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Abstract. We present a new calculus where recent model-based deci-
sion procedures and techniques can be justified and combined with the
standard DPLL(T) approach to satisfiability modulo theories. The new
calculus generalizes the ideas found in CDCL-style propositional SAT
solvers to the first-order setting.

1 Introduction

Considering the theoretical hardness of SAT, the astonishing adeptness of SAT
solvers when attacking practical problems has changed the way we perceive the
limits of algorithmic reasoning. Modern SAT solvers are based on the idea of
conflict driven clause learning (CDCL) [IIII5/13]. The CDCL algorithm is a
combination of an explicit backtracking search for a satisfying assignment com-
plemented with a deduction system based on Boolean resolution. In this combina-
tion, the worst-case complexity of both components is circumvented by the com-
ponents guiding and focusing each other. The generalization of the SAT problem
into the first-order domain is called satisfiability modulo theories (SMT). The
common way to solve an SMT problem is to employ a SAT solver to enumer-
ate the assignment of the Boolean abstraction of the formula. The candidate
Boolean assignment is then either confirmed or refuted by a decision procedure
dedicated to reasoning about conjunctions of theory-specific constraints. This
framework is commonly called DPLL(T) [I0/T4] and is employed by most of the
SMT solvers today. Although DPLL(T) at its core relies on a CDCL SAT solver,
this SAT solver is only used as a black-box. This can be seen as an advantage
since the advances in SAT easily transfer to performance improvements in SMT.
On the other hand, in the last few years the idea of direct model construction
complemented with conflict resolution has been successfully generalized to frag-
ments of SMT dealing with theories such as linear real arithmetic [412/[9], linear
integer arithmetic [7], nonlinear arithmetic [8], and floating-point [6]. All these
procedures, although quite effective in their corresponding first-order domains,
have not seen a more widespread acceptance due to their limitations in purely
Boolean reasoning and incompatibility with DPLL(T).

In this paper we propose a model-constructing satisfiability calculus (mcSAT)
that encompasses all the decision procedures above, including the decision pro-
cedures aimed at DPLL(T), while resolving the limitations mentioned above.
The mcSAT framework extends DPLL(T) by allowing assignments of variables
to concrete values, while relaxing the restriction that decisions, propagations,
and explanations of conflicts must be in term of existing atoms.



2 A Model Based Abstract Procedure

We assume that the reader is familiar with the usual notions and terminology of
first-order logic and model theory (for an introduction see e.g. [2]). We describe
the new procedure as an abstract transition system in the spirit of Abstract
DPLL [I4]. The crucial difference of the system we present is that we are not
restricted to Boolean decisions. Instead, we allow the model that the theory is
trying to construct to be involved in the search and in explaining the conflicts,
while allowing new literals to be introduced so as to support more complex
conflict analyses.

The states in the transition system are pairs of the form (M, C), where M is a
sequence (usually called a trail) of trail elements, and C is a set of clauses. Each
trail element is either a decided literal, a propagated literal, or a model assignment.
We refer to both decided literals and model assignments as decisions. A decided
literal is a literal that we assume to be true. On the other hand, a propagated
literal, denoted as C'—L, marks a literal L that is implied to be true in the
current state by the clause C' (the explanation). In both cases, we say that the
literal L appears in M, and write this as L € M. A model assignment, written
as '+, is an assignment of a first-order uninterpreted symbol x to a value aEI
Given a trail M that contains model assignments z;, — a1, ..., x;, — o, we can
construct a first-order interpretation v[M| = [x;, — a1,...,2;, — «ag]. Given
a term ¢, the interpretation v[M](t) is either a value of the term ¢ under the
assignment in M, or undef if the the term cannot be fully evaluated.

