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Abstract:

We introduce a new signal model, called(K, C)-sparse, to
captureK-sparse signals inN dimensions whose nonzero
coefficients are contained within at mostC clusters, with
C < K ≪ N . In contrast to the existing work in
the sparse approximation and compressive sensing liter-
ature on block sparsity, no prior knowledge of the loca-
tions and sizes of the clusters is assumed. We prove that
O (K + C log(N/C))) random projections are sufficient
for (K, C)-model sparse signal recovery based on sub-
space enumeration. We also provide a robust polynomial-
time recovery algorithm for(K, C)-model sparse signals
with provable estimation guarantees.

1. Introduction

Compressive sensing (CS) is an alternative to Shan-
non/Nyquist sampling for the acquisition of sparse or
compressible signals in an appropriate basis [1, 2]. By
sparse, we mean that onlyK of the N basis coefficients
are nonzero, whereK ≪ N . By compressible, we mean
the basis coefficients, when sorted, decay rapidly enough
to zero so that they can be well-approximated asK-sparse.
Instead of taking periodic samples of a signal, CS mea-
sures inner products with random vectors and then recov-
ers the signal via a sparsity-seeking convex optimization
or greedy algorithm. The number of compressive mea-
surementsM necessary to recover a sparse signal under
this framework grows asM = O (K log(N/K))

In many applications, including imaging systems and
high-speed analog-to-digital converters, such a saving can
be dramatic; however, the dimensionality reduction from
N to M is still not on par with state-of-the-art transform
coding systems. While many natural and manmade signals
can be described to a first-order as sparse or compress-
ible, their sparse supports often have an underlying do-
main specific structure [3–6]. Exploiting this structure in
CS recovery has two immediate benefits. First, the number
of compressive measurements required for stable recovery
decreases due to the reduction in the degrees of freedom of
a sparse or compressible signal. Second, true signal infor-
mation can be better differentiated from recovery artifacts
during signal recovery, which increases recovery robust-
ness. Only by exploiting a priori information on coeffi-
cient structure in addition to signal sparsity, can CS hope
to be competitive with the state-of-the-art transform cod-

ing algorithms for dimensionality reduction.

Fortunately, it is possible to design CS recovery al-
gorithms that exploit the knowledge of structured spar-
sity models with provable performance guarantees [3, 5,
6]. In particular, the model-based CS recovery framework
in [3] generalizes to any structured-sparsity model that has
a tractable model-based approximation algorithm. This
framework has been applied productively to two struc-
tured signal models: block sparsity and wavelet trees
with robust recovery guarantees fromO (K) measure-
ments [3]. To recover signals that have structured spar-
sity, problem-specific convex relaxation approaches are
also used in the literature with recovery guarantees sim-
ilar to those in [3]; e.g., for block sparse signals, see [5, 6].

In this paper, we introduce a new structured sparsity
model, called the(K, C)-model, that constrains theK-
sparse signal coefficients to be contained within at most
C-clusters. In contrast to the block sparsity model in [5,
6], our proposed model does not assume prior knowledge
of the locations and sizes of the coefficient clusters. We
show thatO (K + C log(N/C))) random projections are
sufficient for(K, C)-model signal recovery using a sub-
space counting argument. We also provide a polynomial-
time model-based approximation algorithm based on dy-
namic programming and a CS recovery algorithm based
on the model-based recovery framework of [3]. In con-
trast to the clustered sparse recovery algorithm based on
the probabilistic Ising model in [7], the(K, C)-model has
provable performance guarantees.

The paper is organized as follows. Section 2 provides
the necessary theoretical and algorithmic background on
model-based CS. Section 3 introduces the(K, C)-model,
derives its sampling bound for CS recovery, and describes
a dynamic programming solution for optimal(K, C)-
model approximation. Section 4 discusses the aspect of
compressibility and highlights some connections to the
block sparsity model. Simulation results are given in
Section 5 to demonstrate the effectiveness of the(K, C)-
model. Section 6 provides our conclusions.

2. Model-based CS Background

A K-sparse signal vectorx lives in ΣK ⊂ R
N , which

is a union of
(

N
K

)
subspaces of dimensionK. Other than

its K-sparsity, there are no further constraints on the sup-
port or values of its coefficients. Aunion-of-subspaces



signal model (a signal model in the sequel for brevity) en-
dows theK-sparse signalx with additional structure that
allows certainK-dimensional subspaces inΣK and disal-
lows others [4, 8].

