
Deployed ARMOR Protection: The Application of a Game
Theoretic Model for Security at the Los Angeles

International Airport

James Pita, Manish Jain, Janusz Marecki, Fernando Ordóñez, Christopher Portway,
Milind Tambe, Craig Western, Praveen Paruchuri*, Sarit Kraus**

University of Southern California, Los Angeles, CA 90089
*Intelligent Automation, Inc., RockVille, MD 20855
**Bar-llan University, Ramat-Gan 52900, Israel and

Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742

ABSTRACT
Security at major locations of economic or political importance is
a key concern around the world, particularly given the threat of
terrorism. Limited security resources prevent full security cover-
age at all times, which allows adversaries to observe and exploit
patterns in selective patrolling or monitoring, e.g. they can plan
an attack avoiding existing patrols. Hence, randomized patrolling
or monitoring is important, but randomization must provide dis-
tinct weights to different actions based on their complex costs and
benefits. To this end, this paper describes a promising transition
of the latest in multi-agent algorithms – in fact, an algorithm that
represents a culmination of research presented at AAMAS – into a
deployed application. In particular, it describes a software assistant
agent called ARMOR (Assistant for Randomized Monitoring over
Routes) that casts this patrolling/monitoring problem as a Bayesian
Stackelberg game, allowing the agent to appropriately weigh the
different actions in randomization, as well as uncertainty over ad-
versary types. ARMOR combines three key features: (i) It uses
the fastest known solver for Bayesian Stackelberg games called
DOBSS, where the dominant mixed strategies enable randomiza-
tion; (ii) Its mixed-initiative based interface allows users to occa-
sionally adjust or override the automated schedule based on their
local constraints; (iii) It alerts the users if mixed-initiative overrides
appear to degrade the overall desired randomization. ARMOR has
been successfully deployed since August 2007 at the Los Angeles
International Airport (LAX) to randomize checkpoints on the road-
ways entering the airport and canine patrol routes within the airport
terminals. This paper examines the information, design choices,
challenges, and evaluation that went into designing ARMOR.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—Dis-
tributed Artificial Intelligence - Intelligent Agents

General Terms
Security, Design, Theory

Cite as: Deployed ARMOR Protection: The Application of a Game The-
oretic Model for Security at the Los Angeles International Airport, James
Pita, Manish Jain, Janusz Marecki, Fernando Ordóñez, Christopher Port-
way, Milind Tambe, Craig Western, Praveen Paruchuri and Sarit Kraus,
Proc. of 7th Int. Conf. on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2008)- Industry and Applications Track, Berger, Burg,
Nishiyama(eds.),May,12-16.,2008,Estoril,Portugal,pp.125-132.
Copyright c© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Keywords
Security of Agent Systems, Game Theory, Bayesian and Stackel-
berg Games

1. INTRODUCTION
Protecting national infrastructure such as airports, historical land-

marks, or a location of political or economic importance is a chal-
lenging task for police and security agencies around the world; a
challenge that is exacerbated by the threat of terrorism. The pro-
tection of important locations includes tasks such as monitoring all
entrances or inbound roads and checking inbound traffic. However,
limited resources imply that it is typically impossible to provide
full security coverage at all times. Furthermore, adversaries can ob-
serve security arrangements over time and exploit any predictable
patterns to their advantage. Randomizing schedules for patrolling,
checking, or monitoring is thus an important tool in the police arse-
nal to avoid the vulnerability that comes with predictability. Even
beyond protecting infrastructure, randomized patrolling is impor-
tant in tasks varying from security on university campuses to nor-
mal police beats, to border or maritime security [2, 10, 13].

