sights on being able to process a very large number
of videos quickly and efficiently. We show promising results
on the Olympic Sports dataset [16] and the 2011 TRECVID
Multimedia Event Detection task [18]. We also illustrate
and visualize the semantic understanding capabilities of our
model.

1. Introduction

With the advent of Internet video hosting sites such as
YouTube, personal Internet videos are now becoming ex-
tremely popular. There are numerous challenges associated
with the understanding of these types of videos; we focus
on the task of complex event detection. In our problem def-
inition, we are given Internet videos labeled with an event
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Figure 1. Examples of Internet videos for the event of “Grooming
an animal” from the TRECVID MED dataset [18] that illustrate
the variance in video length and temporal localization of the event.
Video 3 is the only video similar to sequences typically seen in
activity recognition tasks, where the event occupies the video in
full.

class, where the label specifies the complex event that oc-
curs within the video. This is a weakly-labeled setting, as
we are not given temporally localized videos. This means
that the event can occur anywhere within the video, and we
do not have temporal segmentations that indicate the time
points at which the event occurs. The detection aspect of
our problem manifests itself at the video level, where in the
testing phase, we are also given large numbers of irrelevant
videos, and must detect videos that correspond to events of
interest. This is in contrast to the typical detection task of
localizing the event within the video.

Of the difficulties presented by Internet videos, we fo-
cus on two points that have been largely ignored by recent
computer vision algorithms. First, there is a large number
of videos available on the Internet, creating the need for al-
gorithms that are able to efficiently index and process this
wealth of data. Secondly, there is a large amount of variance
in these videos, ranging from differences in low-level pro-
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cessing such as length and resolution, to high-level concepts
such as activities, events, and contextual information. In ad-
dition, there is high intra-class variance when trying to as-
sign class labels to these types of videos, as more often than
not the videos are not temporally localized, and will contain
varying amounts of contextual or unrelated segments.

These points have not been addressed by much of the
recent research on activity recognition and event detec-
tion [6, 22]. Although some of the recent works have con-
sidered Internet videos, complex activity recognition tasks
are typically already temporally localized [13, 16], and
event detection tasks focus only on localizing well-defined
primitive events [9]. In addition, few of these works deal
with large-scale classification.

In order to successfully classify these types of videos, we
formulate a model over the temporal domain that is able to
discriminatively learn the transitions between events of in-
terest, as well as the durations of these events. We reiterate
the challenges associated with complex event detection in
Internet videos and highlight key contributions of our model
that address these issues:

Extremely large number of difficult videos. Using dy-
namic programming, our model is able to perform effi-
cient, exact inference, and our max-margin learning frame-
work is based on the linear kernel Support Vector Machine
(SVM), which can be optimized very quickly using LIB-
LINEAR [3]. Together, the inference and learning pro-
cedures allow us to process large numbers of videos very
quickly. Also, the discriminative nature of our learning en-
ables us to obtain competitive classification results on diffi-
cult datasets.

Large amounts of variation in video length. Several pre-
vious methods that attempt to model temporal structure as-
sume a video to be of normalized length [12, 16]. How-
ever, this is an unrealistic assumption, as the frame rates of
the videos are generally on the same scale. Regardless of
the duration of a video, a simple motion should still occupy
the same number of frames. Our model is able to account
for this by representing videos as sequences of fixed length
temporal segments.

Weakly-labeled complex events that are not temporally
localized. Our model is flexible and allows for sequenced
states of interest to transition and occur anywhere within a
video, which is crucial for the weakly-labeled setting. The
appearance, transitions, and durations of these states are au-
tomatically learned with only a class label for the video.
In addition, the states can also correspond to semantically
meaningful concepts, such as distinguishing between se-
quences of frames that are relevant and irrelevant for an
event of interest.

In summary, the contributions of this paper are two-fold.
First, we identify several challenges and difficulties associ-

ated with complex event detection in Internet videos, a task
of growing importance. And secondly, we formulate a dis-
criminative model that is able to address these issues, and
show promising results on difficult datasets.

2. Related Work
We review related work on Hidden semi-Markov Mod-

els (HSMMs), Conditional Random Fields (CRFs), and dis-
criminative temporal segments in the context of video, and
refer the reader to a recent survey in the area by Turaga et
al. [24] for a comprehensive review.

