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Contact problem suffers from a numerical instability similar to that encountered in incompressible elasticity, in
which the normal contact pressure exhibits spurious oscillation. This oscillation does not go away with mesh
refinement, and in some cases it even getsworse as themesh is refined. Using a Lagrangemultipliers formulation
we trace this problem to non-satisfaction of the LBB condition associated with equal-order interpolation of slip
and normal component of traction. In this paper, we employ a stabilized finite element formulation based on the
polynomial pressure projection (PPP) technique,whichwasused successfully for Stokes equation and for coupled
solid-deformation–fluid-diffusion using low-order mixed finite elements. For the frictional contact problem the
polynomial pressure projection approach is applied to the normal contact pressure in the framework of the
extended finite element method. We use low-order linear triangular elements (tetrahedral elements for 3D) for
both slip and normal pressure degrees of freedom, and show the efficacyof the stabilized formulation on a variety
of plane strain, plane stress, and three-dimensional problems.
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1. Introduction

There exists a large body of literature addressing the computational
aspects of contact problems innonlinear solidmechanicsusing thefinite
element (FE) method (see [25,48,51] and references therein). A
challenging aspect of the problem is the enforcement of the contact
condition, whether it be in the context of classical nonlinear contact
mechanics in which element sides are aligned to the contact faces
[26,36,37,39,40,42,49,50], or in the framework of the assumed en-
hanced strain or extended FEmethod inwhich contact faces are allowed
to pass through and cut the interior of finite elements [2,3,8,11–13,17–
20,23,24,27–29,31,34,35,38]. The contact condition inhibits interpene-
tration of the contact faces, as well as requires that the contact pressure
be strictly nonnegative. Mathematically, these constraints are repre-
sented by classical Karush–Kuhn–Tucker (KKT) conditions in nonlinear
programming, which is a generalization of the method of Lagrange
multipliers to inequality constraints. Frictional contact adds complexity
to the problem in that a second layer of KKT conditions is necessary to
describe stick-slip conditions for the casewhen the frictional faces are in
contact mode [8,19,24,27–29].

The FEmethod provides a natural tool for simulating frictionless and
frictional contact problems. If the contact faces are well defined prior to
the beginning of the simulation, then one can simply employ the
standard nonlinear contact mechanics approach by aligning element
sides with the contact surfaces [25,26,36,37,39,40,42,48–51]. However,
if the contact faces are not a priori given and are expected to evolve in an
unknown fashion during the course of the simulation, then an extended
FE method would be more appropriate [3,4,19,29,33]. The latter
approach is generally more robust since it permits the use of instability
models [5,9,10,30,41,46] to propagate a discontinuity in any direction
and at any point in the solution. In either case, exact satisfaction of the
contact constraint may be achieved with a formulation based on the
Lagrange multipliers method. Approximate satisfaction of the contact
constraint also may be imposed by the penalty method particularly for
the more complex problem of frictional sliding.

Irrespective of whether one employs the Lagrange multipliers or
penalty method, it is generally recognized that certain combinations
of discrete interpolation spaces for solid-displacement and normal
contact pressure exhibit numerical instability in the form of spurious
oscillation in the normal contact pressure. Typically, these oscillations
are more pronounced with the Lagrange multipliers method, where
contact constraints are imposed exactly, than with penalty method,
where contact constraints are imposed only approximately. Oscilla-
tion is somewhat reduced by reducing the values of the penalty
parameter, but at the expense of accuracy in the form of significant
interpenetration of contact faces. Furthermore, the oscillation does
not go away with mesh refinement, and in some cases it even gets
worse as the mesh is refined.

Some numerical strategies have been proposed in the literature to
address the problem of contact pressure oscillation. Existing stabilized
methods include Nitsche's method [38], bubble stabilization
[17,18,34], and reduced Lagrange methods [2,24,31]. Bubble
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Fig. 1. Domain Ω is cut by a crack S into Ω− and Ω+.

Fig. 2. Enriched CST element crossed by a crack. Each node has u
_
, ũ, and λ degrees of

freedom.
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stabilization technique introduces additional unknowns, although
they can be statically condensed within the element level. It has been
shown in [43] that bubble stabilization method is closely related to
Nitsche's approach. Unfortunately, the performance of bubble
stabilization methods in frictional contact problem has not yet been
reported. Mortar method has also been used [24] to address the over-
constrained contact problem by reducing the integration points on the
interface; however, this approach relies on a heuristic argument for
discretizing the interface. In [2,31], a stabilized Lagrange space is
designed to satisfy the Ladyzhenskaya–Babuska–Brezzi (LBB) condi-
tion [1,14], the basic idea being to reduce the number of Lagrange
multipliers by certain rules. However, constructing such a stable
Lagrange space is quite complicated, and its FE implementation is not
trivial particularly in 3D.

We identify the source of the contact pressure oscillation from
failure of the discrete subspaces to satisfy the LBB stability condition
similar in spirit to the Stokes problem [21,22,44]. Specifically, certain
combinations of discrete subspaces for slip and contact pressure
degrees of freedom, particularly those arising from low-order FE
interpolations, result in unstable behavior in the form of contact
pressure oscillation. Recently, Bochev et al. [6,7,16] quantified the
deficiency of some of these low-order mixed finite elements, and
proposed a stabilized method aimed at addressing this deficiency. The
idea is embodied in so-called polynomial pressure projection (PPP)
stabilization, which they used successfully for the Stokes problem.
More recently, White and Borja [47] used a similar approach for
coupled solid-displacement/fluid-diffusion problem. An analysis of
similar pressure projection methods along with a unifying framework
for their analysis has also been proposed by Burman [15].

