
Towards a Common API for Publish/Subscribe

Peter Pietzuch
Department of Computing

Imperial College
London, United Kingdom

prp@doc.ic.ac.uk

David Eyers Samuel Kounev
Computer Laboratory

University of Cambridge
Cambridge, United Kingdom

{dme26,sk507}@cam.ac.uk

Brian Shand
Clinical and Biomedical

Computing Unit
Cambridge, United Kingdom

Brian.Shand@cbcu.cam.ac.uk

ABSTRACT
Over the last decade a wide range of publish/subscribe (pub/
sub) systems have come out of the research community.
However, there is little consensus on a common pub/sub
API, which would facilitate innovation, encourage applica-
tion building, and simplify the evaluation of existing proto-
types. Industry pub/sub standards tend to be overly com-
plex, technology-centric, and hard to extend, thus limiting
their applicability in research systems.

In this paper we propose a common API for pub/sub that
is tailored towards research requirements. The API sup-
ports three levels of compliance (with optional extensions):
the lowest level specifies abstract operations without pre-
scribing an implementation or data model; medium compli-
ance describes interactions using a light-weight XML-RPC
mechanism; finally, the highest level of compliance enforces
an XML-RPC data model, enabling systems to understand
each other’s event and subscription semantics. We show
that, by following this flexible approach with emphasis on
extensibility, our API can be supported by many prototype
systems with little effort.

1. INTRODUCTION
Many different distributed applications benefit from using

a publish/subscribe (pub/sub) system to handle communi-
cation between components. Research into pub/sub systems
has led to a variety of different prototype systems [2, 17, 4,
9] that differ in terms of architecture, routing and matching
algorithms, and event and subscriptions semantics. Other
research has investigated services on top of pub/sub systems,
including composite event detection, heterogeneous system
federation, and access control models.

Unfortunately there is no agreement within the research
community on a common application programming inter-
face (API) for pub/sub systems. Consequently most re-
search prototypes are incompatible with each other. This is
an undesirable situation because it limits innovation within
the community: applications built on top of pub/sub proto-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS ’07, June 20–22, 2007 Toronto, Ontario, Canada
Copyright 2007 ACM 978-1-59593-665-3/07/03 ...$5.00.

types are tied to a particular system, there is no easy way to
compare different prototypes, and each system must come
with its own slightly different API description. Furthermore,
research prototypes often “die” when students graduate.

Although several standards for industrial pub/sub sys-
tems exist [21, 11, 12, 27, 10], we argue that they are inap-
propriate for research systems. Commercial standards tend
to be unambiguously specified to ensure maximum inter-
operability, making them heavy-weight, complex to under-
stand, and difficult to implement. They also put emphasis
on backwards compatibility and provide limited extensibil-
ity. In many cases, they are meant to push a given tech-
nology or cement the dominance of a particular commercial
system. In contrast, a research standard should be light-
weight, easy to comply with, encourage innovation through
extensibility, and platform-independent.

Motivated by similar efforts in other areas [6], this paper
proposes a common API for pub/sub systems that is tailored
towards the needs of the research community. Our proposal
explicitly acknowledges the tension between interoperabil-
ity, extensibility, and ease-of-use by dividing our API into
a core API to ensure interoperability and an optional API
for supporting new features. Orthogonal to that, we de-
fine three compliance levels L1–L3. For L1-compliance we
define abstract calls for pub/sub functionality without pre-
scribing any particular implementation or data model. Our
intention is that most existing systems come close to L1-
compliance by default. This results in a common starting
point and encourages the adoption of higher compliance lev-
els. L2-compliance requires the use of XML-RPC calls, thus
allowing communication between systems without necessary
agreement on event and subscription models. Finally, L3-
compliance requires XML-RPC calls to use an XML-RPC-
based event and subscription model, leading to full interop-
erability.

The rest of the paper is organised as follows. §2 gives an
overview of pub/sub systems and standards. After describ-
ing the design space for a common API in §3, we present
our proposed API with its three compliance levels in §4. In
§5 we demonstrate how our common API can be applied to
existing systems. We conclude the paper in §6.