More formally, letx|Ω represent the entries ofx cor-
responding to the set of indicesΩ ⊆ {1, . . . , N}, and let
ΩC denote the complement of the setΩ. A signal model
MK is then defined as the union ofmK canonicalK-
dimensional subspaces

MK =

mK⋃

m=1

Xm, Xm := {x : x|Ωm
∈ R

K , x|ΩC
m

= 0}.

Each subspaceXm contains all signalsx with supp(x) ∈
Ωm. Thus, the signal modelMK is defined by the set of
possible supports{Ω1, . . . , ΩmK

}. Signals fromMK are
called K-model sparse. Likewise, we may defineMc

K

to be the set ofc-wise differences of signals belonging
to MK . Clearly, MK ⊆ ΣK andM4

K ⊆ Σ4K . In
the sequel, we will use an algorithmM(x; K) that returns
the bestK-term approximation of the signalx under the
modelMK .

If we know that the signalx being acquired isK-
model sparse, then we can relax the standard restricted
isometry property (RIP) [1] of the CS measurement matrix
Φ and still achieve stable recovery from the compressive
measurementsy = Φx. Themodel-based RIPMK-RIP
requires that

(1 − δMK
)‖x‖2

2 ≤ ‖Φx‖2
2 ≤ (1 + δMK

)‖x‖2
2 (1)

hold for signalsx ∈ MK [4, 8], whereδMK
is the model-

based RIP constant.

Blumensath and Davies [4] have quantified the num-
ber of measurementsM necessary for a subgaussian CS
matrix to have theMK-RIP with constantδMK

and with
probability1 − e−t to be

M ≥ 2

cδ2
MK

(
ln(2mK) + K ln

12

δMK

+ t

)
. (2)

This bound can be used to recover the conventional CS
result by substitutingmK =

(
N
K

)
≈ (Ne/K)K .

To take practical advantage of signal models in CS,
we can integrate them into a standard CS recovery algo-
rithm based on iterative greedy approximation. The key
modification is surprisingly simple [3]: we merely replace
the bestK-term approximation step with the bestK-term
model-based approximationM(x; K). For example, in the
CoSaMP algorithm [9], the bestLK-term approximation
(with L a small integer) is modified to incorporate a best
LK-term model-based approximation. The resulting al-
gorithm (see [3]) then inherits the following model-based
CS recovery guarantee at each iterationi, when the mea-
surement matrixΦ has theM4

K-RIP with δM4
K
≤ 0.1:

‖x − x̂i‖2 ≤ 2−i‖x‖2 + 20

(
‖x − xMK

‖2

+
1√
K

‖x − xMK
‖1 + ‖n‖2

)
,

wherexMK
= M(x; K) is the best model-based approxi-

mation ofx within MK .

3. The (K, C)-Model

Motivation: The block sparsity model is used in appli-
cations where the significant coefficients of a sparse signal
appear in designated blocks on the ambient signal dimen-
sion, e.g., group sparse regression problems, DNA mi-
croarrays, MIMO channel equalization, source localiza-
tion in sensor networks, and magnetoencephalography [3,
5, 6, 10–14]. It has been shown that recovery algorithms
provably improve standard CS recovery by exploiting this
block-sparse structure [3, 5].

The (K, C)-model generalizes the block sparsity
model by allowing the significant coefficients of a sparse
signal to appear in at mostC clusters of unknown size and
location (Figure 1(a)). This way, the(K, C)-model fur-
ther accommodates additional applications in, e.g., neuro-
science problems that are involved with decoding of nat-
ural images in the primary visual cortex (V1) or under-
standing the statistical behavior of groups of neurons in
the retina [15]. In this section, we formulate the(K, C)-
model as a union of subspaces and pose an approximation
algorithm on this union of subspaces.

To define the set of(K, C)-sparse signals, without
loss of generality, we focus on canonically sparse signals
in N + 2 dimensions whose first and last coefficients are
zero. Consider expressing the support of such signals via
run-length coding with a vectorβ = (β1, . . . , β2C+1)
(βj 6= 0), whereβodd counts the number of continuous
zero-signal values andβeven counts the number of contin-
uous nonzero-signal values (i.e., clusters).

