
EXTENDING LOGIC PROGRAMMING WITH COINDUCTION

APPROVED BY SUPERVISORY COMMITTEE:

Gopal Gupta, Chair

Dung T. Huynh

R. Chandrasekaran

Neeraj Mittal

Copyright 2006

Luke Evans Simon

All Rights Reserved

To my wife

EXTENDING LOGIC PROGRAMMING WITH COINDUCTION

by

LUKE EVANS SIMON, B.S., M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Dallas

in Partial Ful�llment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT DALLAS

August 2006

ACKNOWLEDGEMENTS

I would like to express my gratitude for my adviser Gopal Gupta, whose guidance shaped

this research. I would like to thank my colleague Ajay Mallya, for useful discussions and

suggestions. I would like to thank my family for motivating me to see my graduate studies

through to completion. Finally, I thank my wife Atussa, for her undying love and support.

June 2006

v

EXTENDING LOGIC PROGRAMMING WITH COINDUCTION

Publication No.

Luke Evans Simon, Ph.D.
The University of Texas at Dallas, 2006

Supervising Professor: Gopal Gupta

Traditional logic programming, with its minimal Herbrand model semantics, is useful

for declaratively de�ning �nite data structures and properties. A program in traditional

logic programming de�nes a set of inference rules that can be used to automatically

construct proofs of various logical statements. The fact that logic programming also

has a goal directed, top-down operational semantics, means that these proofs can e�-

ciently be constructed by �executing� the logical statement that is to be proved. However,

since traditional logic programming's declarative semantics is given in terms of a least

�xed-point, that is, since logic programming's semantics is inductive, it is impossible to

directly reason about in�nite objects and properties. In programming language terms,

this means that the language cannot make use of in�nite data structures and corecursion.

The contribution of this dissertation is the extension of traditional logic programming

with coinduction, by invoking the principle of duality on the declarative semantics of

traditional logic programming and by developing an e�cient top-down, goal-directed

procedure based on the principle of coinduction, for deciding inclusion of a logical state-

ment in the greatest �xed-point model. This gives rise to a new �eld of programming

languages referred to by this author as �co-logic programming�.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . v

ABSTRACT. vi

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER 1. INTRODUCTION. 1

CHAPTER 2. BACKGROUND . 5

2.1 Mathematical Concepts . 5

2.1.1 Induction and Coinduction . 6

2.1.2 Recursion and Corecursion . 9

2.2 Logic Programming . 10

2.2.1 Syntax . 11

2.2.2 Semantics . 15

2.2.2.1 Declarative Semantics . 16

2.2.2.2 Operational Semantics . 19

2.2.2.3 Correctness . 24

2.3 Related Work . 25

CHAPTER 3. COINDUCTIVE LOGIC PROGRAMMING . 30

3.1 Syntax . 31

3.2 Semantics . 31

3.2.1 Declarative Semantics . 31

3.2.2 Operational Semantics . 36

3.2.3 Examples . 41

3.2.4 Correctness . 44

3.3 Implementation . 47

vii

CHAPTER 4. CO-LOGIC PROGRAMMING . 52

4.1 Syntax . 53

4.2 Semantics . 55

4.2.1 Declarative Semantics . 55

4.2.2 Operational Semantics . 60

4.2.3 Correctness . 68

4.3 Implementation . 72

CHAPTER 5. APPLICATION: MODEL CHECKING. 76

5.1 Liveness Properties . 78

5.2 Timed Automata . 80

5.3 Self Healing Systems . 83

CHAPTER 6. APPLICATION: ACTION DESCRIPTION LANGUAGES 86

6.1 Introduction . 87

6.1.1 The Action Description Language A . 89

6.1.2 Shortcomings of A . 91

6.2 The Timed Action Description Language AT . 92

6.2.1 Syntax . 92

6.2.2 Examples . 94

6.2.3 Semantics of AT . 96

6.3 Implementation . 99

6.4 Related Work . 105

CHAPTER 7. OTHER APPLICATIONS. 107

7.1 In�nite Terms and Properties . 107

7.2 Lazy Evaluation of Logic Programs . 110

7.3 Concurrent Logic Programming and Perpetual Processes 111

7.4 Web Services . 112

CHAPTER 8. CONCLUSIONS AND FUTURE WORK. 117

viii

REFERENCES. 120

VITA

ix

LIST OF TABLES

2.1 Dual Mathematical Techniques . 10

x

LIST OF FIGURES

3.1 Logic Programming Interpreter �sld.pro� . 48

3.2 Coinductive Logic Programming Interpreter �cosld.pro� 50

3.3 Coinductive Logic Programming Examples �example.cosld� 51

4.1 Co-Logic Programming Interpreter �colp.pro� . 74

4.2 Coinductive Logic Programming Examples �example2.clp� 75

5.1 Example Automata . 76

5.2 Example Encoding of an Automata . 77

5.3 Example Encoding of an ω-automata . 77

5.4 Encoding a Liveness Property . 80

5.6 Train-Gate-Controller Timed Automata . 81

5.7 Train-Gate-Controller Query . 81

5.5 Train-Gate-Controller Program . 82

5.8 cosublist . 83

5.9 Automata Modeling a Self Correcting System . 83

5.10 Encoding of the Self Correcting System . 84

xi

CHAPTER 1

INTRODUCTION

Traditional logic programming is actually inductive logic programming1: its minimal

Herbrand model semantics is useful for declaratively de�ning �nite data structures and

properties. A program in traditional logic programming e�ectively de�nes a set of in-

ference rules that can be used to automatically construct proofs of various logical state-

ments. The fact that logic programming also has a goal directed, top-down operational

semantics (SLD) means that these proofs can e�ciently be constructed by �executing�

the logical statement that is to be proved. However, since traditional logic program-

ming's declarative semantics is given in terms of a least �xed-point, that is, since logic

programming's semantics is inductive, it is impossible to directly reason about in�nite

objects and properties.

The traditional declarative and operational semantics for logic programming is inad-

equate for various programming practices such as programming with in�nite data struc-

tures and corecursion [2]. While such programs are theoretically interesting, their practi-

cal applications include improved modularization of programs as seen in lazy functional

programming languages [3], rational terms, and applications to model checking [4, 5]. For

example, we would like programs such as the following program, which describes in�nite

binary streams, to be semantically meaningful and �nitely derivable.

1The name �inductive logic programming� used in this dissertation has no relation to
�eld of using logic programming based systems for learning new inference rules [1] that
generalize given sets of facts. Instead, this dissertation uses �inductive logic program-
ming� to refer to SLD resolution based logic programming, which has a least �xed-point
or �inductive� declarative semantics.

1

2

bit(0).

bit(1).

bitstream([H | T]) :- bit(H), bitstream(T).

Furthermore, we would like queries such as the following to return a positive answer in

a �nite amount of time.

| ?- X = [0, 1, 1, 0 | X], bitstream(X).

However, aside from the bit predicate, the least �xed-point semantics of the above

program is null, and no �nite SLD derivation exists for the query. Hence the problems

are two-fold. The Herbrand universe does not allow for in�nite terms such as X and the

least Herbrand model does not allow for in�nite proofs, such as a proof of bitstream(X).

However, the traditional declarative semantics of logic programming can be extended in

order to give declarative semantics to such in�nite structures and properties, as seen in

numerous accounts of rational terms and in�nite derivations [6, 7].

Furthermore, the operational semantics must be extended, so as to be able to �nitely

represent an otherwise in�nite derivation. This dissertation proposes such a method

which is based on synthesizing a coinductive hypothesis. This work is based on the

author's previous work, as well as the work of colleagues [8, 9, 10, 4, 5].

Hence, the contribution of this dissertation is the extension of traditional logic pro-

gramming with coinduction, which is �rst accomplished by invoking the principle of

duality on the declarative semantics of traditional logic programming, and more impor-

tantly, a new sound operational semantics is created, which uses a unique coinductive

hypothesis rule for deciding inclusion of a logical statement in the greatest �xed-point of a

given coinductive logic program in a top-down goal-directed manner. Described in further

3

detail in chapter 3, this gives rise to the category of programming languages referred to

by this author as coinductive logic programming. Coinductive logic programming allows

for logic programming with in�nite data structures and corecursion, that is, coinductive

logic programming can directly reason about formal logical statements regarding in�nite

objects and properties. This is due to the fact that the declarative semantics of coin-

ductive logic programming allows for a proof of a logical statement to be in�nite, in the

presence of possibility in�nite objects.

In the coinductive logic programming paradigm the declarative semantics of the pred-

icate bitstream/1 above is given in terms of the co-Herbrand universe, co-Herbrand base,

and maximal models. The operational semantics is given in terms of the coinductive hy-

pothesis rule which states that during execution, if the current resolvent R contains a

call C ′ that uni�es with a call C encountered earlier, then the call C ′ succeeds; the new

resolvent is θ(R′) where θ is the most general uni�er of C and C ′ with terms ranging

over the in�nitary Herbrand universe, and R′ is obtained by deleting C ′ from R. With

this extension a clause such as p([1|T]) :- p(T) and the query p(Y) will produce an

in�nite answer Y = [1|Y].

Sometimes it is desirable to restrict consideration of a logical statement to �nite ob-

jects, such as �nite lists or �nite trees. In addition, it may also be desirable to restrict

proofs of a certain property to be �nite in size. In other words, just as it is useful to have

coinductive logic programming, it is also useful to have inductive logic programming.

Even more importantly, there are cases when both forms of logic programming are si-

multaneously useful. For this reason, coinductive logic programming and inductive logic

programming are combined in chapter 4, so that the programmer can annotate predicates

as either inductive or coinductive, and inductive predicates can invoke coinductive pred-

icates and visa-versa, with the only restriction being that no cycles through alternating

4

induction and coinduction are allowed. In other words, an inductive predicate and a

coinductive predicate cannot be mutually recursive.

This dissertation refers to the aforementioned combination of traditional and coin-

ductive logic programming as co-logic programming. Co-logic programming is a natu-

ral generalization of traditional logic programming and coinductive logic programming,

which in turn generalizes other extensions of logic programming, such as rational trees,

lazy predicates, and concurrent perpetual predicates. The declarative semantics for co-

logic programming is de�ned as an alternating �xed-point model, and a corresponding

top-down, goal-directed operational semantics is provided in terms of alternating SLD

and co-SLD semantics. The restriction preventing cycles through induction and coinduc-

tion, here referred to as �the strati�cation restriction�, is a syntactic restriction that is

easily enforced via a compile-time static analysis of the source code, and the operational

semantics is easily implemented using a top-down, hypothesis-�rst, left-most, depth-�rst

backtracking search.

The practical applications of this new logic programming paradigm range from static

analysis to arti�cial intelligence to web services. The applications of co-logic program-

ming are discussed in chapters 5 through 7.

Co-logic programming can be further extended by applying the notion of tabling to

programs' inductive predicates, so that their operational behavior more closely matches

their declarative semantics. Tabling inductive predicates can be used to minimize re-

computation, but more importantly, it is used to improve the termination properties

of inductive predicates in a manner similar to the coinductive hypothesis rule used for

coinductive predicates. This extension, called tabled co-logic programming, is mentioned

in chapter 8, along with other future work regarding co-logic programming.

CHAPTER 2

BACKGROUND

We begin by covering the requisite background concepts of induction, coinduction, �xed-

points, recursion, and corecursion in section 2.1.1. These generic mathematical concepts

are used, explicitly and implicitly, throughout this entire dissertation, starting with the

brief introduction to traditional logic programming in section 2.2. Finally, this chap-

ter ends with a discussion of work related to the extension of logic programming with

coinduction.

2.1 Mathematical Concepts

The dual form of induction, that is, coinduction, has been known to mathematicians

for many years in the �elds of universal algebra and category theory. However, the

use of formal coinductive proof techniques in computer science is a relatively new trend

starting with work on process algebras [11], concurrency [12], and programming language

semantics [13].

Following the account given in Types and Programming Languages [14], we brie�y

review the set theoretic notions of induction and coinduction, which are de�ned in terms

of monotonic functions on sets and least and greatest �xed-points. For the remaining

discussion, it is assumed that all objects such as elements, sets, and functions are taken

from the universe of hypersets with the axiom of plenitude. Details can be found in [2,

15, 16, 17].

5

6

2.1.1 Induction and Coinduction

A naive attempt to prove a property of the natural numbers involves demonstrating the

property for 0, 1, 2, . . ., ad in�nitum. In order for such a proof to be comprehensive,

it must be in�nite. However, since nobody has the time to write an in�nite proof, the

principle of proof by induction can be used to represent such an in�nite proof in a �nite

form. This is precisely what the operational semantics of coinductive logic programming

does as well. That is, coinductive logic programming uses the principle of proof by

coinduction for representing in�nite proofs or executions in a �nite form. The di�erence

between induction and coinduction will be made more obvious later.

De�nition 2.1 A function Γ on sets is monotonic if S ⊆ T implies Γ(S) ⊆ Γ(T). Such

functions are called generating functions.

Generating functions can be thought of as a de�nition for creating objects, such as terms

and proofs. The following example demonstrates one such de�nition.

Example 2.1 Let ΓN be a function on sets: ΓN (S) = {0} ∪ {succ(x) | x ∈ S}.

Obviously, ΓN is a monotonic function, and intuitively, it de�nes the set of natural

numbers, as will be demonstrated below.

De�nition 2.2 Let S be a set.

1. S is Γ-closed if Γ(S) ⊆ S; S is Γ-justi�ed if S ⊆ Γ(S).

2. S is a �xed-point of Γ if S is both Γ-closed and justi�ed.

7

S is Γ-closed when every object created by the generator Γ is already in S. Similarly, a

set S is Γ-justi�ed when every object in S is created or justi�ed by the generator.

One of the purposes of mathematics is to provide unambiguous means for de�ning

concepts. Theorem 2.1 shows that a generating function Γ can be used for giving a

precise de�nition of a set of objects in terms of the least or greatest �xed-point of Γ, as

these �xed-points are guaranteed to exist, and are unique.

Theorem 2.1 (Knaster-Tarski) Let Γ be a generating function. The least �xed-point of

Γ is the intersection of all Γ-closed sets. The greatest �xed-point of Γ is the union of all

Γ-justi�ed sets.

Proof 2.1 This is just a reformulation of the Knaster-Tarski theorem [18].

Since these �xed-points always exist and are unique, it is customary to de�ne unary

operators µ and ν for manifesting either of these �xed-points.

De�nition 2.3 µΓ denotes the least �xed-point of Γ, and νΓ denotes the greatest �xed-

point of Γ.

Example 2.2 Let ΓN be de�ned as in example 2.1. The de�nition of the natural numbers

N can now be unambiguously invoked via theorem 2.1, as N = µΓN , which is guaranteed

to exist and be unique. Note that this de�nition is equivalent to the standard �inductive�

de�nition of the natural numbers, which is written: Let N be the smallest set such that

0 ∈ N and if x ∈ N , then x+ 1 ∈ N .

Hence what is sometimes referred to as an inductive de�nition, is subsumed by de�nition

via least �xed-point. This is further generalized by creating the dual notion of a de�nition

by greatest �xed-point, termed a coinductive de�nition.

8

Example 2.3 ΓN from example 2.1 also unambiguously de�nes another set, that is,

N ′ = νΓN = N ∪ {ω}, where ω = succ(ω), that is, ω = succ(succ(succ(...))) an in�nite

application of succ.

Corollary 2.1 The principle of induction states: if S is Γ-closed, then µΓ ⊆ S. The

principle of coinduction states: if S is Γ-justi�ed, then S ⊆ νΓ.

De�nition 2.4 Let Q(x) be a property. Proof by induction demonstrates that the char-

acteristic set S = {x | Q(x)} is Γ-closed, and then invokes the principle of induction to

prove that every element x of µΓ has the property Q(x).

Similarly, proof by coinduction demonstrates that the characteristic set S is Γ-justi�ed,

and then invokes the principle of coinduction to prove that every element x that has prop-

erty Q(x) is also an element of νΓ.

Example 2.4 The familiar proof by induction can be instantiated with regards to the set

N de�ned in the previous example. Let Q(x) be some property, and let S = {x | Q(x)}.

In order to show that every element x in N has property Q(x), by induction it is su�cient

to show that ΓN (S) ⊆ S, which is equivalent to showing that 0 ∈ S, and if x ∈ S, then

succ(x) ∈ S.

Like proof by induction, proof by coinduction is used in many aspects of computer science,

e.g., bisimilarity proofs for process algebras such as the π-calculus [19]. Section 3.2.4 and

section 4.2.3 demonstrate other examples of proof by coinduction in the soundness proofs

for the operational semantics of coinductive logic programming and co-logic programming

respectively.

9

2.1.2 Recursion and Corecursion

In the previous section, we began with the analogy of a naive proof. Similarly, one

can make a futile attempt to de�ne a mapping of the natural numbers into another set

(possibly itself) by de�ning the mapping for 0, 1, 2, . . ., ad in�nitum. However, the

de�nition of the function corresponding to this mapping will always be incomplete, as

the de�nition is in�nite in size. Since nobody has the time to write an in�nite de�nition,

the notion of recursion can be used for mapping a possibly in�nite least �xed-point into

some other set, using a �nite de�nition. It also turns out that recursion itself can be used

as an incomplete de�nition of computation. Of course, this is nothing new to a computer

scientist. However, the dual notion, corecursion, is not as familiar. While recursion is

used to map a least �xed-point to some other set, corecursion is used to map from a set

into a greatest �xed-point.

A formal account of recursion and corecursion is out of the scope of this dissertation,

and therefore the reader is referred to the wonderfully detailed account of Barwise and

Moss [2]. In short, recursion works by deconstructing an element of a least �xed-point,

descending from top to bottom, while corecursion constructs an element of a greatest

�xed-point by ascending on the result, creating a larger and larger object. Hence re-

cursion deconstructs (i.e., analyzes) elements of a least �xed-point, while corecursion

constructs an element of a greatest �xed-point. Furthermore, by de�nition, recursion

must terminate, while corecursion need not terminate. Extending logic programming

with coinduction, as described in this dissertation, allows for both recursion and corecur-

sion in the logic programming paradigm.

The bitstream example from the introduction is an example of a corecursive predi-

cate.

10

De�nition Proof Mapping

least �xed-point induction recursion
greatest �xed-point coinduction corecursion

Table 2.1. Dual Mathematical Techniques

bitstream([H | T]) :- bit(H), bitstream(T).

Notice how it does not have a base case that is always found in the use of recursion?

This predicate constructs an in�nite list by ascending on the one and only argument to

the predicate. Therefore it is necessary to extend logic programming with coinduction,

if predicates such as bitstream are to have their intended meaning.

Table 2.1 summarizes the general mathematical concepts that will be used in this

dissertation. Finite or in�nite sets of objects can be formally and �nitely de�ned as

a least or greatest �xed-point, which are guaranteed to exist. Using the notion of a

characteristic set, a property can also be de�ned via least or greatest �xed-point, as the

set of objects that have said property. Given objects and properties de�ned in such a way,

�nite proofs that objects have certain properties can be given using proof by induction

or coinduction. Finally, mappings between objects, for example, a mapping that takes a

natural number and returns an in�nite list, can be de�ned using recursion or corecursion.

2.2 Logic Programming

Declarative programming languages as opposed to imperative or procedural programming

languages, take a decidedly high-level approach to programming language design [20].

The goal of an imperative language is to allow a programmer to specify what is wanted

from the desired software system, such that the language's compiler or interpreter are left

with the task of �guring out how to accomplish or realize the high-level speci�cation. The

11

declarative approach to programming languages has many advantages. Declarative lan-

guages are high-level, allowing a typically direct speci�cation of the problem to be solved

by the computer, and programs written in a declarative language are more amenable to

formal mathematical reasoning.

There are numerous forms of declarative programming [20]. For example, functional

programming has speci�cations of programs given in terms of formal mathematical func-

tions. Meanwhile, logic programming has speci�cations of programs given in terms of

some kind of formal mathematical logic [21]. This dissertation restricts consideration to

Prolog-style logic programming based on Horn logic, which is a fragment of classical logic

that can be e�ciently executed on a computer. The following is a brief introduction of

the abstract syntax and semantics of traditional logic programming, that is Horn logic

or de�nite logic.

2.2.1 Syntax

In the following, it is important to distinguish between an idealized class of objects and

the syntactic restriction of said objects. Elements of syntax are necessarily �nite, while

many of the semantic objects used by the coinductive extensions of logic programming

de�ned later are in�nite. It is assumed that there is an enumerable set of variables, an

enumerable set of constants, and for all natural numbers n, there are an enumerable set

of function and predicate symbols of arity n.

In logic programming, objects or data structures are high-level entities known as

terms. A term is simply an expression that denotes a tree, as the following de�nition

makes apparent.

De�nition 2.5 The set of terms is νΓ and the set of syntactic terms is µΓ, where

t ∈ Γ(S) whenever one of the following is true:

12

1. t is a variable.

2. t is a constant.

3. t = f(t1, . . . , tn), where t1, . . . , tn ∈ S and f is a function symbol of arity n.

Note that terms can be �nite or in�nite in size, while syntactic terms must be �nite.

De�nition 2.6 A ground term is a term that does not contain variables. A term is said

to be ground if it is a ground term.

Variables are typically written as words that start with a capital letter. For example,

X and Y are variables. Constants and function symbols are simply mutually distinct

tokens, representing an object. Constants are atomic objects, while functions of arity n

are intended to be applied to n arguments. For example, 0 and 1 are constants. More

generally, constants are written as words that start with a lower-case letter. Hence hot

and cold can be considered constants too. Non-trivial terms are constructed by applying

function symbols (which have a syntax identical to constants) to terms in a way that

respects the arity of the function symbol. For example, succ(0) is a term that applies a

function symbol succ of arity one to the constant 0. Note that such a term is ground,

while a term such as succ(X) is not ground.

As will be formally de�ned later, syntactically distinct ground terms denote distinct

objects. This allows for a direct means of specifying new objects as the following examples

demonstrate.

Example 2.5 Natural numbers can be constructed by using just one function symbol

succ and one constant zero. Following Peano's Arithmetic, we can take 0 = zero,

1 = succ(zero), 2 = succ(succ(zero)), and so on.

13

Example 2.6 Lists can also be constructed using just one function symbol node and

one constant nil. In a manner similar to the standard linked node representation, lists

of the form [X1, X2, . . . , Xn] can be represented as node(X1, node(X2, . . . node(Xn, nil))).

Combined with the previous example, the two element list [0, 1] can be represented

node(zero, node(succ(zero), nil)).

Objects alone are not enough to specify a program, and therefore logic programming

provides predicates. A predicate is de�ned by its inference rules, also known as de�nite

clauses, while the invocation of a predicate is known as an atom.

De�nition 2.7 An atom is an expression of the form p(t1, . . . , tn), where p is a predicate

symbol of arity n and t1, . . . , tn are terms.

As will be formally de�ned later, an atom p(t1, . . . , tn) denotes the logical statement that

the tuple (t1, . . . , tn) is in the mathematical relation p, that is, the property p holds for

the objects t1, . . . , tn.

De�nition 2.8 A clause is a logical inference rule of the form C ← D1, . . . , Dn where

C,D1, . . . , Dn are atoms. Furthermore, C is called the head of the clause and D1, . . . , Dn

is called the body of the clause.

Intuitively, a clause C ← D1, . . . , Dn can be interpreted as an implication, where D1, . . . ,

and Dn implies C. Throughout this dissertation, �clause� and �inference rule� will refer

to the same thing.

De�nition 2.9 An atom or clause is said to be syntactic if it only contains syntactic

terms. Similarly, an atom, clause, or program is said to be ground if it only contains

14

ground terms. A term, atom, or clause is an instance of another term, atom, or clause

respectively, when the instance is obtained from the original by substituting terms for

variables in the original.

De�nition 2.10 A de�nite program is a �nite set of syntactic de�nite clauses.

Intuitively, a de�nite program can be interpreted as the disjunction of the interpretations

of each individual clause. Note that a de�nite program is a �nite object. The following

de�nition of a traditional logic program marries syntax and semantics.

De�nition 2.11 A traditional logic program is a de�nite program with the declarative

semantics de�ned in section 2.2.2.1.