2. EXISTING SYSTEMS AND STANDARDS
Next we present an overview of current research proto-

types, commercial systems and standards.

2.1 Research Prototypes
Depending on the subscription model, pub/sub systems

System APIs Wire Protocols Event Model Subscription Model

Scribe Java, C# TCP Unstructured data Topic-based
S iena Java, C++ TCP, UDP Structured record Content-based,

(set of named, typed attributes) Conjunction of attribute filters
Hermes XML, Java XML over TCP XML document Type- and attribute-based,

XPath queries
Gryphon JMS TCP JMS message Topic- and property-based,

JMS selectors
Rebeca Java TCP Structured record Content-based,

(set of named, typed attributes) Conjunction of attribute filters
XMessages Java, C++ XML over SOAP XML document Channel- and content-based

SQL-like queries
Narada-
Brokering

Java, JMS, C++,
WS-Eventing

TCP, UDP, HTTP,
SSL, RTP, HHMS,
GridFTP, etc.

Java object, JMS message,
XML document

Topic- and content-based,
Attribute filters, XPath queries,
JMS selectors, etc.

ECho CORBA, Java NDR/PBIO, TCP,
UDP, ATM

C-style structure Channel- and content-based,
Custom C-style filter functions

Table 1: Selected Pub/Sub Research Prototypes

can be broadly classified into topic-based (channel-based/
subject-based), content-based or type-based.

An example of a topic-based system is Scribe [3], de-
veloped at Microsoft Research. Scribe is a large-scale dis-
tributed event notification system built on top of Pastry, a
peer-to-peer object location and routing substrate overlayed
on the Internet. Pastry is used in Scribe to maintain topics
and subscriptions, and to build efficient multicast trees. A
rendezvous-based routing algorithm is used to route events
from publishers to subscribers.

One of the first implementations of a distributed content-
based pub/sub system is S iena [2]. S iena is based on a
broker network architecture (deployed over a TCP/UDP
transport layer) and uses a filtering-based routing algorithm.
Advertisements are introduced to optimize the event rout-
ing process and avoid subscription flooding. S iena offers
two APIs for client applications, one in Java and one in
C++. Events in S iena are structured records (sets of named
and typed attributes) and subscriptions are conjunctions
of attribute filters. Another content-based pub/sub sys-
tem similar to S iena is Rebeca [9]. Rebeca provides a
generic routing engine that has been extended with several
efficient filtering-based routing algorithms such as identity-
based, covering-based, and merging-based routing.

Hermes [17] is an example of a type-based pub/sub sys-
tem. Hermes is implemented as a network of event brokers
deployed using an overlay network for efficient rendezvous-
based routing and fault-tolerance. Unlike S iena, Hermes
uses an XML-based event model in which event types are
defined as XML Schema documents [26]. The subscription
model is a typed variant of content-based pub/sub, called
type- and attribute-based pub/sub. Hermes also offers some
higher-level middleware services such as advanced security,
composite event detection and congestion control. In addi-
tion to a Java interface, it provides an XML interface that
automatically translates between XML and Java objects.

Further content- and/or type-based pub/sub systems in-
clude Jedi [4], Elvin [22], Gryphon [24], ECho [7], XMes-
sages [28], Le Subscribe [16], WebFilter[15], Choreca [23],
IndiQoS [1] and Cobra [19]. Recently, two pub/sub sys-
tems with dynamic reconfiguration and adaptation capa-
bilities have been proposed, GREEN [20] and REDS [5].
Another mature prototype system is NaradaBrokering [14],
developed at Indiana University. NaradaBrokering stands
out with its support for a number of different client APIs
and wire protocols as well as its flexible subscription model.

Table 1 compares a representative subset of the systems
mentioned above in terms of their APIs, wire protocols, and
event and subscription models. As evident from the ta-
ble, the existing pub/sub research prototypes expose a wide
range of different APIs and data models which are highly
incompatible with one another.