In this paper, we utilize the same PPP technique for stabilizing the
frictional contact problem using equal low-order (triangular) inter-
polations for slip and contact pressure degrees of freedom. Formulation
is done with the Lagrange multipliers method for frictionless contact,
and with the penaltymethod for frictional contact. We are not aware of
any work in the literature dealing with the implementation of the PPP
technique within the framework of the penalty method, and thus, apart
from the novel use of this particular technique for the contact problem,
we also demonstrate how this technique may be combined with the
penalty approach itself. An advantage of the PPP stabilization approach
is that the additional stabilizing terms can be assembled locally on each
element using standard shape function information, so they introduce
minimal additional computational work. Furthermore, the technique is
highly suitable for low-order interpolation of displacement and contact
pressure fields. To accommodate an evolving slip surface geometry, we
implement the stabilized technique in the framework of the extended
FE method.

2. Mathematical developments

We consider a classical quasi-static boundary-value problem
constrained by the presence of a crack. We denote the problem
domain by Ω and enclose it with non-overlapping decompositions of
the external boundaries, Γgi and Γhi

, such that

Γgi∪Γhi
―

= Γ; Γgi∩Γhi = ∅; ð1Þ

where Γ is the total external boundary and i denotes the ith dimension.
We assume that the displacement field gi is prescribed on Γgi, and
surface tractions hi are specified on Γhi

. In addition, we assume that the
body contains an internal crack S inside a compact support Ωh=Ω−

h ∪
Ω+

h , with faces S+ and S− interpreted to belong in the “positive” and
“negative” sides of the crack, respectively, see Fig. 1. The displacement
field u is enhanced to accommodate the crack as follows

u = u− + MSũ; ð2Þ
where u
_

and MSũ are the continuous and discontinuous parts of
displacement, respectively. The scalar function MS generates the
discontinuity on the surface S and is given by the equation

MS = HS−f h; ð3Þ

where HS is the Heaviside function defined by

HS = 1; x∈Ωþ
0; x∈Ω−

;

�
ð4Þ

and f h(x) is any arbitrary smooth function that satisfies the requirements
f h=0 in Ω_\Ω_h , and f=1 in Ω+\Ω+

h . The jump of MS on S is 〚MS〛=1,
andMS=0 on the surface S±

h .
The strong form of the boundary-value problem is as follows. For

all x∈Ω, find the admissible displacement field u such that

∇⋅σ + f = 0 in Ω 5S ð5Þ

ui = gi on Γgi ð6Þ

ðν⋅σÞi = hi on Γhi ð7Þ

n⋅σ = t− on S− ð8Þ

−n⋅σ = tþ on Sþ; ð9Þ

where σ is the Cauchy stress tensor (a function of the symmetric
gradient of the displacement field,∇su), f is the body force vector, ν is
the unit outward normal vector to Γhi

, and n is the unit outward
normal vector to S−. Traction boundary conditions on the crack faces
demands that t+=− t−.

We next impose the contact condition. Let the gap between S− and
S+ be denoted by

hðxÞ = ðuþ−u−Þ⋅n = ũ⋅n; x∈S: ð10Þ



Fig. 3. Structured FE meshes for simulations with frictionless contact: Mesh 1 has 121 nodes and 200 CST elements. Mesh 2 has 10,201 nodes and 20,000 CST elements. Sub-triangles
around the crack are used for numerical integration only, and do not define additional CST elements.
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Further, let the normal contact pressure be denoted by λ(x). The
constraint introduced by the presence of the crack is given in compact
form by the KKT conditions

λðxÞ≥0; −hðxÞ≤0; λðxÞhðxÞ = 0; ∀x∈S: ð11Þ

In other words, the normal contact pressure λ(x) must be positive
whenever h(x)=0, and is zero whenever −h(x)b0.
Fig. 4. Unstructured FE meshes for simulations with frictionless contact: Mesh 3 has 121 no
6561 nodes and 12,800 CST elements.
To develop the weak form, we consider a set of trial functions

U i = ui jui∈H1ðΩÞ;ui = gi on Γgi
n o

ð12Þ

and a set of variations

Vi = ηi jηi∈H1ðΩÞ;ηi = 0 on Γgi
n o

: ð13Þ
des and 200 CST elements; Mesh 4 has 1681 nodes and 3200 CST elements; Mesh 5 has



Fig. 5. Contours of horizontal displacements using Mesh 2 generated by the unstabilized (left) and stabilized (right) Lagrange multipliers method.
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We then write the variation η in a form similar to the trial function
u (see Eq. (2))

η = η− + MSη̃; ð14Þ

where η
_
and MSη̃ are the continuous and discontinuous parts of η,

respectively. Without loss of generality, we assume that the support
Ωh has a null intersection with Dirichlet boundary Γgi. Thus, u−i∈U i

and η−i∈V i, whereas (ũi, η̃i)∈H, whereH is simply the collection of H1

functions.
The variational equation takes the form

∫
Ω =S∇

sη : σdΩ + ∫
Ω =Sη⋅fdΩ + ∫

Γh
η⋅hdΓ + Gc = 0; ð15Þ

where

Gc = ∫
S̃−

η−⋅t−dS− + ∫
S̃þ
ηþ⋅tþdSþ = −∫

S̃
η̃⋅tdS; ð16Þ

and t=t− is the traction vector acting on the negative face of the
crack. Using decomposition (Eq. (14)), and noting that η