The content of the trail implies an interpretation of literals and is the core
of our procedure. In order to evaluate the value of some literal L with respect
to a trail M, we define the functions valueg and valuer, the former interpreting
the literal according to the Boolean assignment, and the latter interpreting the
literal according to the model assignment of variables.

true LeM true  v[M](L) = true
valueg(L, M) = ( false L€ M valuer(L,M) = (false v[M](L) = false
undef otherwise undef otherwise

We say that a trail M is consistent if the Boolean assignment and first-order
model are not in conflict, i.e. when for all L € M we have that valuep (L, M) #
false. Additionally we say that the trail M is complete when each asserted first-
order literal L € M is justified by the first-order interpretation, i.e. valuet (L, M) =
true. We use the predicate consistent(M) to denote that M is consistent and
complete(M) to denote that M is complete. Note that if a trail M is consistent,
this does not mean that the assertions on the trail are truly satisfiable (feasible),
just that the current partial assignment does not refute any of the individual
trail literals. When there is a set of literals on the trail M that, together with

3 The actual representation for values is theory specific and depends on the type of .
For example, for the theory of liner real arithmetic, the values are rational numbers.
We never assign Boolean variables to values as they are considered literals.



the model assignments from M, is not satisfiable, we call the trail infeasible
and denote this with the predicate infeasible(M). We have that — consistent(M)
implies infeasible( ).

Since the values of valuep(L, M) and valueg(L, M) do not disagree for all
L € M, we define the value of a literal in a consistent state as

valueg(L, M) valueg(L, M) # undef,
valuer(L, M) otherwise.

value(L, M) = {

Ezample 1. Consider the trail M = [z > 0, z—1, y—0, z > 0]. The model
interpretation according to M is v[M] = [z+> 1, y > 0]. Therefore we have
that valuer(x > 0, M) = valueg(z > 0, M) = true, valuep(x > 1, M) = false,
valuep(z > 0, M) = undef, valueg(z > 0, M) = true, v[M](z +y + 1) = 2, and
v[M](xz 4+ z) = undef. The trail M is consistent, but M’ = [M,y < 0] is not
because valuer(y < 0, M') = false and valueg(y < 0, M’) = true. The trail M is
not complete as it does not interpret z and therefore valuer(z > 0, M) = undef.
Finally, M" = [M,z < z] is infeasible because {z+—1, z > 0, z < z} is
unsatisfiable, but M” is consistent.

We extend the definition of value to clauses so that value(C, M) = true if at
least one literal of C' evaluates to true, value(C, M) = false if all literals evaluate
to false, and value(C, M) = undef otherwise. We say a clause C is satisfied by
trail M if value(C, M) = true. A set of clauses C is satisfied by M if M is complete
(and therefore consistent), and all clauses C' € C are satisfied by M. We use the
predicate satisfied(C, M) to denote that C is satisfied by M,

Given a set of clauses Cp, our procedure starts with the state ([],Co) and
performs transitions according to the rules we explain below. The goal is to
either enter into a state sat denoting that the problem is satisfiable, or into a
state unsat denoting that the problem is unsatisfiable. The states we traverse are
either search states of the form (M,C) or conflict resolution states of the form
(M,C) F C. In both types of states we keep the invariant that M is a consistent
trail and Cy C C. Additionally, in conflict resolution states the clause C' is always
a clause implied by Cy and refuted by the trail, i.e. Cy F C and value(C) = false.
We call the clause C' the conflicting clause.

To ensure termination, the transition system assumes existence of a finite set
of literals B that we call the finite basis. During a derivation of the system, any
literal added to the trail will be from B, and the clauses that the system uses will
only contain literals from Bﬁ The minimal assumption is that B must include all
literals (and their negations) from the initial problem Cy, and the theory-specific
decision procedure must ensure that for any Cy such a finite basis exists.