2.2 Commercial Systems and Standards
In addition to the numerous research prototypes, commer-

cial systems have appeared that support the pub/sub com-
munication model. Some of the most popular ones include
IBM WebSphere MQ (IBM MQSeries), TIB/RV, Progress
SonicMQ, Sun Java System Message Queue, BEA WebLogic
Server and Fiorano FioranoMQ. At the same time industry
standards related to pub/sub systems exist, such as the Java
Message Service (JMS) [21], the CORBA Event Service [11],
the CORBA Notification Service [12] and the OMG Data
Distribution Service [13].

JMS defines a vendor-agnostic Java API for message-ori-
ented middleware. It supports two communication modes—
point-to-point and pub/sub. The former is used for one-
to-one communication through message queues managed by
the JMS server. The latter provides a topic-based pub/
sub service with limited content-based filtering capabilities.
Filters are specified using a subset of the SQL92 conditional
expression syntax.

In the Web services arena, two standards have been pro-
posed, the WS-Eventing [27] and WS-Notification [10]. Both
of them define a mechanism that allows Web Services to
exchange data through asynchronous messaging based on
the pub/sub communication model. Efforts are underway
to eventually consolidate these two standards into a single
WS-EventNotification specification.

3. DESIGN SPACE
In this section we survey the design space for a common

pub/sub API by discussing the main requirements.
Ease-of-use: The simplicity of adoption should be a major
driving factor behind the API design. The implementation
of a research prototype usually focuses on a novel contri-
bution, which is why developers do not want to waste time
achieving compliance with a hundred-page standard.

In general, research standards can be leaner for several
reasons: (1) They do not need to provide the same level
of detail because interoperability between systems without
testing is not expected. This in contrast with industry,

where it is infeasible to validate the compliance of an im-
plementation against all other existing systems. (2) Re-
search standards are not encumbered by the requirement to
be backwards compatible with existing technology and sys-
tems. (3) Research standards do need to make allowances
for particular technologies or outside interests. As can be
witnessed by the current division between the WS-Eventing
and WS-Notification efforts [8], competing industry consor-
tia can slow down the standardisation process and lead to
feature-heavy compromises.
Interoperability: A common API should obviously aim
to support interoperability between different systems. The
API should be platform- and language-independent to re-
flect the variety of implementation environments. It should
also hide implementation details such as its architecture or
the matching and routing algorithms employed. Unfortu-
nately, an API that is too abstract and generic is often not
expressive enough to be useful in practise. We argue that
a solution to this dilemma is the specification of multiple
compliance levels for the API.

At a low compliance level, we define a range of RPC (re-
mote procedure call)-style function calls that capture the
essence of pub/sub communication without depending on a
given language or implementation. This means that pub/
sub systems can agree on externally-visible API calls and a
common terminology, while maintaining a language-specific
implementation, e.g., using a Java Interface. Applications
and benchmark suites can link directly against the imple-
mentation to get local call semantics. For remote API calls,
any language features, such as Java object serialisation, can
be used to obtain a rapid distributed implementation.

For higher compliance levels, we need to define a wire
protocol to support interoperability between systems using
different languages and platforms. Instead of inventing our
own protocols, we acknowledge the dominance of existing
web standards, though standards such as SOAP and XML
Schema are cumbersome to implement and appear overly
complex. Therefore we advocate a light-weight approach
using the well-established HTTP and XML standards ac-
cording to the five-page XML-RPC specification [29]. XML-
RPC describes a mechanism for making RPC-style function
calls over the network. Due to this simplicity, it has been
used successfully by other research systems [18].

To achieve full compatibility, pub/sub systems must un-
derstand each other’s event and subscription models. Data
models for pub/sub systems are often domain-dependent
and are still an area of active research. In order to bal-
ance interoperability with the potential for innovation, we
only require pub/sub systems to support our data model at
the highest compliance level.

For the event model, open web standards can provide the
necessary platform-independence. However, we believe that
the original XML standard is too constraining in its data
types, whereas the XML Schema extension [26] is too pow-
erful and complex. We choose a middle ground by defining
events using the data model provided by XML-RPC. Similar
to other specifications such as JMS, we divide events into a
filterable and an opaque part to optimise processing during
event matching and routing.