_
and η̃ are two

independent variations, we obtain the pair of variational equations

∫
Ω =S∇

s η− : σdΩ + ∫
Ω =S η

−⋅fdΩ + ∫
Γh

η−⋅hdΓ = 0; ð17Þ

and

∫
Ω =S∇

s MSη̃ð Þ : σdΩ + ∫
Ω =S MSη̃ð Þ⋅f dΩ + ∫

Γh
MSη̃ð Þ⋅hdΓ + Gc = 0:ð18Þ
Fig. 6. Stabilized and unstabilized contact pressures calculated by Lagrange multipliers m
The Lagrange multipliers method entails treating the normal
component of traction, which takes the role of the Lagrange multiplier,
as an independent variable. We denote this normal traction on S by
λ≥0 and its associated variation by ψ≥0. In general there are no
boundary conditions for the functions λ andψ, and here we require that
they simply satisfy the set relation (λ,ψ)∈P, where P is a collection of
nonnegative L2 functions. The complete traction vector is given by

t = tT−λn: ð19Þ

If the active contact surfaceS̃ ⊂S is known, so that λ,ψN0 on S̃ and
λ=ψ=0 on S /S̃ (opening mode), then the surface integral Gc
reduces to the form

Gc = −∫S̃ η̃⋅tTdS + ∫S̃λ η̃⋅nð ÞdS: ð20Þ

In this case the KKT conditions collapse to the simpler form

λðxÞ N 0; hðxÞ = 0; ∀x∈S̃: ð21Þ

The above constraints can be converted into a weighted integral of
the form

∫ S̃ ψðxÞũðxÞ⋅nðxÞdS = 0: ð22Þ

Eqs. (17), (18), and (22) constitute a three-field {ū, ũ, λ} mixed
variational formulation.
ethod: Mesh 1 (left) and Mesh 2 (right). All contact segments are of equal length.



Fig. 7. Stabilized and unstabilized contact pressures calculated by penalty method: Mesh 1 with �N=107 GPa/m (left) and Mesh 2 with �N=104 and 107 GPa/m (right). All contact
segments are of equal length. Note that contact pressure oscillation from the unstabilized solution is weaker with a lower penalty parameter, but interpenetration of the contact faces
is greater. However, the stabilized solution suppresses any such oscillation irrespective of the value of the penalty parameter.

2460 F. Liu, R.I. Borja / Computer Methods in Applied Mechanics and Engineering 199 (2010) 2456–2471
The penalty formulation entails expressing the Lagrangemultiplier
λ(x) in terms of the gap function h(x) via a constitutive equation of
the form

λðxÞ = �NhðxÞ≥0; ∀x∈S̃; ð23Þ
Fig. 8. Stabilized and unstabilized contact pressures calculated by Lagrange multipliers an
where �N≫1 is a penalty parameter. The normal contact pressure λ
becomes H1 since h(x) is an H1 function. The traction vector t in
Eq. (19) becomes

t = tT−�N ũ⋅nð Þn: ð24Þ
d penalty methods with Mesh 1. Numbers in parentheses are segment length ratios.
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The idea behind the penalty formulation is to prescribe a very large
value of penalty parameter �N to force h to become small, thus
approximately satisfying the interpenetration condition (22).

3. Stabilized finite element formulation

We introduce approximations to trial functions, {ūh
, ũh, λh}, and

their associated variations, {η ̄h, η̃h, ψh}, where ūih+MS ũi
h∈U i

h, η
_
i
h+

MS η̃i
h∈Vi

h, and (λh,ψh)∈Ph. Here, U i
h⊂U i, Vi

h⊂Vi, and Ph⊂P are the
corresponding finite dimensional trial/weighting subspaces. Substi-
tuting in the variational equations yields

∫
Ω =S∇

s η−
h
: σðuhÞdΩ + ∫

Ω =S η−
h
⋅fdΩ + ∫

Γh
η−

h
⋅hdΓ = 0; ð25Þ

∫
Ω =S∇

s MSη̃
h

� �
: σðuhÞdΩ + ∫

Ω =S MSη̃
h

� �
⋅fdΩ + ∫

Γh
MS η̃

h
� �

⋅hdΓ

−∫S̃ η̃
h⋅tTdS + ∫ S̃ η̃h⋅n

� �
λhdS = 0; ð26Þ

and

∫S̃ ψ
hũh⋅ndS = 0: ð27Þ

The above equations have striking semblance with the mixed
formulation for Stokes equation, which is known to produce
numerical instabilities for certain combinations of velocity and
pressure approximations. For Stokes equation it is known that the
Fig. 9. Stabilized and unstabilized contact pressures calculated by Lagrange multipliers an
discrete velocity and pressure spaces, Uh and Ph, respectively, must be
chosen to satisfy the discrete LBB condition