This section has de�ned the abstract or mathematical syntax of a logic program. How-

ever, logic programs, such as Prolog programs, are typically written in the form of ASCII

text �les. The details of the concrete syntax of logic programs varies in minor ways,

which are unimportant to the material covered in this dissertation. However, code ex-

amples will be given using a concrete Prolog syntax compatible with the SICStus Prolog

system [22]. Details regarding the distinction between abstract and concrete syntax for

logic programming can be found in [23], and the details of the SICStus Prolog syntax

can be found in the SICStus Prolog user manual [22]. A short incomplete description of

the concrete syntax is the following:

1. Constants, function symbols, and predicate symbols are tokens beginning with a

lowercase letter from the Roman alphabet.

2. Variables are tokens beginning with an uppercase letter.

15

3. A de�nite clause C ← D1, . . . , Dn is written �C :- D1, ...,Dn�. Furthermore,

when n = 0, the clause can be written �C.�

Example 2.7 A predicate can be de�ned for determining if a given term is a natural

number, as follows:

number(zero).

number(succ(X)) :- number(X).

Intuitively, this program reads: �Y is a number when Y = zero or Y = succ(X), such

that X is a number.

Example 2.8 Similarly, a predicate can be de�ned for determining if a given term is a

list:

list(nil).

list(node(X, L)) :- list(L).

This program states that a list is either empty, that is, nil, or a list consists of a node

containing an element and a list.

2.2.2 Semantics

A programming language is a combination of syntax and semantics, and a declarative

programming language typically has two kinds of semantics: declarative semantics and

operational semantics. The declarative semantics is the denotational or mathematical

description of the typically formal set theoretic objects that are described by expressions

in the language. The operational semantics, on the other hand, formally describes how

16

expressions in the language can be executed. In other words, declarative semantics de-

scribe �what it is�, while operational semantics describe �how to do it�. So the declarative

semantics can be considered the standard benchmark for determining the meaning of

statements in the language, while the operational semantics is merely just a means to an

end.

2.2.2.1 Declarative Semantics

A logic program is executed by presenting the logic programming interpreter with a given

program and a query. A query is simply a conjunction of atoms. The intent is to have

the interpreter determine if the query is satis�able according to the given logic program.

Hence the declarative semantics of logic programming is concerned with determining

when an atom is true, as satis�ability can then be reduced to �nding a substitution for

the query that makes every atom in the query true.

The following is a brief account of the minimal Herbrand model semantics for induc-

tive logic programming. Intuitively, this assigns meaning to a clause C ← D1, . . . , Dn as

an inference rule that can be used for deriving a conclusion C from premises D1, . . . , Dn.

It is also possible to apply a formal denotational semantics to logic programming by

interpreting the �←� symbol as classical mathematical logic's implication and the �,�

symbol as classical mathematical logic's conjunction. Both approaches coincide for tra-

ditional logic programming, but in order to extend logic programming with coinduction,

it is more natural to use the minimal Herbrand model approach to semantics as opposed

to the classical logic approach. Details of both approaches to semantics can be found in

classic texts of Lloyd [7] and Sterling et al. [23].

De�nition 2.12 Let P be a logic program. Let A (P) be the set of constants in P , and

let F n(P) denote the set of function symbols of arity n in P . The Herbrand universe of

17

P , is denoted U(P) = µΦP , where

ΦP (S) = A(P) ∪ {f(t1, . . . , tn) | f ∈ Fn(P) ∧ t1, . . . , tn ∈ S}

For technical reasons, we assume that there is at least one constant and one function

symbol. This causes the universe to be non-empty. The Herbrand universe is the set of

ground terms that can be constructed from the constants and functions in the program.

Since a least �xed-point is used to de�ne the Herbrand universe, only �nite terms are

included.

Intuitively, the Herbrand universe assigns meaning to a ground term t as a mathemati-

cal tree consisting of a direct representation of the term t. Hence when two ground terms

are syntactically distinct, they are also semantically distinct. This does not apply to

terms that are not ground. A term t that is not ground, that is, which contains variables

X1, . . . , Xn, can be thought of as a function f(t1, . . . , tn) = t[X1 := t1, . . . , Xn := tn],

where t1, . . . , tn are ground and t[X1 := t1, . . . , Xn := tn] is the term t with variables

X1, . . . , Xn replaced with terms t1, . . . , tn respectively.

De�nition 2.13 Let P be a traditional logic program. The Herbrand base, written B(P),

is the set of all ground atoms that can be formed from the predicate symbols in P and the

elements of U(P). Also, let G(P) be the set of ground clauses C ← D1, . . . , Dn that are

a ground instance of some clause of P such that C,D1, . . . , Dn ∈ B(P).

Finally we can give the formal de�nition of a traditional logic program P 's semantics as

the minimal Herbrand model of P .

De�nition 2.14 A Herbrand model of a traditional logic program P is a �xed-point of

TP (S) = {C | C ← D1, . . . , Dn ∈ G(P) ∧ D1, . . . , Dn ∈ S}

18

The minimal Herbrand model of an inductive program P , denoted M in(P), is the least

�xed-point of TP , which exists and is unique according to theorem 2.1. Hence M in(P) is

taken to be the declarative semantics of a traditional logic program P .

Truth is de�ned in terms of inclusion in the model.

De�nition 2.15 An atom A is true in a traditional logic program P if and only the set

of all groundings of A, with substitutions ranging over the U(P), is a subset of M in(P).

Example 2.9 Let P1 be the following inductive logic program.

from(N, [N|T]) :- from(s(N), T).

| ?- from(0, _).

Note that this example uses the shorthand notation for lists, such as [H|T] and [t1, . . . , tn]

[23]. The inductive semantics are derived as follows. The Herbrand Universe is U(P1) ⊇

N∪L where N = {0, s(0), s(s(0)), . . .} is the set of natural numbers and L is the set of all

�nite lists of elements in N and L. However, the minimal Herbrand model M in(P1) =

∅ is the meaning of the program. Therefore the query from(0, [0, s(0), s(s(0)), . . .]) /∈

M in(P1), and hence it is not true. We would like the predicate to denote that its second

argument is a list that starts counting with the number denoted by its �rst argument.

However, this necessitates that the second argument is an in�nite list, which simply does

not exist in the Herbrand universe.

Example 2.10 Recall the bit stream example from the introduction.

19

bit(0).

bit(1).

bitstream([H | T]) :- bit(H), bitstream(T).

The Herbrand universe only contains 0, 1, �nite lists of these two digits, and �nite lists of

elements from the universe itself. Because the bitstream predicate requires its argument

to be an in�nite list of binary digits, the minimal Herbrand model of this program only

contains bit(0) and bit(1). Hence the only logic statements that are true, with regards to

this program, are bit(0), bit(1), and bit(X) for all variables X.

2.2.2.2 Operational Semantics

The minimal Herbrand model of a traditional logic program tells us what the program

means, but it doesn't tell us how to execute the program. Hence the language also

needs an operational semantics. The following account of inductive logic programming's

operational semantics is similar to that of Lloyd [7]. The semantics, called SLD, which

stands for �Selection function with Linear resolution for De�nite programs�, can be

thought of as a non-deterministic state transition system corresponding to the high-level

state transitions of an execution of an inductive logic programming query.

All de�nitions in this section and the following section 2.2.2.3 are speci�c to SLD.

Hence the de�nition of a state, a transition, etc, will be rede�ned in later sections for

distinct operational semantics that extend SLD.

De�nition 2.16 A state is a multi-set of syntactic atoms.

Intuitively, a state in SLD semantics is the set of logical statements that remain to be

proven true. A transition from one state to another involves unifying the head of an

instance of a clause with one of the atoms of the state.

20

Uni�cation is a general problem involving solving equations between syntactic terms.

A solution is a substitution of terms for variables, such that all equations are vacuously

true. So in this case, the head of an inference rule is equated with an atom taken from

the state, and uni�cation is used to con�rm that such an equation is solvable, as well as

to yield a solution. So a transition is only valid if the two terms do in fact unify.

Uni�cation was originally devised by Robinson [24, 25], though his �rst algorithm runs

in exponential time in the worst case. Shortly there after, algorithms that run in quasi-

linear time, which are based on Tarjan's union-�nd algorithm [26], were independently

developed by Martelli et al. [27] and by Huet [28, 29]. However, the algorithm of Martelli

et al. only works with acyclic or �nite terms, while Huet's algorithm works with �nite,

in�nite, acyclic, and cyclic terms. Paterson et al. later introduced an algorithm that can

perform uni�cation for acyclic terms in truly linear time [30, 31].

However, the di�erences in asymptotic complexities do not accurately re�ect real

world performance, especially considering the fact that the kinds of terms uni�ed varies

from problem to problem [32]. For this reason, logic programming implementations tend

to use a uni�cation method that is not even quasi-linear, as in the common case it

performs better than algorithms such as Huet's, which are quasi-linear in the worst-case.

Knight [33], Baader and Siekmann [34], and Baader and Snyder [35], provide further

details regarding uni�cation's history, theory, and algorithms.

De�nition 2.17 In inductive logic program P , let Θ be the most general uni�er of An

and A, such that C = A← B1, . . . , Bm is a clause in program P . Then in P 's SLD state

transition system, a state {A1, . . . , An} transitions to a state

Θ({A1, . . . , An−1, B1, . . . , Bm}) by a transition labelled (C,Θ), where Θ(S) is the multi-

set obtained from S by applying the substitution Θ to every element of S. Furthermore,

the most general uni�er is restricted to range over the Herbrand universe.

21

De�nition 2.18 A query Q is a multi-set of syntactic atoms. A query is said to be true

in program P , whenever each A ∈ Q is true in P .

De�nition 2.19 In inductive logic program P , given query A1, . . . , An, the start state

of P 's SLD state transition system is the state {A1, . . . , An}. The accepting state is the

state ∅.

In other words, an execution starts with a query, then it proceeds by trying to prove

each atomic logical statement in the current state. Finally, it successfully ends when no

remaining outstanding logical statements still need to be proved.

De�nition 2.20 A derivation of a query in program P is a sequence of transitions

(C1,Θ1), . . . , (Cn,Θn) in P 's SLD state transition system that forms a path from the

start state to some other state in the system. A derivation is successful if it terminates

in the accepting state.

A derivation is simply a formalization of a query's execution trace.

De�nition 2.21 A query Q is successful in program P , whenever Q has an accepting

derivation (C1,Θ1), . . . , (Cn,Θn). When restricted to the variables occurring in Q, the

composition of the substitutions Θ1 . . .Θn is called the computed answer for Q in program

P .

So the operational semantics is quite straightforward. Given a query, execution proceeds

by repeatedly trying each applicable inference rule until there are no unproven logical

statements. The computed answer is simply the substitutions for variables in the original

query.

22

As mentioned, determining if an inference rule is applicable to an atom involves

unifying the head of the rule with the atomic logical statement. Calculating the most

general uni�er of two atoms can be accomplished in time linear in the size of the two

atoms [30]. Hence the de�nition of SLD is a satisfactory account of the execution of a

query. The only hidden component is the need to use a backtracking search, so as to

be able to �nd a path from the start state to the accepting state, as not every sequence

of rule applications is successful. Traditionally, this is accomplished using a left-most,

depth-�rst search through the state transition system [36, 7, 23].

Example 2.11 Consider the following logic program:

number(zero).

number(succ(X)) :- number(X).

lessThanEq(0, Y) :- number(Y).

lessThanEq(succ(X), succ(Y)) :- lessThanEq(X, Y).

The number predicate is the same as in example 2.7. The lessThanEq(X, Y) predicate

de�nes the traditional X ≤ Y relation between natural numbers. It states that 0 is less

than or equal to Y , if Y is a natural number, and X is less than or equal to Y implies

X + 1 is less than or equal to Y + 1. Lets observe the SLD execution of the query

corresponding to 2 ≤ 3 using a left-most, depth-�rst search strategy. We start with the

state containing lessThanEq(succ(succ(0)), succ(succ(succ(0)))), and so we have

no other choice but to try to apply a rule to this logical statement. The head of the �rst

inference rule, number(zero), does not unify with the statement, so we keep trying

the next inference rule until a rule can be applied. It turns out that the last rule in the

23

program is the only inference rule that can be applied to this statement, yielding the next

state, which contains lessThanEq(succ(0), succ(succ(0))). This process repeats as

demonstrated below:

1. {lessThanEq(succ(0), succ(succ(0)))}

2. {lessThanEq(0, succ(0))}

3. {number(succ(0))}

4. {number(0)}

5. ∅

The �nal state is the empty multi-set, that is, the state with no outstanding unproven

logical statements. So according to the program, 2 ≤ 3 is in fact true, which was the

intent of the program. It is also important to see how SLD determines when a logical

statement is false. So consider the execution of the query corresponding to 3 ≤ 2, that is,

consider the execution of lessThanEq(succ(succ(succ(0))), succ(succ(0))). This

proceeds as follows:

1. {lessThanEq(succ(succ(succ(0))), succ(succ(0)))}

2. {lessThanEq(succ(succ(0)), succ(0))}

3. {lessThanEq(succ(0), 0)}

So far, at every step of the computation, there was no other choice but to apply the

fourth inference rule, which has resulted in transitioning to the state containing

lessThanEq(succ(0), 0), which corresponds to the statement 1 ≤ 0. At this point,

24

SLD notices that there is a problem, because there are no applicable inference rules.

Hence the logical statement lessThanEq(succ(0), 0) is false, and because there were

no other options encountered during the execution of the original statement, it must be

that the original statement is also false.

2.2.2.3 Correctness

A declarative programming language's canonical meaning comes from its declarative

semantics, but its practical implementation is based on its operational semantics. This

means that it is necessary to establish a correspondence between the declarative and

operational semantics. Since the declarative semantics is considered the benchmark, this

correspondence is described in terms of the soundness and completeness of the operational

semantics. Soundness requires that the operational semantics only computes correct

results, and completeness requires that for a satis�able query, the operational semantics

is capable of deriving that the query is satis�able.

Theorem 2.2 (Soundness) If query Q is successful in inductive logic program P with

computed answer Θ, then Θ(Q) is true in P .

Proof 2.2 Let (C1,Θ1), . . . , (Cn,Θn) be the successful derivation of Q in program P , and

let Θ′ = Θ1 . . .Θn. The proof proceeds by induction on the length of the derivation, that

is, by induction on n.

If n = 0, then Q = ∅, which is vacuously true. Now, consider the case when

n > 0. So Q is of the form {A1, . . . , Am} and transitions to a state Q′ of the form

Θ1({A1, . . . , Am−1, B1, . . . , Bl}), where C1 = A← B1, . . . , Bl. By induction [Θ2 . . .Θn](Q′)

is true in P . So all groundings of [Θ2 . . .Θn](Q′) are included in M in(P). This implies

that all groundings of Θ(Q) are included in TP (M in(P)). The fact that M in(P) is the

25

least �xed-point of TP implies TP (M in(P)) = M in(P). So it can be concluded that all

groundings of Θ(Q) are included in M in(P). Hence Θ(Q) is true in program P .

Theorem 2.3 (Completeness) If atom A ∈ M in(P), then A has a successful derivation

in inductive logic program P .

Proof 2.3 The proof proceeds by set theoretic induction on M in(P), which is possible

because M in(P) = µTP . Implicitly we are using the principle of induction to show that

µTP ⊆ S, where S is the set of all atoms with successful derivations in P . There are two

cases to consider.

In the base case, A ← is in G(P), the set of ground instances of the clauses of P .

Obviously there is a derivation that starts with state {A} and transitions to the state ∅

by applying the prototype clause A′ ← of which A ← is a grounding. So A immediately

has a successful derivation in P .

In the inductive case, A ← D1, . . . , Dn ∈ G(P) and D1, . . . , Dn ∈ M in(P). By

induction, D1, . . . , Dn each have a successful derivation in P . Hence there is a suc-

cessful derivation starting with state {D1, . . . , Dn}. Since state {A} transitions to state

{D′1, . . . , D′n} of which {D1, . . . , Dn} is an instance, it is also true that A has a successful

derivation in inductive logic program P .

2.3 Related Work

Most of the work regarding coinduction and logic programming has been focused on allow-

ing for in�nite data structures in logic programming, or it has dealt with mathematically

describing in�nite derivations. However, these stop short of providing both a declarative

semantics as well as �nite derivations for atoms that have in�nite idealized proofs. Logic

26

programming with rational trees [37, 38, 39, 40, 41, 6, 42] allows for �nite terms as well

as in�nite terms that are rational trees, that is, terms that have �nitely many distinct

subterms. Coinductive logic programming as de�ned in chapter 3, on the other hand, al-

lows for �nite terms, rational in�nite terms, but unlike logic programming with rational

trees, the declarative semantics of coinductive logic programming also allows for irra-

tional in�nite terms. Furthermore, the declarative semantics of logic programming with

rational trees corresponds to the minimal co-Herbrand model. On the other hand, coin-

ductive logic programming's declarative semantics is the maximal co-Herbrand model.

Also, the operational semantics of logic programming with rational trees is simply SLD

extended with rational term uni�cation, while the operational semantics of coinductive

logic programming corresponds to SLD only via the fact that both are implicitly de�ned

in terms of state transition. Thus, logic programming with rational trees does not allow

for �nite derivations of atoms that have in�nite idealized proofs, while coinductive logic

programming does. Finally, logic programming with rational trees can only create in�-

nite terms via uni�cation (without occurs check), while coinductive logic programming

can create in�nite terms via uni�cation (without occurs check) as well as via user-de�ned

corecursive predicates, as demonstrated by the bit stream example in the introduction.

On top of that, co-logic programming as de�ned in chapter 4 allows for the use of coin-

duction to be controlled by the programmer. Such �exibility simply isn't possible with

the aforementioned previous work.

It is also well known that atoms with in�nite SLD derivations are contained in the

maximal model [43, 6, 44, 7]. However, the novel contribution of co-logic programming is

its operational semantics' use of memoization for synthesizing a coinductive hypothesis,

which allows for the invocation of the coinductive hypothesis rule for recognizing atoms

that have an in�nite idealized proof. For example, the work of [43, 6, 44, 7] doesn't

27

provide an e�ective means, i.e., an operational semantics, for answering the bit stream

query in the introduction. In their operational semantics, such a query would simply not

terminate, while in coinductive logic programming such a query terminates because it

has a successful, �nite co-SLD derivation.

Independently to the work introduced in this thesis, Ja�ar et al. introduced a coinduc-

tive tabling proof method [45, 46] that uses coinduction as a means of proving in�nitary

properties in model checking. This is in contrast to using it in de�ning the semantics of

a new declarative programming language, as is the case with coinductive logic program-

ming and co-logic programming presented in this dissertation. Ja�ar et al.'s coinductive

tabling proof method itself is analogous to coinductive logic programming's co-SLD op-

erational semantics described above in that both use the principle of coinduction to prove

in�nitary properties with some form of a �nite derivation. However, Ja�ar et al.'s coin-

ductive tabling proof method is not assigned any declarative, model-theoretic semantics,

as is the case with both coinductive logic programming and co-logic programming pre-

sented in this dissertation, which have a declarative semantics, operational semantics,

and a correctness proof showing the correspondence between the two. Co-logic program-

ming, when extended with constraints, can be used for the same applications as Ja�ar

et al.'s coinductive tabling proof method.

Like lazy functional programming [3], lazy functional logic programming (e.g., [47,

48, 49, 50, 51, 52]) also allows for in�nite data structures, but it encodes predicates

as Boolean functions, while in comparison, co-logic programming de�nes predicates via

Horn clauses. The di�erence in semantics is even more pronounced. Predicates in lazy

functional logic programming tend to have a mostly operational semantics in terms of

lazy narrowing, which means that an instance of a predicate is true when the argument

terms of the corresponding predicate can be instantiated in such a way that the function

28

evaluates to true. However, if the property is in�nitary and has an in�nite idealized

proof, then the corresponding function will not evaluate to true because it will have an

in�nite evaluation. In co-logic programming, on the other hand, a coinductive predicate

with an in�nite idealized proof is de�ned as true, and the operational semantics allow for

the �nite derivation via the automated use of coinduction. Therefore, predicates in lazy

functional logic programming are semantically di�erent from those in coinductive logic

programming. Of course, since functional logic programming languages typically allow for

user programmable search strategies, it should be possible to implement coinductive logic

programming in a functional logic programming language by e�ectively implementing a

co-SLD search strategy. Similarly, a meta-interpreter for co-logic programming can be

implemented on top of traditional logic programming.

The Horn µ-calculus of Charatonik et al. [53] and the alternation-free variant of Tal-

bot [54] extend Horn logic with least and greatest �xed-points and provide declarative

semantics in a manner similar to co-logic programming. The Horn µ-calculus does not

have the strati�cation restriction found in co-logic programming, while the alternation-

free restriction does. The Horn µ-calculus requires predicate symbols to be labeled with

an integer priority, which is used in the de�nition of the language's semantics. Co-logic

programming does not require predicates to have a speci�ed priority, which is semanti-

cally unambiguous thanks to the strati�cation restriction. Aside from respectively de�n-

ing the syntax and semantics for these variants of the Horn µ-calculus, both Charatonik

et al. and Talbot only consider a non-Church-Turing-complete restriction to �uniform�

programs. These uniform programs are then used to model reactive systems. Hence

Charatonik et al. and Talbot don't provide a top-down, goal-direction operational se-

mantics, let alone an e�cient implementation for the full Horn µ-calculus or the full

alternation-free Horn µ-calculus, as they only consider the restricted class of uniform

29

programs as a means of statically analyzing reactive systems, not as a general purpose

programming language. Co-logic programming has a much more ambitious goal of uni-

fying seemingly disparate logic programming concepts into a simple and e�cient general

purpose declarative programming language.

CHAPTER 3

COINDUCTIVE LOGIC PROGRAMMING

In chapters 1 and 2, we saw examples of logical relations that cannot be easily represented

in traditional logic programming. These predicates deal with in�nite objects and in�nite

properties. One of the contributions of this thesis is the creation of a new dual paradigm

for logic programming, which allows for a natural approach to reasoning directly about

in�nite objects and in�nite properties.

This development proceeds by rede�ning the declarative semantics of traditional logic

programming. The declarative semantics for traditional logic programming has been

given using the notions of Herbrand universe, Herbrand base, and minimal model [7].

Each is de�ned as a least �xed-point, and the set is manifested in traditional set theory.

The declarative semantics of the language proposed here, called coinductive logic pro-

gramming, takes the dual of each of these notions in hyperset theory with the axiom of

plenitude [2].

This variation of the declarative semantics of a logic program has appeared before

[43, 6, 7, 44] in order to describe rational trees and in�nite, that is, non-terminating

SLD derivations, while here it is used to describe �nite derivations in a new operational

semantics, which we call co-SLD in section 3.2.2. So the contribution of this thesis is

the realization that the dual declarative semantics, under certain limitations discussed in

section 3.2.4, describes a �nitely computable behavior. That is, the contribution of this

thesis is the development of an operational semantics for coinduction.

30

31

3.1 Syntax

A coinductive logic program P is syntactically identical to a traditional logic program.

See section 2.2.1 for the formal de�nition of the syntax. The following de�nes a coinduc-

tive logic program as the combination of syntax and semantics, which assigns a de�nite

program the semantics de�ned in the following section.

De�nition 3.1 A coinductive logic program is a de�nite program with the declarative

semantics de�ned in section 3.2.1.

3.2 Semantics

The semantics of coinductive logic programming follows that of traditional logic pro-

gramming. However, both the declarative and operational semantics of traditional logic

programming must be changed in order to capture the concepts of in�nite objects and

properties. Essentially, only the syntax remains the same. Hence at �rst glance, the two

languages seem to be identical, though they are in fact quite di�erent as the following

sections demonstrate.

3.2.1 Declarative Semantics

The declarative semantics of coinductive logic programming is the �across the board�

dual of the traditional minimal model Herbrand semantics [7, 36]. As demonstrated in

[43, 6, 7, 44], this allows the universe of terms to contain in�nite terms, in addition to

the traditional �nite terms; and, it also allows for the model to contain ground goals that

have either �nite or in�nite idealized proofs. The di�erence here is that we de�ne such

goals as true, and in the next section we provide a new operational semantics that yields

�nite derivations for goals with an (rational) in�nite idealized proof.