There is even less agreement on a common subscription
model for pub/sub because such models are often tightly-
coupled with event matching algorithms. To ensure com-
patibility with XML, we propose a subset of the XPath lan-

guage [25] for stating subscriptions. XPath supports the
matching of parts of XML documents through the evalua-
tion of expressions, without suffering from the complexity of
other specifications such as XQuery. By restricting ourselves
to a portion of XPath, we can match its expressiveness with
that of most other subscription languages in content-based
pub/sub systems.
Extensibility: A common API should facilitate research by
encouraging the development of novel pub/sub services and
semantics. We support the extension of the API with op-
tional API calls and additional data passed alongside events
and subscriptions. Our hope is that this will create an
ecosystem of different API extensions, with the successful
ones becoming more wide-spread.

When supporting extensions, an advantage of using XML
documents is that unknown parts related to optional exten-
sions can be ignored by implementations that do not un-
derstand them. Naming is also an important issue so that
conflicts between extensions proposed by different parties
are avoided.

4. COMMON PUB/SUB API
In this section we describe the three compliance levels L1–

L3 and their APIs.

4.1 L1: Abstract API
At L1 compliance, we define abstract function calls that

capture the core of any pub/sub system, namely the sub-
scription to and publication of events. L1 compliance is
useful to broadly classify pub/sub systems and reach a com-
mon terminology for their external API. Any particular im-
plementation of these calls in any language is acceptable. We
also define a few optional API calls and provide an overview
of areas for further optional extensions in pub/sub.

4.1.1 Core API
publish(event)

The publish call publishes an event. Events can be of any
data type supported by the given implementation languages
and may also contain meta-data.

subscribe(filter expr, notify cb, expiry) → sub handle

unsubscribe(sub handle)

The subscribe call takes a filter expression in any filtering
language, a reference to a notify callback for event delivery,
and an expiry time for the subscription registration. It re-
turns a subscription handle that can be used to refer to this
subscription registration in an unsubscribe call.

In a topic-based pub/sub system, the filter expression may
just consist of a topic name. By including a lease duration
in the call, we advocate system designs based on a soft-state
approach for automatically removing stale state in the pub/
sub system. If this is not supported, an expiry time of zero
indicates an infinite lease. Note that the subscription handle
may be used as an authentication token that identifies the
original owner of a subscription.

notify cb(sub handle, event)

This function is called by the pub/sub system to deliver a
matching event. The original subscription handle is included
so that the client can determine the subscription that caused
this notification.

4.1.2 Optional API
advertise(filter expr, expiry) → adv handle

unadvertise(adv handle)

In many existing pub/sub systems, clients use an advertise
call to announce their intention of publishing certain events.
This is used by the system to create state or optimise rout-
ing. The advertise call is also lease-based with an expiry
time and returns a advertisement handle for future referral.

renew lease(adv|sub handle, expiry)

This function call is for renewing a subscription or adver-
tisement lease for systems that support this.

publish ext(event, ext data)

subscribe ext(filter expr, notify cb, expiry, ext data)
→ sub handle

While some extensions will provide their own API calls, oth-
ers will enrich the semantics of the publish and subscribe
calls. Options that are tightly coupled with the event data
will be passed alongside it; other settings may use optional
publish ext and subscribe ext calls that each take an exten-
sion data parameter. This parameter can express advanced
preferences, e.g., delivery modes or reliability semantics.

4.1.3 Areas for extensions
Firewall traversal. Firewalls, or other network address
translation (NAT) devices, allow hosts to initiate connec-
tions but not to receive them. This would prevent the
core API from pushing event notifications to subscribers.
For firewall traversal, a host could subscribe with a blank
notify cb and pull events with the following API extension:

notify cb wait(sub handles, expiry)