sup
vh∈Uh

∫
Ω
ψh∇⋅vh dΩ
∥vh∥1

≥C∥ψh∥0 ∀ψh∈Ph
; ð28Þ

with CN0 independent of h. Unfortunately, many linear-pressure/
linear-velocity interpolations do not satisfy this condition and lead to
unstable approximations. However, Bochev and co-workers [6,7]
demonstrated that this linear pair does satisfy the weaker condition,

sup
vh∈Uh

∫
Ω
ψh∇⋅vh dΩ
∥vh∥1

≥C1∥ψh∥0−C2∥ψh−Πψh∥0 ∀ψh∈Ph
; ð29Þ

where Π: L2(Ω)→R0 is a projection operator and R0 is the space of
piecewise constants, and with C1N0 and C2N0 independent of h. The
term C2∥qh−Πqh∥0 quantifies the inherent deficiency in the linear pair
and motivates a similar stabilization approach for the contact problem.

The stabilization methodology advocated in this paper is to add
stabilizing terms to the variational Eq. (27) to penalize the deficiency
in the displacement and contact pressure approximations. The
stabilized variational equation takes the form

∫S̃ψ
hũh⋅nhdS−∫S̃

τ
2M

ψh−Πψh
� �

λh−Πλh
� �

dS = 0; ð30Þ
d penalty methods with Mesh 2. Numbers in parentheses are segment length ratios.



Fig. 10. Mesh convergence study: stabilized contact pressures calculated by Lagrange multipliers method (left) and penalty method (right).
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whereM is a volumemodulus of the bulkmaterial (similar inmeaning
to the Winkler modulus in beam-on-elastic-foundation theory), and
τN0 is a constantmultiplier, or stabilization parameter. The parameter
M has the physicalmeaning of being the pressure necessary to produce
a unit indentation in the bulk material, and for the present case this
parameter may be taken to be numerically equal to the Young's
modulus of elasticity of the bulk material but with units of F/L3. The
dimensionless parameter τ, on the other hand, serves to “tune” the
stabilization and has been normalized in the above equation to have a
value on the order 1.0. For linear displacement interpolation the
projection operator Π may be evaluated from the volume mean

Πλh jΩe =
1
Ve ∫Ωeλ

hdΩe
: ð31Þ

For 2D problems the above definition reduces to an area mean.
To demonstrate the implications of the stabilizing terms on the FE

matrix equations, consider a linear elastic bulk material with
frictionless contact and assume linear triangular finite elements for
the compact support Ωh. Interpolation of the trial functions inside an
enriched element Ωe yields

u−
h
i = ∑

3

A=1
NAd

e
iA; ũh

i = ∑
3

A=1
NAa

e
iA; λh = ∑

3

A=1
NAλ

e
A; ð32Þ
Fig. 11. Influence of stabilization parameter τ on contact pressure distribution using M
formulation has τ=0.00.
where diA
e , aiAe , and λA

e are, respectively, the regular displacement, slip,
and normal contact pressure nodal degrees of freedom in the enriched
element. In matrix form, we write

u−
h
= Nd; ũh = Na; λh = N

−
λ; ð33Þ

where N
―

is the compact version of N appropriate for interpolating a
scalar field. Thus, the nodes of an enriched finite element Ωe now also
contain slip and contact pressure degrees of freedom, in addition to
the standard displacement degrees of freedom (for a total of five
degrees of freedom in 2D). An enriched CST element is shown in Fig. 2.

The systemof equations to solve ina Lagrangemultipliers formulation
with frictionless contact has a block-partitioned structure of the form

K11 K12 0
K21 K22 K23
0 K32 K33

2
4

3
5 d

a
λ

8<
:

9=
; =

F1
F2
0

8<
:

9=
;; ð34Þ

where the submatrices are given by (see [8,28] for details)

K11 = ∫
Ω
BTDBdΩ; K12 = ∫

Ω
BTDB̃dΩ = KT

21;

K22 = ∫
Ω
B̃
T
DB̃dΩ; K23 = ∫S̃ðnNÞT N−dS = KT

32;

K33 = −∫S̃
τ
2M

N
−−Π N

−� �T
N
−−Π N

−� �
dS;

ð35Þ
esh 4: Lagrange multipliers method (left) and penalty method (right). Unstabilized



Fig. 12. Deformed finite element mesh for 3D elastic blocks with frictionless contact
under vertical compression.
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and where D is the constitutive stress–strain matrix, and B and B̃ are
the strain–displacement transformation matrices. We should note
that for a CST element the projection operator Π operates on the
shape function matrix N as follows

ΠNA =
1
3
; A = 1;2;3: ð36Þ
Fig. 13. Unstabilized normal contact pressure (in GPa) on frictionless contact face:
(a) Lagrange multipliers; (b) penalty method with �N=107 GPa/m.
Similarly, for a 3D tetrahedral element the projection operator Π
operates on the shape function matrix N according to the rule

ΠNA =
1
4
; A = 1;2;3;4: ð37Þ

If the contact surface S̃ is to be determined iteratively, and/or if the
bulk material undergoes plastic deformation, then the above matrix
equation may be viewed as the relevant tangent operator in the
linearized system. Note that without a stabilizing term a null sub-
matrix K33=0 appears in the (3,3) block of Eq. (34).