HSMMs [2, 8, 14], CRFs [19, 23], semi-CRFs [20], and
similar probabilistic frameworks [1] have been previously
used to model the temporal structure of videos and text.
However, these works differ from ours in that they are ap-
plied to different domains such as surveillance video and
gesture recognition, and typically require the states to not
be latent in order for the models to work. In addition, many
of these models were not formulated with large-scale clas-
sification in mind, and have complex inference procedures.

Most similar to our method are recent works in video that
learn discriminative models over temporal segments [12,
15, 16, 21]. Satkin & Hebert [21] and Nguyen et al. [15]
attempt to discover the most discriminative portions or seg-
ments of videos. Laptev et al. [12] divide videos into
rigid spatio-temporal bins and compute separate feature his-
tograms from each bin to capture a rough temporal ordering
of features. Niebles et al. [16] represent videos as tempo-
ral compositions of motion segments, and learn appearance
models for each of the segments. Their model is tree struc-
tured, and assumes fixed anchors for each motion segment,
penalizing segments that occur at a distance from their an-
chors. Our work is different from these previous methods
in that in addition to discovering discriminative segments of
video, we also model and learn the transitions between and
durations of these segments with a chain structured model.
Whereas [16] heuristically fixes the anchor points and du-
rations of their temporal segments before training, our ap-
proach is completely model-based, and learns all parame-
ters for our transition and duration distributions. There has
also been a separate line of work that seeks to model tem-
poral segments of video with the use of additional annota-
tions [5, 7], which we do not require.

Drawing upon recent successes in the field, our model
leverages the Bag-of-Words (BoW) feature representation
and max-margin learning. Advances in feature representa-
tions have utilized the BoW model with discriminative clas-
sifiers to achieve state-of-the-art results on popular video
datasets [10, 26]. The representation has also been success-
fully used with semi-latent topic models [28] and unsuper-
vised generative models [17]. We learn parameters for our
model using the max-margin framework, which has recently
become very popular for latent variable models through the



introduction of general learning frameworks [4, 29].
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Figure 2. Given an input video, our algorithm divides it into tem-
poral segments and builds a structured temporal model on top of
the features. The nodes of the graph represent variables, while
the edges denote conditional dependencies between variables. The
state variables and duration variables are latent, meaning that they
are not observed in training or testing.

3. Our Model
Our model for videos is the conditional variant of the

variable-duration hidden Markov model (HMM), also re-
ferred to as an explicit-duration HMM or a hidden semi-
Markov model [2, 14]. We start by introducing our repre-
sentation for videos, then give intuition for our model by
briefly describing the variable-duration HMM.

3.1. Video representation

Given a video, we first divide it into temporal segments
of fixed length lseg , which can be seen in Figure 2. By using
fixed length segments, we are able to capture the fact that
simple motions should occupy similar numbers of frames,
and are invariant to the total length of the video. With this
division into segments, a video can be represented by n seg-
ments, where the number of segments n is proportional to
the video length. For each temporal segment i, we then
compute BoW histograms xi over the features in each seg-
ment, and treat these histograms as the observed input vari-
ables of our temporal model.

3.2. Variable-duration HMM

A traditional approach is to use an HMM to model tran-
sitions between states of a video. However, the HMM
suffers because it imposes a geometric distribution on the
time within a state, which results when a state continuously

transitions to itself. To address this, we use the variable-
duration HMM, which allows each state to emit a sequence
of observations. This means that we must also model the
duration of a state, since a state can generate multiple obser-
vations before transitioning into another state. We choose
to model the duration of a state using a multinomial distri-
bution. The variable-duration HMM is much more appro-
priate for our application, since we expect a single state to
generate several temporal segments of video that are linked
together to form a single, coherent action or event. Our
hope is that the latent states and their durations will be able
to capture semantically meaningful and discriminative con-
cepts that are shared amongst the videos, as in Figure 3.
Note that by restricting the states to have a duration of one,
we obtain the standard HMM as a specific instance of the
variable-duration HMM.