Event types. Pub/sub systems that are tightly integrated
with programming languages can benefit from using explic-
itly typed events. For example, the inheritance hierarchy of
an object-oriented programming language can be mapped to
a hierarchy of event types. Programmer convenience is in-
creased (and error risks decreased)—explicit event (un)mar-
shaling will not be required. Optional API calls will be
needed to (de)register event types.
Quality-of-Service. Rather than best-effort service, per-
sistent storage may be employed by a pub/sub system with
transactional event semantics. Common delivery guaran-
tees are: at least once, at most once, and exactly-once, and
event ordering requirements. Extensions can also put con-
straints on latency requirements, e.g., by respecting bounds
on delivery latency. Finally, event priorities can ensure that
important events move up queues.
Security. Authentication. Although pub/sub systems gen-
erally aim to route events agnostic to their source and desti-
nations, some applications might require user, group or role
authentication and add this provenance data to events. En-
cryption and verification can be used to protect the event
in transit and to provide access control schemes.
Performance and statistics. Another area for exten-
sion particularly relevant to researchers relates to perfor-
mance measurement and statistics gathering. “System-level
attributes” could profile current delivery times and event
routes. Standardising measurement APIs and a set of com-
mon performance metrics will hopefully promote the devel-

opment of accepted performance benchmarks.

4.2 L2: XML-RPC API
At L2 compliance, we define the L1 API calls using XML-

RPC. This means that different implementations share the
same over-the-wire protocol. However, they may or may not
share the same event and subscription model used in the
calls. Error reporting is done using XML-RPC’s faultCode
tag. Simple authentication is supported through the stan-
dard HTTP mechanism. By using HTTP port 80, calls are
also more likely to traverse firewalls and handle web proxies.

4.2.1 Core API
pubsub.core.publish(struct event)

The publish call takes a struct, which can contain any valid
XML-RPC data types including base64 -encoded proprietary
binary formats. As for L1, the event may also include data
used by optional extensions.

base64 pubsub.core.subscribe(string filter expr,
string notify url, dateTime.iso8601 expiry)

pubsub.core.unsubscribe(base64 sub handle)

For the XML-RPC calls, we use base64 -encoded handles
to refer to subscriptions (and advertisements), allowing them
to be any length, e.g., to guarantee global uniqueness. Filter
expressions are strings in any language, and the notification
url refers to a local XML-RPC endpoint. Expiry times are
specified with a standard XML-RPC type.

pubsub.core.notify(base64 sub handle, struct event)

4.2.2 Optional API
base64 pubsub.opt.advertise(string filter expr,

dateTime.iso8601 expiry)

pubsub.opt.unadvertise(base64 adv handle)

pubsub.opt.renew lease(base64 adv|sub handle,
dateTime.iso8601 expiry)

pubsub.opt.publish ext(struct event, struct ext data)

base64 pubsub.opt.subscribe ext(string filter expr,
string notify url, dateTime.iso8601 expiry,
struct ext data)

In the optional XML-RPC API, we define the same function
calls as required for L1. Extension data for publish and
subscribe calls is passed in a struct.

4.3 L3: XML-RPC API with Data Model
Level 3 compliant pub/sub systems use a common model

for event data and subscriptions. This allows them to work
together transparently, either as direct replacements or co-
operatively in a federated event-based system.

The key contribution of L3 is that the same events, sub-
scriptions and filter expressions can be used on multiple
platforms, independently of how the events are managed
internally within each pub/sub system.

4.3.1 Core API
In L3, an event must be represented as a valid XML-RPC

parameter payload, in a struct with three parts: a filterable

<struct>

<member><name>filterable</name>

<value>Any valid XML-RPC data </value></member>

<member><name>event data </name>

<value>Any valid XML-RPC data </value></member>

...

<member><name>pubsub.ext.extension name </name>

<value>Any valid XML-RPC data </value></member>

...

</struct>

Figure 1: The L3 compliant XML-RPC data format
allows one filterable block, and any number of other
data blocks. Extension data may be passed along-
side events.