32

Terms in traditional logic programming are always �nite, and meaning is assigned to

them via de�nition by least �xed-point. Here terms can be �nite as well as in�nite, and

therefore it is necessary to de�ne the meaning of terms in coinductive logic programming

as a greatest �xed-point.

De�nition 3.2 Let P be a coinductive logic program. Let A (P) be the set of constants

in P , and let F n(P) denote the set of function symbols of arity n in P . The co-Herbrand

universe of P , denoted U co(P) = νΦP , where

ΦP (S) = A(P) ∪ {f(t1, . . . , tn) | f ∈ Fn(P) ∧ t1, . . . , tn ∈ S}

As was the case with U(P) (de�ned in section 2.2.2.1), for technical reasons it is assumed

that U co(P) is always not empty. Intuitively, U co(P) is the set of terms both �nite and

in�nite that can be constructed from the constants and functions in the program. Also,

note that the co-Herbrand universe of program P is the dual of the Herbrand universe

of program P .

This seemingly simple variation on the Herbrand universe has important practical

rami�cations. Logic programming's operational semantics implicitly makes use of uni�-

cation, and while uni�cation can be implemented e�ciently, in general, it can be even

more e�ciently implemented when occurs check is not necessary. The occurs check in

a uni�cation procedure involves checking for implied cyclic equality constraints. For ex-

ample, the occurs check forbids the uni�cation of X and f(X), as no �nite term can

satisfy the equation X = f(X), for function symbol f . This occurs check is computa-

tionally expensive, but necessary for the soundness of traditional logic programming's

operational semantics. Coinductive logic programming, on the other hand, allows for

solutions to such equations, that is, uni�cation without occurs check has a greatest �xed-

point interpretation, as in�nite trees are included in the co-Herbrand universe. Hence the

33

uni�cation of X and f(X) has the solution for X being the in�nite term f(f(f(. . .))),

that is, the term consisting of an in�nite application of the function f .

De�nition 3.3 Let P be a coinductive logic program. The co-Herbrand base (also known

as the in�nitary Herbrand base [6]), written Bco(P), is the set of all ground atoms that

can be formed from the predicate symbols in P and the elements of U co(P). Also, let

Gco(P) be the set of ground clauses C ← D1, . . . , Dn that are a ground instance of some

clause of P such that C,D1, . . . , Dn ∈ Bco(P).

As stated, the formal de�nition of coinductive logic programming's declarative semantics

is the mirror image of traditional logic programming's minimal Herbrand model.

De�nition 3.4 A co-Herbrand model of a program P is a �xed-point of

TP (S) = {C | C ← D1, . . . , Dn ∈ Gco(P) ∧ D1, . . . , Dn ∈ S}

The maximal co-Herbrand model of a program P , denoted M co(P), is the greatest

�xed-point of TP , which exists and is unique according to theorem 2.1. M co(P) is taken

to be the declarative semantics of a coinductive logic program P .

The traditional minimal model, on the other hand, is the restriction of the least �xed-

point of TP to the Herbrand base. Hence coinductive logic programming's declarative

semantics is dual to traditional logic programming's semantics, �across the board�: Her-

brand universe, Herbrand base, and the minimal Herbrand model are all taken in �co-�

form. Truth of a coinductive logic statement is de�ned in terms of inclusion in the

co-Herbrand model.

De�nition 3.5 An atom A is true in a coinductive logic program P if and only if the set

of all groundings of A, with substitutions ranging over the U co(P), is a subset of M co(P).

34

Now we can review examples from 2.2.2.1 in order to contrast the stark di�erence between

the syntactically identical inductive logic programming and coinductive logic program-

ming.

Example 3.1 Let P1 be the following program.

from(N, [N|T]) :- from(s(N), T).

| ?- from(0, _).

The coinductive semantics are derived as follows. The co-Herbrand universe is

U co(P1) = N∪Ω∪L where N = {0, s(0), s(s(0)), . . .}, Ω = {s(s(s(. . .)))}, and L is the set

of all �nite and in�nite lists of elements in N , Ω, L. Therefore the maximal co-Herbrand

model M co(P1) = {from(t, [t, s(t), s(s(t)), . . .]) | t ∈ U co(P1)}, which is the meaning of

the program and obviously not null, as was the case with traditional logic programming.

Furthermore from(0, [0, s(0), s(s(0)), . . .]) ∈M co(P1) implies that the query returns �yes�.

The next example has a simpler semantics.

Example 3.2 Let P2 be the following program.

p :- p.

The maximal co-Herbrand model P2 = {p}, which is not empty. Hence, the query | ?-

p. would terminate with a �yes�.

While this may seem counter to the intuition of Horn logic in terms of an encoding of

clauses in terms of classical logic, a better intuition of the semantics is that clauses are

merely inference rules for a proof system that allows �nite and in�nite proofs. Therefore,

p is true because it has an in�nite proof. Of course, it isn't always desirable to allow

35

in�nite proofs for every predicate, which is addressed by the combination of inductive

and coinductive logic programming in the next chapter. This combination results in the

core contribution of this dissertation: co-logic programming. In co-logic programming the

programmer annotates predicates as either "inductive" or "coinductive" [10, 5], e�ectively

allowing the programmer to invoke least and greatest �xed-points at their discretion.

Example 3.3 Recall the bit stream example from the introduction.

bit(0).

bit(1).

bitstream([H | T]) :- bit(H), bitstream(T).

The co-Herbrand universe contains 0, 1, �nite and in�nite lists of these two dig-

its, and �nite as well as in�nite lists of elements from the universe itself. Because the

bitstream/1 predicate requires its second argument to be an in�nite list of binary dig-

its, the minimal Herbrand model of this program only contains bit(0) and bit(1). The

co-Herbrand model, however, also contains bitstream(t), where t is an in�nite binary

stream. Hence coinductive logic programming is required for this kind of a program, as

the bitstream/1 predicate has no meaning in traditional logic programming, while it

e�ectively means �this is a binary stream� in coinductive logic programming.

The model characterizes semantics in terms of truth, that is, the set of ground atoms

that are true. This set is de�ned via a generator, and in section 3.2.4, we discuss the way

in which the generator is applied in order to include an atom in the model. For example,

the generator is only allowed to be applied a �nite number of times for any given atom

in the minimal model, while it can be applied an in�nite number of times for an atom

in the maximal co-Herbrand model. We characterize this by recording the application of

36

the generator in the elements of the �xed-point itself. We call these elements �idealized

proofs�.

De�nition 3.6 Let node(A,L) be a constructor of a tree with root A and subtrees L,

where A is an atom and L is a list of trees. The set of idealized proofs for program P is

νΣP , where

ΣP (S) = {node(C, [T1, . . . , Tn]) |
C ← D1, . . . , Dn ∈ Gco(P) ∧ the root of Ti ∈ S is Di}

Again, this is nothing more than a reformulation of the maximal co-Herbrand model,

which records the applications of the generator in the elements of the �xed-point itself,

as the following theorem demonstrates.

Theorem 3.1 Let S = {A | ∃T ∈ νΣP .A is the root of T}, then S = M co(P).

Every element in the maximal co-Herbrand model has an idealized proof and anything

that has an idealized proof is in the model. A similar theorem exists, equating the minimal

model with the least �xed-point of ΣP restricted to �nite terms, i.e., the minimal model

consists of all ground atoms that have a �nite idealized proof. This recasting of the

declarative semantics in terms of idealized proofs will be used in the completeness proof

in section 3.2.4.

3.2.2 Operational Semantics

This section presents one of the main contributions of this dissertation: an operational

semantics for coinduction. This is accomplished by noting that a tabling, that is, memo-

ization mechanism can be used to dynamically synthesize a coinductive hypothesis while

executing the program in a manner similar to traditional SLD. This coinductive hypoth-

esis is then invoked, at will, by the language's virtual machine.

37

The operational semantics given for coinductive logic programming is de�ned in a

manner similar to SLD, and is therefore called co-SLD. Where SLD uses sets of syntactic

atoms and syntactic term substitutions for states, co-SLD uses �nite trees of syntactic

atoms along with systems of equations. Of course, the traditional goals of SLD can be

extracted from these trees, as the goal of a tree is simply the set of leaves of the tree.

Furthermore, where SLD only allows program clauses as state transition rules, co-SLD

also allows an implicit coinductive hypothesis rule for providing atoms that have an

in�nite proof, with a �nite derivation. As is the case with SLD, it is up to the underlying

search strategy to �nd a sequence of transition rules that prove the original query.

The operational semantics for coinduction is de�ned in this section as a part of the

operational semantics for coinductive logic programming. These de�nitions require some

in�nite tree theory. However, this section only states a few well known de�nitions and

theorems without proof. Details can be found in classic work of Courcell [55].

De�nition 3.7 A tree is rational if the cardinality of the set of all its subtrees is �nite.

An object such as a term, atom, or idealized proof is said to be rational if it is modeled

as a rational tree.

De�nition 3.8 A substitution is a �nite mapping of variables to terms. A substitution

is syntactic if it only substitutes syntactic terms for variables. A substitution is said to

be rational if it only substitutes rational terms for variables.

De�nition 3.9 A term uni�cation problem is a �nite set of equations between terms. A

uni�er for a term uni�cation problem is a substitution that satis�es every equation in the

problem. σ is a most general uni�er for a term uni�cation problem, if any other solution

σ′ can be de�ned as the composition σ′′ ◦ σ.

38

Note that terms are possibly in�nite. So it is possible for a uni�cation problem to lack a

syntactic uni�er, while at the same time the problem has a solution: a rational uni�er.

However, objects of an operational semantics should be �nite. Hence we de�ne a standard

�nite representation of rational substitutions called a system of equations.

De�nition 3.10 A system of equations E is a term uni�cation problem where each equa-

tion is of the form X = t, s.t. X is a variable and t a syntactic term.

Theorem 3.2 (Courcelle) Every system of equations has a most general uni�er that is

rational.

Theorem 3.3 (Courcelle) For every rational substitution σ with domain V , there is a

system of equations E, such that the most general uni�er σ′ of E is equal to σ when

restricted to the domain V .

Without loss of generality, the previous two theorems allow for a solution to a term

uni�cation problem to be simultaneously a substitution as well as a system of equations.

Note that given a substitution speci�ed as a system of equations E, and a term A, the

term E(A) denotes the result of applying the substitution E to A.

Now the operational semantics can be de�ned. The semantics implicitly de�nes a

state transition system. Systems of equations are used to model part of the state of

coinductive logic programming's semantics. They e�ectively denote the current state of

uni�cation of terms. The current state of the pending goals is modeled using a �nite tree

of atoms, as it is necessary to recognize cycles in the sequence of pending goals, that is,

the ancestors of a goal are memo-ed in order to recognize a cycle in the proof.

39

De�nition 3.11 A state S is a pair (T,E), where T is a �nite tree with nodes labeled

with syntactic atoms, and E is a system of equations.

De�nition 3.12 A transition rule R of a coinductive logic program P is an instance of

a clause in P , with variables standardized apart, i.e., consistently renamed for freshness,

or R is a coinductive hypothesis rule of the form ν(n), where n is a natural number.

Obviously the state transition system may be nondeterministic, depending on the pro-

gram. In other words, it is possible for states to have more than one outgoing transition

as the following de�nition shows.

De�nition 3.13 A state (T,E) transitions to another state (T ′, E ′) by transition rule

R of program P whenever:

1. R is a de�nite clause of the form p(t′1, . . . , t
′
n) ← B1, . . . , Bm and E ′ is the most

general uni�er for {t1 = t′1, . . . , tn = t′n} ∪ E, and T ′ is obtained from T according

to the following case analysis of m:

(a) m = 0 implies T ′ is obtained from T by removing a leaf labeled

p(t1, . . . , tn) and the maximum number of its ancestors, such that the result

is still a tree.

(b) m > 0 implies T ′ is obtained from T by adding children B1, . . . , Bm to a leaf

labeled with p(t1, . . . , tn).

2. R is of the form ν(m), a leaf N in T is labeled with p(t1, . . . , tn), the proper ancestor

of N at depth m is labeled with p(t′1, . . . , t
′
n), E ′ is the most general uni�er for

{t1 = t′1, . . . , tn = t′n} ∪ E, then T ′ is obtained from T by removing N and the

maximum number of its ancestors, such that the result is still a tree.

40

The part of the previous de�nition that removes a leaf and a maximum number of its

ancestors can be thought of as a successful call returning and therefore deallocating

memo-ed calls on the call stack. This involves successively removing ancestor nodes of

the leaf until an ancestor is reached, which still has other children, and so removing

any more ancestors would cause the result to no longer be a tree, as children would be

orphaned. Hence the depth of the tree is bounded by the depth of the call stack.

De�nition 3.14 A transition sequence in program P consists of a sequence of states

S1, S2, . . . and a sequence of transition rules R1, R2 . . ., such that Si transitions to Si+1

by rule Ri of program P .

A transition sequence denotes the trace of an execution. Execution halts when it reaches

a terminal state: either all goals have been proved or the execution path has reached a

dead-end.

De�nition 3.15 The following are two distinguished terminal states:

1. An accepting state is of the form (∅, E), where ∅ denotes an empty tree.

2. A failure state is a non-accepting state lacking any outgoing edges.

Without loss of generality, we restrict queries to be single syntactic atoms. A query

containing multiple atoms can be modeled by adding a new predicate with one clause

to the program. Finally we can de�ne the execution of a query as a transition sequence

through the state transition system induced by the input program, with the start state

consisting of the initial query.

41

De�nition 3.16 A co-SLD derivation of a state (T,E) in program P is a state transition

sequence with the �rst state equal to (T,E). A derivation is successful if it ends in an

accepting state, and a derivation has failed if it reaches a failure state. We say that a

syntactic atom A has a successful derivation in program P , if (A, ∅) has a successful

derivation in P .

3.2.3 Examples

In addition to allowing in�nite terms, the operational semantics allows for an execution

to succeed when it encounters a goal that uni�es with an ancestor goal. While this is

somewhat similar to tabled logic programming [56] in that called atoms are recorded so

as to avoid unnecessary redundant computation, the di�erence is that coinductive logic

programming's memo-ed atoms represent a coinductive hypothesis, while tabled logic

programming's table represents a list of results for each called goal in the traditional

inductive semantics.

Hence we call the memo-ed atoms in a coinductive logic program the dynamic coinduc-

tive hypothesis. An example that demonstrates the distinction is the following program.

p :- p.

| ?- p.

Execution starts by checking the dynamic coinductive hypothesis for an atom that

uni�es with p, which does not exist, so p is added to the hypothesis. Next, the body of

the goal is executed. Again, the hypothesis is checked for an atom that uni�es with p,

which is now already included in the hypothesis, so the most recent call succeeds and

then since no remaining goals exist, the original query succeeds. Hence, according to

the operational semantics of coinductive logic programming, the query has a successful

42

derivation, and hence returns �yes�, while traditional (tabled) logic program returns �no�.

Now for a more complicated example involving function symbols. Consider the execu-

tion of the following program, which de�nes a predicate that recognizes in�nite streams

of natural numbers and ω, that is, in�nity.

stream([H | T]) :- number(H), stream(T).

number(0).

number(s(N)) :- number(N).

| ?- stream([0, s(0), s(s(0)) | T]).

The following is an execution trace, for the above query, of the memoization and

unmemoization of calls by the operational semantics:

1. MEMO: stream([0, s(0), s(s(0)) | T])

2. MEMO: number(0)

3. UNMEMO: number(0)

4. MEMO: stream([s(0), s(s(0)) | T])

5. MEMO: number(s(0))

6. MEMO: number(0)

7. UNMEMO: number(0)

8. UNMEMO: number(s(0))

9. MEMO: stream([s(s(0)) | T])

43

10. MEMO: number(s(s(0)))

11. MEMO: number(s(0))

12. MEMO: number(0)

13. UNMEMO: number(0)

14. UNMEMO: number(s(0))

15. UNMEMO: number(s(s(0)))

The next goal call is stream(T), which uni�es with memo-ed ancestor (1), and therefore

immediately succeeds. Hence the original query succeeds with

T = [0, s(0), s(s(0)) | T]

The user could force a failure here, which would cause the goal to be uni�ed with the

next matching memo-ed ancestor, if such an element exists, otherwise the goal is memo-ed

and the process repeats�generating additional results (T = [0, s(0), s(s(0)) | R],

R = [0 | R], etc.). Note that excluding the occurs check is necessary as such structures

have a greatest �xed-point interpretation and are in the co-Herbrand Universe. Again,

this is in fact one of the bene�ts of coinductive logic programming. Traditional logic

programming's least Herbrand model semantics requires SLD resolution to unify with

occurs check (or otherwise lack soundness), which adversely a�ects performance in the

common case. Coinductive logic programming, on the other hand, has a declarative se-

mantics that allows uni�cation without doing occurs check in an e�cient manner as seen

in rational tree uni�cation, and in addition, coinductive logic programming allows for

programs to reason about rational terms generated by rational tree uni�cation in a man-

ner that is impossible in traditional logic programming, as traditional logic programming

44

would diverge into an in�nite derivation, where coinductive logic programming would

yield a �nite derivation thanks to the dynamic synthesis of a coinductive hypothesis via

memoization.

3.2.4 Correctness

We next prove the correctness of the operational semantics by demonstrating its cor-

respondence with the declarative semantics via soundness and completeness theorems.

Completeness, however, must be restricted to atoms that have a rational proof.

Lemma 3.1 If (A,E1) has a successful co-SLD derivation in program P , with �nal state

(∅, E2), then (A,E3) has a successful co-SLD derivation in program P , where E2 ⊆ E3,

with each state of the derivation of the form (T,E3) for some tree of atoms T .

Proof 3.1 Let (A,E1) have a successful co-SLD derivation in program P ending with

state (∅, E2). In the sequence of states, the system of equations monotonically increases,

and so the monotonicity of uni�cation with in�nite terms implies (A,E3) has a successful

co-SLD derivation in program P , where E2 ⊆ E3, with each state of the derivation of the

form (T,E3) for some tree of atoms T .

Lemma 3.2 If A has a successful co-SLD derivation in program P , which �rst transi-

tions to a state (node(A, [B1, . . . , Bn]), E) by applying clause

A′ ← B1, . . . , Bn, such that E(A) = E(A′), then each (Bi, E) also has a successful

derivation in program P .

Proof 3.2 Let (node(A, [B1, . . . , Bn]), E) have a successful co-SLD derivation in pro-

gram P , which �rst transitions to a state (node(A, [B1, . . . , Bn]), E) by applying clause

A′ ← B1, . . . , Bn, such that E(A) = E(A′). A derivation for (Bi, E) can be created by

45

mimicking each transition that modi�es the subtree rooted at Bi in the original deriva-

tion, except for the transitions which are of the form ν(n), which no longer are correct

derivations because the parent A of Bi no longer exists. In the case that n > 0, instead

apply the transition rule ν(n−1) to the corresponding leaf to which the original derivation

would have applied ν(n). Otherwise, when n = 0, a coinductive transition rule cannot

be applied to the corresponding leaf. Instead, mimic the transitions of the entire original

derivation of A.

Lemma 3.3 If (A,E) has a successful co-SLD derivation in programP , then E ′(E(A))

is true in program P , where (∅, E ′) is the �nal state of the derivation.

Proof 3.3 Let Q be the set of all groundings ranging over the U co(P) of all such E ′(E(A)).

It is su�cient to prove that Q ⊆M co(P). The proof proceeds by coinduction.

Let A′ ∈ S, then A′ = E1(E2(E3(A))), where E1 is a grounding substitution for

E2(E3(A)) and (A,E3) has a successful derivation ending in (∅, E2). By lemma 4.1,

(A,E) has a successful derivation, where E = E1 ∪ E2 ∪ E3. This derivation must

begin with an application of a program clause A′ ← B1, . . . , Bn, resulting in the state

(node(A, [B1, . . . , Bn]), E), where E(A) = E(A′). By lemma 4.2 each state (Bi, E)

has a successful derivation. Let E ′ be a grounding substitution for the clause E(A′ ←

B1, . . . , Bn), such that C = E ′(E(A′ ← B1, . . . , Bn)) ∈ Gco(P), then

C = A ← E ′′(B1), . . . , E ′′(Bn), where E ′′ = E ′ ∪ E. By lemma 4.1, each (Bi, E
′′) has a

successful derivation, and hence E ′′(Bi) ∈ Q. Therefore, by the principle of coinduction,

Q ⊆M co(P).

Theorem 3.4 (soundness) If atom A has a successful co-SLD derivation in program

P , then E(A) is true in program P , where E is the resulting variable bindings for the

derivation.

46

Proof 3.4 This follows by a straightforward instantiation of lemma 4.3.

As this theorem demonstrates, the soundness of co-SLD does not require the execution

of an occurs check during uni�cation, as the declarative semantics naturally allows for

in�nite terms. The soundness of SLD, with regards to the minimal Herbrand model,

however, requires the occurs check, which has an adverse a�ect on performance.

Theorem 3.5 (completeness) If A ∈ M co(P) has a rational idealized proof, then A has

a successful co-SLD derivation in program P .

Proof 3.5 Let A ∈ M co(P) have a rational idealized proof T . The derivation is con-

structed by recursively applying the clause corresponding to each node encountered along

a depth-�rst traversal of the idealized proof tree to the corresponding leaf in the current

state. In order to ensure that the derivation is �nite, the traversal stops at the root R

of a subtree that is identical to a subtree rooted at a proper ancestor at depth n. Then

the derivation applies a transition rule of the form ν(n) to the leaf corresponding to R

in the current state, and �nally the depth-�rst traversal continues traversing starting at

a node in the idealized proof tree corresponding to some leaf in the current state of the

derivation.

The fact that the set of all subtrees of T is �nite in cardinality implies that the max-

imum depth of the traversal in the idealized proof tree is �nite, and the fact that all

idealized proofs are �nitely branching implies that the traversal always terminates. So the

constructed derivation is �nite.

It is still necessary prove that the �nal state of the constructed derivation is a success

state. The traversal stops going deeper in the idealized proof tree due to two cases: the

traversal reaches a leaf in the idealized proof tree or the traversal encountered a subtree

47

identical to an ancestor subtree. In either case, the derivation removes the corresponding

leaf in the current state, as well as the maximal number of ancestors of the corresponding

leaf such that the result is still a tree. So a leaf only remains in the state when its

corresponding node in the proof tree has yet to be traversed. Since every node in the

idealized proof tree corresponding to a leaf in the state is traversed at some point, the

�nal state's tree contains no leaves, and hence the �nal state has an empty tree, which

is the de�nition of an accept state. Therefore, A has a successful co-SLD derivation in

program P .

3.3 Implementation

Just as it is possible to implement a compiler or interpreter for C++, in C++ itself,

it is possible to implement an interpreter for logic programming in logic programming

itself. Figure 3.1 is a source listing of �sld.pro�, which is an interpreter for traditional

logic programming, written in itself. The interpreter is used by including this �le in your

logic program source �le. This allows for the rapid prototyping of new forms of logic

programming.

This interpreter, sometimes called a meta-interpreter, works by directly encoding the

formal operational semantics of logic programming. A query is passed to a predicate

called solve. The �rst clause of this predicate tries to solve each outstanding atom in

the current SLD state, while the third clause of solve actually solves an atomic logic

statement by applying one of the clauses of the interpreted program. This is accomplished

by invoking a built-in predicate clause that makes it possible to retrieve the body of any

clause that has a head that uni�es with the �rst argument of the predicate. The second

solve clause is a special case for solving atoms that are built-in to the language. This

interpreter must choose an order for applying the clauses from the interpreted program

48

query(Goal) :- solve(Goal).

solve((Goal1, Goal2)) :-

solve(Goal1),

solve(Goal2).

solve(Atom) :-

builtin(Atom),

Atom.

solve(Atom) :-

Atom \= (_, _),

\+ builtin(Atom),

clause(Atom, Atoms),

solve(Atoms).

builtin(_ = _).

builtin(true).

builtin(_ is _).

builtin(_ > _).

builtin(_ < _).

