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Abstract

This paper lists fifteen commonly held misconceptions concerning quantum mechanics, such as “En-

ergy eigenstates are the only allowed states” and “The wavefunction is dimensionless”. A few suggestions

are offered to help combat these misconceptions in teaching. c©1996 American Association of Physics

Teachers.

I. Introduction

Effective teaching does not simply teach students what is correct—it also insures that students do not
believe what is incorrect. The study of student misconceptions in introductory mechanics has become both
an important concern of physics education research and a valuable tool for the practicing physics teacher.
(See reference [1] for a review.) This paper concerns misconceptions in the more advanced and abstruse field
of quantum mechanics.

In the context of introductory mechanics, misconceptions are often called “preconceptions” because they
arise from the everyday observations and generalizations, beginning in childhood, that everyone needs in order
to toss a ball, walk down a street, or chew his food. Indeed, professional basketball players probably earn
more from their preconceptions concerning classical mechanics than professional physicists earn from their
correct conceptions. The origin of misconceptions in quantum mechanics—notoriously far from everyday
experience—is less clear. The catalog that follows suggests origins for particular misconceptions, but these
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are speculations only and must not be mistaken for well-founded results. The empirical observation is merely
that these errors are easy to slip into.

This list of misconceptions is based on my casual observations of students, colleagues, writings, and myself.
(At one time or another I have held nearly all of them.) It is not supported by interviews, examinations, or
any of the apparatus of the developing field of physics education research. Consequently I am sure that it
contains omissions and inaccuracies. To give just one example, it emphasizes conceptual difficulties at the
expense of what might be called “operational” difficulties: errors or infelicities frequently made while solving
problems, deriving formulas, interpreting experiments, etc.

How can this list be used in teaching? In many cases it is sufficient to simply point out the existence
of an error that is easy to slip into. . . forewarned is forearmed. (In this function the list plays the role of
the “dangerous curve” sign found on most highways and in some mathematics books.) In other situations
teaching tools such as guided discussions, essay questions, or diagnostic examinations [2] will be more appro-
priate. A very effective strategy is to assign a traditional quantitative/analytical problem that renders the
misconception concrete. Examples are given in items 2 and 14 of the list. (The best such problems are those
that lead to one answer if the misconception is followed and to a different one if the correct path is taken.
These problems demonstrate that misconceptions are of operational as well as conceptual importance. They
are, however, difficult to produce.) A teaching strategy known to be ineffective in combating misconceptions
is to ignore them.

II. Misconceptions regarding the idea of quantal state

1. “Energy eigenstates are the only allowed states.” This is a particularly common and a
particularly galling misconception. If it were true, then quantum mechanics would have no classical limit
because, for example, every simple harmonic oscillator, at every instant of time, would have an expected
displacement of zero. (Also, every planet would have an expected position in the middle of the sun.) It
seems to arise from at least three sources: First, it is similar to the correct statement “Energy eigenvalues are
the only allowed energies.” Second, the “old quantum theory” of 1900–1925 did indeed have the framework
of restricting the “allowed states”. Third, quantum mechanics courses usually devote most of their time to
the energy eigenproblem, leaving students with the understandable impression that energy eigenstates are
in some way blessed by nature rather than by human convenience.

One way to combat this misconception is by devoting more of the course to the time development
problem. Although analytically difficult in general, quantal time development can be treated effectively
through computer simulation [3, 4] or through analytic tricks in a few special cases [5]. Careful use of
terminology can also help prevent this misconception’s birth and growth. For example, I always call the
“time-dependent Schrödinger equation” simply the “Schrödinger equation” (Schrödinger himself [6] called
it the “real wave equation”) and I call the “time-independent Schrödinger equation” by the less dignified
name of the “energy eigenproblem”. I refer to a stationary state as an “energy eigenstate” and to any
possible state as an “arbitrary state”. For time-independent and time-dependent perturbation theory I
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use the terms “perturbation theory for the energy eigenproblem” and “perturbation theory for the time
development problem” respectively.

2. “A quantal state ψ(x) is completely specified by its associated probability density |ψ(x)|2.”
This misconception seems to be particularly prevalent among chemists [7]. It is true that the “probability
cloud” is important, but it is not the only thing that is important. It says nothing, for example, about
the expected momentum, and therefore nothing about the probability density at future times. A good
antidote to this misconception is to assign an exercise calculating the expectation values for the momentum
of two Gaussian wavepackets with identical probability densities but different phases and hence with different
expected momenta. Exercises like this are commonly assigned early in a quantum mechanics course, and
using them to squash a misconception adds to both their utility and their interest.

3. “The wavefunction ψ(x) is a function of regular three-dimensional position space.” In fact
it is a function of configuration space, which is isomorphic to position space only for one-particle systems.
Thus for a two-particle system the wavefunction ψ(x1,x2) exists in six-dimensional configuration space.