<struct>

<member><name>filterable</name>

<value><struct>

<member><name>topic</name><value>news</value>

</member>

<member><name>date</name><value><dateTime.iso8601>

2007-03-15</dateTime.iso8601></value></member>

<member><name>title</name><value>

Drama on the high seas</value></member>

</struct></value>

</member>

<member><name>contents</name>

<value><string>In the news today, ...</string>

</value></member>

</struct>

Figure 2: Example of a Level 3 compliant event.

section, any extension-specific data, and the remainder of
the event data. Subscription filters take the form of XPath
queries and operate only on the filterable section of each
event. Furthermore, L3 compliant systems must also satisfy
the L2 properties above, and use the same method API.

Figure 1 illustrates the essential event structure conven-
tions required for L3 compliance:
• The event must be an XML-RPC struct.
• The filterable block can hold any XML-RPC data.

But, if the event has a topic, then the filterable block
must also be a struct, with a string-formatted topic

member containing the topic name.
• Pub/sub extension data is carried in blocks with names

starting pubsub.ext.
• Subscription filters are expressed as XPath query strings

returning a boolean result. true signals a match. For
simplicity, and closer consistency with existing pub/sub
systems, we restrict the required subset of XPath to ex-
clude complex features such as sibling relationships or
general arithmetic.

Figure 2 is a concrete example of a simple event repre-
senting a news story. This event could be matched against
the following filter expression, which matches all news sto-
ries dated 1 April 2007:
boolean(/struct/member[name="topic" and value="news"])

and boolean(/struct/member[name="date" and

value/dateTime.iso8601="2007-04-01"])

This model is able to represent complex content-based
filters, including parameter ranges in tuple spaces. For ex-
ample, S iena tuples could simply be transformed into the
L3 event format, and S iena subscription filters into corre-
sponding XPath queries. Conversely, a broad range of L3
events and filters could efficiently be transformed into S iena
or Hermes equivalents. The transformation must be done

only at the end points (at publishers and subscribers) and
should not affect the internal mechanisms used for matching
and routing events. The overhead of the transformation can
be measured and taken into account when using the API to
compare pub/sub systems.

In this example, both the event topic and a specific at-
tribute are used in the filter. However, the filter cannot act
on the non-filterable message contents. In a Python client,
a subscriber might be notified of the above event via an
XML-RPC call to notify(sub handle, event) with event =

{’filterable’ : {’topic’:’news’, ’date’:DateTime(

’2007-03-15’), ’title’:’Drama on the high seas’},
’contents’ : ’In the news today, ...’}. Thus appropri-
ate language bindings enable pub/sub clients to use a range
of L3 compliant systems effectively, without any alteration.

4.3.2 Optional API
Events carry blocks of extension-specific data to allow ex-

tensions to coexist. Each block is tagged with an unam-
biguous name. We advocate Java package style hierarchical
naming for the extensions, e.g., pubsub.ext.event priority .

Ordinary event data and extension blocks have different
names, allowing them to be merged into a single event ob-
ject, or passed as separate parameters to the L3 API. This
separation ensures that ordinary publishers and subscribers
are never exposed to extension data in events, even when ex-
tensions are used in transit, e.g., effecting expedited delivery
through congested brokers’ queues using the aforementioned
priority extension.

While the XML-RPC interface provides excellent porta-
bility for event systems, some high performance applications
may need to use a native API for speed, e.g., for zero-copy
support for large blocks of binary data. This section de-
fines L3 consistency for a native API, enabling native and
XML-RPC clients to operate consistently:
Native Events. The native API must provide functions for
transforming the native event representation into a canoni-
cal XML-RPC form and vice versa.
Subscription Filters. For L3 compliance native and XML-
specified filter expressions should have the same expressive
power. All filters should respect the same concept of which
parts of an event can be filtered.

In effect, the native and XML-RPC interfaces must have
the same theoretical filter model, defined below. But this
abstract model need not be implemented programmatically.
• Each event has three parts:

event := (filterable part, opaque part, ext part)
• Two functions are defined to extract the filterable part,

and the topic name (if any):
filterable(event) → filterable part
topic(filterable part) → topic name

• Then a subscription’s filter filter expr is effectively a
binary decision function: filter expr(filterable part)
→ match where match ∈ {Yes,No}

• Extended subscriptions may also operate on the event’s
extensions ext part. Topic-based subscriptions are just
well-known filters.