Definition: The(K, C)-sparse signal modelM(K,C) is
defined as

M(K,C) =

{

x ∈ RN+2

∣∣∣∣∣

2C+1∑

i=1

βi = N + 2,
C∑

i=1

β2i = K

}

.

(3)

Sampling Bound: The number of subspacesm(K,C) in
M(K,C) can be obtained by counting the number ofposi-
tive solutions to the following integer equations:

β1 + β2 + . . . + β2C+1 = N + 2,

β2 + β4 + . . . + β2C = K,

which can be rewritten as

β1 + β3 + . . . + β2C+1 = N + 2 − K,

β2 + β4 + . . . + β2C = K.
(4)

Note that the number of positive integer solutions to the
following problem:

β1 + β2 + β3 + . . . + βn = N,

is given by
(
N−1
n−1

)
. Then, we can count the solutions to the

two of decoupled problems in (4) and multiply the number
of solutions to obtainm(K,C):

m(K,C) =

(
N + 1 − K

C

)(
K − 1

C − 1

)
. (5)



Plugging (5) into (2), we obtain the sampling bound
for M(K,C):

M = O
(

K + C log
N

C

)
. (6)

Note that the(K, C)-sampling bound (6) becomes the
standard CS bound ofM = O

(
K log N

K

)
whenC ≈ K.

Model Approximation Algorithm: In this section we
focus on designing an algorithmM(x; K, C) for finding
the best(K, C)-model approximation to a given signal
x. The algorithm uses the principle of dynamic program-
ming [16]. For simplicity, we focus on the problem of
finding thecost of the best(K, C)-clustered signal ap-
proximation inℓ2. This solution generalizes to the best
(K, C)-clustered signal approximation inℓp for p ≥ 1.
The actual sparsity pattern can be then recovered using
standard back-tracing techniques; see [16] for the details.

The algorithm M(x; K, C) computes an array
cost[i, j, k, c], where1 ≤ i ≤ j ≤ N , 0 ≤ k ≤ K,
and0 ≤ c ≤ C. At the end of the algorithm, each entry
cost[i, j, k, c] contains the smallest cost of approximating
xi:j , the signal vector restricted to the index set[i, . . . , j],
using at mostk non-zero entries that span at mostc clus-
ters.M(x; K, C) performs the following operations.

(Initialization) When eitherc = 0 or k = 0, the sig-
nal approximation costs can be computed directly, since
cost[i, j, 0, c] = ‖xi:j‖2

2 and cost[i, j, k, 0] = ‖xi:j‖2
2,

for all valid indicesi, j, k, c. Moreover, for all entries
i, j, k, c such thatc > 0 and j − i + 1 ≤ k, we have
cost[i, j, k, c] = 0 since we can include allj − i + 1 coor-
dinates of the vectorxi:j in the approximation.

(Main loop) All other cost entries can then be com-
puted using the following recursion:

cost[i, j, k, c] = min
c⋆=0...c

min
k⋆=0...k

min
j⋆=i...j−1{

cost[i, j⋆, k⋆, c⋆] × cost[j⋆ + 1, j, k − k⋆, c − c⋆]

}
.

The correctness of the algorithm follows from the follow-
ing observation. Letv be the best(k, c)-clustered approx-
imation ofxi:j . Unless all entries ofxi:j can be included
in the approximationv (in which casej − i + 1 ≥ k and
the entry has been already computed during initialization),
then there must exist an indexl ∈ [i, . . . , j] such thatxl is
not included inv. Let l⋆ = l if l < j, andl⋆ = j − 1 oth-
erwise. Letk⋆ be the number of non-zero entries present
in the left segment of vi:l⋆ , and letc⋆ be the number of
clusters present in that left segment. Then, it must be the
case thatvi:l⋆ is the best(k⋆, c⋆)-approximation toxi:l,
andvl+1:j is the best(k − k⋆, c − c⋆)-approximation to
x(l⋆+1):j . Otherwise, those better approximations could
have been concatenated together to yield an even better
(k, c)-approximation ofxi:j . Thus, the recursive formula
will identify the optimal split and compute the optimal ap-
proximation cost.

The cost table containsO
(
N2KC

)
entries. Each en-

try can be computed inO (NKC) time. Thus, the running
time of the algorithm isO

(
N3K2C2

)
.