The conditional variant of the variable-duration HMM is
similar to a hidden chain CRF [19]. The difference is in the
duration variables, which form an additional chain structure
beneath the hidden chain CRF as seen in Figure 2. Since all
the v-structures in the conditional variant are moralized, the
independencies of the two models are equivalent. Mapping
the model onto our video representation, we introduce a la-
tent state for each temporal segment of a video as shown in
Figure 2. Since these are latent variables, we are not given
labels for them during training or testing.

3.3. Model representation

In our model, there are three types of potentials that de-
fine the energy of a particular sequence assignment to the
latent state variables z = {z1, z2, . . . , zn} and duration
variables d = {d1, d2, . . . , dn} as shown in Figure 2. Intu-
itively, the duration variable acts as a counter, and decreases
after each consecutive state assignment until it reaches zero,
after which a new state transition can be made. While it
is counting down, the state assignment is not allowed to
change. We assume that we are given the maximum du-
ration dmax for all states and the number of states S for our
model. The potentials are defined in terms of parameters w
of our model that will be learned.

The first potential is a singleton appearance potential on
the latent state variables that measures the similarity of the
feature histogram xi for temporal segment i to its assigned
state zi.

ψa(Zi = zi) = wa
zi · xi (1)

The second potential encompasses both the state and du-
ration variables, and measures the score of transitioning be-
tween states, provided we are allowed to transition:

ψt(Zi =zi, Zi−1 = zi−1, Di−1 = di−1) =

−∞ · 1[di−1 > 0, zi 6= zi−1]

+ wt
zi−1,zi · 1[di−1 = 0] (2)



The third potential measures the score of a given dura-
tion, provided we are entering a new state:

ψd(Zi =zi, Di = di, Di−1 = di−1) =

−∞ · 1[di−1 > 0, di 6= di−1 − 1]

+ wd
zi,di
· 1[di−1 = 0] (3)

Together, these potentials define the energy of a particu-
lar sequence assignment of variables z and d to our model:

E(z,d|w) =
∑
i

(ψa(Zi = zi)

+ψt(Zi = zi, Zi−1 = zi−1, Di−1 = di−1)

+ψd(Zi = zi, Di = di, Di−1 = di−1)) (4)

where we initialize ψt(Z1, Z0, D0) = 0 and D0 = 0.

4. Inference

Exact maximum a posteriori (MAP) inference for our
model can be done efficiently using dynamic programming.
In MAP inference, we must find the sequence of states z
and durations d that maximize the energy function given
above in equation 4. This can be done using a recurrence re-
lation that computes the best possible score given that tem-
poral segment j is assigned to state i. The score is com-
puted by searching over all possible durations d and previ-
ous states s, assuming that segment j is the last segment in
the duration of state i. We can use the following recurrence
relation for inference:

Vi,j = max
d∈{1...dmax}
s∈{1...S}

[wa
i · (

j∑
k=j−d+1

xk)

+ wt
s,i + wd

i,d + Vs,j−d] (5)

After building up the table of scores V , we can then re-
cover the optimal assignments by backtracking through the
table. The runtime complexity for this inference algorithm
is O(nmaxdmaxS

2), where nmax is the maximum number
of temporal segments in all videos. By utilizing structure
in the duration variables, our inference algorithm achieves
a complexity that is linear in dmax, whereas a naive imple-
mentation would have quadratic dependence.

5. Learning

There are three sets of parameters that we must learn in
our model, the appearance parameters wa, the transition pa-
rameters wt, and the duration parameters wd, which we can
concatenate into a single weight vector:

w = [wa wt wd] (6)

Groom dog Clean upPrepare water
Walk to dog Leave dog

1 1 2 3 3 3 3 2 4 4

Ideal latent variable assignments

1 0 0 3 2 1 0 0 1 0

States

Durations

Figure 3. This figure shows the ideal assignments to latent states
and durations for a sequence with a known temporal segmentation
that we hope our model is able to achieve. By understanding the
temporal structure of the video, we are able to classify it as con-
taining the event “Grooming an animal”.