4. “The wavefunction is dimensionless.” In fact it carries the dimensions [length]−dN/2 where N
is the number of particles in the system and d is the dimensionality of space.

5. “A wavefunction (or state vector) describes an ensemble of classical systems.” In the
standard Copenhagen interpretation, a state vector describes a single system, e.g. a single particle or, in
systems such as the hydrogen atom, a single pair of particles. In tenable statistical interpretations [8], the
state vector describes an ensemble of individual systems each of which does not behave classically. The
appealing view that a state vector represents an ensemble of classical systems was rendered untenable by
tests of Bell’s theorem [9], which show that no deterministic1 model, no matter how complicated, can give
rise to all the results of quantum mechanics.

Discussions of quantal scattering are often phrased so as to reinforce this misconception, as when the
transmission probability through a barrier is defined as the fraction of particles passing through the barrier
when a large number impinge upon it. Definitions of this sort are pedagogically sound and I do not advocate
abandoning them. In fact, reminding students that this definition of transmission probability does not imply
the ensemble view is a good way to spiral back to a previously established point.

6. “A wavefunction (or state vector) describes a single system averaged over some amount
of time.” In fact it describes a single system at a single instant. (Otherwise what does the time dependence
of a wavefunction represent?) Anyone [10, 11] asking the common question “How does a particle get through
a node in its wavefunction?” is thinking that the particle is a dot with a definite position and zero width, and
probably with definite momentum as well, and that the wavefunction represents some sort of time-average
or ensemble-average. In other words, the asker is suffering from either this or the previous misconception or
both. An effective pedagogical tool is to invite the passage-through-node question and then guide students
in discussion to discover for themselves that the question is unanswerable because it assumes an incorrect
classical picture underlying quantum mechanics. (Similar misconceptions probably underlie the thoughts

1See erratum, page 8.
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of anyone who says that “when a particle tunnels through a potential barrier, it never appears under the
barrier. . . it just disappears from one side and reappears on the other.”)

III. Misconceptions regarding measurement

7. “The ‘collapse of the wavepacket’ involves (or permits) faster-than-light communication.”
This misconception frequently comes up in connection with Bell’s theorem [9], and it almost always involves
an implicit acceptance of misconception 3. If permitted to grow unchecked, this misconception can do
enormous harm. For example, Larry Dossey [12] invokes this misconception to “explain” faith healing at a
distance.

An analogy to electrodynamics helps students here. In the Coulomb gauge, the electric potential at a
point in space changes the instant that any source particle moves, regardless of how far away it is [13]. This
does not imply that information moves instantly, because electric potential by itself is not measurable. The
same applies for wavefunction.

8. “Measurement disturbs the system.” In more detail, this misconception holds that each particle
really does have definite values for both position and momentum, but these definite values cannot be deter-
mined because measurement of, say, a particle’s position alters the value of its momentum. (It is related
to the idea of a classical picture underlying quantum mechanics mentioned in item 6.) This is a particu-
larly common misconception because some arguments due to Heisenberg (“the gamma ray microscope”) and
Bohr can be interpreted to support it. It is another attractive idea rendered untenable through tests of Bell’s
theorem [9]. (This idea is also shown to be incorrect through “quantum eraser” arguments, as in reference
[14].)

9. Angular momentum measurements. The misconception (more accurately the class of miscon-
ceptions) is that given a system with a definite value of Lz, there exists a definite value of Lx (or of Ly, or
both), but that it is changing rapidly (or randomly, or unpredictably) so that when its value is measured the
outcome of the measurement cannot be predicted. This misconception is reinforced by the “rotating vector
model” often invoked in modern physics courses. This is not to say that the rotating vector model must
never be used (although as a matter of taste I do not), only that it must be presented along with cautions
concerning its limitations.

Misconceptions 8 and 9 exemplify the overarching misconception that quantum mechanics involves un-
certainty, whereas in fact it involves indeterminacy. To combat this misconception, it is desirable to use the
term “expected value” rather than “mean value”—the latter suggests that there is only one, correct, value,
which is subject to experimental error. Similarly, one can use “indeterminacy in x” rather than “uncertainty
in x”, and “Heisenberg indeterminacy principle” rather than “Heisenberg uncertainty principle”. Whether
the payoff in accuracy is worth the investment in syllables is a matter of individual choice.
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IV. Misconceptions regarding identical particles

10. “In the two-body expression ψ(x1,x2), the labels 1 and 2 refer to particles.” In fact, they
refer to positions. Thus, for two non-identical particles,

|ψ(x2,x1)|2

is the probability density for finding the particle of type 1 at x2 and the particle of type 2 at x1. The location
within the argument list tells which particle is being considered, while the subscript labels the positions being
examined. For two identical particles,

|ψ(x2,x1)|2

is the probability density for finding a particle at x2 and a particle at x1. Once again the subscripts refer to
positions rather than to particle types, now because both particles are of the same type.