This paper focuses on a deployed software assistant agent that
can aid police or other security agencies in randomizing their se-
curity schedules. We face at least three key challenges in building
such a software assistant. First, the assistant must provide quality
guarantees in randomization by appropriately weighing the costs
and benefits of the different options available. For example, if an
attack on one part of an infrastructure will cause economic dam-
age while an attack on another could potentially cost human lives,
we must weigh the two options differently — giving higher weight
(probability) to guarding the latter. Second, the assistant must ad-
dress the uncertainty in information that security forces have about
the adversary. Third, the assistant must enable a mixed-initiative
interaction with potential users rather than dictating a schedule; the
assistant may be unaware of users’ real-world constraints and hence
users must be able to shape the schedule development.

We have addressed these challenges in a software assistant agent
called ARMOR (Assistant for Randomized Monitoring over Routes).
Based on game-theoretic principles, ARMOR combines three key
features to address each of the challenges outlined above. Game
theory is a well-established foundational principle within multi-
agent systems to reason about multiple agents each pursuing their
own interests [5]. We build on these game theoretic foundations to
reason about two agents – the police force and their adversary – in
providing a method of randomization. In particular, the main con-

125

tribution of our paper is mapping the problem of security schedul-
ing as a Bayesian Stackelberg game [4] and solving it via the fastest
optimal algorithm for such games, addressing the first two chal-
lenges. While a Bayesian game allows us to address uncertainty
over adversary types, by optimally solving such Bayesian Stack-
elberg games (we obtain optimal randomized strategies as solu-
tions), ARMOR provides quality guarantees on the schedules gen-
erated. The algorithm used builds on several years of research re-
ported in the AAMAS conference main track and AAMAS work-
shops [11, 12, 10]. ARMOR employs an algorithm that is a logical
culmination of this line of research; in particular, ARMOR relies
on an algorithm called DOBSS (Decomposed Optimal Bayesian
Stackelberg Solver), which was reported at AAMAS 2008 [9]. In
particular, DOBSS is superior to its competitors including ASAP,
and it provides optimal solutions rather than approximations. The
third challenge is addressed by ARMOR’s use of a mixed-initiative
based interface, where users are allowed to graphically enter differ-
ent constraints to shape the schedule generated. ARMOR is thus a
collaborative assistant that iterates over generated schedules rather
than a rigid one-shot scheduler. ARMOR also alerts users in case
overrides deteriorate the schedule quality below a given threshold.
This can include repeatedly scheduling an action which has a low
probability in the optimal mixed strategy, or repeatedly forbidding
an action which has been assigned a high probability.

ARMOR thus represents a very promising transition of multi-
agent research into a deployed application. ARMOR has been suc-
cessfully deployed on a trial basis since August 2007 [8] at the
Los Angeles International Airport (LAX) to assist the Los Angeles
World Airport (LAWA) police in randomized scheduling of check-
points, and since November 2007 for generating randomized pa-
trolling schedules for canine units. In particular, it assists police in
determining where to randomly set up checkpoints and to randomly
allocate canines to terminals.

2. RELATED WORK
The key contribution of this paper is the development of a game

theoretic security scheduler, named ARMOR, for improving secu-
rity at the Los Angeles International Airport. The novelty of our
work lies in modeling the security problem as a Bayesian Stack-
elberg game [5, 10] and applying an efficient algorithm named
DOBSS to find the optimal security schedule. In previous work,
it has been shown that finding an optimal solution for a Bayesian
Stackelberg game with multiple follower types is NP-hard [4]. Two
different approaches have been presented previously to find solu-
tions to Bayesian Stackelberg games efficiently. The first is an ex-
act approach named the multiple LPs method [4]. This approach
needs the conversion of the Bayesian game into a normal-form
game using the Harsanyi transformation [6]; thus, it loses its com-
pact structure. The second approach, named ASAP, does not need
the Harsanyi transformation [10], but it provides an approximate
solution. DOBSS outperforms the multiple LPs method because it
does not need the Harsanyi transformation thus gaining exponen-
tial speedups. DOBSS is also superior to the ASAP approach as
it provides an exact solution by optimally solving the problem at
hand. We provide an experimental comparison of these algorithms
in Section 6; note that these algorithms had earlier been investi-
gated without the context of a specific infrastructure security ap-
plication as used in this paper. In contrast, Brown et al. [3] do
specifically apply Stackelberg games for defending critical infras-
tructure. However, they consider a single adversary type (not a
Bayesian game) and with ARMOR we have taken the extra step of
actually solving and deploying the solutions to the created Bayesian
Stackelberg games at LAX.