Figure 3.1. Logic Programming Interpreter �sld.pro�

to atoms in the current state, and so it uses the traditional left-most, depth-�rst search

strategy that is implicit in the ordering of the clauses and goals in the �sld.pro� source

�le.

A traditional logic programming query is executed by loading the logic program source

�le as if it were a normal SICStus program. Then queries must begin and end, with

"query((" and "))." respectively in order to be executed.

Following the example of traditional logic programming, the interpreter for coinduc-

tive logic programming uses a left-most, depth-�rst search strategy for searching for a

successful co-SLD derivation of a given query, within a given coinductive logic program.

However, we must also decide when to apply the coinductive hypothesis rule. The main

49

intent of this rule is to yield a �nite derivation of a query that would otherwise have

an in�nite derivation, and for this purpose, we use a �hypothesis-�rst� strategy, yielding

the implementation's overall hypothesis-�rst, left-most, depth-�rst search strategy. The

other way in which the coinductive logic programming interpreter di�ers from the in-

terpreter for traditional logic programming is that the solve predicate carries a second

argument called Hypothesis that represents the dynamically synthesized coinductive hy-

pothesis. The solve predicate uses this argument in its third clause, which represents

the coinductive hypothesis rule from the co-SLD semantics described in section 3.2.2.

Figure 3.2 shows the source code listing of �cosld.pro�, which is an interpreter for

coinductive logic programming that runs on SICStus Prolog. The interpreter is used by

including this �le in every coinductive logic program source �le. Furthermore, all user

de�ned predicates must be declared dynamic, as demonstrated in the example coinductive

logic program �example.cosld� depicted in �gure 4.2. It is also forbidden to rede�ne a

built in predicate.

A query is executed by loading the coinductive logic program source �le as if it were

a normal SICStus program. Then queries must begin and end, with "query((" and

"))." respectively in order to be executed with co-SLD semantics using a coinductive

hypothesis �rst, left-most, depth-�rst search strategy.

50

query(Goal) :- solve([], Goal).

solve(Hypothesis, (Goal1, Goal2)) :-

solve(Hypothesis, Goal1),

solve(Hypothesis, Goal2).

solve(_ , Atom) :-

builtin(Atom),

Atom.

solve(Hypothesis, Atom) :-

member(Atom, Hypothesis).

solve(Hypothesis, Atom) :-

Atom \= (_, _),

\+ builtin(Atom),

clause(Atom, Atoms),

solve([Atom | Hypothesis], Atoms).

builtin(_ = _).

builtin(true).

builtin(_ is _).

builtin(_ > _).

builtin(_ < _).

member(X, [X | _]).

member(X, [_ | T]) :- member(X, T).

Figure 3.2. Coinductive Logic Programming Interpreter �cosld.pro�

51

:- include('cosld.pro').

:- dynamic p/0.

:- dynamic bit/1.

:- dynamic bitstream/1.

:- dynamic equal/2.

:- dynamic num/1.

:- dynamic stream/1.

:- dynamic append1/3.

p :- p.

bit(0).

bit(1).

bitstream([H | T]) :- bit(H), bitstream(T).

equal(X, X).

num(0).

num(s(N)) :- num(N).

stream([H | T]) :- num(H), stream(T).

append1([], X, X).

append1([H | T], Y, [H | Z]) :- append1(T, Y, Z).

Figure 3.3. Coinductive Logic Programming Examples �example.cosld�

CHAPTER 4

CO-LOGIC PROGRAMMING

In the previous chapter, we noted that there are predicates that can be naturally described

in traditional (inductive) logic programming, yet not in coinductive logic programming,

and as demonstrated in chapters 1, 2, and 3, there are predicates such as bitstream

that are easily coded in coinductive logic programming, yet they cannot be easily coded

in traditional logic programming. The obvious conclusion is that it would be bene�cial

to have a logic programming language that combined the bene�ts of both paradigms.

This combination gives rise to co-logic programming, which is a new logic programming

paradigm and the main contribution of this dissertation.

There are many approaches to combining these two paradigms. One approach would

be to have the compiler automatically decide when it is best to use the inductive se-

mantics and when it is best to use the coinductive semantics. The problem with this

approach is that deciding which semantics to use involves somehow deciding the intent

of the programmer. Hence it would be best to not try to guess the programmer's intent.

Assuming the programmer annotates predicates as �inductive� or �coinductive�, the prob-

lem then posed is how to assign meaning to the program in a way that simultaneously

re�ects the semantics of both inductive and coinductive logic programming. We have

already seen how to give a mathematical meaning to each kind of predicate in isolation,

but when combining both kinds of predicates, both inductive and coinductive, in the

same program, it must be determined what it means for an inductive predicate to call a

coinductive predicate and visa versa. Even more problematic is the possibility of mutual

recursion between inductive and coinductive predicates.

52

53

In the next section, the abstract syntax of co-logic programming is de�ned, and unlike

coinductive logic programming, co-logic programming's syntax is not identical to tradi-

tional logic programming's syntax. Though it is very similar. After that, in section 4.2.1,

the canonical mathematical semantics or declarative semantics of co-logic programming

is de�ned. This semantics elegantly subsumes the declarative semantics of inductive and

coinductive logic programming, though the formal de�nitions required are tedious. As

usual with declarative programming languages, knowing the syntax and meaning of a

program is not useful unless there is a means of e�ciently executing said programs. So

in section 4.2.2 the operational semantics for co-logic programming is de�ned, and it also

turns out to be a conservative generalization of the operational semantics of inductive

and coinductive logic programming. In fact, there is no additional overhead incurred

compared to the operational semantics for coinductive logic programming. The stan-

dard correctness proofs are given in section 4.2.3, and the �nal section in this chapter

discusses a concrete implementation of a programming language based on the co-logic

programming paradigm.

4.1 Syntax

As discussed, co-logic programming extends the syntax of coinductive logic programming

by allowing predicate symbols to be annotated as being either inductive or coinductive.

However, there is one restriction, referred to as the �strati�cation restriction�. Inductive

and coinductive predicates are not allowed to be mutually recursive, that is, execution

cannot loop between inductive and coinductive calls. The reason for this limitation in

syntax is that the program would become semantically ambiguous if an inductive predi-

cate was allowed to be mutually recursive with a coinductive predicate. While it would

be possible to overcome this ambiguity with further programmer-supplied annotations

54

on predicates as seen in the Horn µ-calculus [53], the resulting syntax would no longer be

intuitive and it would no longer resemble a straightforward and conservative extension

of inductive and coinductive logic programming.

To this end, it is easier to �rst de�ne an annotated logic program that does not

have the strati�cation restriction, and then later a co-logic program is de�ned as such a

program with the restriction.

De�nition 4.1 A pre-program is a de�nite program paired with a mapping of predicate

symbols to the token coinductive or the token inductive. A predicate is said to be

coinductive (resp. inductive) if the partial mapping maps the predicate to coinductive

(resp. inductive). Similarly, an atom is said to be coinductive (resp. inductive) if the

underlying predicate is coinductive (resp. inductive).

Not every pre-program is a co-logic program. Co-logic programs do not allow for any

pair of inductive and coinductive predicates to be mutually recursive, that is, programs

must be strati�ed with regards to alternating induction and coinduction. An inductive

predicate can call, directly or indirectly, a coinductive predicate and visa versa, but both

such predicates cannot be mutually recursive. The following de�nitions formally de�ne

this restriction.

De�nition 4.2 In some pre-program P , we say that a predicate p depends on a predicate

q if and only if p = q or P contains a clause C ← D1, . . . , Dn such that C contains p and

some Di contains q. The dependency graph of program P has the set of its predicates as

vertices, and the graph has an edge from p to q if and only if p depends on q.

Co-logic programs are simply pre-programs that obey the following restriction, which is

called the strati�cation restriction.

55

De�nition 4.3 A co-logic program is a pre-program such that for any strongly connected

component G in the dependency graph of the program, every predicate in G is either

mapped to coinductive or every predicate in G is mapped to inductive.

4.2 Semantics

As was the case with coinductive logic programming and traditional logic programming

before it, the �canonical� semantics for co-logic programming is given in terms of its

declarative semantics, and the practical semantics for co-logic programming is given in

terms of its operational semantics. The former tells us what an expression in the language

means, while the latter tells us how to execute an expression in the language.

4.2.1 Declarative Semantics

The declarative semantics of a co-logic program is a strati�ed interleaving of the minimal

co-Herbrand model [36, 7] and the maximal co-Herbrand model semantics [5]. Hence

co-logic program strictly contains logic programming with rational trees [6] as well as

coinductive logic programming [8, 9, 4]. This allows the universe of terms to contain

in�nite terms, in addition to the traditional �nite terms. Finally, co-logic programming

also allows for the model to contain ground goals that have either �nite or in�nite idealized

proofs.

The following de�nition is necessary for de�ning the model of a co-logic program.

Intuitively, a reduced graph is derived from a dependency graph by collapsing the strongly

connected components of the dependency graph into single nodes. The graph resulting

from this process is acyclic.

De�nition 4.4 The reduced graph for a co-logic program has vertices consisting of the

strongly connected components of the dependency graph of P . There is an edge from v1

56

to v2 in the reduced graph if and only if some predicate in v1 depends on some predicate

in v2. A vertex in a reduced graph is said to be coinductive (resp. inductive) if it contains

only coinductive (resp. inductive) predicates.

A vertex in a reduced graph of a program P is called a stratum, as the set of predicates in

P is strati�ed into a collection of mutually disjoint strata of predicates. The strati�cation

restriction states that all vertices in the same stratum are of the same kind, i.e., every

stratum is either inductive or coinductive. A stratum v depends on a stratum v′, when

there is an edge from v to v′ in the reduced graph. When there is a path in the reduced

graph from v to v′, v is said to be higher than v′ and v′ is said to be lower than v, and

the case when v 6= v′ is delineated by the modi�er �strictly", as in �strictly higher" and

�strictly lower". This restriction allows for the model of a stratum v to be de�ned in

terms of the models of the strictly lower strata, upon which v depends.

The model of a stratum, i.e., the model of a vertex in the reduced graph of a co-logic

program. The model of each stratum is de�ned using what is e�ectively the same TP

monotonic operator used in de�ning the minimal Herbrand model [36, 7], except that it

is extended so that it can treat the atoms de�ned as true in lower strata as facts when

proving atoms containing predicates in the current stratum. This is possible because co-

logic programs are strati�ed such that the reduced graph of a program is always a DAG

and every predicate in the same stratum is the same kind: inductive or coinductive.

De�nition 4.5 The model of a stratum v of P equals µT vP if v is inductive and νT vP if v

is coinductive, such that R is the union of the models of the strata that are strictly lower

than v and

T vP (S) = R ∪
{
q
(
t̂
)
| q ∈ v ∧ [q

(
t̂
)
← D̂] ∈ Gco(P) ∧ D̂ ∈ S

}

57

Since any predicate resides in exactly one stratum, the de�nition of the model of a co-logic

program is straightforward.

De�nition 4.6 The model of a co-logic program P , written M(P), is the union of the

model of every stratum of P .

Obviously co-logic programming's semantics subsumes the minimal co-Herbrand model

used as the semantics for logic programming with rational trees, as well as the maximal

co-Herbrand model used as the semantics for coinductive logic programming. The alter-

nating �xed-point model of a co-logic program is built by creating the inductive model

for an inductive strata, using the lower strata as facts, and similarly for the coinductive

model is made for a coinductive strata. This process is repeated from the lowest strata up

to the topmost strata. Lowest and topmost strata exist because the program is strati�ed.

De�nition 4.7 An atom A is true in co-logic program P if and only if the set of all

groundings of A with substitutions ranging over the U co(P), is a subset of M(P).

Example 4.1 Let P1 be the following program.

coinductive(from, 2).

from(N, [N|T]) :- from(s(N), T).

| ?- from(0, _).

The model of the program, which is de�ned in terms of an alternating �xed-point is as fol-

lows. The co-Herbrand Universe is U co(P1) = N∪ Ω∪ L where N = {0, s(0), s(s(0)), . . .},

58

Ω = {s(s(s(. . .)))}, and L is the set of all �nite and in�nite lists of elements in N , Ω,

and even L. Therefore the model

M(P1) = {from(t, [t, s(t), s(s(t)), . . .]) | t ∈ U co(P1)}

is the meaning of the program and is obviously not null, as was the case with traditional

logic programming. Furthermore from(0, [0, s(0), s(s(0)), . . .]) ∈ M(P1) implies that the

query returns �yes�. On the other hand, if the directive on the �rst line of the program was

removed, call the resulting program P ′1, then the program's only predicate would by default

be inductive, and M(P ′1) = ∅. This corresponds to the traditional semantics of logic

programming with in�nite trees. Examples involving multiple strata of di�erent kinds,

i.e., mixing inductive and coinductive predicates, are given in section 4.2.2, chapter 5,

and chapter 7.

As was the case with the previous two chapters, the model of a co-logic program charac-

terizes semantics in terms of truth, that is, the set of ground atoms that are true. This

set is de�ned via a generator, and in section 4.2.3, we will need to talk about the manner

in which the generator is applied in order to include an atom in the model. For example,

the generator is only allowed to be applied a �nite number of times for any given atom

in a least �xed-point, while it can be applied an in�nite number of times in the greatest

�xed-point. For programs involving both induction and coinduction, this process alter-

nates. As was done in the previous chapter, this process can be captured in the form of

an idealized proof by recording the application of the generator in the elements of the

�xed-point itself. In order to de�ne the idealized proofs used in co-logic programming, it

is �rst necessary to de�ne some formalisms for trees.

De�nition 4.8 A path π is a �nite sequence of positive integers i. The empty path is

written ε, the singleton path is written i for some positive integer i, and the concatenation

59

of two paths is written π · π′. A tree of S, also called an S-tree, is formally de�ned as

a partial function from paths to elements of S, such that the domain is non-empty and

pre�x-closed. A node in a tree is unambiguously denoted by a path. So a tree t is described

by the paths π from the root t(ε) to the nodes t(π) of the tree, and the nodes of the tree

are labeled with elements of S.

De�nition 4.9 A child of node π in tree t is any path π · i that is in the domain of t,

where i is some positive integer. If π is in the domain of t, then the subtree of t rooted at

π, written t\π, is the partial function t′(π′) = t(π·π′). Also, node(L, T1, . . . , Tn) denotes a

constructor of an S-tree with root labeled L and subtrees Ti, where L ∈ S and each Ti is an

S-tree, such that 1 ≤ i ≤ n, node(L, T1, . . . , Tn)(ε) = L, and node(L, T1, . . . , Tn)(i · π) =

Ti(π).

Idealized proofs are trees of ground atoms, such that a parent is deduced from the ide-

alized proofs of its children according to the same process used to de�ne the alternating

�xed-point model.

De�nition 4.10 The set of idealized proofs of a stratum of P equals µΣv
P if v is inductive

and νΣv
P if v is coinductive, such that R is the union of the sets of idealized proofs of the

strata strictly lower than v and

Σv
P (S) = R ∪ {node(q

(
t̂
)
, T1, . . . , Tn) | q ∈ v ∧ Ti ∈ S∧

[q
(
t̂
)
← D1, . . . , Dn] ∈ Gco(P) ∧ Ti(ε) = Di}

Note that these de�nitions mirror the de�nitions de�ning models, with the exception

that the elements of the sets record the application of the program clauses as a tree of

atoms.

60

De�nition 4.11 The set of idealized proofs generated by a co-logic program P , written

ΣP , is the union of the sets of idealized proofs of every stratum of P .

Again, this is nothing more than a reformulation of the alternating �xed-point model,

which records the applications of the generator in the elements of the �xed points, as the

following theorem demonstrates.

Theorem 4.1 Let S = {A | ∃T ∈ ΣP .A is the root of T}, then S = M(P).

Hence any element in the model has an idealized proof and anything that has an idealized

proof is in the model. This formulation of the declarative semantics in terms of idealized

proofs will be used in section 4.2.3 in order to distinguish between the case when a query

has a �nite derivation, from the case when there are only in�nite derivations of the query,

in the operational semantics.

4.2.2 Operational Semantics

The operational semantics given for co-logic programming is de�ned as an interleaving of

SLD [7] and co-SLD [8, 9, 10]. The semantics implicitly de�nes a state transition system.

Systems of equations are used to model the part of the state involving uni�cation. The

current state of the pending goals is modeled using a forest of �nite trees of atoms, as it

is necessary to be able to recognize in�nite proofs of coinductive predicates. However, an

implementation that uses a policy of executing goals in the current resolvent from left to

right (as in standard logic programming), only needs a single stack (see section 4.3).

De�nition 4.12 A state S is a pair (F,E), where F is a �nite multi-set of �nite trees,

i.e., a forest of syntactic atoms, and E is a system of equations.

61

De�nition 4.13 A transition rule R of a co-logic program P is an instance of a clause

in P , with variables standardized apart, i.e., consistently renamed for freshness, or R is

a coinductive hypothesis rule of the form ν(π, π′), where π and π′ are both paths, such

that π is a proper pre�x of π′.

Before we can de�ne how a transition rule a�ects a state, we must de�ne how a tree in a

state is modi�ed when an atom is proved to be true. This is called the unmemo function,

and it removes memo'ed atoms that are no longer necessary. Starting at a leaf of a tree,

the unmemo function removes the leaf and the maximum number of its ancestors, such

that the result is still a tree. This involves iteratively removing ancestor nodes of the leaf

until an ancestor is reached, which still has other children, and so removing any more

ancestors would cause the result to no longer be a tree, as children would be orphaned.

When all nodes in a tree are removed, the tree itself is removed.

De�nition 4.14 The unmemo function δ takes a tree of atoms T , a path π in the domain

of T , and returns a forest. Let ρ(T, π · i) be the partial function equal to T , except that it

is unde�ned at π · i. δ(T, π) is de�ned as follows:

δ(T, π) = {T} , if π has children in T
δ(T, ε) = ∅ , if ε is a leaf in T
δ(T, π) = δ(ρ(T, π), π′) , if π = π′ · i is a leaf in T

The intuitive explanation of the following de�nition is that (1) a state can be transformed

by applying the coinductive hypothesis rule ν(π, π′), whenever in some tree, π is a proper

ancestor of π′, such that the two atoms unify. Also, (2) a state can be transformed by

applying an instance of a de�nite clause from the program. In either case, when a subgoal

has been proved true, the forest is pruned so as to remove unneeded memos. Also, note

that the body of an inductive clause is overwritten on top of the leaf of a tree, as an

inductive call need not be memo'ed, since the coinductive hypothesis rule can never be

62

invoked on a memo'ed inductive predicate. When the leaf of the tree is also the root,

this causes the old tree to be replaced with, one or more singleton trees. Coinductive

subgoals, on the other hand, need to be memo'ed, in the form of a forest, so that in�nite

proofs can be recognized.

The state transition system may be nondeterministic, depending on the program,

that is, it is possible for states to have more than one outgoing transition as the following

de�nition shows (implementations typically use backtracking to realize non-deterministic

execution; see section 4.3). We write S−x to denote the multi-set obtained by removing

an occurrence of x from S.

De�nition 4.15 Let T ∈ F . A state (F,E) transitions to another state ((F−T)∪F ′, E ′)

by transition rule R of program P whenever:

1. R is an instance of the coinductive hypothesis rule of the form ν(π, π′), p is a coin-

ductive predicate, π is a proper pre�x of π′, which is a leaf in T , T (π) = p(t′1, . . . , t
′
n),

T (π′) = p(t1, . . . , tn), E ′ is the most general uni�er for {t1 = t′1, . . . , tn = t′n} ∪ E,

and F ′ = δ(T, π′).

2. R is a de�nite clause of the form

p(t′1, . . . , t
′
n) ← B1, . . . , Bm, π is a leaf in T , T (π) = p(t1, . . . , tn), E ′ is the most

general uni�er for {t1 = t′1, . . . , tn = t′n} ∪ E, and the set of trees of atoms F ′ is

obtained from T according to the following case analysis of m and p:

(a) Case m = 0: F ′ = δ(T, π).

(b) Case m > 0 and p is coinductive: F ′ = {T ′} where T ′ is equal to T except at

π · i, & T ′(π · i) = Bi, for 1 ≤ i ≤ m.

63

(c) Case m > 0 and p is inductive: If π = ε then F ′ = {node(Bi) | 1 ≤ i ≤ m}.

Otherwise, π = π′ · j for some positive integer j. Let T ′′ be equal to T

except at π′ · k for all k, where T ′′ is unde�ned. Finally, F ′ = {T ′} where

T ′ is equal to T ′′ except at π′ · i, where T ′(π′ · i) = Bi, for 1 ≤ i ≤ m, and

T ′(π′ · (m+ k)) = T (π′ · k), for k 6= j.

De�nition 4.16 A transition sequence in program P consists of a sequence of states

S1S2, . . . and a sequence of transition rules R1, R2 . . ., such that Si transitions to Si+1 by

rule Ri of program P .

A transition sequence denotes the trace of an execution. Execution halts when it reaches

a terminal state: either all atoms have been proved or the execution path has reached a

dead-end.

De�nition 4.17 The following are two distinguished terminal states:

1. An accepting state is a state of the form (∅, E), where ∅ denotes the empty set.

2. A failure state is a non-accepting state lacking any outgoing transitions.

Finally we can de�ne the execution of a query as a transition sequence through the state

transition system induced by the input program, with the start state consisting of the

initial query.

De�nition 4.18 A derivation of a state (F,E) in program P is a state transition se-

quence with the �rst state equal to (F,E). A derivation is successful if it ends in an

accepting state, and a derivation has failed if it reaches a failure state. We say that a list

of syntactic atoms A1, . . . , An, also called a goal or query, has a derivation in program

P , if ({node(Ai) | 1 ≤ i ≤ n}, ∅) has a derivation in P .

64

An implementation will use backtracking search in order to �nd a successful derivation.

So the operational semantics for co-logic programming is an alternation of SLD and

co-SLD. From one point of view, this new operational semantics can be seen as recording

the coinductive subgoals that have resulted in the current state, while from the other

point of view, the new operational semantics can be seen as a variation of co-SLD that

does not include inductive predicates in the synthesized coinductive hypothesis. In other

words, the operational semantics allows for the combination of both kinds of execution,

as the following example demonstrates.

Example 4.2 The following is a variation of a similar program from the previous chap-

ter. Consider the execution of the following program, which de�nes a predicate that

recognizes in�nite streams of natural numbers. Note that only the stream/1 predicate is

coinductive, while the number/1 predicate is inductive.

coinductive(stream, 2).

stream([H | T]) :- number(H), stream(T).

inductive(number, 2)

number(0).

number(s(N)) :- number(N).

| ?- stream([0, s(0), s(s(0)) | T]).

The following is an execution trace for the above query, of the memoization of calls

by the operational semantics. Note that calls of number/1 are not memo'ed because

number/1 is inductive. Compare this trace to the one from the previous chapter, where

both stream/1 and number/1 were coinductive.

65

1. MEMO: stream([0, s(0), s(s(0)) | T])

2. MEMO: stream([s(0), s(s(0)) | T])

3. MEMO: stream([s(s(0)) | T])

The next goal call is stream(T), which uni�es with the �rst memo'ed ancestor, and

therefore immediately succeeds. Hence the original query succeeds with

T = [0, s(0), s(s(0)) | T]

stream(T) is true whenever T is some list of natural numbers. If number/1 was also coin-

ductive, as was the case in the previous chapter, then stream(T) would be true whenever

T is a list containing either natural numbers or ω, i.e., in�nity, which is represented as

an in�nite application of successor s(s(s(...))). This di�erence in an inductive versus

coinductive semantics for number/1 was seen in the previous chapter. There the same

program (sans the predicate annotation) also memo'ed the number/1 predicate each time

it was called, as all predicates are implicitly coinductive in coinductive logic program-

ming. This caused an additional spurious ω element to appear in the in�nite streams

of numbers. The original intent of the number/1 predicate was to denote the natural

numbers, and since ω is not a natural number, it is undesirable to use a coinductive

semantics for number/1. With coinductive logic programming and traditional logic pro-

gramming, there is no choice. In coinductive logic programming, the �ω problem� occurs

because number/1 should have inductive semantics, but in traditional logic program-

ming, the stream/1 predicate has no meaning. So both kinds of logic programming are

simultaneously needed for this program.