2.1 Clausal Rules

We start by presenting the set of search rules and conflict analysis rules that
resemble those of abstract DPLL and are the backbone of CDCL-style SAT

4 QOur finite basis corresponds to the closure of the literal-generating function used in
splitting-on-demand [I].



solvers. The clausal search rules are presented in Fig. [I| and the clausal conflict
analysis rules are presented in Fig. [2|

DECIDE
(M, C) — ([M,L],C) if L €B, value(L, M) = undef
PROPAGATE

C=(L1Vv...VL,VL)eC
(M,C) — {([M,C—L],C) if Yi:value(L;, M) = false
value(L, M) = undef

CONFLICT

(M,C) — (M,C)FC if C e€C, value(C) = false
SAT

(M,C) — sat if satisfied(C, M)
FORGET

(M,C) — (M,C\{C}) if C €Cis a learned clause.

Fig. 1. Clausal search rules.

Search Rules. The rule can take any literal from the basis B that does
not yet have a value added to the trail. The performs Boolean
clause propagation by assigning to true the only unassigned literal from a clause
where all other literals already evaluate to false If we encounter a clause C'
such all literals in C' evaluate to false, we use the to enter conflict
resolution state. During conflict analysis we can learn new clauses, and these can
be removed using the rule. If our trail is complete and satisfies all the
clauses, we can finish the search using the rule.

Conflict analysis rules. As in CDCL, the conflict analysis rules recover from
a conflict encountered during the search, learn the reason of the conflict, and
backtrack to an appropriate state to continue the search. The main analysis
rule is the rule. This rule performs Boolean resolution of clauses C
and D over the literal L, obtaining the clause R = resolve(C, D, L). The clause
R is a valid deduction and moreover evaluates to false in M. If the result of
the resolution is an empty clause (denoted with false), we can deduce that the
problem is unsatisfiable using the rule. Since, in a conflict analysis state
(M,C) F C, the clause C is a always a valid deduction, we can use the
to add the clause C to set of clauses in order to aid in reducing the search space
in the future. If this learned clause is at a later point not deemed useful, we can

5 Note that in both [DECIDE| and [PROPAGATEl we do not need to ensure that the new
literal does not cause an infeasibility. Additionally, we can decide literals that do not
yet exist in C, enabling refinement decisions as found in [6].



RESOLVE

(IM,D—L],C)-C —s (M,C)FR if ;L:eri(’)lve( ¢.D.L)
CONSUME
(IM,D—L],C)FC — (M,C)FC if -L¢C
(IM,L],C)+C — (M,C)FC if "LgC
Backjump

C=IL1V...VL,VL

Vi : value(L;, M) = false
value(L, M) = undef

N starts with a decision

(IM,N],C) - C — ([M,C—L],C) if

UNSAT
(M,C) - false — unsat
LEARN
(M,C)+C — (M,cu{ChHrC if CgC

Fig. 2. Clausal conflict analysis rules.

remove it using the |[FORGET| rule. The [CONSUME] rules skips over those decided

and propagated literals in the trail that are not relevant for the inconsistency of
the conflicting clause. Finally, we exit conflict resolution using the
rule, if we have deduced a clause C such that implies a literal earlier in the trail,
skipping over at least one decision.

2.2 Theory-Specific Rules

We now extend the rules to enable theory-specific reasoning, allowing deductions
in the style of DPLL(T), but more flexible, and allowing for assignments of
variables to particular concrete values (Figure . As in DPLL(T), the basic
requirement for a theory decision procedure is to provide an explain function
that can explain theory-specific propagations and infeasible states. In DPLL(T),
the theory explanations are theory lemmas in form of clauses that only contain
negations of literals asserted so far. The explanation function explain here has
more flexibility. Given a literal L and a consistent trail M that implies L to be
true, i.e. such that [M, —L] is infeasible, explain(L, M) must return a valid theory
lemma E' = Ly V...LgV L. The literals of the clause E must be from the finite
basis B, and all literals L; must evaluate to false in M. Allowing explanations
containing more than just the literals off the trail allows for more expressive
lemmas and is crucial for model-based decision procedures. Limiting the literals
to a finite basis, on the other hand, is important for ensuring the termination of
the procedure.