As noted in the beginning, the Lagrange multipliers formulation
has a drawback in that it is very difficult to implement the technique
when the problem involves frictional contact. A far simpler formu-
lation is provided by the penalty method, although this, too, suffers
from numerical instabilities unless the formulation is stabilized.
Fortunately, the penalty method is also amenable to PPP stabilization.
Eqs. (25) and (26) constitute the relevant equations in the penalty
formulation, but here we stabilize the latter equation by adding once
again the stabilization term.

We first consider the slip case where the tangential traction is
calculated based on the normal contact pressure through the
coefficient of friction. By stabilizing the normal contact pressure
we stabilize the tangential component as well. Hence, it suffices to
write

∫
Ω =S∇

s MSη̃
h

� �
: σðuhÞdΩ + ∫

Ω =S MSη̃
h

� �
⋅fdΩ + ∫

Γh
MSη̃

h
� �

⋅hdΓ

−∫S̃η̃
h⋅tdS−∫S̃

τ
2M

ðψh−ΠψhÞðλh−ΠλhÞdS = 0: ð38Þ
Fig. 14. Stabilized normal contact pressure (in GPa) on frictionless contact face:
(a) Lagrange multipliers; (b) penalty method with �N=107 GPa/m.



Fig. 15. FE mesh for plane strain compression and shearing of elastic plate with a
horizontal glued crack: the mesh has 484 nodes and 882 CST elements.
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Observe that we have written the full traction vector t in the crack
surface integral, implying that we are now in a position to handle
frictional sliding as well.

Using Eq. (23) we express the trial functions and variations for the
normal contact pressures in terms of the gap functions as

λh jS = �N ũh⋅n jS ; ψh jS = �Nη̃
h⋅n jS : ð39Þ
Fig. 16. Unstabilized and stabilized contact pressures and shear stresses calculated by Lagra
stabilized solutions obtained by the PPP and Nitsche's stabilization techniques.
Thus, Eq. (38) becomes

∫
Ω =S∇

s MSη̃
h

� �
: σðuhÞdΩ + ∫

Ω 5 S MSη̃
h

� �
⋅fdΩ + ∫

Γh
MSη̃

h
� �

⋅hdΓ

−∫ S̃η̃
h⋅tdS−∫S̃

τ�2N
2M

η̃h−Πη̃h
� �

⋅ðn⊗nÞ⋅ ũh−Πũh
� �

dS = 0:

ð40Þ

The formulation thus reduces to that presented in [8,28] except with
the additional stabilizing term. The final block-partitioned matrix
equation has the form

K11 K12
K21 ðK22 + KstabÞ

� �
d
a

� �
= F1

F2

� �
; ð41Þ

where

Kstab = ∫S̃
τ
2M

ðN−ΠNÞTEðN−ΠNÞdS ð42Þ

and

E = �
2
Nnn

T
: ð43Þ

Next we consider the stick case where the normal and tangential
components of traction are calculated independently, and therefore
nge multipliers and penalty methods with Mesh 2. The lower two figures compare the



Fig. 17. Spatial convergence study: plane stress bending of a beam.
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must be stabilized separately. The stabilized variational equation is
now written as

∫
Ω =S∇

s MSη̃
h

� �
: σðuhÞdΩ + ∫

Ω5 S MSη̃
h

� �
⋅fdΩ + ∫

Γh
MSη̃

h
� �

⋅hdΓ

−∫S̃η̃
h⋅tdS−∫

S̃

τ
2M

ψh−Πψh
� �

λh−Πλh
� �

dS

−∫S̃
τ
2M

ψh
T−Πψh

T

� �
λh
T−Πλh

T

� �
dS = 0;

ð44Þ

where λT
h is the tangential component of traction with associated

variation ψT
h. A stick condition is obtained by penalization of the

tangential terms in the form

λh
T jS = �T ũ

h⋅μ jS ; ψh
T jS = �Tη̃

h⋅μ jS ; ð45Þ

in which �T≫1 is the tangential penalty parameter and μ is the unit
tangent vector (i.e., μ⋅n=0). An additional stabilization term can be
inserted simply byusing the sameexpression forKstab in Eq. (42) butwith

E = �
2
Nnn

T + �
2
Tμμ

T
: ð46Þ

4. Numerical examples

This section presents the results of numerical simulations on a
variety of 2D plane strain, plane stress, and 3D problems using
enriched constant strain triangular (CST) elements (for 2D) and
enriched constant strain tetrahedral elements (for 3D). The first set of
simulations deals with frictionless contact and demonstrates the
performance of the stabilized Lagrange multipliers and penalty
techniques. The second set deals with frictional contact and assesses
the performance of the stabilized penalty formulation.
Fig. 18. Spatial convergence profiles in L2-norm of error in displacement field for the
beam bending problem. “Lagrange” and “penalty” are the unstabilized solutions.
4.1. Plane strain frictionless contact

The problem of interest is a 1.0 m by 1.0 m (square) elastic plate
with a horizontal smooth crack passing through the middle of the
plate. The bulkmaterial has a Young'smodulus of elasticity E=10 GPa
and Poisson's ratio ν=0.30. The plate is clamped at both its top and
bottom boundaries. A vertical downward displacement of−0.10 m is
then prescribed at the top boundary while holding the bottom
boundary fixed. This causes the crack faces to press against each other
as the plate is compressed vertically. Unless otherwise noted, the
stabilization parameter is set to τ=1.0 and the penalty parameter is
�N=107 GPa/m in all the simulations.