66

Example 4.3 This example further illustrates that some predicates are naturally de�ned

inductively, while other predicates are naturally de�ned coinductively. The member/2

predicate is an example of an inherently inductive predicate.

member(H, [H | _]).

member(H, [_ | T]) :- member(H, T).

If this predicate was declared to be coinductive, then member(X, L) is true whenever X

is in L or whenever L is an in�nite list, even if X is not in L!

Example 4.4 The previous example, whether declared coinductive or not, states that the

desired element is the last element of some pre�x of the list, as the following equivalent

reformulation of member/2, called membera/2 demonstrates, where drop/3 drops a pre�x

ending in the desired element and returns the resulting su�x.

inductive(membera, 2).

membera(X, L) :- drop(X, L, _).

inductive(drop, 3).

drop(H, [H | T], T).

drop(H, [_ | T], T1) :- drop(H, T, T1).

When the membera/2 and drop/3 predicates are inductive, the pre�x ending in the de-

sired element must be �nite, but when the membera/2 and drop/3 predicates are declared

coinductive, the pre�x may be in�nite. Since an in�nite list has no last element, it is triv-

ially true that the last element uni�es with any other term. This explains why the above

de�nition, when declared to be coinductive, is always true for in�nite lists regardless of

the presence of the desired element.

67

In logic programming, the member/2 predicate is used quite often, and so it would also be

nice to be able to use it along with coinductive predicates. This is always possible in co-

logic programming because the member/2 predicate is recursively de�ned in terms of itself.

Therefore it stands no chance of playing a role in violating the necessary strati�cation

restriction.

Example 4.5 A mixture of inductive and coinductive predicates can be used to de�ne a

variation of member/2, called comember/2, which is true if and only if the desired element

occurs an in�nite number of times in the list. Hence it is false when the element does

not occur in the list or when the element only occurs a �nite number of times in the list.

On the other hand, if comember/2 was declared inductive, then it would always be false.

Hence coinduction is a necessary extension.

coinductive(comember, 2).

comember(X, L) :- drop(X, L, L1), comember(X, L1).

?- X = [1, 2, 3 | X], comember(2, X).

Answer: yes.

?- X = [1, 2, 3, 1, 2, 3], comember(2, X).

Answer: no.

?- X = [1, 2, 3 | X], comember(Y, X).

Answer: Y = 1; Y = 2; Y = 3;

68

4.2.3 Correctness

This section proves the correctness of the operational semantics by demonstrating a

correspondence between the declarative and operational semantics via soundness and

completeness theorems. Completeness, however, must be restricted to atoms that have

a rational proof, as termination cannot be guaranteed for atoms with only irrational

proofs. Chapter 8 discusses an extension of the operational semantics, so as to improve

its completeness.

Lemma 4.1 If (A,E1) has a successful derivation in program P , with �nal state (∅, E2),

then (A,E3) has a successful derivation of the same length, in program P , where E2 ⊆ E3,

with each state of the derivation of the form (F,E3) for some forest F of �nite trees of

atoms.

Proof 4.1 Let (A,E1) have a successful derivation in program P ending with state

(∅, E2). In the sequence of states, the system of equations monotonically increases, and

so the monotonicity of uni�cation with in�nite terms implies (A,E3) has a successful

derivation in program P , where E2 ⊆ E3, with each state of the derivation of the form

(F,E3) for some forest F of �nite trees of atoms.

Lemma 4.2 If A has a successful derivation in program P , which �rst transitions to the

second state by applying clause A′ ← B1, . . . , Bn, such that E(A) = E(A′), then each

(Bi, E) also has a successful derivation in program P .

Proof 4.2 Let A have a successful derivation in program P , which �rst transitions to the

next state by applying clause A′ ← B1, . . . , Bn, such that E(A) = E(A′). A derivation

for (Bi, E) can be created by mimicking each transition that modi�es the (sub)tree rooted

69

at Bi in the original derivation, except for the transitions which are of the form ν(π, π′),

which are no longer correct derivations because the parent of Bi, that is, A, no longer

exists. In the case that π = i · π0 and π′ = i · π1 for some number i and path π0,

instead apply the transition rule ν(π0, π1) to the corresponding leaf to which the original

derivation would have applied ν(π, π′). Otherwise, when π = ε, a coinductive transition

rule cannot be applied to the corresponding leaf. Instead, recursively mimic the transitions

of the entire original derivation of A.

Lemma 4.3 If (A,E) has a successful derivation in program P , then E ′(E(A)) is true

in program P , where (∅, E ′) is the �nal state of the derivation.

Proof 4.3 Since the model of P consists of the union of the models of the strata of P ,

it is su�cient to show that if (A,E) has a successful derivation in program P , then all

groundings of E ′(E(A)) are included in the model for the stratum in which A resides.

The proof proceeds by induction on the height of the strata of P . Let Qv be the set of

all groundings ranging over the U co(P) of all such E ′(E(A)) that are either in the same

stratum v or some lower stratum. We prove by induction on the height of v that Qv is

contained in the model for v.

Consider the case when the stratum v is coinductive. We show that Qv ⊆ νT vP . The

proof proceeds by coinduction. Let A′ ∈ Qv, then A′ = E1(E2(E3(A))), where E1 is a

grounding substitution for E2(E3(A)) and (A,E3) has a successful derivation ending in

(∅, E2). By lemma 4.1, (A,E) has a successful derivation, where E = E1 ∪ E2 ∪ E3.

The case when E(A) uni�es with a fact is trivial, and the case when E(A) is in a lower

stratum than v follows by induction on the height of strata. Now, consider the case

where the derivation begins with an application of a program clause A′′ ← B1, . . . , Bn,

resulting in the state (node(A, [B1, . . . , Bn]), E), where E(A) = E(A′′). By lemma 4.2

70

each state (Bi, E) has a successful derivation. Let E ′ be a grounding substitution for the

clause E(A′′ ← B1, . . . , Bn), such that C = E ′(E(A′′ ← B1, . . . , Bn)) ∈ Gco(P), then

C = A′ ← E ′′(B1), . . . , E ′′(Bn), where E ′′ = E ′ ∪ E. By lemma 4.1, each (Bi, E
′′) has

a successful derivation, and the strati�cation restriction implies that each E ′′(Bi) is in

a stratum equal to or lower than v. Hence E ′′(Bi) ∈ Qv. Therefore, by the principle of

coinduction, Qv ⊆ νT vP .

Now consider the case when the stratum v is inductive. It is su�cient to prove that

Qv ⊆ µT vP . Let A
′ ∈ Qv, then A

′ = E1(E2(E3(A))), where E1 is a grounding substitution

for E2(E3(A)) and (A,E3) has a successful derivation ending in (∅, E2). By lemma 4.1,

(A,E) has a successful derivation, where E = E1∪E2∪E3. The case when A
′ is in a lower

stratum than v follows by induction. Now consider the case when A′ does not occur in a

stratum lower than v, that is, A′ is an inductive atom. The proof proceeds by induction

on the length of the derivation A′. When the derivation consists of just one transition,

then A′ uni�es with a fact A in program P , and hence A′ ∈ µT vP . Finally, consider

the case when the derivation is of length k > 1. Then the derivation begins with an

application of a program clause A′′ ← B1, . . . , Bn, where E(A) = E(A′′). By lemma 4.2

each state (Bi, E) has a successful derivation. Let E ′ be a grounding substitution for the

clause E(A′′ ← B1, . . . , Bn), such that C = E ′(E(A′′ ← B1, . . . , Bn)) ∈ Gco(P), then

C = A′ ← E ′′(B1), . . . , E ′′(Bn), where E ′′ = E ′ ∪ E. By lemma 4.1, each (Bi, E
′′) has

a successful derivation of length k′ < k, and the strati�cation restriction implies that

each E ′′(Bi) is in a stratum equal to or lower than v. If E ′′(Bi) is in a strictly lower

stratum than v, then by induction on strata E ′′(Bi) ∈ µT vP , and if E ′′(Bi) is not in a

lower stratum, then since it has a derivation of length k′ < k, by induction on the length

of the derivation, E ′′(Bi) ∈ µT vP . Therefore, A′ ∈ µT vP .

Theorem 4.2 (soundness) If the query A1, . . . , An has a successful derivation in program

71

P , then E(A1, . . . , An) is true in program P , where E is the resulting variable bindings

for the derivation.

Proof 4.4 If the goal A1, . . . , An has a successful derivation in program P , with E as

the resulting variable bindings for the derivation, then each E(Ai) independently has a

successful derivation in program P . By lemma 4.3, each E(Ai) is true in program P .

Theorem 4.3 (completeness) Let A1, . . . , An ∈M(P). If each A1, . . . , An has a rational

idealized proof, then the query A1, . . . , An has a successful derivation in program P .

Proof 4.5 Without loss of generality, we only consider the case when the query is a

single atom, i.e., n = 1, as the case for n = 0 is trivial and the case for n > 1 follows by

simply composing the individual derivations of each atom of the original query.

Let A ∈ M(P) have a rational idealized proof T . The derivation is constructed by

recursively applying the clause corresponding to each node encountered along a depth-�rst

traversal of the idealized proof tree to the corresponding leaf in the current state. In order

to ensure that the derivation is �nite, the traversal stops at the coinductive root π = π′ ·π′′

of a subtree that is identical to a subtree rooted at a proper coinductive ancestor π′. Then

the derivation applies a transition rule of the form ν(π′, π) to the leaf corresponding to

R in the current state, and �nally the depth-�rst traversal continues traversing starting

at a node in the idealized proof tree corresponding to some leaf in the current state of the

derivation.

The fact that T is rational implies that the set of all subtrees of T is �nite in car-

dinality. Furthermore, the strati�cation restriction prevents a depth-�rst traversal from

encountering the same subtree twice along the same path, such that the subtree has an

inductive atom at its root. Only subtrees rooted at coinductive atoms can repeat in such

72

a fashion. So the maximum depth of the traversal in the idealized proof tree is �nite.

Combined with the fact that all idealized proofs are �nitely branching, this implies that

the traversal always terminates. So the constructed derivation is �nite.

It remains to prove that the �nal state of the constructed derivation is a success state.

The traversal stops going deeper in the idealized proof tree due to two cases: the traversal

reaches a leaf in the idealized proof tree or the traversal encountered a subtree identical to

an ancestor subtree. In either case, the derivation removes the corresponding leaf in the

current state, as well as the maximal number of ancestors of the corresponding leaf such

that the result is still a tree. So a leaf only remains in the state when its corresponding

node in the proof tree has yet to be traversed. Since every node in the idealized proof

tree corresponding to a leaf in the state is traversed at some point, the �nal state's tree

contains no leaves, and hence the �nal state has an empty forest, which is the de�nition

of an accept state. Therefore, A has a successful derivation in program P .

4.3 Implementation

Following the examples of both the interpreter for traditional logic programming and the

interpreter for coinductive logic programming, the interpreter for co-logic programming

uses a left-most, depth-�rst search strategy for searching for a successful alternating SLD

and co-SLD derivation of a given query, within a given co-logic program. However, the

interpreter must also decide when to it is appropriate and correct to apply the coinduc-

tive hypothesis rule. As was the case with coinductive logic programming, the purpose

of this rule is to provide a �nite derivation of an atom that would otherwise have an

in�nite derivation, but now that both inductive and coinductive predicates are mixed,

it is only appropriate to invoke the coinductive hypothesis rule on coinductive atoms.

So the interpreter uses a �hypothesis-�rst� strategy for coinductive atoms only, yielding

73

the hypothesis-�rst, left-most, depth-�rst search strategy. The other way in which the

co-logic programming interpreter di�ers from the interpreter for coinductive logic pro-

gramming is that the solve predicate only adds coinductive atoms to the Hypothesis

argument.

Figure 4.1 shows the source code listing of �colp.pro�, which is the interpreter for

co-logic programming that runs on SICStus Prolog. The interpreter is used by includ-

ing the �colp.pro� �le in every co-logic program source �le. As was the case for the

coinductive logic programming interpreter presented in section 3.3, due to a limita-

tion in the SICStus Prolog implementation of the clause predicate, all user de�ned

predicates must be declared dynamic, as demonstrated in the example co-logic program

�example2.clp� depicted in �gure 4.2, and it is also forbidden to rede�ne a built in pred-

icate. In addition, inductive and coinductive predicates must be declared so by including

the clause inductive(PREDICATE, ARITY) and coinductive(PREDICATE, ARITY)

respectively in the source program, where PREDICATE is the name of the predicate and

ARITY is its arity.

A query is executed by loading the coinductive logic program source �le as if it were a

normal SICStus program. Then queries must begin and end, with "query((" and "))."

respectively in order to be executed with alternating SLD and co-SLD semantics using

a coinductive hypothesis �rst, left-most, depth-�rst search strategy.

74

query(Goal) :- solve([], Goal).

solve(Hypothesis, (Goal1, Goal2)) :-

solve(Hypothesis, Goal1),

solve(Hypothesis, Goal2).

solve(_ , Atom) :-

builtin(Atom),

Atom.

solve(Hypothesis, Atom) :-

coinductive(Atom),

member(Atom, Hypothesis).

solve(Hypothesis, Atom) :-

coinductive(Atom),

clause(Atom, Atoms),

solve([Atom | Hypothesis], Atoms).

solve(Hypothesis, Atom) :-

inductive(Atom),

clause(Atom, Atoms),

solve(Hypothesis, Atoms).

inductive(Atom) :-

Atom \= (_, _),

\+ builtin(Atom),

functor(Atom, Predicate, Arity),

inductive(Predicate, Arity).

coinductive(Atom) :-

Atom \= (_, _),

\+ builtin(Atom),

functor(Atom, Predicate, Arity),

coinductive(Predicate, Arity).

Figure 4.1. Co-Logic Programming Interpreter �colp.pro�

75

:- include('colp2.pro').

:- dynamic num/1.

:- dynamic stream/1.

:- dynamic append1/3.

:- dynamic member1/2.

:- dynamic member2/2.

:- dynamic drop/3.

:- dynamic comember/2.

inductive(num, 1).

num(0).

num(s(N)) :- num(N).

coinductive(stream, 1).

stream([H | T]) :- num(H), stream(T).

coinductive(append1, 1).

append1([], X, X).

append1([H | T], Y, [H | Z]) :- append1(T, Y, Z).

coinductive(member1, 2).

member1(X, [X | _]).

member1(X, [_ | T]) :- member1(X, T).

inductive(member2, 2).

member2(X, [X | _]).

member2(X, [_ | T]) :- member2(X, T).

inductive(drop, 3).

drop(H, [H | T], T).

drop(H, [_ | T], T1) :- drop(H, T, T1).

coinductive(comember, 2).

comember(X, L) :- drop(X, L, L1), comember(X, L1).

Figure 4.2. Coinductive Logic Programming Examples �example2.clp�

CHAPTER 5

APPLICATION: MODEL CHECKING

Model checking is a formal veri�cation method that can be applied to the veri�cation

of both hardware and software systems. Properties of a system are veri�ed by �rst

modelling the system as a Kripke structure (the model), and then a speci�c property

is speci�ed via some logical formalism, such as temporal logic. A Kripke structure is a

nondeterministic �nite state machine, with states labelled with formal properties that

hold in the respective state. The property is veri�ed by searching the model for a coun-

terexample that demonstrates that the speci�ed property is false [57]. Furthermore, most

properties of models fall into one of two categories: (1) safety properties, which state

that �nothing bad will happen�, and (2) liveness properties, which state that �something

good will happen�.

One of the applications of co-logic programming is its ability to directly represent and

verify properties of Kripke structures and ω-automata [4, 5], which are automata that

accept in�nite strings. It is well known that traditional logic programming can be used

0 1 2 3-1

Figure B

s0 s1

s2s3

a

b

c
d e

Figure A

Figure 5.1. Example Automata

76

77

to directly reason about model checking in the presence of �nite input strings [58], model

checking ω-automata can be directly reasoned about using co-logic programming. For

example, consider �gure 5.1 (taken from [4]), which depicts an automata that accepts

�nite strings, and compare this to its direct encoding into a traditional logic program

depicted in �gure 5.2 (taken from [4]).

automata([X|T], St) :- trans(St, X, NewSt), automata(T, NewSt).

automata([], St) :- final(St).

trans(s0, a, s1). trans(s1, b, s2).

trans(s2, c, s3). trans(s3, d, s0).

trans(s2, e, s0). final(s2).

Figure 5.2. Example Encoding of an Automata

Using a traditional logic programming system, the query automata(X, s0) can be

used to enumerate all �nite strings accepted by the automata in �gure 5.1. Now assume

that we want to treat the automata in �gure 5.1 as an ω-automata, that is, the automata

accepts an in�nite string if the �nal states are traversed an in�nite number of times. The

co-logic program that simulates this variation of the automata can be obtained by simply

dropping the base case as depicted in �gure 5.3.

coinductive(automata, 2).

automata([X|T], St) :- trans(St, X, NewSt), automata(T, NewSt).

trans(s0, a, s1). trans(s1, b, s2).

trans(s2, c, s3). trans(s3, d, s0).

trans(s2, e, s0). final(s2).

Figure 5.3. Example Encoding of an ω-automata

The query becomes �automata(X, s0), comember(s2, X)�, where comember/2 is

78

de�ned in section 4.2.2, and for the example it yields the solutions X = [a, b, c, d |

X] and X = [a, b, e | X].

5.1 Liveness Properties

The application of co-logic programming becomes apparent once it is noticed that safety

and liveness are dual to each other.

Safety properties can be checked using reachability analysis. If a counterexample to

the given property exists, then it can be found by enumerating every reachable state of the

model, and since the model is assumed to have �nitely many states, the counterexample

will be found in �nite time. Since the reachability set is naturally de�ned as a least

�xed-point, it can be elegantly encoded into a traditional logic program [59].

Previous research shows that the inductive reachability technique described at the

beginning of this chapter is not suitable for verifying the general class of liveness prop-

erties [60]. Furthermore, checking liveness properties can be reduced to veri�cation of

termination, under the assumption of fairness [61], and fairness properties can be de�ned

in terms of alternating least and greatest �xed-point temporal logic formulas [62].

So the same thing cannot be said about encoding liveness properties into traditional

logic programs. Counterexamples to liveness properties are represented as in�nite paths

through the model, and in�nite paths are naturally de�ned in terms of greatest �xed-

points, which are not directly contained in the semantics of traditional logic programming,

which is based on least �xed-points. Traditional logic programming systems mitigate this

problem via a transformation of the given logical formula denoting the property into a

semantically equivalent least �xed-point formula, which can then be directly encoded in

the form of a traditional logic program [59]. Since this transformation is quite complex

and uses numerous nested negations, it introduces unnecessary semantic complexity and

79

execution overhead.

Co-logic programming, on the other hand, can directly encode model checking liveness

properties because it can directly compute counterexamples that involve greatest �xed-

point formulas, without requiring any transformations or new negations. A given state

is said to be �not live�, whenever it can be reached by transitioning through a loop of

states. The reason for this is that in such a case, it is possible to never enter the given

state by inde�nitely traversing the loop. Hence liveness counterexamples can be found

by using coinduction to enumerate every state that can be reached from an in�nite loop

and such that the state constitutes a valid counterexample to the liveness property being

checked.

The method for encoding liveness properties into co-logic programs, described in this

chapter, works by reducing the problem to verifying that the model satis�es the fairness

constraint. This works by composing the co-logic program that encodes the original model

with a co-logic program, which encodes the fairness constraint, and a co-logic program

that encodes the negation of the liveness property. The resulting program is then queried

to check if the initial state of the model is present in the alternating �xed-point semantics

(as de�ned in section 4.2.1) of the co-logic program. If the alternating �xed-point contains

this state, then there exists a counterexample that violates the speci�ed liveness property.

Otherwise, there is no counterexample, and therefore the model satis�es the given liveness

property.

Take for example a modulo 4 counter depicted as �Figure B� in �gure 5.1 (adapted

from [63, 4]). Correctness of the counter dictates that along every path through the

system, the state labelled with −1 is not reached. In other words, there is an in�nite

path through the system that never passes through the state labelled with −1. Since this

property can be elegantly speci�ed via a greatest �xed-point formula, it can be veri�ed

80

coinductively. Figure 5.4, taken from [4], demonstrates how to encode this problem as a

co-logic program. The negation of the property, that is, N1 >= 0, is composed with the

counter program, and s0, s1, s2, s3, and sm1 denote the states labelled with 0, 1, 2, 3,

and −1 respectively.

:- coinductive s0/2, s1/2, s2/2, s3/2, sm1/2.

sm1(N,[sm1|T]) :- N1 is N+1 mod 4, s0(N1,T), N1>=0.

s0(N,[s0|T]) :- N1 is N+1 mod 4, s1(N1,T), N1>=0.

s1(N,[s1|T]) :- N1 is N+1 mod 4, s2(N1,T), N1>=0.

s2(N,[s2|T]) :- N1 is N+1 mod 4, s3(N1,T), N1>=0.

s3(N,[s3|T]) :- N1 is N+1 mod 4, s0(N1,T), N1>=0.

Figure 5.4. Encoding a Liveness Property

When run, the query sm1(-1,X), comember(sm1,X) will fail, which implies that

there is no counterexample to the original property. Therefore the original property

holds for the model. As can be seen by the simplicity of the encoding, the bene�t

of using co-logic programming as opposed to traditional logic programming is that no

complicated transformations of the model or property are necessary in order to work

around the lack of coinduction in traditional logic programming. The transformation

used to encode liveness properties into traditional logic programs has been reported to

increase time and space complexity as much as six-fold [63].

5.2 Timed Automata

Timed automata extend ω-automata with real-time clocks or �stopwatches� [64]. Hence

they can be encoded in a straightforward manner into co-logic programming extended

with constraints over the reals, in a manner similar to the work of Gupta et al. [58].

Figure 5.5 (taken from [9]) contains a co-logic program with CLP (R) constraints for

modeling the classic train-gate-controller problem (see Gupta et al. [58]) depicted in

81

�gure 5.6.

s0 s1

s2s3

idle

approach

inexit

out

c:=0

c > 2c < 5

(i) train

s0 s1

s2s3

idle

lower

down

raise

up

d:=0

d < 1(d > 1) &
 (d < 2)

d:=0

idle(iii) gate

idle

approach

lower

exit

raise

e:=0

e=1

e:=0

e<1

s0 s1

s2s3

(ii) controller

Figure 5.6. Train-Gate-Controller Timed Automata

The co-logic program can be queried for all in�nite timed sequences of events that

are accepted by the controller. Again, safety and liveness properties can be veri�ed via

the typical search for a counterexample. As demonstrated in [9, 4], when given the query

in �gure 5.7, the following results also depicted in the same �gure are obtained, where A,

B, ..., and I are the times when the corresponding events occur.

| ?- driver(s0, s0, s0, T, Ta, Tb, Tc, X, R).

R = [(approach,A),(lower,B),(down,C),(in,D),(out,E),

(exit,F),(raise,G),(up,H)|R],

X = [approach,lower,down,in,out,exit,raise,up | X] ? ;

R= [(approach,A),(lower,B),(down,C),(in,D),(out,E),

(exit,F),(raise,G),(approach,H),(up,I)|R],

X = [approach,lower,down,in,out,exit,raise,approach,up|X] ? ;

Figure 5.7. Train-Gate-Controller Query

A coinductive predicate cosublist/2 is de�ned in �gure 5.8 to check that the down

event is always followed by the in event in the in�nite event sequence. This predicate

simply checks that its �rst argument occurs as a sublist in�nitely often in its second

82

:- use_module(library(clpr)).

:- coinductive driver/9.

train(X,up,X,T1,T2,T2). gate(s0,lower,s1,T1,T2,T3) :-

train(s0,approach,s1,T1,T2,T3) :- {T3 = T1}.

{T3 = T1}. gate(s1,down,s2,T1,T2,T3) :-

train(s1,in,s2,T1,T2,T3) :- {T3 = T2,

{T1 - T2 > 2, T1 - T2 < 1}.