The patrolling problem itself has received significant attention in
multi-agent literature due to its wide variety of applications ranging
from robot patrol to border patrolling of large areas [13, 2]. The
key idea behind the policies provided by these techniques is ran-
domization, which decreases the amount of information given to
an adversary. However, no specific algorithm/procedure has been
provided for the generation of randomized policies; hence, they can
lead to highly suboptimal policies. One exception is Paruchuri et
al and their early work [12], which provides algorithms for ana-
lyzing randomization-reward trade offs, but they do not model any
adversaries. On the other hand, DOBSS provides policies whose
randomization is determined by the payoff structure of game ma-
trices; thus DOBSS provides us optimal randomized policies while
accounting for multiple adversary models.

While ARMOR is a game theoretic security scheduler, there are
many other competing non-game theoretic tools in use for related
applications. For example, the "Hypercube Queuing Model" [7]
based on queuing theory depicts the detailed spatial operation of
urban police departments and emergency medical services and has
found application in police beat design, allocation of patrolling
time, etc. However, this model does not take specific adversary
models into account; ARMOR, however, tailors policies to combat
various potential adversaries.

3. SECURITY DOMAIN DESCRIPTION
We will now describe the specific challenges in the security prob-

lems faced by the LAWA police. LAX is the fifth busiest airport
in the United States, the largest destination airport in the United
States, and serves 60-70 million passengers per year [1, 14]. LAX
is unfortunately also suspected to be a prime terrorist target on the
west coast of the United States, with multiple arrests of plotters at-
tempting to attack LAX [14]. To protect LAX, LAWA police has
designed a security system that utilizes multiple rings of protection.
As is evident to anyone traveling through an airport, these rings in-
clude such things as vehicular checkpoints, police units patrolling
the roads to the terminals and inside the terminals (with canines)
and security screening and bag checks for passengers. There are
unfortunately not enough resources (police officers) to monitor ev-
ery single event at the airport; given its size and number of passen-
gers served, such a level of screening would require considerably
more personnel and cause greater delays to travelers. Thus, as-
suming that all checkpoints and terminals are not being monitored
at all times, setting up available checkpoints, canine units or other
patrols on deterministic schedules allows adversaries to learn the
schedules and plot an attack that avoids the police checkpoints and
patrols, which makes deterministic schedules ineffective.

Randomization offers a solution here. In particular, from among
all the security measures that randomization could be applied to,
LAWA police have so far posed two crucial problems to us. First,
given that there are many roads leading into LAX, where and when
they should set up checkpoints to check cars driving into LAX.
For example, Figure 1(a) shows a vehicular checkpoint set up on a
road inbound towards LAX. Police officers examine cars that drive
by, and if any car appears suspicious, they do a more detailed in-
spection of that car. LAWA police wished to obtain a randomized
schedule for such checkpoints for a particular time frame. For ex-
ample, if we are to set up two checkpoints, and the timeframe of
interest is 8 AM to 11 AM, then a candidate schedule may sug-
gest to the police that on Monday, checkpoints should be placed on
route 1 and route 2, whereas on Tuesday during the same time slot,
they should be on route 1 and 3, and so on. Second, LAWA police
wished to obtain an assignment of canines to patrol routes through
the terminals inside LAX. For example, if there are three canine

126

(a) LAX Checkpoint (b) Canine Patrol

Figure 1: LAX Security

units available, a possible assignment may be to place canines on
terminals 1, 3, and 6 on the first day, but terminal 2, 4, and 6 on
another day and so on based on the available information. Figure
1(b) illustrates a canine unit on patrol at LAX.