4. Additional Remarks

Compressibility: Just as compressible signals are
nearly K-sparse and live close to the union of sub-
spacesΣK in R

N , (K, C)-compressible signals arenearly
(K, C)-model sparse and live close to the restricted union
of subspacesM(K,C). Here, we rigorously introduce a
(K, C)-compressible signal model in terms of the decay
of their (K, C)-model approximation error.

We first define theℓ2 error incurred by approximating
x ∈ R

N by the best approximation inM(K,C):

σM(K,C)
(x) , inf

x̄∈M(K,C)

‖x− x̄‖2 = ‖x−M(x; K, C)‖2.

The decay of the(K, C)-model approximation error in (7)
defines the(K, C)-compressibility of a signal. Then, a set
of (K, C)-model s-compressible signals is given by

Ms =

{
x ∈ R

N : σMj(K,C)
(x) ≤ S(jK)−1/s,

1 ≤ K ≤ N, S < ∞, j = 1, . . . ,

⌊
N

K

⌋}
.

(7)

DefineSM as the smallest value ofS for which this con-
dition holds forx ands.

We use the restricted amplification property (RAmP)
and the nested approximation property (NAP) in [3] to
ensure that the(K, C)-model based CoSaMP recovery
possesses the following guarantee for(K, C)-model s-
compressible signals at each iterationi:

‖x − x̂i‖2 ≤ 2−i‖x‖2 + 35

(
‖n‖2 +

SM

Ks
(1 + ln⌈N/K⌉)

)
,

(8)
whenΦ has theM4

(K,C)-RIP with δM4
(K,C)

≤ 0.1 and the

(ǫK , r)-RAmP withǫK ≤ 0.1 andr = s − 1.

Simulation via Block Sparsity: It is possible to recover
(K, C)-sparse signals by using the block sparsity model if
we are willing to pay an added penalty in terms of the
number of measurements. To demonstrate this, we define
uniform blocks of sizeK/C (e.g., average cluster length)
on the signal space. Then, it is straightforward to see that
the number of active blocksB in the block sparse model
is upper-bounded by

B ≤ 2(C − 1) +
K − 2(C − 1)

K/C
≤ 3C. (9)

To reach this upper bound, we first construct a(K, C)-
sparse signal that has(C − 1)-clusters with2 coefficients
and a single cluster with the remaining sparse coefficients.
We then place the clusters with two coefficients at the
boundary of the block sparse model so that each cluster ac-
tivate two blocks in the block sparse model to arrive at (9).
Then, the(K, C)-equivalent block sparse model requires
M = O

(
BK/C + B log N

B

)
samples, whereB = 3C.



    

(a) A (10, 2)-model signal
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(b) Reconstruction probability
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Figure 1:Monte Carlo simulation results for(K, C)-model based recovery withK = 10, C = 2..

5. Experiments

In this section we demonstrate the performance of(K, C)-
model based recovery. Our test signals are the class of
length-100 clustered-sparse signals withK = 10, C = 2.
We run both the CoSaMP algorithm as well as(K, C)-
model based CoSaMP algorithm [3] until convergence for
1000 independent trials. In Fig. 1(a), a sample realization
of the signal is displayed. It is evident from Figs. 1(b) and
(c) that enforcing the structured sparsity model in the re-
covery process significantly improves CS reconstruction
performance. In particular, Fig. 1(b) demonstrates that ap-
proximately 85% of the signals are almost perfectly re-
covered atM = 2.5K, whereas CoSaMP fails to recover
any signals at this level of measurements. Instead, tra-
ditional sparsity-based recovery requiresM ≥ 4.5K to
attain comparable performance. Similarly, Figure. 1(c)
displays the rapid decrease in average recovery distortion
of our proposed method, as compared to the conventional
approach. The(K, C)-sparse approximation algorithm
codes are available at dsp.rice.edu/software/KC.

6. Conclusions

In this paper, we have introduced a new sparse signal
model that generalizes the block-sparsity model used in
the CS literature. To exploit the provable model-based CS
recovery framework of [3], we developed a dynamic pro-
gramming algorithm that computes, for any given signal,
its optimal ℓ2-approximation within our clustered spar-
sity model. We then demonstrated that significant per-
formance gains can be made by exploiting the clustered
signal model beyond the simplistic sparse model that are
prevalent the CS literature.
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