This model has the advantage that it allows different pub/
sub systems to have the same essential concept of event fil-
tering, but with no restriction on how the data is repre-
sented internally. For example, the internal filter represen-
tation might be a pre-computed, optimised decision tree,
with events stored in a custom binary format.

5. CASE STUDIES
This section demonstrates that a set of pub/sub systems

can be brought to compliance in the sense of this paper.
S iena is L1 compliant. The methods below are from its
Java interface’s siena.HierarchicalDispatcher class.

S iena’s subscribe method corresponds to the L1 API call
with expiry set to zero. The Filter and Notifiable argu-
ments correspond to the L1 filter expression and notify call-
back. This pair of Java objects taken together provides a
handle for the subscription (as opposed to an explicit han-
dle), as used by S iena’s L1 compliant unsubscribe method.
S iena does not employ XML-RPC, so for L2 compliance its
Notifiable and Filter arguments need to be serialised into
XML. Also, an XML-RPC URL callback is required.

S iena defines a Notifiable interface with a notify method
that corresponds to the notify call-back in the L1 API.
S iena does not provide this method with a subscription han-
dle, but in Java creating multiple instances of the Notifiable

object achieves the same goal. S iena’s publish method is L1
compliant: Notification instances are L1 events. L2 compli-
ance can be achieved by serialising events in the manner de-
scribed above. S iena Notifications are sets of name/typed-
value pairs. As mentioned in §4.3.1, L3 compliance will re-
quire a bridge between event and filter formats.
Hermes has an XML-based API with Java language bind-
ing (cf. §2). It is L1 compliant and could be made L2/L3
compliant with little effort. Hermes’ publish method has
three arguments: a publisher handle, security credentials
and an event object. The first two parameters can be seri-
alised into XML and packaged in an extension data struct
passed to our L2 publish ext method. Hermes event objects
can be automatically translated into XML that can then be
passed into the event parameter. The same approach could
translate Hermes’ subscribe operation into an L2 compliant
XML-RPC. Subscriptions in Hermes are specified by provid-
ing an event type and content-based filter expression. Filter
expressions are XPath queries, and thus are L3 compliant.
Scribe is L1 compliant. Its API has four methods: create,
join, leave and multicast. The create method creates new
multicast groups that correspond to a topic. Scribe’s join

method corresponds to our subscribe operation, with its
groupId, and messageHandler arguments corresponding to our
L1 filter expression and notify callback. The leave opera-
tion corresponds to L1’s unsubscribe, and multicast can be
mapped to L1’s publish. Like Hermes, Scribe’s API calls in-
clude credentials that can be passed through our extension
mechanism. It would be straightforward to make Scribe L3
compliant by serialising method parameters into XML and
encapsulating them into our L3 XML-RPC messages.

6. CONCLUSIONS
In this paper we presented a light-weight, flexible common

API for pub/sub systems. By focusing on extensibility and
ease-of-implementation, we want to encourage wide-spread
adoption in research prototypes. Hopefully this will lead
to increased application building on top of existing pub/
sub systems and focus research on higher-level services. As
future work, we intend to build wrappers for L3-compliance
around a number of pub/sub systems to demonstrate the
ease of the API and its performance implications. We will
then conduct a study to compare the event matching and
routing performance of these distributed pub/sub systems.

7. REFERENCES
[1] N. Carvalho, F. Araujo, and L. Rodrigues. Scalable

QoS-Based Event Routing in Publish-Subscribe Systems.
In Proc. of NCA’05, Washington, DC, USA, 2005.

[2] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design
and Evaluation of a Wide-Area Event Notification Service.
ACM TCS, 19(3):332–383, Aug. 2001.

[3] M. Castro, P. Druschel, A.-M. Kermarrec, and
A. Rowstron. Scribe: A Large-scale and Decentralized
App-level M/C Infrastruct. IEEE JSAC, 20(8), Oct. 2002.

[4] G. Cugola, E. D. Nitto, and A. Fuggetta. The JEDI
Event-Based Infrastructure and its Applications. IEEE
TSE, 27(9):827–850, Sept. 2001.