Given a training set of N videos and their correspond-
ing binary class labels yi ∈ {−1, 1}, we can com-
pute their feature representations to obtain our dataset
(〈v1, y1〉, ..., 〈vN , yN 〉). To learn our parameters, we adopt
the binary Latent SVM framework of Felzenszwalb et
al. [4], which is a specific instance of the Latent Structural
SVM with a hinge loss function [29]. The objective we
would like to minimize is given by:

min
w

1

2
‖w‖2 + C

N∑
i=1

max(0, 1− yifw(vi)) (7)

where we consider linear classifiers of the form:

fw(v) = max
h

w · Φ(v,h) (8)

The latent variables h in the classifier are solved for by
performing MAP inference on the example v to find the
state and duration assignments. Using these assignments,
we can construct the feature vector Φ(v,h) for an example
v as follows. For the wa parameters we sum the feature
histograms that are assigned to each state, and for the wt

and wd parameters we count the number of times each state
transition and duration occurs. We then normalize each of
these features and concatenate them together to form the
feature vector Φ(v,h).

The objective function is minimized using the Concave-
Convex Procedure (CCCP) [30]. This leads to an iterative
algorithm in which we alternate between inferring the latent
variables h, and optimizing the weight vector w. Once the
latent variables are inferred and the feature vectors Φ(v,h)
are constructed for each example, optimizing the weight
vector becomes the standard linear kernel SVM problem,
which can be solved very efficiently using LIBLINEAR [3].
This process is repeated for several iterations until conver-
gence or a maximum number of iterations is reached.

5.1. Initialization

In our model, we must initialize the latent states of the
temporal segments as well as their durations for each of our



Sport Class Niebles et al. [16] Our Method
high-jump 27.0% 18.4%
long-jump 71.7% 81.8%
triple-jump 10.1% 16.1%
pole-vault 90.8% 84.9%

gymnastics-vault 86.1% 85.7%
shot-put 37.3% 43.3%
snatch 54.2% 88.6%

clean-jerk 70.6% 78.2%
javelin-throw 85.0% 79.5%

hammer-throw 71.2% 70.5%
discus-throw 47.3% 48.9%

diving-platform 95.4% 93.7%
diving-springboard 84.3% 79.3%

basketball-layup 82.1% 85.5%
bowling 53.0% 64.3%

tennis-serve 33.4% 49.6%
Mean AP 62.5% 66.8%

Table 1. Average Precision (AP) values for classification on the
Olympic Sports dataset [16].

training examples, subject to the constraint that we have S
states we can assign and a maximum duration dmax. For
each video, we begin by initializing each segment to its own
state. Then, we use Hierarchical Agglomerative Clustering
to merge adjacent segments. This is done by computing the
Euclidean distance between feature histograms of all adja-
cent segments, and repeatedly merging segments with the
shortest distance. The number of merges for a given video
is fixed to be half the number of segments in the video.

Then, using all the videos, we run k-means clustering to
cluster all the states into S clusters, and assign latent states
according to their cluster assignments. This gives us the
assignments z for the states. We initialize the duration vari-
ables by assuming that all consecutive assignments of the
same state are a single state assignment with duration equal
to the number of consecutive assignments.

6. Experiments
We test our model on two difficult tasks: activity recog-

nition and event detection. In both scenarios, we are only
given class labels for the videos. We use the Olympic Sports
dataset [16] and the 2011 TRECVID Multimedia Event De-
tection (MED) dataset [18]. For both datasets, we compare
our model to state-of-the-art baselines that consider tempo-
ral structure, using the same features for all models.

In our experiments, we use 5-fold cross validation for
model selection to select the number of latent states and the
C parameter for the SVM. We set the maximum duration to
be the average video length, and set the length of temporal
segments based on the dataset and density of our sampled
features. For the Olympic Sports dataset, we used 20 frames
per segment, and for the MED dataset, we used 100 frames

per segment. We train a model for each class, and report
average precision (AP) numbers on the datasets.

6.1. Activity recognition

Dataset. The Olympic Sports dataset [16] consists of 16
different sport classes of Olympic Sports activities that
contain complex motions going beyond simple punctual
or repetitive actions. The sequences are collected from
YouTube, and class label annotations obtained using Ama-
zon Mechanical Turk. An important point to note is that the
sequences are already temporally localized.