T3 = T2}. gate(s2,raise,s3,T1,T2,T3) :-

train(s2,out,s3,T1,T2,T2). {T3 = T1}.

train(s3,exit,s0,T1,T2,T3) :- gate(s3,up,s0,T1,T2,T3) :-

{T3 = T2, {T3 = T2, T1 - T2 > 1,

T1 - T2 < 5}. T1 - T2 < 2}.

train(X,lower,X,T1,T2,T2). gate(X,approach,X,T1,T2,T2).

train(X,down,X,T1,T2,T2). gate(X,in,X,T1,T2,T2).

train(X,raise,X,T1,T2,T2). gate(X,out,X,T1,T2,T2).

gate(X,exit,X,T1,T2,T2).

contr(s0,approach,s1,T1,T2,T1).

contr(s1,lower,s2,T1,T2,T3) :- {T3 = T2, T1 - T2 = 1}.

contr(s2,exit,s3,T1,T2,T1).

contr(s3,raise,s0,T1,T2,T2) :- {T1-T2 < 1}.

contr(X,in,X,T1,T2,T2). contr(X,out,X,T1,T2,T2).

contr(X,up,X,T1,T2,T2). contr(X,down,X,T1,T2,T2).

driver(S0,S1,S2,T,T0,T1,T2,[X|Rest],[(X,T)|R]) :-

train(S0,X,S00,T,T0,T00),

contr(S1,X,S10,T,T1,T10) ,

gate(S2,X,S20,T,T2,T20),

{TA > T},

driver(S00,S10,S20,TA,T00,T10,T20,Rest,R).

Figure 5.5. Train-Gate-Controller Program

83

argument, and hence cosublist([down,in], X) can be used to verify this property of

the sequence of events X.

coinductive(cosublist, 2).

cosublist(X, Y) :-

drop_until(X, Y, Remaining),

cosublist(X, Remaining).

inductive(drop_prefix, 3).

drop_prefix([], Result, Result).

drop_prefix([H|T], [H|Y], Result) :- drop_prefix(T, Y, Result).

inductive(drop_until, 3).

drop_until(X, Y, Result) :- drop_prefix(X, Y, Result).

drop_until(X, [_|T], Result) :- drop_until(X, T, Result).

Figure 5.8. cosublist

5.3 Self Healing Systems

In this section we explore an application of co-logic programming to reasoning about self

healing systems. A system is considered to be self healing or self correcting, when it is

designed to recover itself from errors or failure states.

s0 s1

s2

enter

exitrepeat

work

s3

er
ro

r

re
pe

at

Figure 5.9. Automata Modeling a Self Correcting System

The following example, taken from [5], illustrates the co-logic programming approach.

84

:- coinductive state/2.

state(s0,[s0,is1|T]) :- enter, work, state(s1,T).

state(s1,[s1|T]) :- exit, state(s2,T).

state(s2,[s2|T]) :- repeat, state(s0,T).

state(s0,[s0|T]) :- error, state(s3,T).

state(s3,[s3|T]) :- repeat, state(s0,T).

work :- state(is1), enter.

exit.

repeat.

error.

state(is1) :- state(is1).

state(is1).

Figure 5.10. Encoding of the Self Correcting System

The model shown in �gure 5.9 consists of four states s0, s1, s2 and s3. The system starts

in state s0, enters state s1, performs a �nite amount of work in state s1 and then exits

to state s2. From state s2 the system transitions back to state s0, and repeats the entire

loop again, an in�nite number of times. However, when the system encounters an error,

possibly due to a hardware failure, the system transitions into the error recovery state

s3, where corrective action is taken returning the system to the initial state s0. This

system is modeled by the following co-logic programming code.

This example illustrates the necessity of both inductive and coinductive predicates,

when encoding state transitions at the level of predicate calls. The state transition system

in �gure 5.9 uses two di�erent kinds of loops: an outermost in�nite loop and an inner

�nite loop. When encoding these transitions at the level of predicate calls, in�nite loops

are represented by coinductive predicates (in this case the coinductive predicate state/2)

and �nite loops are represented by inductive predicates (such as this examples inductive

state/1 predicate). The fact that the �nite loop is strictly nested inside the in�nite

loop results in a strati�ed program. Hence the inner loop's semantics is given by a least

�xed-point, while the outer loop's semantics is given by a greatest �xed-point.

85

One example property that can be automatically veri�ed is that the system never

stops working. This is a desirable property for life critical embedded systems. The

property can be reduced to checking for the fairness property that every enter event is

eventually followed by an exit event, and the system must traverse through the work

state s2 in�nitely often. Again, this is accomplished by querying for a counterexample,

so comember/2 is negated using the negation as failure operator \+. So along with the

program in �gure 5.10, the user will pose the query:

| ?- state(s0,X), \+ comember(s2,X).

The co-logic programming system will respond with the answer: X = [s0, s3 | X],

which is a counterexample that states that there is an in�nite path not containing s2.

This means that it is possible for the system to fall into a state where it no longer

accomplishes any work. Therefore even though the system can heal itself, there is no

guarantee that a failure will not occur over and over again, preventing any work from

being accomplished as the system spends all of its time executing error recovery routines.

CHAPTER 6

APPLICATION: ACTION DESCRIPTION LANGUAGES

Another practical application of co-logic programming to is to �eld of action description

languages, which is closely related to model checking in that both use automata as their

core semantic foundation. The following application to action description languages was

originally published in the work of Simon et al. [65], and it currently only utilizes the

inductive part of co-logic programming. However, as is the case with model checking,

it should be possible to generalize the results of [65] in order to reason about perpetual

sequences of actions.

Action description languages are high-level languages used to systematically reason

about actions and state change in dynamic environments. These languages have proved

to be a useful tool for solving various aspects of planning problems, such as plan speci�-

cation and veri�cation, planning with domain speci�c constraints and plan diagnosis and

explanation [66, 67]. Given a partial description of the state of the world, and a sequence

of actions and their properties, it is possible to deduce the state induced by the action

sequence. Also, given a state that results from a sequence of actions, it is required to

deduce information about past states. In the next section, we describe the action descrip-

tion language A [68], with a discussion of its syntax and semantics. The language has

a simple syntax that is used to specify properties of actions and an automata-theoretic

semantics to reason about sequences of actions.

Real world applications of action description languages involve systems that have

real-time constraints. The occurrence of an action is just as important as the time

at which the action occurs. In order to be able to model such real-time systems, the

86

87

action description language A is extended with real-time clocks and constraints. The

formal syntax and semantics of the extended language are de�ned, and the use of logic

programming as a means to an implementation of real-time A is discussed.

6.1 Introduction

Non-monotonic reasoning has been an area of intense study in the recent past [67]. Within

non-monotonic reasoning, considerable attention has been paid to reasoning with action

and change [68]. Actions induce non-monotonic behavior since they cause a change in

the state of the world. Research in this area has included the design of action description

languages (ADLs): high level languages that allow systematic reasoning about actions

and state change in dynamic environments [67]. An example of such a language is the

language A designed by Gelfond and Lifschitz [68]. The language A has been used

to elegantly specify and reason about a number of classical problems such as the Yale

shooting problem [68], and it has also been applied to a number of practical situations

[66].

Action description languages describe the e�ect of actions on the truth value of logical

propositions. Given a system description in A, one can reason to �nd out the state(s)

that results from a sequence of actions, or given a resultant state, deduce the sequence of

actions that will lead us there. These actions are assumed to occur in a sequential (i.e.,

non-concurrent) manner, with the time intervals between two consecutive actions being

arbitrary. Thus, the exact time at which the actions occur, or the elapsed time interval

between two actions is of no consequence in such a language.

In practice, however, one has to reason about actions and change in a time-bound

world, where actions may have to be performed within a certain time, or actions may

have to be performed after a certain amount of time has elapsed. For instance, if we

88

consider the classical Yale shooting problem, one may wish to model the fact that if

the shooting does not take place within 30 seconds then the person being shot may go

out of range. A di�culty with modeling such time-dependent actions is that real-time

is continuous, making its modeling and reasoning hard. Recently, however, constraint

logic programming over the domain of real numbers has been shown to be suitable for

modeling and reasoning with such continuous time [58].

In this chapter, we show how action description languages can be extended to real-

time action description languages. The notion of timed actions - an action with time

constraints attached - is introduced. Timed ADLs can be used to systematically reason

about actions and state-change in dynamic environments in the presence of real-time

constraints. Thus, if the action of dropping a glass causes it to be broken, then with the

added ability to reason with real-time, one can reason that dropping a glass causes it to

be broken, unless it is caught within half a second (i.e., before it hits the �oor).

In the rest of the chapter we describe how we've extended the language A with real-

time to obtain the language AT . The complete syntax and semantics of AT is given, along

with a description of its prototype implementation that we have recently completed. The

model-theoretic semantics of action description languages is given in terms of a labeled

transition system [68]. Similarly, the model-theoretic semantics of real-time systems is

given in terms of timed automata [69]. We combine these two notions and give the

semantics of AT in terms of timed transition systems. Next, we render this semantics

executable by denotationally mapping it to Constraint Logic Programming over reals

(CLP(R)) [70]. This executable semantics serves as an implementation of AT .

This chapter makes a number of contributions: (i) it presents the Real-timed Action

Description Language AT that can be used to elegantly model actions and change in the

presence of real-time constraints; (ii) it presents the semantics of this new language, along

89

with its implementation, based on constraint logic programming over reals; and, (iii) it

paves the way for further constraint-based extensions of action description languages

(such as action description languages where actions are constrained by the amount of

resource, not just the presence or absence of a resource), and the incorporation of con-

tinuous real-time in planning applications.

We assume that the reader is familiar with CLP(R) as well as with timed automata.

A detailed exposition can be found in [70] and [69] respectively.

6.1.1 The Action Description Language A

The action description language A provides a mechanism for describing action domains.

Before we delve into the details of the language, we will introduce the notion of �uents.

Intuitively, a �uent is something whose value depends upon the state, for example, the

position of the ball on a soccer �eld. In this chapter, we will use propositional �uents that

take on the truth values true and false according to the state of the world. The language

provides two di�erent kinds of propositions: (i) a value proposition, that describes the

truth value of a �uent in a particular state where the state can either be an initial state

or a state resulting from a sequence of actions; (ii) an e�ect proposition, that describes

the e�ect a given action has on a �uent.

The language A provides two di�erent sets of symbols, �uent names and action

names. Fluents that might be optionally preceded by a ¬ are called �uent expressions.

A value proposition has the following syntax

F afterA1; . . . ;Am,

where F is a �uent expression and A1, . . . , Am (m ≥ 0) are action names. If m = 0, the

above value proposition is written as

90

initiallyF.

An e�ect proposition has the syntax

A causesF if P1, . . . , Pn,

where A is an action name, and each of F, P1, . . . , Pn (n ≥ 0) is a �uent expression. The

e�ect proposition describes the e�ect that the action A has on the �uent F , subject to

the preconditions P1, . . . , Pn. If n = 0, the above e�ect proposition is written as

A causesF

We say that a domain consists of a possibly in�nite set of value propositions and a �nite

set of e�ect propositions.

The Yale Shooting domain [68], consists of the �uents Loaded and Alive. The action

names are Load, Shoot and Wait. The propositions constituting the domain are

initially¬Loaded,
initiallyAlive,
Load causesLoaded,
Shoot causes¬Alive if Loaded,
Shoot causes¬Loaded.

A state consists of a set of �uents. A �uent name F holds in state σ if F ∈ σ and

¬F holds in σ if F 6∈ σ. A transition function is a mapping Φ from the set of pairs

(A, σ) to states. A structure is a tuple (σ0,Φ), where σ0 is called the initial state and Φ

is a transition function.

91

A structure (σ0,Φ) is a model of a domain D if every value proposition in D is true

in the structure, and for every action name A, every �uent name F and every state σ,

the following hold [68]:

1. if D includes an e�ect proposition describing the e�ect of A on F , whose precon-

ditions are valid in σ, then F ∈ Φ(A, σ).

2. if D includes an e�ect proposition describing the e�ect of A on ¬F whose precon-

ditions are valid in σ, then F 6∈ Φ(A, σ).

3. if D does not include such e�ect propositions, then F ∈ Φ(A, σ) if and only if

F ∈ σ.

6.1.2 Shortcomings of A

The language A allows one to reason about properties of temporal sequences of actions.

In other words, time is dealt with in a qualitative manner. On the other hand, for

real-time domains, it is essential to reason about time in a quantitative manner, i.e.,

in addition to reasoning about sequences of actions, it is also essential to reason about

the deadlines that these actions have to meet. There are many situations where this

capability is needed. For example, if we consider the Yale shooting problem, we may

want to reason that if a loaded gun is shot, then ¬Alive will become true only if the shot

is �red within 30 seconds of loading the gun (otherwise the person will get away, or the

ammunition will not work). Similarly, we may want to reason that the drop action will

cause a breakable object to shatter, unless it is caught within 0.5 seconds, thus preventing

it from hitting the ground and breaking.

Action description languages can be used for specifying controllers and developing

plans for machines, plants, and robots [66]. In these real-life situations, most actions

92

will have severe time constraints attached. One can argue that an action description

language, augmented with the capability to reason with time, will have signi�cantly

more applications; for example, in safety-critical systems. We next propose an extension

to the action description language A, which provides the machinery to specify and reason

about real-time actions.

6.2 The Timed Action Description Language AT

We would like to be able to apply action description languages such as language A

to real-time systems. Extending action description language A with real-time involves

augmenting actions with clock constraints describing when the action occurs, and e�ect

propositions must be augmented with preconditions on clocks and the ability to mutate

clocks. These extensions give rise to a language we call AT , which is a conservative

extension of language A in the sense that language A is a syntactic and semantic subset

of AT . The following subsections cover AT syntax and semantics.

6.2.1 Syntax

A real-time action α is de�ned as the pairing of an action name with a list of its clock

constraints. In AT , this is written as

A at T1, . . . , Tn

where T1 . . . , Tn (n ≥ 0) are clock constraints of the form C ≤ E, C ≥ E, C < E, and

C > E, where C is a clock name and E is a clock name or a clock name plus or minus a

real valued constant, and when n = 0 the at clause can be dropped.

Now that we can explicitly state when an action occurs, value propositions are ex-

tended in a straightforward manner, given �uent expressions F1, . . . , Fm (m > 0) and

93

real-time actions α1, . . . , αn (n ≥ 0) then a real-time value proposition is of the form:

F1, . . . , Fm after α1; . . . ;αn

Note how inconsistent descriptions can arise from a real-time value proposition including a

sequence of actions occurring at inconsistent times. However, even a language as simple as

language A allowed for inconsistent descriptions, so clock constraints are simply another

source of inconsistency. Furthermore, the typical abbreviation when the sequence of

actions is empty, i.e., n = 0 is still written

initially F1, . . . , Fm

These degenerate forms of real-time value propositions simply serve as a means to describe

the start state of a real-time system by asserting which �uents are true or false in the

start state. Hence these degenerate real-time value propositions serve the exact same

purpose as in language A. As will be discussed in section 6.2.3, all clocks are assumed

to be reset when initially entering the start state of a real-time system.

The most signi�cant extension occurs with the e�ect proposition. Real-time e�ect

propositions, also sometimes referred to as action rules, must be able to describe the

�uent preconditions as well as the clock preconditions for the rule to apply. Moreover, in

addition to describing how �uents are mutated, real-time e�ect propositions must also be

able to describe how clocks are changed, by reseting some subset of them. So real-time

e�ect propositions are of the form

A causes F1, . . . , Fm resets C1, . . . Cn when T1, . . . , Tk if P1, . . . , Pi

for action name A, �uent expressions F1 . . . , Fm, P1, . . . , Pi (m, i ≥ 0), clock names

C1, . . . , Cn (n ≥ 0), and clock constraints T1, . . . , Tk (k ≥ 0), where m+n+k+ i > 0. As

94

usual, when m, n, k, or i is zero the keywords causes, resets, when, or if respectively,

can be dropped. The resets clause denotes the clocks that are to be reset assuming the

�uent preconditions and when clause are satis�ed. Clocks that are not reset continue to

advance.

One last extension is needed [68]: A special action name wait denotes the action of

waiting for time to elapse. Therefore it acts as a sort of wild-card that matches all other

action names. This is demonstrated in the following examples.

6.2.2 Examples

The Real-time Falling Object domain, a modi�cation of an example from [68] with the

notion that a dropped object can be caught before it hits the ground assuming the object

takes 1 second to hit the ground.

Drop causes ¬Holding, Falling resets Clock if Holding, ¬Falling
Catch causes Holding, ¬Falling when Clock ≤ 1 if ¬Holding, Falling
wait causes Broken, ¬Falling when Clock > 1 if ¬Holding, Falling

Firstly, note that the assumption that units are in seconds is merely a convention used

in this example. As far as the language AT is concerned, all clocks are simply real

valued variables. Furthermore, as is the case with language A, the language AT possibly

describes many possible worlds. In one of these worlds

initially Holding,¬Falling,¬Broken is true, and therefore Broken after Drop; wait

at Clock = 2 also holds as the object is dropped and then allowed to fall to the ground.

Similarly, in that same world, if one takes too long to catch the object, the object still

shatters on the ground. Hence in the aforementioned world Broken after Drop; Catch

at Clock = 2 is also true. However, if the object is dropped and then is successfully

caught, say half a second after dropping and therefore before it hits the ground, then as

95

expected, the object is not broken by the sequence of events, i.e., ¬Broken after Drop;

Catch at Clock = 0.5 is true.

Other possible worlds include the object starting out already in a falling state, while

another world could even have the object already broken. The more information given in

a description, the fewer possible worlds exist that satisfy the description. For example,

assume that in addition to the original Real-time Falling Object domain description, it is

also given that Broken after Drop; Catch at Clock = 0.5 is true, then it can safely be

deduced that the object was broken to begin with, i.e., according to this new description

it is true that initially Broken.

Similarly, the real-time Soccer Playing domain is a modi�cation of a domain described

in [71]. It has the following domain description:

ShotTaken causes ¬HasBall, ¬ClearShot, Goal when Clock ≤ 0.5
if HasBall, ClearShot, ¬Goal

PassBall causes ClearShot resets Clock when Clock ≤ 1
if ¬ClearShot

wait causes ¬HasBall, ¬ClearShot when Clock > 0.5
if HasBall, ClearShot

wait causes ¬HasBall, when Clock > 1 if HasBall

In the real-time Soccer Playing domain, a player has the ball and has a clear shot at

the goal, then it is assumed that a goal is scored if the player can take a shot within 0.5

time units. If the player does not take the shot within this time, the ball gets stripped by

an opponent. Also, a player who has possession of the ball, but no clear shot at the goal

can pass the ball to a team-mate who has a clear shot. The pass has to be completed

within 1 time unit. Failure to do so results in the ball getting intercepted by an opponent.

In one possible world, initiallyHasBall, ClearShot, ¬Goal holds and thereforeGoal

after ShotTaken at Clock = 0.2 is also true. However, in an alternative world, if the

player does not have a clear shot, and the ball is passed to a teammate who has a clear

96

shot, then if the teammate does not take the shot within 0.5 time units, possession of

the ball is lost. Therefore the statement ¬HasBall afterPassBall; wait at Clock = 1

is true.

6.2.3 Semantics of AT

Now that the language AT has been informally introduced, we can more formally specify

its semantics. This should not only aid in the understanding of the language, but should

also serve as a measure of the correctness of its implementations. As is the case for action

language A, the semantics of AT is given in terms of a transition system. However, AT 's

transition system is timed and therefore is technically a timed automaton with a �nite

region graph [69].

The semantics of AT is an extension of the semantics for language A. A state σ is

a pair (Φ,Θ) where Φ is a subset of �uents and Θ is a function assigning to each clock

name a non-negative real value. Let F be a �uent, then F holds in Φ if F ∈ Φ, and ¬F

holds in Φ if F /∈ Φ. This truth valuation can be extended to sets of �uent expressions

S as follows. S holds in Φ if every F ∈ S holds in Φ. A clock valuation Θ satis�es a set

of time constraints Ω (see section 6.2.1), written S(Θ,Ω) if and only if replacing every

clock name C in Ω with Θ(C) results in a consistent set. This can be extended to states

in a straightforward manner, S((Φ,Θ),Ω) ≡ S(Θ,Ω).

A real-time action α is simply a pairing (A,Ω) of an action name A with a set of

time constraints Ω, which denotes the time constraints on the occurrence of a speci�c

instantiation of the action named A. In the de�nition of a model we will also need to

enforce the notion that the clocks monotonically increase during a state transition unless

they are explicitly reset, and so we say that one clock valuation Θ is less than another

valuation Θ′ except for the reset clocks Π, written Θ ≤Π Θ′ whenever ∀C.Θ(C) ≤Π Θ′(C).

97

This can be extended to states such that (Φ,Θ) ≤Π (Φ,Θ′) if and only if Θ ≤Π Θ′.

Let −→ be a ternary relation between egress states, actions, and ingress states such

that σ α−→ σ′ if and only if σ ≤∅ σ′′, α = (A,Ω), and S(σ′′,Ω), then −→ is called a

transition relation. Informally, σ α−→ σ′ means that in state σ executing action α causes

the current state to mutate into σ′. Given a start state σ0 = (Φ0,Θ0) for some set of

�uents Φ0 and clock valuation function Θ0 such that ∀C.Θ0(C) = 0, i.e., all clocks are

initially reset, a transition relation −→ determines a systemM = (σ0,−→). LetMα1;...;αn

denote the possible set of states that a system could be in after executing the sequence

of actions α1; . . . ;αn in system M . The set of states s = Mα1;...;αn where M = (σ0,−→)

is recursively de�ned as

{σ0} if n = 0

{σ′ | σ ∈Mα1;...;αn−1 ∧ σ αn−→ σ′} otherwise

Let s = Mα1;...;αn , then if Mα1;...;αn is empty then the sequence of actions is said to be

inconsistent. Otherwise if s is nonempty, then real-time value proposition

F1, . . . , Fm after α1; . . . ;αn

is true (false) in a systemM , if for all (Φ,Θ) ∈ s, {F1, . . . , Fm} holds (does not hold) in Φ.

Otherwise the truth value of such a proposition is unknown, written⊥, as in some possible

states the system �uents hold and in others they do not hold. We write VM(P) to denote

this truth valuation of real-time value propositions P in system M . The truth valuation

can be extended to sets of systems Γ, also known as �possible worlds�, in the following

manner. Firstly, let Γ be a set of systems, then Γα1;...;αn = {Mα1;...;αn |M ∈ Γ}. Given a

set of systems Γ, then a real-time value proposition P ≡ F1, . . . , Fm after α1; . . . ;αn is

assigned a truth value VΓ(P) as follows

inconsistent , if Γ = ∅ or ∅ ∈ Γα1;...;αn

true , otherwise if ∀M ∈ Γ.VM(P) = true
false , otherwise if ∀M ∈ Γ.VM(P) = false
⊥ , otherwise.

98

Again, inconsistency arises when there are no possible worlds corresponding to the propo-

sition and ⊥ arises when the proposition holds in some worlds but does not hold in other

worlds, as is the case in [68].

Before we can de�ne the models of a domain description, we need the following

additional nomenclature. Let reset(Φ,Θ, A) be the set of all clocks reset by e�ects

propositions in D with preconditions satis�ed in state σ. Furthermore, we say that an

action A in state σ causes �uent expression F whenever there exists an e�ects proposition

P in D with preconditions satis�ed in state σ such that F occurs in the causes clause

of P .

Now we can de�ne the models of a real-time domain description D. A system M is

said to be a model for D when every real-time value proposition P in D is true inM , i.e.,

VM(P) = true. Furthermore, the transitions in a model must also satisfy the constraints

imposed by the domain description's e�ect propositions. Hence (Φ1,Θ1)
(A,Ω)−→ (Φ2,Θ2) in

M if and only if there exists a Θ′ such that S(Θ′,Ω), Θ1 ≤∅ Θ′ ≤reset(Φ1,Θ′,A) Θ2, and

according to the domain description D one of the following holds:

1. action A in state (Φ1,Θ
′) causes F and F ∈ Φ2

2. action A in state (Φ1,Θ
′) causes ¬F and F /∈ Φ2

3. action A in state (Φ1,Θ
′) does not cause F or ¬F , and F ∈ Φ2 if and only if F ∈ Φ1

Now we can de�ne entailment. Let Γ be the set of all models of D, then a real-time

domain description D entails a real-time value proposition P , if VΓ(P) = true, D does

not entail P , if VΓ(P) = false, and it is unknown if D entails P , if VΓ(P) = ⊥.