Search rules. We can propagate a literal L using the T-PROPAGATE rule, if it
is implied in the current state, i.e. if adding the literal =L to the trail M makes



T-PROPAGATE

L € B, value(L, M) = undef
(M,C) — {[M,E—L],C) if infeasible([M,—L])
E = explain([M, —L])
T-DECIDE

x € varsy(C)
(M,C) — {[M,z—qa],C) if v[M](x) = undef
consistent([M, z—«])
T-CONFLICT

infeasible( M)

(M,C) — (M,CO)FE if E = explain(false, M)

T-CONSUME
(M, z—qa],C) - C — (M,C)FC if value(C, M) = false
T-BACKJUMP-DECIDE

C=LiV...VL,VL
(IM,z—a,N],C) - C — ([M,L],C) if 3 : value(L;, M) = undef
value(L, M) = undef

Fig. 3. Theory search and conflict rules.

it infeasible. The side condition value(L, M) = undef ensures that we cannot
produce an inconsistent trail (value(L, M) = false), nor include redundant infor-
mation (value(L, M) = true). We use the T-DECIDE rule to assign an interpre-
tation/value () to a variable x that occurs in our set of clauses (z € varsp(C)).
The side condition v[M](z) = undef ensures that we cannot assign a variable x
that is already assigned in M, and consistent([M, x+— «]) ensures the new trail
is consistent. We require a consistent trail because the function value is not well
defined for inconsistent trails. We use the T-CONFLICT rule to enter conflict
resolution state, whenever we detect that the trail is infeasible.

Conflict analysis rules. The T-CONSUME rule is similar to the consume rules in
Figure [2] as it skips over a decided model assignment z+— « that is not relevant
for the inconsistency of the conflicting clause. The assignment is not relevant
because the conflicting clause C still evaluates to false after the assignment z — «
is removed from the trail. We use the T-BACKJUMP-DECIDE rule when we reach
an assignment x+— « that is relevant for the inconsistency of the conflicting
clause C, but the BACKJUMP rule is not applicable because C' contains more
than one literal that evaluates to undef after we remove the assignment z— «
from the trail. The T-BACKJUMP-DECIDE rule may generates doubts about the
termination argument for our abstract procedure, since it is just replacing a
decision =+ « with another decision L. In our termination proof, we justify
that by assuming that Boolean decisions (L) have “bigger” weight than model
assignment decisions (z—a).



2.3 Producing Explanations

A crucial component of our framework is the explanation function explain. Given
an infeasible trail M, it must be able to produce a valid theory lemma that is
inconsistent with M using only literals from the finite basis.

If the infeasibility of M only depends on literals that already occur M, then
explain can simply return the inconsistent clause —L; V ...V —L; where all
literal L; occur in M. For example, the trail M =[x < 0, y > 1, = > 0] is
infeasible, and explain(false, M) = =(x < 0) V =(x > 0) is a valid theory lemma
that is inconsistent with M. In such cases, the T-CONFLICT and T-PROPAGATE
rules correspond to the theory propagation and conflict rules from the DPLL(T)
framework.

The more interesting case occurs when the infeasibility on a trail M also
depends on decided model assignments z+« in M. Consider, for example, the
infeasible (but consistent) trail

M=Jy>0, 2>0, z+y+2<0, z—=0] .

It might be tempting to define explain(false, M) to produce the valid theory
lemma

S(y>0)Va(z>0)Va(z+y+2<0)Va(x=0)

This naive explain function that just replaces the assignments = +— « with literals
T = «, is inadequate as it does not satisfy the finite basis requirement for theories
that operate over infinite domains, such as the Integers or the Reals. Using such a
function, in this example, we would be able to continue indefinitely by assigning
x to 1, then 2, and so on.

In principle, for any theory that admits elimination of quantifiers, it is pos-
sible to construct an explanation function explain that satisfy the finite basis
requirement. The basic idea is to eliminate all unassigned variables and produce
an implied formula that is also inconsistent with the assigned variables in the
infeasible trail. In the previous example, the variables y and z are unassigned,
so we can separate the infeasible literals that the naive explain function return
into the literals from the trail and literals from assignments

A=y>0)AN(z>0)A(z+y+2<0) B=(zx=0) .