Comparisons. We compare our model to the method of de-
composable motion segments [16], which achieves state-of-
the-art results using local features. Because much of their
performance derives from including a BoW histogram over
the entire video in their feature vector, we follow proto-
col and concatenate the BoW histogram to the end of our
feature vector Φ(v,h) before classification. For the fea-
ture representation, we use the same features used in [16],
which consists of an interest point detector [11] and con-
catenated Histogram of Gradient (HOG) and Histogram of
Flow (HOF) descriptors [12]. In addition, because [16] uses
a χ2-SVM, we use the method of additive kernels [25] to ap-
proximate a χ2 kernel for our BoW features to maintain effi-
cient processing while increasing discriminative power. Be-
cause the public release of this dataset is not the full dataset
used in the paper [16], we obtained results for their model
on the public release through personal communication with
the authors. The results are given in Table 1.

Results. We obtain better AP numbers for 9 of the 16
classes, as well as better overall mean AP compared to the
state-of-the-art baseline model. The promising performance
on this dataset shows that, given well-localized videos, our
model is able to capture the fine structure between temporal
segments that define a complex activity.

Observing the latent states that our model learns, we find
that there are three key components that allow us to do bet-
ter than [16]. First, our model is flexible and allows la-
tent states to appear anywhere within a sequence without
penalty. In the “snatch” sequences, the assignment of the
first latent state varies approximately equally between two
different states. This helps to capture the variability that ac-
companies the start of a “snatch” sequence, such as differ-
ences in preparatory motions of the athletes. The baseline
model is unable to easily account for this, as it has a fixed
anchor for its segments, and so the beginning of each se-
quence is almost always modeled by the same segment. The
second component is the effect of modeling the duration of
the segments. For the same latent state, the durations of the
state can vary greatly from sequence to sequence. In some
cases, our model is able to realize that the sequence is ex-
tremely short and already very discriminative, and assigns



Event Class Chance Niebles et al. [16] Laptev et al. [12] Our Method, dmax = 1 Our Method
Attempting a board trick 1.18% 5.84% 8.22% 6.24% 15.44%

Feeding an animal 1.06% 2.28% 2.45% 5.28% 3.55%
Landing a fish 0.89% 9.18% 9.77% 7.30% 14.02%

Wedding ceremony 0.86% 7.26% 5.52% 9.48% 15.09%
Working on a woodworking project 0.93% 4.05% 4.09% 3.42% 8.17%

Mean AP 0.98% 5.72% 6.01% 6.34% 11.25%

Table 2. Average Precision (AP) values for detection on the MED DEV-T dataset.

Event Class Chance Niebles et al. [16] Laptev et al. [12] Our Method, dmax = 1 Our Method
Birthday party 0.54% 2.25% 1.93% 1.97% 4.38%

Changing a vehicle tire 0.35% 0.76% 0.98% 1.01% 0.92%
Flash mob gathering 0.42% 8.30% 7.60% 7.58% 15.29%

Getting a vehicle unstuck 0.26% 1.95% 1.73% 1.82% 2.04%
Grooming an animal 0.25% 0.74% 0.72% 0.73% 0.74%
Making a sandwich 0.43% 1.48% 1.09% 0.80% 0.84%

Parade 0.58% 2.65% 3.77% 4.17% 4.03%
Parkour 0.32% 2.05% 1.95% 1.65% 3.04%

Repairing an appliance 0.27% 4.39% 1.54% 1.38% 10.88%
Working on a sewing project 0.26% 0.61% 1.18% 0.91% 5.48%

Mean AP 0.37% 2.52% 2.25% 2.20% 4.77%

Table 3. Average Precision (AP) values for detection on the MED DEV-O dataset.

the same state to the entire sequence. This is not allowed in
the baseline model, as the lengths of the motion segments
are pre-specified parameters. Finally, our model is able to
discard unnecessary states and represent most of the sport
classes with fewer than 3 states. The baseline model is opti-
mally trained with 6 motion segments, and forces sequences
into the temporal structure of its segments, causing the op-
timization to easily overfit.