99

Discussion The semantics do not prevent di�erent clocks from advancing at di�erent

rates, as is the case in the real world. However, it is up to the speci�c domain description

whether or not clocks are further constrained to be synchronized. These semantics are

general enough to be applied to other hybrid planning domains, not necessarily involving

time, e.g., continuously consumed resources such as battery power or fuel, where it is even

more important to be able to model various resources that are consumed at di�erent rates.

6.3 Implementation

The language AT can easily be implemented using co-logic programming extended with

CLP(R). The implementation has been done using the SICStus Prolog system [22]. A

top-level driver is used to parse an input �le and then provide an interactive prompt for

the user to submit queries against the description in the form of real-time value propo-

sitions. The design pattern used is to directly model both the syntax using a De�nite

Clause Grammar (DCG) and the denotational semantics, using syntax-directed valuation

functions written as Horn clauses with real constraints that map AT description parse

trees to their denotations. As the predicates that implement these valuation functions

are more or less a straightforward encoding of the formal semantics of AT into CLP(R),

proofs of the soundness and completeness of the implementation are also straightforward,

yet tedious. Therefore due to lack of space such proofs are omitted.

If Fs is a list of �uent expressions and As is a sequence of real-time actions, then an

evaluation of a query of the form

Fs after As

is implemented by the following predicate

100

after(PT, Fs, As, V) :-

PT = parseTree(VPs, EPs, GCs, GFs),

setof(W, execute(VPs, EPs, GCs, GFs, As, W), Ws),

val(Fs, Ws, V).

where PT is the parse tree of the AT domain description that the query is against and V is

the response to the query, with values: yes when the query is entailed by the description,

no when the query is not entailed, unknown when the description describes at least one

world, i.e., model, in which the query is true and another in which it is false. The

implementation is also capable of recognizing when a description or query is inconsistent

and can also respond to such queries as being inconsistent. The higher-order setof is used

to get a set of possible worlds Ws corresponding to the domain description and queried

action sequence. The value V is calculated from these possible worlds using the val

predicate, which mirrors the denotational semantics valuation function VΓ(P) de�ned

in section 6.2.3. However, in the implementation, the set of worlds is actually a set of

possible residual states, i.e., the possible resultant states that could arise according to

the domain description P and action sequence As.

A residual state is de�ned by the predicate execute which takes the query's sequence

of actions As and generates a possible residual state W according to the pertinent elements

of the domain description: the list of value propositions VPs, the list of e�ects propositions

EPs, the list of global clock names GCs, and the list of global �uent names GFs.

execute(VPs, EPs, GCs, GFs, As, W) :-

applyAfterConstraints(VPs, EPs, GCs, GFs, SS),

transitionClosure(EPs, GCs, GFs, SS, As, W),

validState(GFs, W).

101

The predicate execute �rst determines the constraints on a possible start state SS

from the domain description's value propositions and e�ects propositions, using the

applyAfterConstraints predicate. Then the

transitionClosure predicate is used to determine the constraints on the state reached

via a path determined by the sequence of actions �As and the domain's e�ect proposi-

tions. Finally, the term representing the residual state is grounded using the validState

predicate.

The predicate transitionClosure implements a transitive closure of the

transition predicate, which implements the transition relation −→ de�ned in sec-

tion 6.2.3.

transition(EPs, GCs, GFs, S1, C1, A, TCs, S2, C2) :-

satisfiesAllTimeConstraints(GCs, TCs, C1),

applyEffectsRules(GCs,GFs,EPs,S1,C1,A,S2,C2,FFs,RCs),

inertia(GFs, S1, S2, FFs),

increasingTime(GCs, C1, C2, RCs).

The egress state of the transition is represented by two lists S1 and C1 of �uent values (true

and false) and clock values respectively, while the ingress state is similarly represented by

S2 and C2. The list of �uent values represents the truth value table for the state, which is

more e�cient than a set representation due to the multiple physical representations of a

set, which unnecessarily complicates search. The clock values are similarly implemented

as a value table using CLP(R) variables, which allows for a declarative implementation,

yet e�cient constraint solving. The predicate is implemented by �rst checking that all

time constraints on the time of occurrence of the action �A can be satis�ed. Then the

set of e�ects propositions which can apply in such a situation are used to determine

102

some of the �uent constraints (i.e., forced �uents FFs) on the ingress state in the main

goal applyEffectsRules. The remaining �uent constraints are determined by the set

di�erence of global �uent names GFs and forced �uents FFs in the inertia predicate.

Finally, the increasingTime predicate uses CLP(R) constraints to force the clocks in

the egress state C1 to be less than or equal to the respective clocks in the ingress state

C2, with exceptions for the clocks that are listed in RCs as being reset.

The main goal applyEffectsRules enforces that every e�ects proposition either ap-

plies or does not apply by traversing through the list of e�ects propositions. Because of

the issues involved in using negation alongside CLP(R), negation is implicitly used by

de�ning a predicate and its dual as follows

effectRuleApplies(GCs, GFs, EP, S1, C1, A1, S2) :-

EP = causes(A2, _, TCs, EFs, CFs),

equalNames(A1, A2),

satisfiesAllTimeConstraints(GCs, TCs, C1),

satisfiesAllFluents(GFs, S1, CFs),

satisfiesAllFluents(GFs, S2, EFs).

effectRuleDoesNotApply(_, _, EP, _, _, A1) :-

EP = causes(A2, _, _, _, _),

not(equalNames(A1, A2)).

effectRuleDoesNotApply(GCs, _, EP, _, C1, A1) :-

EP = causes(A2, _, TCs, _, _),

equalNames(A1, A2),

notSatisfiesAllTimeConstraints(GCa, TCs, C1).

effectRuleDoesNotApply(_, GFs, EPs, S1, _, A1) :-

103

EP = causes(A2, _, _, _, CFs),

equalNames(A1, A2),

notSatisfiesAllFluents(GFs, S1, CFs).

Hence while effectRuleApplies is true when the given e�ects proposition EP's pre-

conditions are satis�ed by egress state S1 and the action named A1, the dual predicate

effectRuleDoesNotApply is true when some precondition is not satis�ed. Also note

that the explicit use of negation of equalNames is not necessary, but since A1 and A2

are always ground and the predicate's de�nition does not make use of CLP(R), this

limited use of negation by failure simpli�es the implementation. E�ects propositions are

represented by terms of the form

causes(A, RCs, TCs, EFs, CFs)

where A is the action name, RCs is the list of reset clocks, TCs is the list of time constraint

preconditions, EFs is the list of e�ected �uent expressions, and CFs is the list of �uent

preconditions.

The implementation of the condition satisfaction predicates and their duals are rel-

atively straightforward, where the predicates involving real-time are implemented using

CLP(R) constraints and the other predicates are implemented as pure Horn clauses, with

the exception of a limited use of negation as failure on ground goals.

satisfiesAllFluents([], [], _).

satisfiesAllFluents([N | Ns], [_ | Fs], CFs) :-

not(member(N, CFs)),

not(member(-N, CFs)),

satisfiesAllFluents(Ns, Fs, CFs).

104

satisfiesAllFluents([N | Ns], [true | Fs], CFs) :-

member(N, CFs),

satisfiesAllFluents(Ns, Fs, CFs).

satisfiesAllFluents([N | Ns], [false | Fs], CFs) :-

member(-N, CFs),

satisfiesAllFluents(Ns, Fs, CFs).

Again, while this use of negation as failure could be eliminated via explicit de�nition

of a dual predicate, doing so is unnecessary as the negated predicate is ground and

does not involve the use of CLP(R) or negation in its de�nition. satisfiesAllFluents

simultaneously recurses through a list of global �uent names Ns and a given state's �uent

value table Fs, verifying that the �uents are either not mentioned in the preconditions

CFs or that their occurrence in CFs is satis�able.

The de�nition of satisfiesAllTimeConstraints and its dual is more complicated,

as it involves the manifestation of CLP(R) constraints, which are then applied to the

clocks in question. The predicate satisfiesAllTimeConstraints recurses through the

list of time constraints on clocks, and asserts them. Their satis�ability is determined by

the CLP(R) engine.

satisfiesAllTimeConstraints(_, [], _).

satisfiesAllTimeConstraints(GCs, [T | Ts], Cs) :-

satisfiesTimeConstraint(GCs, T, Cs),

satisfiesAllTimeConstraints(GCs, Ts, Cs).

In other words, the top-level implementation traverses through the list of time constraints

Ts, so that each time constraint can be individually applied to the given set of clocks Cs.

105

Each individual time constraint is represented as a term and only manifested into actual

CLP(R) constraints when needed, so that subsequent applications of the constraints do

not alter the original de�nition of e�ects propositions. Note that w.r.t. checking for

satis�ability, the exact time at which a particular action happened is unimportant, what

matters is that the accumulated constraints are consistent.

6.4 Related Work

Several frameworks have been proposed to reason about the real-time aspects of actions.

Most of them are extensions of the Situation Calculus or the Event Calculus, with features

like occurrences and narratives, and some representation of real-time. Though these

techniques provide a powerful formal mechanism for reasoning about real-time actions,

there is a dearth of tools implementing them. This is because these techniques are

usually axiomatized in terms of �rst-order logic and therefore do not allow for a tractable

implementation.

Logic programming has been extensively studied in the context of implementation

of the Event Calculus and its extensions. It has also been demonstrated that logic

programming is a viable means for implementing action description languages, which are

fragments of the Situation Calculus. In this chapter, we show how CLP(R) can be used

as an elegant framework for implementing reasoning tools based on the Situation and

Event Calculi.

The works of Reiter and Pinto [72, 73] provide a method for reasoning about concur-

rent, real-time actions in the Situation Calculus, using a solution to the frame problem.

Miller et al. [74] describes methods to reason about narratives with real-time in the Situa-

tion Calculus. Pinto [75] generalizes the approach in his earlier work [73] to the Situation

Calculus with narratives and occurrences. All these formalisms are based on axiomatic

106

reasoning using �rst-order logic. Implementing a reasonable model of continuous real-

time, which is essential to develop a practical reasoning tool becomes di�cult in these

frameworks due to decidability issues. As demonstrated in this chapter, CLP(R) can

be used to realize a simple and elegant model of real-time, which allows us to develop a

working implementation of a reasoning tool for real-time actions.

Other techniques for reasoning with real-time include [76], which models time as being

discrete, whereas the method described in this chapter provides a more general continuous

model of time. [77] describes a method for reasoning about time in a temporal rather

than a numerical manner. [78] presents real-time extensions of the Event Calculus, but

does not provide an implementable model of real-time. Though the technique described

in this chapter has been developed in the context of action description languages, it

can also be extended to the Situation Calculus, the Event Calculus and their various

extensions.

Action description languages have traditionally been used for reasoning about the

e�ect of actions and change of state in various domains in [79, 67, 80, 81]. However

these languages do not provide the ability to reason about actions in real-time domains.

CHAPTER 7

OTHER APPLICATIONS

The previous chapters discussed two signi�cant applications of co-logic programming

to systems veri�cation and planning. Since co-logic programming is Church-Turing-

complete, its applications are as unlimited as any other general purpose high-level pro-

gramming language. This chapter brie�y mentions a few of the other applications of

co-logic programming. As previously mentioned, co-logic programming generalizes tra-

ditional logic programming with rational trees as discussed in section 7.1, as well as lazy

evaluation of predicates as discussed in section 7.2, and even concurrent logic program-

ming as discussed in section 7.3. Because co-logic programming allows the programmer

to reason at the high level of formal logic, it can also be used as an inference engine for

automating reasoning about web services, as discussed in section 7.4.

7.1 In�nite Terms and Properties

As previously stated, co-logic programming subsumes traditional logic programming with

rational trees of Ja�ar et al [6] and Colmerauer [37]. However, because traditional logic

programming with rational trees has semantics ascribed by the minimal co-Herbrand

model, applying predicates to in�nite trees is rather limited. Doing so typically results

in nontermination, as true atoms cannot have in�nite idealized proofs. Co-logic pro-

gramming removes this limitation by ascribing the semantics in terms of the maximal

co-Herbrand model and it provides an operational semantics that provides �nite deriva-

tions for atoms with in�nite idealized proofs. Hence true atoms can have �nite or in�nite

idealized proofs. This is demonstrated by the traditional de�nition of append, which,

107

108

when executed with co-logic programming's semantics, allows for calling the predicate

with in�nite arguments. This is illustrated below. As an aside, note that irrational lists

also make it possible to directly represent an in�nite precision irrational real number as

an in�nite list of natural numbers, i.e., representing the number as a decimal expansion.

append([], X, X).

append([H|T], Y, [H|Z]) :- append(T, Y, Z).

Not only can the above de�nition append two �nite input lists, as well as split a

�nite list into two lists in the reverse direction, it can also append in�nite lists under

coinductive execution. It can even split an in�nite list into two lists that when appended,

equal the original in�nite list. For example:

| ?- Y = [4, 5, 6, | Y], append([1, 2, 3], Y, Z).

Answer: Z = [1, 2, 3 | Y], Y = [4, 5, 6, | Y]

If we also allow the possibility of expanding the variant call using its de�nition (and

apply the coinductive hypothesis rule in the variant that will arise subsequently), then

we will enumerate more values for Y:

Y = [4, 5, 6, 4, 5, 6, | Y]

Y = [4, 5, 6, 4, 5, 6, 4, 5, 6, | Y]

...

More generally, the coinductive append has interesting algebraic properties. When

the �rst argument is in�nite, it doesn't matter what the value of the second argument is,

as the third argument is always equal to the �rst. However, when the second argument

109

is in�nite, the value of the third argument still depends on the value of the �rst. This is

illustrated below:

| ?- X = [1, 2, 3, | X], Y = [3, 4 | Y], append(X, Y, Z).

Answer: Z = [1, 2, 3 | Z]

| ?- Z = [1, 2 | Z], append(X, Y, Z).

Answers: X = [], Y = [1, 2 | Z];

X = [1], Y = [2 | Z];

X = [1, 2], Y = Z

As noted earlier, more solutions (e.g., X = [], Y = [1,2,1,2|Y] for the second

query) can be generated by expanding the variant (coinductive) call to append using its

de�nition, and applying the coinductive hypothesis rule to the subsequent variant calls.

All of these example queries would cause a traditional logic programming system that

lacks rational trees, to return �no�, signaling that the given query is not satis�able. The

reason for this is that the only solutions that satisfy the queries involve in�nite lists,

which simply do not exist in traditional logic programming. It is also interesting to note

that in a traditional logic programming system with rational trees, these queries would

diverge into an in�nite loop, and no results would be generated. The obvious intent of

these queries is for them to be satis�able, which isn't possible in either previous approach.

Traditional logic programming lacks both the in�nite terms and in�nite proofs necessary

to compute the correct answers, and logic programming with rational trees lacks the

in�nite proofs necessary to compute the correct answers. This demonstrates that it is

110

necessary to extend traditional logic programming with both in�nite terms and in�nite

proofs, as logic programming with rational trees is only a partial solution to the problem.

7.2 Lazy Evaluation of Logic Programs

Co-logic programming also allows for lazy evaluation to be elegantly incorporated into

traditional logic programming. Lazy evaluation allows for manipulation of, and reasoning

about, cyclic and in�nite data structures and properties. In co-logic programming, if the

in�nite terms involved are rational, then given the goal p(X),q(X) with coinductive

predicates p/1 and q/1, then p(X) can coinductively succeed and terminate, and then

pass the resulting X to q(X). If X is bound to an in�nite irrational term during the

computation, then p and q must be executed in a coroutined manner to produce answers.

That is, one of the goals must be declared the producer of X and the other the consumer

of X, and the consumer goal must not be allowed to bind X. Consider the (coinductive)

lazy logic program for the sieve of Eratosthenes, taken from [4]:

:- coinductive sieve/2, filter/3, member/2.

primes(X) :- generate_infinite_list(I), sieve(I,L), member(X, L).

sieve([H|T], [H|R]) :- filter(H,T,F), sieve(F,R).

filter(H,[],[]).

filter(H,[K|T],[K|T1]) :- R is K mod H, R > 0,filter(H,T,T1).

filter(H,[K|T],T1) :- 0 is K mod H, filter(H,T,T1).

In the above program filter/3 removes all multiples of the �rst element in the list,

and then passes the �ltered list recursively to sieve/2. If the predicate

generate_infinite_list(I) binds I to a rational list (e.g., X = [2, .., 20 | X]),

111

then �lter can be completely processed in each call to sieve/2. However, in contrast, if

I is bound to an irrational in�nite list as in:

:- coinductive int/2.

int(X, [X|Y]) :- X1 is X+1, int(X1, Y).

generate_infinite_list(I) :- int(2,I).

then in the primes/1 predicate, the calls generate_infinite_list/1, sieve/2 and

member/2 should be coroutined, and, likewise, in the sieve/2 predicate, the call

filter/3 and the recursive call sieve/2must be coroutined. Since co-logic programming

allows for both inductive and coinductive predicates, it can support both traditional

evaluation of inductive atoms as well as lazy evaluation of coinductive atoms.

7.3 Concurrent Logic Programming and Perpetual Processes

From the discussion on lazy logic programming, one can also observe that co-logic pro-

gramming can be the basis of providing elegant declarative semantics to concurrent logic

programming, which involve perpetual processes. As stated in section 2.3, it is well

known that atoms (and queries) with in�nite SLD derivations are contained in the max-

imal model [43, 6, 44, 7]. Since the declarative semantics for coinductive predicates is

de�ned in terms of a greatest �xed-point, they too can have in�nite idealized proofs and

hence in�nite SLD derivations. While the current implementation described in section 4.3

does not allow for concurrency, an industrial strength implementation is being developed

that supports co-logic programming, concurrency, and many other advanced logic pro-

gramming features [9]. The important thing to note is that the declarative semantics of

traditional logic programming do not allow for atoms to have in�nite idealized proofs,

and therefore perpetual processes do not �t nicely into the framework of traditional logic

112

programming. A more general framework involving alternating �xed-points is needed,

and this is exactly what co-logic programming provides.

7.4 Web Services

The next milestone in the Web's evolution is making services ubiquitously available. A

web service is a program available on a web-site that e�ects some action or change in the

world (i.e., causes a side-e�ect). Examples of such side-e�ects include a web-base being

updated because of a plane reservation made over the Internet, a device being controlled,

etc.

As automation increases, these web-services will be accessed directly by the applica-

tions themselves rather than by humans. In this context, a web-service can be regarded

as a programmatic interface that makes application to application communication possi-

ble. For web-services to become practical, an infrastructure needs to be supported that

allows users to discover, deploy, compose, and synthesize services automatically. Such an

infrastructure must be semantics based so that applications can reason about a service's

capability to a level of detail that permits their discovery, deployment, composition and

synthesis.

Several e�orts are underway to build this infrastructure. These e�orts include ap-

proaches based on the semantic web (such as OWL-S [82]) as well as those based on XML,

such as Web Services Description Language (WSDL) [83]. Approaches such as WSDL

are purely syntactic in nature, that is, they merely specify the format of the service. In

this section we describe an approach that is based on semantics. The approach of Simon

et al. [84, 85, 86] can be regarded as providing semantics to WSDL statements.

The work of Simon et al. presents the design of a language called the Universal Ser-

vices Description Language, USDL for short, which service developers can use to specify

113

formal semantics of web-services. Thus, if WSDL can be regarded as a language for

formally specifying the syntax of web services, USDL can be regarded as a language for

formally specifying their semantics. USDL can be thought of as formal program docu-

mentation that will allow sophisticated conceptual modeling and searching of available

web services, automated composition, and other forms of automated service integration.

For example, the WSDL syntax and USDL semantics of web services can be published

in a directory which applications can access to automatically discover services. That is,

given a formal description of the context in which a service is needed, the service(s) that

will precisely ful�ll that need can be automatically determined by an inference engine

based on co-logic programming. The directory can then be searched to check if this exact

service is available, and if not available, then whether it can be synthesized by composing

two or more services listed in this (or another) directory.

To provide formal semantics, a common denominator must be agreed upon that ev-

erybody can use as a basis of understanding the meaning of services. This common

conceptual ground must also be somewhat coarse-grained so as to be tractable for use by

both engineers and computers. That is, semantics of services should not be given in terms

of low-level concepts such as Turing machines, or from �rst principals using �rst-order

logic, since service description, discovery, and synthesis then become tasks that are prac-

tically intractable and theoretically undecidable. Additionally, the semantics should be

given at a conceptual level that captures common real world concepts. Furthermore, it is

too impractical to expect disparate companies to standardize on application (or domain)

speci�c ontologies to formally de�ne semantics of web-services, and instead a common

universal ontology must be agreed upon with additional constructors. Also, application

speci�c ontologies will be an impediment to automatic discovery of services since the

application developer will have to be aware of the speci�c ontology that has been used to

114

describe the semantics of the service in order to frame the query that will search for the

service. The danger is that the service may not be de�ned using the particular domain

speci�c ontology that the application developer uses to frame the query, however, it may

be de�ned using some other domain speci�c ontology, and so the application developer

will be prevented from discovering the service even though it exists. These reasons make

an ontology based on WordNet OWL [87, 88] a suitable candidate for a universal ontology

of atomic concepts upon which arbitrary meets and joins can be added in order to gain

tractable �exibility.

Like WSDL, USDL describes a service in terms of ports and messages [84]. The

semantics of the service is given in terms of the WordNet OWL ontology [87, 88]. USDL

maps ports (operations provided by the service) and messages (operation parameters)

to disjunctions of conjunctions of (possibly negated) concepts in the WordNet OWL

ontology. The semantics is given in terms of how a service a�ects the external world. The

present design of USDL assumes that each side-e�ect is one of the following operations:

create, update, delete, or �nd, but also allows for a generic side-e�ect when none of the

others apply. An application that wishes to make use of a service automatically should

be able to reason with WordNet atoms using the WordNet OWL ontology.

USDL is perhaps the �rst language that attempts to capture the semantics of web-

services in a universal, yet computationally tractable manner. It is quite distinct from

previous approaches such as WSDL [83] and OWL-S [82]. As mentioned earlier, WSDL

only de�nes syntax of the service; USDL can be thought of as providing the missing

semantic component. USDL can be thought of as a formal language for program doc-

umentation. Thus instead of documenting the function of a service as comments in

English, one writes USDL statements that describe the function of that service. USDL

is quite distinct from OWL-S, which is designed for a similar purpose, and as we shall

115

see the two are in fact complimentary. OWL-S primarily describes the states that exists

before and after the service and how a service is composed of other smaller sub-services

(if any). Description of atomic services is left underspeci�ed in OWL-S. They have to

be speci�ed using domain speci�c ontologies; in contrast atomic services are completely

speci�ed in USDL since USDL relies on a universal ontology (OWL WordNet Ontol-

ogy) [87, 88]. USDL and OWL-S are complimentary in the sense that OWL-S's strength

lies in describing the structure of composite services, i.e., how various atomic services

are algorithmically combined to produce a new service, while USDL is good for fully

describing atomic services. Thus, OWL-S can be used for describing the structure of

composite services that combine atomic services that are described using USDL.

The formal semantics of USDL maps the syntactic terms describing ports and mes-

sages to disjunctions and conjunctions of (possibly negated) OWL WordNet ontological

terms. These disjunctions and conjunctions are represented by points in the lattice ob-

tained from the WordNet ontology with regards to the OWL subsumption relation. A

service is then formally de�ned as a function, labeled with zero or more side-e�ects,

between points in this lattice.