This may seem entirely nitpicky, but if the subscript 1 refers to particle #1, then, in expressions like

ψ(x1,x2)± ψ(x2,x1),

how are we to interpret the second member? And if the subscripts label particles, then how can they ever
be used with identical particles, which by definition cannot be labelled? To be completely unambiguous,
in my teaching I label positions by numbers (x1,x2,x3, . . .), wavefunctions by letters (ψA, ψB , ψC , . . .), and
particles by colors (red, orange, yellow,. . . ). This is probably overkill, but once I started I found it impossible
to stop.

11. “An antisymmetric wavefunction for two particles is necessarily the difference of prod-
ucts of one-body wavefunctions.” One can indeed construct a basis of such states, but an arbitrary state
will be a linear combination of such basis states. If the particles interact, then even the energy eigenstates
will not (in general) be in the “difference of products” form.

Where does this misconception come from? It is, of course, quite true that any antisymmetric wavefunc-
tion may be written as a difference

ψ(x1,x2) = f(x1,x2)− f(x2,x1).

The trouble is that the function f(x1,x2) might not factorize. Students, however, almost always see the
situation where f(x1,x2) is a product of one-body energy eigenstates, because they are almost always worried
about producing two-body energy eigenstates. A possible antidote is to introduce, perhaps in an exercise,
the one-dimensional bivariate Gaussian wavefunction, for which the unsymmetrized “building block” is

f(x1, x2) = A exp(−[x2
1/d

2
1 − 2Gx1x2 + x2

2/d
2
2])ei(k1x1+k2x2),

where A is a normalization constant.

12. “Two nearby identical fermions (in the same spin state) repel each other with a force.”
The effective repulsion (in the classical limit) of such particles is sometimes called an “exchange force”. It
holds for non-interacting as well as interacting particles. No Hamiltonian—no force—is involved. Ultimately
it is not due to strong, electroweak, or gravitational interactions: it is instead a direct consequence of the
Pauli principle.
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V. Miscellaneous misconceptions

13. “A barrier ‘far away’ from a particle, where ψ(x) = 0, can affect the particle.” Quantum
mechanics is weird but not that weird. This misconception is presented in Roger Penrose’s The Emperor’s
New Mind [15].

14. “The probability current density j(x) is related to the speed of that part of the particle
which is located at position x.” In the Born interpretation, a quantal particle behaves somewhat like
a classical fluid with density |ψ(x)|2 and velocity field v(x) = j(x)/|ψ(x)|2. Like the rotating vector model,
this picture is valuable if its limitations are recognized and dangerous if they are not. It leaves the impression
that, although the particle as a whole has neither a definite position nor a definite velocity, it is made up of
parts each of which does have definite position x and definite velocity v(x). (This misinterpretation is related
to misconceptions 5 and 6 in that it imagines some sort of classical undergirding to quantum mechanics.)
In fact it is not even correct to speak of “that part of the particle which is located at x”. . . particles are not
made up of parts.

Here is another instance where assigning a traditional analytic problem can help prevent a misconception
from taking hold. The mean velocity in the classical fluid picture, and the expected velocity in quantum
mechanics, is ∫

d3x j(x)

in both cases. But the total kinetic energy in the classical fluid picture, and the expected kinetic energy in
quantum mechanics, are

m

2

∫
d3x

j2(x)
|ψ(x)|2

and − h̄2

2m

∫
d3xψ∗(x)∇2ψ(x)

respectively. These quantities are not the same either in interpretation or in numerical value. For example,
the total kinetic energy in the classical fluid picture vanishes for any energy eigenstate. (It is possible that
a more sophisticated classical fluid picture, for example one in which j(x) represents the mean current of
constituent parts that are flowing in many different directions, could make these two expressions match. But
it is hard to imagine how such a picture could resolve the differences in interpretation or in setting [namely
that one picture takes place in position space and the other in configuration space].)

15. “For any energy eigenstate, the probability density must have the symmetry of the
Hamiltonian.” If a one-dimensional potential has reflection symmetry about any point, then the probability
density functions associated with each energy eigenstate will also posses that symmetry. This fact is so
reasonable (and so strongly stressed by many textbooks) that many students slip into believing that it holds
for other symmetries, such as the rotational symmetry of the Coulomb problem, where it does not. I have
often seen this misconception submerge and propagate unseen until the student takes a course in solid state
physics, where it emerges to make the Bloch theorem appear trivial.
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Erratum

American Journal of Physics 64 (September 1996) 1202

The commentary for misconception number 5 of this paper should have said that “no local deterministic
model, no matter how complicated, can give rise to all the results of quantum mechanics.” Due to a blunder
on my part, the published paper did not include the necessary qualifier “local”. I thank Professors Art
Hobson of the University of Arkansas and Gary Bowman of Northern Arizona University for bringing this
error to my attention.
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