For the numerical simulations we consider five FE meshes: two
structured (Meshes 1 and 2 in Fig. 3) and three unstructured (Meshes
3, 4 and 5 in Fig. 4). The structured meshes have the CSTs oriented
upright in cross-diagonal pattern to minimize element bias, whereas
the unstructured meshes have the CSTs oriented in arbitrary
directions. Before proceeding with a comparison of the stabilized
and unstabilized contact pressures, we show in Fig. 5 the nearly
identical contours of horizontal displacements generated using Mesh
2 with and without stabilization. These results are typical and show
that in general the numerical instability does not afflict the overall
displacement pattern, but rather, it mainly gives rise to the
undesirable contact pressure oscillation.
Fig. 19. Spatial convergence profiles in L2-norm of errors in the traction field on section
A–A: tangential traction (top), and normal traction (bottom). “Lagrange” and “penalty”
are the unstabilized solutions. The PPP-stabilized Lagrange multipliers method has the
fastest convergence rate (steepest slope) in both the normal and tangential
components of traction, whereas the Nitsche-stabilized solution has the largest error
in the tangential traction for a given mesh.



Fig. 20. Unstabilized and stabilized contact pressures and shear stresses on section A–A for the elastic beam plane stress problem using a structured mesh with 16,770 nodes and
32,896 CST elements. The lower two figures compare the PPP- and Nitsche-stabilized solutions with the exact solution. Note that for this mesh the PPP-stabilized solutions are nearly
the same as the exact solution in both the normal and tangential components of traction. On the other hand, Nitsche's method stabilized the normal component of traction but
oscillations in the tangential traction got worse compared to the unstabilized solution.

Fig. 21. FE mesh for elasto-plastic plate with a diagonal crack: the mesh has 10,000
nodes and 20,000 CST elements, and deforming in plane strain.
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Byadjusting the verticalposition of thehorizontal crack,wegenerate
the configurations shown in Fig. 3 inwhich the crack faces are definedby
line segments of equal length. Figs. 6 and 7 show the contact pressure
distributions calculated by the Lagrange multipliers and penalty
methods. Note that oscillation in contact pressures deteriorates as the
mesh is refined, clearly suggesting that this feature is a numerical
instability and not a physical response. Furthermore, oscillation is
stronger in the Lagrange multipliers solutions, where contact condition
is enforced exactly, than in the penalty solutions, where contact
condition is enforced only approximately. In contrast, no oscillation
whatsoever can be detected from the stabilized Lagrange multipliers
andpenalty solutions. The calculated values of contact pressure from the
stabilized solutions, on the order 1.0–1.3 GPa, checkwith the lower limit
of 1 GPa if the top and bottomboundaries of the platewere free tomove
horizontally, and with the upper limit of 1.35 GPa if the two vertical
boundaries were prevented from displacing horizontally.

To investigate how the uneven discretization of the crack geometry
influences the contact pressure oscillation, we move the crack slightly
in the vertical direction so that it is now defined by alternating short-
long segments derived from the enriched CST elements. Two positions
are considered, defined by segment length ratios of 2/3 and1/99. In the
latter segment length ratio, the crack is nearly coincident with a
horizontal row of nodes so that it nearly cuts through the corners and
bases of adjacent triangles in alternating fashion. Figs. 8 and9 show the
distributions of contact pressure generated by the stabilized and
unstabilized solutions using Meshes 1 and 2, respectively. Once again,
the unstabilized Lagrange multipliers solutions show a propensity to
oscillate more violently compared with the unstabilized penalty
solutions. Furthermore, with Mesh 1 the pressure oscillation resulting
from the unstabilized solutions seems to deteriorate as the segment
length ratio increases, but with Mesh 2 an opposite trend is observed
from the unstabilized penalty solutions. These trends, or lack thereof,



Fig. 22. Contours of plastic strain after a nominal vertical compression of 10% from stabilized (left) and unstabilized (right) solutions.

Fig. 24. FE mesh for elasto-plastic geological structure with three frictional faults.: the
mesh has 1359 nodes and 2637 CST elements, and deforming in plane strain.
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are immaterial in light of the effectiveness of the proposed stabiliza-
tion technique, which completely eliminates any oscillation with both
the Lagrange multipliers and penalty solutions. We should note that
bubble stabilization techniques [17,18,34] may have difficulty at a
segment length ratio of 1/99 when a crack passes near the base of an
element, since the effect of the bubble gets “weaker” as the crack
approaches an element boundary. In contrast, the proposed stabiliza-
tion techniqueworks verywell irrespective of the position of the crack
relative to element sides.

Results of the simulations for the unstructured meshes are shown
in Figs. 10 and 11. For clarity in presentation, we only report the
stabilized solutions in Fig. 10 since the unstabilized solutions exhibit
nearly as violent (if not worse) an oscillation as those encountered
using the structured Meshes 1 and 2. Solutions obtained from the
stabilized Lagrange multipliers and penalty methods are nearly the
same, except with the coarser Mesh 3 where the stabilized penalty
solution did not resolve the smooth variation of contact pressure as
accurately as the stabilized Lagrange multipliers solution.