Given A, we use a quantifier elimination procedure to generate a CNF formula
F of the form C; A ... A Cy that is equivalent to (Jy,z : A), and therefore also
inconsistent with B while only using the assigned variables (in this case x). Note
that B corresponds to the assignment v[M], and each clause C; evaluates to
true or false under v[M] because all variables occurring in C; are assigned by
v[M]. Moreover, at least one of these clauses must evaluate to false because F'
is inconsistent with B. Let I be the clause C; that evaluates to false. We have
that A = [ is a valid clause because

A= (Fy,z:A) < F =1



Since I is inconsistent with B, the clause A =— [ will also be inconsistent
with the trail and can be used as an explanation. Moreover, I is an interpolant
for A and B. In this example, we obtain 0 < z by eliminating the variables y
and z from A using Fourier-Motzkin elimination, resulting in the explanation
A = (0 < z). When solving a set of linear arithmetic C, Fourier-Motzkin
elimination is sufficient to define the explain function, as shown in [12[9]. Fourier-
Motzkin elimination gives a finite-basis B with respect to C, and the basis can
be obtained by closing C under the application of Fourier-Motzkin elimination
step. It is fairly easy to show that the closure is a finite set, since we always
produce constraints with one variable less.

In the last example, 0 < z is an interpolant for A and B, but so is « # 0.
The key point is that an arbitrary interpolation procedure does not guarantee
a finite basis. Nonetheless, this observation is useful when designing explana-
tion functions for more complex theories. For nonlinear arithmetic constraints,
we describe how to produce an explain procedure that produces an interpolant
based on cylindrical algebraic decomposition (CAD) in [8]. The theory of un-
interpreted functions (UF) does not admit quantifier elimination, but dynamic-
ackermannization [5] can be used to create an interpolant I between A and
B without compromising the finite basis requirement. For example, the trail
M = Jz—0, y—0, f(z) # f(y)] is infeasible with respect to UF. Then,
we have A = f(z) # f(y) and B = (z = 0) A (y = 0). Using dynamic-
ackermannization we have that I = x # y is an interpolant for A and B, and
f(z) # f(y) = x # y is a valid theory lemma that is also inconsistent with M.
We satisfy the finite basis requirement because dynamic-ackermannization only
“introduces” equalities between terms that already exist in the trail. Finally, an
explain function for the theory of arrays can be built on top of the approach
described in [3].

Ezxample 2. For the sake of simplicity, we restrict ourselves to the case of linear
arithmetic. We illustrate the search rules by applying them to the following
clauses over Boolean and linear arithmetic atoms C = {z <1V p, —pVz = 2}.
We start the deduction from the initial state ([],C) and apply the rules of the
mcSAT system.

(m.c

J T-DECIDE (z+1)

([e11,0)

J PROPAGATE (p must be true, since z < 1 evaluates to false in the current trail)
([x—1, (z <1Vp)—p],C)

J CoNFLICT (—p and x = 2 evaluate to false in the current trail)

([x—1, (x<1Vp)—p],C)F—pVa=2

J RESOLVE (resolving x < 1V p and —pV z = 2)

([x=1],C) Fz<1lVva=2

In this state, the BACKJUMP rule is not applicable because in the conflicting
clause, both < 1 and = = 2 evaluate to undef after the model assignment



x+—1 is removed from the trail. The intuition is that the model assignment was
“premature”, and the clause x < 1V z = 2 is indicating that we should decide
x < 1 or x = 2 before we assign x.

([r—=1],C) Fz<1lva=2

} T-BACKJUMP-DECIDE

([= <1],C)

J T-DECIDE (the model assignment must satisfy z < 1)

([x <1, —0],C)

J PROPAGATE (—p must be true, since z = 2 evaluates to false in the current trail)

([x <1, z—0, (-pVz=2)—-p],C)

J SAT (20 and —p satisfy all clauses)

sat

Ezample 3. Now, we consider a set of linear arithmetic (unit) clauses
C={z<1, z<y, 1<z z<uz}.