We note that our model performs poorly in the “high-
jump” and “triple-jump” classes. The reason for this can be
attributed to the weak discriminative power of the features
extracted from these videos. Visualizing the latent states
learned for the “high-jump” class, we find that there are a
large number of videos that are all assigned to a single state.
This occurs because the underlying BoW histograms at the
segment level are too similar, and so our model tends to
group them together into a single duration. In addition, the
number of videos is skewed for several of the classes, and
“triple-jump” is one of the classes with fewer examples in
both training and testing, which makes it hard for both dis-
criminative models to learn meaningful parameters.

6.2. Event detection

Dataset. The 2011 TRECVID MED dataset [18] consists
of a collection of Internet videos collected by the Linguis-
tic Data Consortium from various Internet video hosting
sites. There are 15 events, and they are split into two sets,
the DEV-T set and the DEV-O set. The DEV-T set con-
sists of the 5 events “Attempting a board trick”, “Feeding
an animal”, “Landing a fish”, “Wedding Ceremony”, and

“Working on a woodworking project”. The DEV-O set con-
sists of the 10 events “Birthday party”, “Changing a vehicle
tire”, “Flash mob gathering”, “Getting a vehicle unstuck”,
“Grooming an animal”, “Making a sandwich”, “Parade”,
“Parkour”, “Repairing an appliance”, and “Working on a
sewing project”.

The task, although termed event detection, is more sim-
ilar to that of a retrieval task. We are given approximately
150 training videos for each event, and in the two testing
sets for DEV-T and DEV-O, we are given large databases
of videos that consist of both the events in the set as well
as null videos that correspond to no event. The null videos
significantly decrease the chance AP, causing our resulting
numbers to be very low. There are a total of 10,723 videos
in the DEV-T test set, and 32,061 videos in the DEV-O test
set. In the TRECVID task, the DEV-T set is used for de-
velopment, while the DEV-O set is used for evaluation. We
consider the two sets separately, as it is stated that there may
be unidentified positive videos of events from the DEV-T set
in the DEV-O test set, and vice versa.

Comparisons. We compare our models to strong base-
line methods that can capture temporal structure of local
features through decomposable motion segments [16], and
rigid spatio-temporal bins [12]. For the feature representa-
tion, we extract dense HOG3D features [10, 27], and use
a linear kernel SVM for all models. To illustrate the ef-
fect of the duration variables, we also train a version of our
model with the duration variable set to one, corresponding
to a standard hidden chain CRF [19]. Results for the MED
datasets are given in Table 2 and Table 3 for the DEV-T and



DEV-O sets, respectively.
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Figure 4. Examples of duration parameters learned for events in
the MED dataset. The x-axes are values of the duration parame-
ters, and the height of the bars represent the strength of the param-
eter, which is averaged over all states of the model.

Effect of duration variables. In a few rare cases, the hid-
den chain CRF is able to outperform our model by a small
margin. This can occur because for some events, the videos
that contain them vary between different types of motions
very quickly, and so the duration variables will sometimes
mistakenly merge these variations into a single state. In re-
lation to the bias-variance tradeoff, the low variance and
high bias of the hidden chain CRF allow it to generalize
better for certain events. In theory, any model learned us-
ing the hidden chain CRF can be learned using our duration
model as well, by learning large negative parameters for du-
rations greater than one. However, this does not always
occur as the duration variables are initialized to different
values, and the inference procedures score assignments dif-
ferently. On the other hand, the increased performance of
the hidden chain CRF also speaks well for our model, as it
shows that through better initializations and model selection
techniques, it is possible to achieve even better accuracies.

Visualizing the parameters learned for the duration vari-
ables, we find that the duration variables are commonly
utilized for states that correspond to the contextual and ir-
relevant portions of videos, as they typically occupy large
numbers of consecutive temporal segments. In Figure 4,
we show examples of the multinomial duration parameters
learned for events in the MED dataset. A hidden chain CRF
that imposes a geometric distribution would have a large
parameter for the duration of 1, and small parameters for
all other durations. Our models learn duration parameters
in favor of non-geometric distributions, which suggests that
the videos are better modeled with state durations.