Fig. 11 shows the contact pressure distribution as a function of
stabilization parameter τ. Once again, the unstabilized Lagrange multi-
pliers solution oscillates more wildly than the unstabilized penalty
solution.However, the Lagrangemultipliers formulation also tends to be
more receptive to stabilization since it produces a smooth variation of
contact pressure even with a very small value of τ. Furthermore, the
stabilized Lagrange multipliers solutions stay essentially the same even
when τ is increased by two orders of magnitude.

4.2. 3D frictionless contact

We consider a unit cube (1.0 m×1.0 m×1.0 m) with a horizontal
frictionless crack surface shown inFig. 12. The solidmaterial hasYoung's
Fig. 23. Stabilized and unstabilized contact pressures on a diagonal frictional crack
embedded in an elasto-plastic solid.
modulus E=10 GPa and Poisson's ratio ν=0.3. The bottom and top
boundaries of the cube are clamped andmoved toward eachother in the
z-direction by 0.10 m to induce a vertical compression. We use a mesh
consisting of 9261 nodes and 40,000 four-node tetrahedral elements.
For this example, each tetrahedral element cut by the crack is
subdivided into four or six tetrahedra for the numerical integration of
the bulk variational equations [32]. The crack surface is then discretized
naturally by sub-triangles. The contact integral is evaluated on these
sub-triangles, and a standard 13-point Gauss integration on each sub-
triangle is used to evaluate the contact integrals.
Fig. 25. Contours of plastic strain after a nominal horizontal contraction of 10 km from
stabilized (top) and unstabilized (bottom) solutions.



Fig. 26. Stabilized and unstabilized contact pressures on three frictional faults.
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The deformed mesh and displacement contour in the z-direction
are shown in Fig. 12. Fig. 13 shows contours of the normal contact
pressure generated by the unstabilized Lagrange multipliers and
penalty methods. The unwanted oscillation in contact pressures is
evident from the two solutions. Fig. 14, on the other hand, shows that
the oscillation in contact pressures has been completely suppressed
by the PPP stabilization technique (with τ=1.0).

4.3. Glued crack in plane strain

As noted in the Introduction, the performance of Nitsche's and bubble
stabilization methods in frictional sliding contact has not yet been
reported in the literature. Since these two methods have very similar
variational forms, it suffices to compare the performance of the proposed
PPP technique to that of Nitsche's method in an application where the
latter method has already been used, namely, that of a glued crack, see
[38]. The problem of a glued crack is, of course, quite trivial since it
involves a simple stick mode. However, before a crack slides it must first
satisfy a sliding condition, which is calculated using the traction stresses
under a stick condition. Hence, if the stabilization technique is to be
robust it must accommodate both the stick and slip conditions.

We consider a unit square (1 m×1m) cut by a horizontal crack
passing through the center as shown in Fig. 15. We assume small
deformation linear elasticity and plane strain loading, with Young's
modulusE=10 GPaandPoisson's ratioν=0.3 for thebulkmaterial.With
the top and bottom surfaces clamped, the structure is then compressed
and sheared bymoving the top boundary downwards and to the right by
0.1 m in both directions, while keeping the crack in stick condition. We
use theLagrangemultipliers andpenaltymethods (�N=107 GPa/m),with
and without stabilization. Furthermore, we use Nitsche's method with
α=50 GPa/m (see [38]) and PPP stabilization (τ=1.0).

Fig. 16 shows the normal and shear components of traction on the
crack faces under a stick condition,with andwithout stabilization. It can
be seen that both components of traction show instability in the form of
oscillation, which has been alleviated significantly by Nitsche's and PPP
stabilization approaches. However, whereas the normal contact
pressures have been stabilized by both approaches to a point where
no oscillation can be observed, the shear stresses calculated by Nitsche's
method still exhibit some minor oscillation (a similar result has been
reported in [38]). On the other hand, the PPP stabilization has
suppressed any oscillation in both components of traction.

4.4. Glued crack in plane stress

In this section we focus on spatial convergence study by applying
the stabilized algorithm to a problem where there is a known
analytical solution, namely, that of an elastic cantilever beam (Young's
modulus E and Poisson's ratio ν) bending in plane stress. The example
follows [38] and is depicted in Fig. 17. The beam has a thickness of 1.0
(for simplicity we omit the units and assume that they have been used
consistently throughout) and is subjected to a point load P at the free
end. The analytical solutions for the model problem can be found in
[45] and are summarized as follows.

The stresses are

σxx = −Pxy= I; σyy = 0; σxy = −P c2−y2
� �

= 2I; ð47Þ

where I is the moment of inertia and 2c is the depth of the cross-
section. The displacements are

ux = − Px2y
2EI

−νPy3

6EI
+

Py3

6μI
+ ey

uy =
νPxy2

2EI
+

Px3

6EI
+ dx + h;

ð48Þ
where

e =
PL2

2EI
+

νPc2

6EI
− Pc2

6μI
; d = − Pc2

2μI
−e; h = − PL3

6EI
−dL; ð49Þ

and μ=E/2(1+ν) is the elastic shear modulus.
In the numerical simulations we used P=1.0, E=1.0, ν=0.30,

L=16.0 and c=2.0. For reference, the glued interface (denoted by
section A–A in Fig. 17) is located at x=8.0. The penalty parameters are
�N=�T=107, and the stabilization parameters are τ=1.0 for the PPP
stabilization and α=50 for the Nitsche stabilization.