To simplify the presentation of this example, with a small abuse of notation, we
use — L instead of L— L, whenever the literal L is implied by the unit clause L.

(.¢
J PROPAGATE X 4 (propagate all unit clauses)
[~z <1,z <y,—1 <z -2<z],C)
J} T-DECIDE (the current trail is consistent with the model assignment x+—0)
([~ <1, -2 <y,—1< z,-z <z, z—0],C)
J T-DECIDE (peek a value for y, keeping consistency, y s.t. z < y)
[z <1,z <y,~1<z <z <z, z—0, y—1],C)
J T-CoNFLICT (1 < z and z < z implies that 1 < z)
([~z< sz <y,~1l <z oz<z, =0, y—=1],C) - C
In the state above, the conflict was detected by noticing that we can not pick
a value for z, because the trail contains 1 < z, z < z and z+0. The explain
procedure “generates” the explanation clause C = (1 <z)V-(z<z)V1<a
by eliminating z using Fourier-Motzkin elimination, and this clause evaluates to
false in the current trail. Note that, as in DPLL(T), we could have also explained
the infeasibility trail by producing the clause =(1 < z)V—=(z < 2)V-(z < 1) that
uses only literals that already exist in the trail. However, this is clause is weaker
since ~(x < 1) = (1 < z) is weaker than 1 < z. We continue the deduction by
analyzing the conflict.
([ <1,z <y,—1< 2 -2z <z, 20, y—1],C) - C
J T-CoNSUME (the conflict does not depend on y)
[~z <1,z <y, —1 <z -z<z, z—0],C)C
1 BACKJUMP (after backtracking z+— 0, the clause C implies 1 < )
([rx<l,»x <y, —l<zoz<z C—=1<z]C)



After the application of the backjump rule, the newly asserted literal 1 < z is
immediately in conflict with the literal < 1 and we enter conflict resolution
again, with the explanation obtained by Fourier-Motzkin elimination.

[z <1,z <y, ~1 <z -z<z, C=1<z],C)

4 T-CoNFLICT (1 < z and = < 1 implies false)

([~e<l,szx <y —l<zoz<z, Col<z],C)F-(1<z)V-(r<l)
J RESOLVE x 3, CONSUME, RESOLVE, UNSAT

unsat

Theorem 1. Given a set of clauses C, and assuming a finite basis explanation
function explain, any derivation starting from the initial state ([],C) will termi-
nate either in a state sat, when C is satisfiable, or in the unsat state. In the later
case, the set of clauses C is unsatisfiable.

Proof. Assume we have a set of clauses C, over the variables z1,...,z,, and a
finite-basis explanation function explain. Starting from the initial state ([],C),
we claim that any derivation of the transition system (finite or infinite), satisfies
the following properties

1. the only possible “sink states” are the sat and the unsat states;
2. all - C clauses are implied by the initial set of clauses C;
3. during conflict analysis value(C, M) = false for the I C clauses;

Assuming termination, and the above properties, the statement can be proven
easily. Since sat and unsat are the only sink states, the derivation will terminate
in one of these states. Since the [SAT|rule is only applicable if the set of clauses C
is satisfied, we have that the original problem is indeed satisfiable. On the other
hand, if we terminate in the unsat state, by the above properties, the conflicting
clause false is implied by the inital C. Given that false is implied by the original
set of clauses, the initial clauses themselves must truly be unsatisfiable.

The first property in the list above is a fairly easy exercise in case analysis
and induction, so we skip those and concentrate on the more interesting prop-
erties. Proving the properties of conflict analysis is also quite straightforward,
via induction on the number of conflicts, and conflict analysis steps. Clearly, ini-
tially, we have that C evaluates to false (the precondition of the and
rules), and is implied by C by induction. Then, every new clause
that we produce during conflict resolution is obtained by the Boolean resolve
rule, which will produce a valid deduction. Additionally, since the clause we are
resolving with is a proper explanation, it will have all literals except the one we
are resolving evaluate to false. Therefore, the resolvent also evaluates to false.
As we backtrack down the trail with the conflicting clause, by definition of value
and the preconditions of the rules, the clause still remains false.