The design of USDL rests on two formal languages: Web Services Description Lan-

guage (WSDL) [83] and Web Ontology Language (OWL) [89]. The Web Services De-

scription Language (WSDL) [83], is used to give a syntactic description of the name and

parameters of a service. The description is syntactic in the sense that it describes the

formatting of services on a syntactic level of method signatures, but is incapable of de-

scribing what concepts are involved in a service and what a service actually does, i.e. the

conceptual semantics of the service. Likewise, the Web Ontology Language (OWL) [89],

was developed as an extension to the Resource Description Framework (RDF) [90], both

standards are designed to allow formal conceptual modeling via logical ontologies, and

116

these languages also allow for the markup of existing web resources with semantic in-

formation from the conceptual models. USDL employs WSDL and OWL in order to

describe the syntax and semantics of web services. WSDL is used to describe message

formats, types, and method prototypes, while a specialized universal OWL ontology is

used to formally describe what these messages and methods mean, on a conceptual level.

Since USDL descriptions are essentially type annotations for web services, with atomic

types being taken from WordNet combined using set-theoretic type constructors and ef-

fects [85], numerous tasks involving USDL descriptions require the ability to check for

type subsumption [91], which involves coinductive reasoning in the presence of recursive

types [92]. For this reason, co-logic programming is a suitable inference engine for au-

tomating reasoning about web services, especially when they are annotated in USDL [86].

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

This dissertation has presented a method for extending traditional logic programming

with coinduction. This extension is conservative in the sense that all of the features of

traditional logic programming are strictly contained in the �nal result of the extension:

co-logic programming. This extension involves three steps that compromise the three

major contributions of this dissertation.

First it is necessary to note that traditional logic programming is actually inductive

logic programming. Every aspect of traditional logic programming is inductively de�ned.

The terms, proofs, and the canonical models of traditional logic programs are de�ned

via least �xed-points. Furthermore, the operational semantics for traditional logic pro-

gramming implicitly relies on the fact that a least �xed-point can be calculated in an

interated fashion, as is demonstrated in its soundness and completeness proofs.

Chapter 3 demonstrates that the mathematical dual of every aspect of inductive logic

programming's declarative semantics can be used to derive coinductive logic program-

ming. While the principle of duality allows for the �rst contribution of this dissertation,

the syntax and semantics of coinductive logic programming, to be obtained relatively

easily, in order for it to be a practical programming language, it is necessary to also cre-

ate a new operational semantics capable of automating coinductive reasoning. Hence the

second major contribution of this dissertation is the creation of an operational seman-

tics for coinduction, embodied in the co-SLD operational semantics for coinductive logic

programming. It is important to note that co-SLD is dual to another kind of operational

semantics for traditional logic programming: OLDT [56]. Both methods use a form of

117

118

tabling that is dual to the other. As demonstrated in many aspects of computer science

such as linear programming and programming languages [93], duality is an important

property that yields both theoretical insights and practical bene�t. Hence the concept

of duality can be seen as an underlying theme of this dissertation.

Finally, in order to retain the features of traditional logic programming, both inductive

and coinductive logic programming are combined, yielding the third major contribution

of this dissertation: co-logic programming, as de�ned in chapter 4. Co-logic programming

strictly contains traditional or inductive logic programming, and yet it extends it with

coinductive reasoning, corecursive computation, and in�nite data structures.

Co-logic programming is an extremely high-level and Church-Turing-complete pro-

gramming language, and hence it has many practical applications. As demonstrated in

chapter 5, co-logic programming has practical applications as a high-level systems ver-

i�cation language. It is capable of directly encoding model checking based veri�cation

problems, such as the veri�cation of safety and liveness properties. This should come as

no surprise, once one notices that safety, which is traditionally checked using inductive

reasoning, is dual to liveness, which can be easily checked using coinductive reasoning. So

again, this dissertation demonstrates the importance of recognizing duality in computer

science.

Chapter 6 shows how co-logic programming, when extended with constraints over

the real numbers, is capable of reasoning at a high-level about various planning and

scheduling problem domains, and the applications do not stop there. Chapter 7 discusses

how co-logic programming �completes� logic programming with rational trees, as rational

trees are useless, unless rational proofs are allowed for reasoning about them. This

extension of rational trees goes further, as co-logic programming's declarative semantics

also allows for in�nite terms and proofs that are not rational, which is necessary for both

119

lazy logic programming and concurrent logic programming. This generality is also useful

for reasoning about Web services annotated with a semantic markup language such as

USDL.

This dissertation is just the beginning of a line of research involving extending logic

programming with coinductive reasoning. While this dissertation discusses a simple inter-

preter executing co-logic programs, a next-generation logic programming system is being

developed, which is capable of executing inductive predicates and coinductive predicates

with many additional features such as constraints, OLDT -style tabling, concurrency, and

non-monotonic reasoning similar to Answer Set Programming [9, 10, 4, 5].

REFERENCES

[1] Stephen Muggleton. Inductive Logic Programming. Academic Press, New York,

1992.

[2] Jon Barwise and Lawrence Moss. Vicious Circles: On the Mathematics of Non-

Wellfounded Phenomena. CSLI Publications, Stanford, California, 1996.

[3] Simon Peyton Jones and et al, editors. Haskell 98 Language and Libraries, the

Revised Report. CUP, April 2003.

[4] Luke Simon, Ajay Mallya, Ajay Bansal, and Gopal Gupta. Coinductive logic pro-

gramming. In Proceedings of the International Conference on Logic Programming,

2006.

[5] Luke Simon, Ajay Mallya, Ajay Bansal, and Gopal Gupta. Co-logic programming:

Extending logic programming with coinduction. In Proceedings of the International

Workshop on Software Veri�cation and Validation, 2006.

[6] Joxan Ja�ar and Peter J. Stuckey. Semantics of in�nite tree logic programming.

Theoretical Computer Science, 46(2�3):141�158, 1986.

[7] John Wylie Lloyd. Foundations of logic programming. Springer Verlag, New York,

second extended edition, 1987.

[8] Luke Simon. Co-inductive logic programming. Technical report, University of Texas

at Dallas, March 2004.

120

121

[9] Luke Simon, Ajay Mallya, Ajay Bansal, and Gopal Gupta. Coinductive logic pro-

gramming. Technical Report UTDCS-11-06, University of Texas at Dallas, 2006.

[10] Luke Simon, Ajay Mallya, Ajay Bansal, and Gopal Gupta. Co-logic programming:

Extending logic programming with coinduction. Technical Report UTDCS-21-06,

University of Texas at Dallas, 2006.

[11] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes

in Computer Science. Springer-Verlag, Berlin, 1980.

[12] David Park. Concurrency and automata on in�nite sequences. In Peter Deussen,

editor, Theoretical Computer Science: 5th GI-Conference, Karlsruhe, volume 104

of Lecture Notes in Computer Science, pages 167�183, Berlin, Heidelberg, and New

York, March 1981. Springer-Verlag.

[13] Robin Milner and Mads Tofte. Co-induction in relational semantics. Theoretical

Computer Science, 87(1):209�220, September 1991.

[14] Benjamin C. Pierce. Types and Programming Languages. The MIT Press, Cam-

bridge, Massachusetts, 2002.

[15] Peter Aczel. An introduction to inductive de�nitions. In K. Jon Barwise, editor,

Handbook of Mathematical Logic, pages 739�782. North-Holland, Amsterdam, 1977.

[16] Peter Aczel. Non-well-founded Sets, volume 14 of CSLI Lecture Notes. CSLI Publi-

cations, Stanford, CA, 1988.

[17] Brian A. Davey and Hilary A. Priestley. Introduction to Lattices and Order. Cam-

bridge University Press, 1990.

122

[18] Alfred Tarski. A lattice-theoretical �xpoint theorem and its applications. Paci�c

Journal of Mathematics, 5:285�309, 1955.

[19] Davide Sangiorgi and David. The π-Calculus: a Theory of Mobile Processes. Cam-

bridge University Press, 2001.

[20] Michael L. Scott. Programming Language Pragmatics. Morgan Kaufmann, 1999.

[21] Yves Deville. Logic Programming: Systematic Program Development. International

Logic Programming Series. Addison-Wesley, Reading, Mass., 1990.

[22] SICS. SICStus User Manual. Version 3.10.0. Swedish Institute of Computer Sci-

ence, 2002.

[23] Leon Sterling and Ehud Shapiro. The Art of Prolog. The MIT Press, Cambridge,

Mass., second edition, 1994.

[24] J. A. Robinson. Computational logic: The uni�cation computation. In B. Meltzer

and D. Michie, editors, Machine Intelligence 6, pages 63�72. Edinburgh University

Press, Edinburgh, Scotland, 1971.

[25] Jacques Corbin and Michel Bidoit. A rehabilitation of Robinson's uni�cation algo-

rithm. Information Processing, pages 909�914, 1983.

[26] Robert Endre Tarjan. E�ciency of a good but not linear set union algorithm.

Journal of the ACM, 22(2):215�225, April 1975.

[27] Alberto Martelli and Ugo Montanari. An e�cient uni�cation algorithm. ACM

Transactions on Programming Languages and Systems, 4(2):258�282, February 1982.

[28] Gérard Huet. Résolution d'equations dans les langages d'ordre 1,2, ...,ω. Thèse de

Doctorat d'Etat, Université de Paris 7, Paris, France, 1976.

123

[29] Jean-Pierre Jouannaud and Claude Kirchner. Solving equations in abstract algebras:

a rule-based survey of uni�cation. In J.-L. Lassez and G. Plotkin, editors, Compu-

tational Logic: Essays in honor of Alan Robinson, pages 257�321. MIT Press, 1991.

[30] Michael S. Paterson and Mark N. Wegman. Linear uni�cation. Journal of Computer

and System Sciences, 16:158�167, 1978.

[31] Dennis de Champeaux. About the Paterson-Wegman linear uni�cation algorithm.

Journal of Computer and System Sciences, 32(1):79�90, February 1986.

[32] Neil Vincent Murray. Linear and almost-linear methods for the uni�cation of �rst

order expressions. Master's thesis, Syracuse University, 1979.

[33] Kevin Knight. Uni�cation: a multidisciplinary survey. ACM computing surveys,

March 1989, 21(1):93�124, 1989.

[34] Franz Baader and Jörg Siekmann. Uni�cation theory. In D. M. Gabbay, C. J.

Hogger, and J. A. Robinson, editors, Handbook of Logic in Arti�cial Intelligence

and Logic Programming, volume 2, Deduction Methodologies, pages 41�125. Oxford

University Press, 1994.

[35] F. Baader and W. Snyder. Uni�cation theory. In A. Robinson and A. Voronkov,

editors, Handbook of Automated Reasoning, volume I, chapter 8, pages 445�532.

Elsevier Science, 2001.

[36] Krzysztof R. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of

Theoretical Computer Science, volume B: Formal Models and Semantics, chapter 15,

pages 493�574. MIT Press, 1990.

[37] Alain Colmerauer. Prolog and in�nite trees. In K. L. Clark and S.-A. Tärnlund,

editors, Logic Programming, pages 231�251. Academic Press, 1982.

124

[38] Alain Colmerauer. PROLOG II reference manual and theoretical model. Technical

report, Groupe Intelligence Arti�cielle, Université Aix� Marseille II, October 1982.

[39] Alain Colmerauer. Equations and inequations on �nite and in�nite trees. In FGCS-

84: Proceedings International Conference on Fifth Generation Computer Systems,

pages 85�99, Tokyo, 1984. ICOT.

[40] Alain Colmerauer. An introduction to Prolog III. Communications of the ACM,

33(7):69�90, July 1990.

[41] Alain Colmerauer. Speci�cations of Prolog IV. Draft, 1996.

[42] Maarten H. van Emden and John W. Lloyd. A logical reconstruction of Prolog II.

In Sten-Åke Tärnlund, editor, Proceedings of the Second International Conference

on Logic Programming, pages 35�40, Uppsala, 1984.

[43] M. A. Nait Abdallah. On the interpretation of in�nite computations in logic pro-

gramming. In Jan Paredaens, editor, Automata, Languages and Programming, 11th

Colloquium, volume 172 of Lecture Notes in Computer Science, pages 358�370,

Antwerp, Belgium, 16�20 July 1984. Springer-Verlag.

[44] Mathieu Jaume. Logic programming and co-inductive de�nitions. In CSL, pages

343�355, 2000.

[45] Joxan Ja�ar, Andrew E. Santosa, and Razvan Voicu. A CLP proof method for timed

automata. In RTSS, pages 175�186, 2004.

[46] Joxan Ja�ar, Andrew E. Santosa, and Razvan Voicu. A CLP method for composi-

tional and intermittent predicate abstraction. In VMCAI, pages 17�32, 2006.

125

[47] Elio Giovannetti, Giorgio Levi, Corrado Moiso, and Catuscia Palamidessi. Kernel-

LEAF: A logic plus functional language. Journal of Computer and System Sciences,

42(2):139�185, April 1991.

[48] Werner Hans, Rita Loogen, and Stefan Winkler. On the interaction of lazy evalua-

tion and backtracking. Programming Lanugage Implementation and Logic Program-

ming, 631:355�369, 1992.

[49] J. J. Moreno-Navarro and M. Rodriguez-Artalejo. Logic programming with functions

and predicates: The language BABEL. Journal of Logic Programming, 12(3):191�

223, 1992.

[50] Sergio Antoy, Rachid Echahed, and Michael Hanus. A needed narrowing strategy. In

Conference Record of the 21st ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL'94), pages 268�279, Portland, Oregon, January

17�21, 1994. ACM Press.

[51] Michael Hanus. The integration of functions into logic programming: From theory

to practice. The Journal of Logic Programming, 19 & 20:583�628, May 1994.

[52] Michael Hanus, Herbert Kuchen, and Rwth Aachen. Curry: A truly functional logic

language, November 18 1995.

[53] Witold Charatonik, David A. McAllester, Damian Niwinski, Andreas Podelski, and

Igor Walukiewicz. The horn mu-calculus. In LICS, pages 58�69, 1998.

[54] Jean-Marc Talbot. On the alternation-free horn mu-calculus. In Michel Parigot and

Andrei Voronkov, editors, Logic for Programming and Automated Reasoning, 7th

International Conference, LPAR 2000, Reunion Island, France, November 11-12,

2000, Proceedings, volume 1955, pages 418�435. Springer, 2000.

126

[55] Bruno Courcelle. Fundamental properties of in�nite trees. Theoretical Computer

Science, pages 95�212, 1983.

[56] Hisao Tamaki and Taisuke Sato. OLD resolution with tabulation. In Ehud Y.

Shapiro, editor, Third International Conference on Logic Programming, Imperial

College of Science and Technology, London, United Kingdom, July 14-18, 1986, Pro-

ceedings, volume 225 of Lecture Notes in Computer Science, pages 84�98. Springer,

1986.

[57] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The

MIT Press, Cambridge, Massachusetts, 1999.

[58] Gopal Gupta and Enrico Pontelli. A constraint-based approach for speci�cation and

veri�cation of real-time systems. In IEEE Real-Time Systems Symposium, pages

230�239, 1997.

[59] Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, Scott A. Smolka,

Terrance Swift, and David Scott Warren. E�cient model checking using tabled

resolution. In CAV, pages 143�154, 1997.

[60] Andreas Podelski and Andrey Rybalchenko. Transition predicate abstraction and

fair termination. In Jens Palsberg and Martín Abadi, editors, POPL, pages 132�144.

ACM, 2005.

[61] Moshe Y. Vardi. Veri�cation of concurrent programs: The automata-theoretic

framework. In Proceedings, Symposium on Logic in Computer Science, pages 167�

176, Ithaca, New York, 22�25 June 1987. The Computer Society of the IEEE.

[62] Xinxin Liu, C. R. Ramakrishnan, and Scott A. Smolka. Fully local and e�cient

evaluation of alternating �xed points (extended abstract). In Bernhard Ste�en,

127

editor, TACAS, volume 1384 of Lecture Notes in Computer Science, pages 5�19.

Springer, 1998.

[63] Viktor Schuppan and Armin Biere. Liveness checking as safety checking for in�nite

state spaces. Electr. Notes Theor. Comput. Sci, 149(1):79�96, 2006.

[64] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer

Science, 126(2):183�235, 1994.

[65] Luke Simon, Ajay Mallya, and Gopal Gupta. Design and implementation of AT :

A real-time action description language. In Patricia M. Hill, editor, Proceedings of

the International Workshop on Logic-based Program Synthesis and Transformation,

volume 3901 of Lecture Notes in Computer Science, pages 44�60. Springer, 2005.

[66] Monica Nogueira, Marcello Balduccini, Michael Gelfond, Richard Watson, and

Matthew Barry. An A-prolog decision support system for the space shuttle. In

I. V. Ramakrishnan, editor, PADL, volume 1990 of Lecture Notes in Computer Sci-

ence, pages 169�183. Springer, 2001.

[67] Chitta Baral. Knowledge Representation, Reasoning and Declarative Problem Solv-

ing. Cambridge University Press, 2003.

[68] Michael Gelfond and Vladimir Lifschitz. Representing Actions and Change by Logic

Programs. Journal of Logic Programming, 17:301�322, 1993.

[69] Rajeev Alur. Timed automata. In Nicolas Halbwachs and Doron Peled, editors,

CAV, volume 1633 of Lecture Notes in Computer Science, pages 8�22. Springer,

1999.

[70] Kim Marriott and Peter Stuckey. Programming with Constraints: An Introduction.

The MIT Press, Cambridge, Massachusetts, 1998.

128

[71] U.D. Ulusar and H.L. Akin. Design and implementation of a real time planner for

robots. In Proc. TAINN 2004, pages 263�270, 2004.

[72] Raymond Reiter. Natural actions, concurrency and continuous time in the situ-

ation calculus. In Luigia Carlucci Aiello, Jon Doyle, and Stuart Shapiro, editors,

KR'96: Principles of Knowledge Representation and Reasoning, pages 2�13. Morgan

Kaufmann, San Francisco, California, 1996.

[73] Javier Pinto and Raymond Reiter. Reasoning about time in the situation calculus.

Ann. Math. Artif. Intell, 14(2-4):251�268, 1995.

[74] Rob Miller and Murray Shanahan. Narratives in the situation calculus. Journal of

Logic and Computation, 4(5):513�530, October 1994.

[75] Javier Pinto. Occurrences and narratives as constraints in the branching structure

of the situation calculus. Journal of Logic and Computation, 8(6):777�808, 1998.

[76] Erik Sandewall. Features and Fluents (vol. 1): The Representation of Knowledge

about Dynamic Systems. Oxford University Press, 1995.

[77] Vol Nr, Patrick Doherty, Joakim Gustafsson, Lars Karlsson, and Jonas Kvarnstrom.

TAL: Temporal action logics language speci�cation and tutorial, October 05 1998.

[78] Rob Miller and Murray Shanahan. Some alternative formulations of the event cal-

culus. In Antonis C. Kakas and Fariba Sadri, editors, Computational Logic. Logic

Programming and Beyond, volume 2408 of Lecture Notes in Computer Science, pages

452�490. Springer, 2002.

[79] Michael Gelfond and Vladimir Lifschitz. Action languages. Electronic Transactions

on AI, 3, 1998. Available at http://www.ep.liu.se/rs/cis/1998/016/.

129

[80] Vladimir Lifschitz. Answer set planning (abstract). In Michael Gelfond, Nicola

Leone, and Gerald Pfeifer, editors, LPNMR, volume 1730 of Lecture Notes in Com-

puter Science, pages 373�374. Springer, 1999.

[81] Hudson Turner. Representing actions in logic programs and default theories: A

situation calculus approach. Journal of Logic Programming, 298(31):245�298, 1997.

[82] Owl-s: Semantic markup for web services. http://www.daml.org/services/owl-

s/1.0/owl-s.html.

[83] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana.

Web services description language (WSDL) 1.1. World Wide Web Consortium,

Note NOTE-wsdl-20010315, March 2001.

[84] Luke Simon, Ajay Mallya, Ajay Bansal, Gopal Gupta, and Thomas D. Hite. A

universal service description language. In ICWS, pages 823�824. IEEE Computer

Society, 2005.

[85] Luke Simon, Ajay Bansal, Ajay Mallya, Srividya Kona, Gopal Gupta, and

Thomas D. Hite. Towards a universal service description language. In Interna-

tional Conference on Next Generation Web Services Practices, 2005. NWeSP 2005.

IEEE Computer Society, 2005.

[86] Ajay Bansal, Srividya Kona, Luke Simon, Ajay Mallya, Gopal Gupta, and

Thomas D. Hite. A universal service-semantics description language. In Third IEEE

European Conference on Web Services, 2005. ECOWS 2005. IEEE Computer Soci-

ety, 2005.

[87] George A. Miller. WordNet: A lexical database for English. Communications of the

ACM, 38(11):39�41, November 1995.

130

[88] Claudia Cior Ascu, Iulian Cior Ascu, and Kilian Sto�el. knOWLer - ontological

support for information retrieval systems, September 25 2003.

[89] Mike Dean, Guus Schreiber, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deb-

orah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein. OWL web

ontology language reference. Working draft, W3C, March 2003.

[90] Eric Miller. An introduction to the resource description framework. D-Lib Magazine,

May 1998. http://www.dlib.org/dlib/may98/miller/05miller.html.

[91] Tom Hite. Service composition and ranking: A strategic overview. Research report,

Metallect Incorporated, 2005.

[92] Francois Pottier. Type inference in the presence of subtyping: from theory to prac-

tice. Research Report 3483, INRIA, September 1998.

[93] Philip Wadler. Call-by-value is dual to call-by-name. ACM SIGPLAN Notices,

38(9):189�201, September 2003.

VITA

Luke Evans Simon was born and raised in Dallas, Texas on January 1, 1979, as the son

of Denis and Denise Simon. He received both a Bachelor of Science degree in Computer

Science from the University of Texas at Dallas in 2001, as well as a Master of Science

degree in Computer Science in 2003. He married Atussa Kamalpour in August of 2003.

Technical Reports

1. Luke Simon. Observable Equivalence for Interaction Nets. Technical Report

UTDCS-16-04, University of Texas at Dallas, 2004.

2. Luke Simon. Co-inductive logic programming. Technical report, University of

Texas at Dallas, March 2004.

3. Luke Simon, Ajay Mallya, Ajay Bansal, and Gopal Gupta. Coinductive logic pro-

gramming. Technical Report UTDCS-11-06, University of Texas at Dallas, 2006.

4. Luke Simon, Ajay Mallya, Ajay Bansal, and Gopal Gupta. Co-logic programming:

Extending logic programming with coinduction. Technical Report UTDCS-21-06,

University of Texas at Dallas, 2006.

Conference Articles

1. Luke Simon, Ajay Mallya, Ajay Bansal, Gopal Gupta, and Thomas D. Hite. A uni-

versal service description language. In International Conference on Web Services.

IEEE Computer Society, 2005.

2. Luke Simon, Ajay Bansal, Ajay Mallya, Srividya Kona, Gopal Gupta, and Thomas D.

Hite. Towards a universal service description language. In International Conference

on Next Generation Web Services Practices, 2005. NWeSP 2005. IEEE Computer

Society, 2005.

3. Ajay Bansal, Srividya Kona, Luke Simon, Ajay Mallya, Gopal Gupta, and Thomas D.

Hite. A universal service-semantics description language. Third IEEE European

Conference on Web Services, 2005. ECOWS 2005. IEEE Computer Society, 2005.

4. Luke Simon, Ajay Mallya, and Gopal Gupta. Design and implementation of AT : A

real-time action description language. In Patricia M. Hill, editor, In Proceedings of

the International Workshop on Logic-based Program Synthesis and Transformation,

volume 3901 of Lecture Notes in Computer Science. Springer, 2005.

5. Luke Simon, Ajay Mallya, Ajay Bansal, and Gopal Gupta. Coinductive logic pro-

gramming. In Proceedings of the International Conference on Logic Programming,

Lecture Notes in Computer Science. Springer, 2006.

6. Luke Simon, Ajay Mallya, Ajay Bansal, and Gopal Gupta. Co-logic programming:

Extending logic programming with coinduction. In Proceedings of the International

Workshop on Software Veri�cation and Validation, 2006.

Permanent address: 2700 Summit View Dr.
Plano, Texas 75025
U.S.A.