We use five structured meshes for the spatial convergence study:
the first mesh includes 90 nodes and 136 CST elements, the second
includes 306 nodes and 528 CST elements, the third has 1122 nodes



Fig. 27. Convergence profile of Newton iterations for elasto-plastic solid with diagonal crack: stabilized solution (left) and unstabilized solution (right).
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and 2080 CST elements, the fourth includes 4290 nodes and 8256 CST
elements, and the fifth mesh is defined by 16,770 nodes and 32,896
CST elements. Fig. 18 shows the L2-norm of the errors in the bulk
displacement field and demonstrates a quadratic convergence for the
unstabilized and stabilized solutions. However, Fig. 19 shows that the
unstabilized Lagrange multipliers and penalty methods cannot
achieve convergence in the normal tractions. Quasi-linear conver-
gence of tractions along the interface is achieved by the PPP and
Nitsche's stabilization methods, but the PPP-stabilized Lagrange
multipliers method has the steepest convergence rate in both the
tangential and normal tractions. Nitsche's method and the PPP-
stabilized penalty method exhibit approximately the same conver-
gence rate, represented by the slopes of the error curves, but in
general Nitsche's method produces larger errors in the tangential
traction than the PPP-stabilized methods as the mesh is refined. From
Fig. 20 we see that the tangential tractions are nearly the same as the
exact solution for the PPP-stabilized solutions, but there are still
oscillations in the tangential traction for Nitsche's solution. The latter
result agrees with those reported in [38] for a similar problem.

4.5. Frictional contact

In this section we present two examples involving frictional cracks
embedded in elasto-plastic domains. We consider the stabilized and
unstabilized penalty formulations only as it is not trivial to implement
the Lagrange multipliers method in the presence of frictional crack
and bulk plasticity. In the first example we consider a diagonal crack
embedded in the mesh shown in Fig. 21. The mesh, assumed clamped
at both its top and bottom boundaries, is compressed vertically similar
to the loading conditions considered in the examples of Section 4.1.
Fig. 28. Convergence profile of Newton iterations for elasto-plastic geologic structu
This time we assume that the bulk material is elastic-perfectly plastic
yielding according to the Drucker–Prager yield criterion with the
following material parameters: Young's modulus of elasticity of
E=10 GPa, Poisson's ratio 0.30, cohesion parameter α=0.17 GPa,
friction parameter β=1.0, and dilatancy parameter b=0.8 (see [8,28]
for the physical meanings of these parameters). The coefficient of
friction on the crack is assumed to be μ=0.10, and the penalty
parameters are �N=�T=104 GPa/m. All Gauss points are initially
stress-free.

Fig. 22 shows nearly identical yield zones generated by the
stabilized and unstabilized solutions. Both solutions suggest a
propensity to develop wing cracks at the tips. Fig. 23 demonstrates
once again the effectiveness of the proposed stabilization technique in
completely eliminating oscillation in the normal contact pressure
distribution. With the unstabilized formulation, the oscillation in
contact pressure is most violent near the crack tips, but with
the proposed stabilization technique this undesirable feature is
nonexistent.

The second example deals with three frictional faults shown in
Fig. 24. The loading is similar to the one considered in a previous
publication that simulated the process of mountain-building [39].
Initial stress conditions are defined by the gravity load, and here we
assume that the geologic structure has a mass density of ρ=2.6 T/m3

(representative of rock) relevant for establishing the initial stress
condition. Once again, we assume a non-associated Drucker–Prager
model for the bulk material, with E=10 GPa, ν=0.25, α=0.20 GPa,
β=1.0, and b=0.8; the coefficient of friction on the faults is 0.5, and
the penalty parameters are �N=�T=104 GPa/m.

The yield zones calculated by the stabilized and unstabilized
formulations are shown in Fig. 25, again showing no sign of numerical
re with three faults: stabilized solution (left) and unstabilized solution (right).
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instability. This is not true with the contact pressures, however, as
Fig. 26 shows strong contact pressure oscillation (particularly near the
fault tips) prevailing on all three faults, in the absence of stabilization.
In contrast, the proposed stabilization technique completely elim-
inates this undesirable feature everywhere on all the three faults, once
again demonstrating the efficacy of the algorithm.

Finally, we show the convergence profiles of Newton iterations in
Figs. 27 and 28 for the two example problems considered. Because the
stabilizing terms are linear functions of the contact pressures, they can
easily be linearized, and the rate of convergence remains asymptot-
ically quadratic.

5. Summary and conclusions

We have presented a stabilized extended FE formulation for
frictional contact that minimizes, if not completely eliminates, the
spurious oscillation of the contact pressure. The method is based on
polynomial pressure projection (PPP) stabilization technique, which
has been used successfully in previous work dealing with Stokes
equation and classical solid-deformation/fluid-diffusion problems.
Numerical results suggest that the technique is very effective in
stabilizing frictional contact problems with structured and unstruc-
tured meshes, and with equal and unequal line segments. Further-
more, the technique has been implemented in the context of Lagrange
multipliers and penalty methods. Specifically, the stabilized penalty
formulation is unique in that we are not aware of any similar work in
the literature in which the PPP approach has been formulated in the
context of the penalty method. Both formulations (Lagrange multi-
pliers and penalty) show optimal performance in stabilizing the
contact pressure field. Further work is in progress to test the potential
of the algorithm in the finite deformation regime.
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