Now, let us prove that the system terminates. It is clear that the conflict
analysis rules (always removing elements from the trail) always terminate in a
finite number of steps, and return to the search rules (or the unsat state). For
the sake of the argument, let us assume that there is a derivation that does not



terminate, and therefore does not enter the unsat state. We can define a big-step
transition relation — s that covers a transition from a search state, applying
one or more transitions in the conflict analysis rules, and returns to a search
state.

By assumption, we have a finite-basis explanation function explain, so we can
assume a set of literals B from which all the clauses that we can see during the
search are constructed. In order to keep progress of the search, we define a partial
order My < M on trails. The trail contains three different kinds of element:
model assignments decisions (z+— «), Boolean decisions (L) and propagations
(C—L). The basic idea is to consider that propagations are heavier than Boolean
decisions that are heavier than model assignments. We capture that by defining
a (weight) function w from trail elements into the set {1, 2, 3}.

w(C—=L)=3, w(l)=2, w—a)=1

We define the M; < M, using a lexicographical order based on the weights of
the trail elements, i.e.

[l <= M =true if M # ]
M < []) = false
[a, My]] < [b, Ma] = w(a) < w(b) V (w(a) = w(b) A My < Ma)

It is clear that [] is the minimal element, and any trail containing |B| propaga-
tions followed by n model assignments is maximal. It is easy to see that for all
trails M and trail elements a we have that M < [M, a]. Thus, any rule that adds
a new element to the trail is essentially creating a “bigger” trail with respect to
the partial order <. This simple observation covers most of our rules.

Now, we consider the big-step —ps transition from a state (Mp,C;) into a
state (Ma,Cq). If we return using then the trail Mj is of the form
[M,L,N] or [M,z~ «,N], and the trail M, is of the form [M,C—L’]. In
both cases My < Ms because a w(C—L') is greater than w(L) and w(x— «).
Similarly, if we return using [T-BACKJUMP-DECIDE| the trail M; is of the form
[M,z— «, N], and M, is of the form [M, L], once again My < M, since w(L) >
w(z—a).

Now, to justify the[FORGET|rule, we define a partial order (M, Cy)<<(Ma,Ca)
as My < My VvV (My = My A |Ci] > |C2]). Using this definition, we have that
(M,C)<(M,C\{C?}), and consequently the[FORGET|rule also produces a “bigger”
state. The partial order < also have maximal elements (Mpax, Co), where Mpax
is a maximal element for < and Cy is the initial set of clauses. Since all rules are
producing bigger states and we can not increase forever, the termination of the
system follows. [J

3 Conclusion

We proposed a model-constructing satisfiability calculus (mcSAT) that encom-
passes all model-based decision procedures found in the SMT literature. The



mcSAT framework extends DPLL(T) by allowing assignments of variables to con-
crete values and relaxing the restriction on creation of new literals. The model
created during the search also takes part in explaining the conflicts, and the
full model is readily available as a witness if the procedure reports a satisfiable
answer. The new calculus also extends nlsat, proposed at [8], by removing unnec-
essary restrictions on the Boolean-level search rules — it allows efficient Boolean
constraint propagation found in state-of-the-art SAT solvers and incorporates
theory propagation and conflict rules from the DPLL(T) framework. The mcSAT
calculus allows SMT developers to combine existing and successful techniques
from the DPLL(T) framework with the flexibility provided by the nlsat calculus.
We also presented a correctness proof for our procedure that is much simpler
than the one provided for nlsat.

In this article, we did not explore the theory combination problem. However,
we believe mcSAT is the ideal framework for combining implementations for
theories such as: arithmetic, bit-vectors, floating-point, uninterpreted functions,
arrays and datatypes.
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