Results. Our model achieves the best results for both MED
datasets, and achieves significant gains in AP for most of
the events. Much of the analysis from the previous section
on activity recognition holds for these datasets as well. By
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Figure 5. Example inference results on two different videos for
four of our models learned on the MED dataset. The red and green
boxes represent different latent states that are the same across the
two videos, but different across models. Our models are able to
learn the transitions and durations of states, and successfully dis-
cover discriminative segments at varying points in videos of dif-
fering length. This figure is best viewed magnified and in color.

learning state assignments that can occur at any temporal lo-
cation and by modeling their durations, our model is able to
successfully capture the temporal structure of these highly
varying Internet videos, as seen in Figure 5. These proper-
ties are crucial in MED videos, as events are not temporally
localized and there is a large number of contextual segments
that we must model. For example, in the “Feeding an ani-
mal” visualizations in Figure 5, discriminative segments oc-
cur at completely different points in time for the two videos.
The fixed structure of the baseline models makes it unable
for them to capture the varied temporal structure of these



videos, as they treat segments at the same relative locations
of two videos to be the same.

Latent semantic understanding. In addition to achieving
competitive accuracies on difficult datasets, our model is
also able to capture semantic concepts in the latent states.
We find that in many instances, temporal segments assigned
to the same latent state are related in semantic content. This
occurs at varying locations across different videos, and is
shown in Figure 5. The “Landing a fish” class is a particu-
larly nice illustration of this, as we can typically identify a
state that corresponds to the actual catching of the fish.

7. Conclusion
In this paper we have introduced a model for learning

the latent temporal structure of complex events in Internet
videos. Our model is simple, and lends itself to fast, ex-
act inference, which allows us to process large numbers
of videos efficiently. In addition, we train our model in a
discriminative, max-margin fashion and are able to achieve
competitive accuracies on activity recognition and event de-
tection tasks. We’ve shown competitive results on difficult
datasets, as well as examples of semantic structure that our
model is able to automatically extract.

Possible directions for future work include incorporating
spatial structure into our model. We have tackled temporal
understanding of the structure of complex events, but being
able to learn spatial structure as well is another step towards
our overarching goal of holistic video understanding. An-
other possible direction is using the semantic understanding
capabilities of our model for video summarization.
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[10] A. Kläser, M. Marszałek, and C. Schmid. A spatio-temporal
descriptor based on 3d-gradients. In BMVC, 2008. 2, 6

[11] I. Laptev. On space-time interest points. IJCV, 2005. 5
[12] I. Laptev, M. Marszaek, C. Schmid, B. Rozenfeld, I. Rennes,

I. I. Grenoble, and L. Ljk. B.: Learning realistic human ac-
tions from movies. In CVPR, 2008. 2, 5, 6

[13] J. Liu, J. Luo, and M. Shah. Recognizing realistic actions
from videos ”in the wild”. CVPR, 2009. 2

[14] P. Natarajan and R. Nevatia. Coupled hidden semi markov
models for activity recognition. In WMVC, 2007. 2, 3

[15] M. H. Nguyen, L. Torresani, F. De la Torre, and C. Rother.
Weakly supervised discriminative localization and classifica-
tion: a joint learning process. In ICCV, 2009. 2

[16] J. C. Niebles, C.-W. Chen, and L. Fei-Fei. Modeling tempo-
ral structure of decomposable motion segments for activity
classification. In ECCV, 2010. 1, 2, 5, 6

[17] J. C. Niebles, H. Wang, and L. Fei-Fei. Unsupervised learn-
ing of human action categories using spatial-temporal words.
IJCV, 2008. 2

[18] P. Over, G. Awad, M. Michel, J. Fiscus, W. Kraaij, A. F.
Smeaton, and G. Quenot. Trecvid 2011 – an overview of the
goals, tasks, data, evaluation mechanisms and metrics. In
Proceedings of TRECVID 2011. NIST, USA, 2011. 1, 5, 6

[19] A. Quattoni, S. Wang, L.-P. Morency, M. Collins, and T. Dar-
rell. Hidden-state conditional random fields. In IEEE
TPAMI, 2007. 2, 3, 6

[20] S. Sarawagi and W. W. Cohen. Semi-markov conditional
random fields for information extraction. In NIPS, 2004. 2

[21] S. Satkin and M. Hebert. Modeling the temporal extent of
actions. In ECCV, 2010. 2
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