[5] G. Cugola and G. P. Picco. REDS: a Reconfigurable
Dispatching System. In Proc. of SEM’06, 2006.

[6] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and
I. Stoica. Towards a Common API for Structured
Peer-to-Peer Overlays. In Proc. of IPTPS’03, Feb. 2003.

[7] G. Eisenhauer, K. Schwan, and F. Bustamante.
Publish-Subscribe for High-Performance Computing. IEEE
Internet Computing, 10(1):40–47, January 2006.

[8] Gartner. WS-Notification Standard Ratified by OASIS Still
Needs Work. ID: G00144177, Oct. 2006.

[9] G. Mühl. Large-Scale Content-Based Publish/Subscribe
Systems. PhD thesis, Darmstadt Univ. of Tech., Sept. 2002.

[10] OASIS. OASIS Web Services Notification. Specification,
The World Wide Web Consortium (W3C), Mar. 2004.

[11] OMG. CORBA: Event Service, Version 1.0. Specification,
Object Management Group (OMG), Mar. 1995.

[12] OMG. CORBA: Notification Service, V. 1.1. Specification,
Object Management Group (OMG), Oct. 2004.

[13] OMG. Data Distribution Service for R-T Systems (DDS),
V1.2. Spec., Object Management Group (OMG), Jan. 2007.

[14] S. Pallickara and G. Fox. NaradaBrokering: A Middleware
Framework and Architecture for Enabling Durable
Peer-to-Peer Grids. In Proc. of Middleware’03, 2003.

[15] J. Pereira, F. Fabret, H. A. Jacobsen, F. Llirbat, and
D. Shasha. WebFilter: A High-throughput XML-based
Publish and Subscribe System. In Proc. of VLDB’01, 2001.

[16] J. Pereira, F. Fabret, F. Llirbat, R. P. Pietro, K. A. Ross,
and D. Shasha. Publish/Subscribe on the Web at Extreme
Speed. In Proc. of VLDB’00, 2000.

[17] P. R. Pietzuch and J. M. Bacon. Hermes: A Distributed
Event-Based Middleware Architecture. In Proc. of
DEBS’02, Vienna, Austria, July 2002.

[18] S. Rhea, B. Godfrey, B. Karp, et al. OpenDHT: A Public
DHT Service and its Uses. In Proc. of SIGCOMM’05, 2005.

[19] I. Rose, R. Murty, P. Pietzuch, J. Ledlie, M. Roussopoulos,
and M. Welsh. Cobra: Content-based Filtering and
Aggregation of Blogs and RSS Feeds. In NSDI, 2007.

[20] T. Sivaharan, G. S. Blair, and G. Coulson. GREEN: A
Configurable and Re-configurable Publish-Subscribe
Middleware for Pervasive Computing. In OTM Conferences
(1), volume 3760 of LNCS, 2005.

[21] Sun Microsystems. Java Message Service. Specification, Sun
Microsystems, 2001. http://java.sun.com/products/jms/.

[22] P. Sutton, R. Arkins, and B. Segall. Supporting
Disconnectedness - Transparent Inf. Delivery for Mobile
and Invisible Comp. In Proc. of CCGrid’01, May 2001.

[23] W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. P.
Buchmann. A Peer-to-Peer Approach to Content-Based
Pub/Sub. In Proc. of DEBS’03, 2003.

[24] The Gryphon Team. Achieving Scalability and Throughput
in a Pub/Sub System. Research report, IBM, Feb. 2004.

[25] W3C. XML Path Language Version 1.0 (W3C
Recommendation), November 1999.

[26] W3C. XML Schema Part 0: Primer. W3C Recomm.,
World Wide Web Consortium, May 2001.

[27] W3C. Web Services Eventing (WS-Eventing). Specification,
The World Wide Web Consortium (W3C), Aug. 2004.

[28] XEvents/XMessages: Application Events and Messaging
Framework for Grid. Technical report, Extreme!
Computing Lab, Indiana University, 2002.

[29] XML-RPC Specification. http://www.xmlrpc.com/spec.