Given these problems, our analysis revealed the following key
challenges: (i) potential attackers can observe security forces’ sched-
ules over time and then choose their attack strategy — the fact that
the adversary acts with knowledge of the security forces’ sched-
ule makes deterministic schedules highly susceptible to attack; (ii)
there is unknown and uncertain information regarding the types of
adversary we may face; (iii) although randomization helps elim-
inate deterministic patterns, it must also account for the different
costs and benefits associated with particular targets.

4. APPROACH
We modeled the decisions of setting checkpoints or canine patrol

routes at the LAX airport as Bayesian Stackelberg games. These
games allow us accomplish three important tasks, meeting the chal-
lenges outlined in the previous section: (i) they model the fact that
an adversary acts with knowledge of security forces’ schedules, and
thus randomize schedules appropriately; (ii) they allow us to define
multiple adversary types, meeting the challenge of our uncertain
information about our adversaries; (iii) they enable us to weigh the
significance of different targets differently. Since Bayesian Stack-
elberg games address the challenges posed by our domain, they
are at the heart of generating meaningfully randomized schedules.
From this point we will explain what a Bayesian Stackelberg game
consists of and how we use DOBSS to optimally solve the problem
at hand. We then explain how an LAX security problem can be
mapped on to Bayesian Stackelberg games.

4.1 Bayesian Stackelberg game
In a Stackelberg game, a leader commits to a strategy first, and

then a follower selfishly optimizes its reward, considering the ac-
tion chosen by the leader. To see the advantage of being the leader
in a Stackelberg game, consider a simple game with the payoff table
as shown in Table 1. The leader is the row player and the follower
is the column player. The only pure-strategy Nash equilibrium for
this game is when the leader plays A and the follower plays C,
which gives the leader a payoff of 2; in fact, for the leader, playing
B is strictly dominated. However, if the leader can commit to play-
ing B before the follower chooses its strategy, then the leader will
obtain a payoff of 3, since the follower would then play D to ensure
a higher payoff for itself. If the leader commits to a uniform mixed
strategy of playing A and B with equal (0.5) probability, then the
follower will play D, leading to a payoff for the leader of 3.5.

C D
A 2,1 4,0
B 1,0 3,2

Table 1: Payoff table for example normal form game.

We now explain a Bayesian Stackelberg game. A Bayesian game
contains a set ofN agents, and each agent nmust be one of a given
set of types θn. The Bayesian Stackelberg games we consider in
this paper have two agents, the leader and the follower. θ1 is the
set of possible types for the leader, and θ2 the set of possible types
for the follower. For the security games of interest in this paper,
we assume that there is only one leader type (e.g. only one police
force), although there are multiple follower types (e.g. multiple
adversary types trying to infiltrate security). Therefore, while θ1
contains only one element, there is no such restriction on θ2. How-
ever, the leader does not know the follower’s type. For each agent
(leader or follower) n, there is a set of strategies σn and a utility
function un : θ1 × θ2 × σ1 × σ2 → <. Our goal is to find the
optimal mixed strategy for the leader to commit to, given that the
follower may know this mixed strategy when choosing its strategy.

4.2 DOBSS
We now briefly describe the DOBSS algorithm to solve Bayesian

Stackelberg games [9]. Here we provide a brief description of the
model and how it relates to a security domain. As mentioned ear-
lier, the concrete novel contribution of this paper is mapping our
real-world security problem into a Bayesian Stackelberg game, ap-
plying DOBSS to this real-world airport security domain, and fi-
nally embedding DOBSS in the overall ARMOR system which
provides many features to allow smooth operationalization.

One key advantage of the DOBSS approach is that it operates di-
rectly on the Bayesian representation, without requiring the Harsanyi
transformation. In particular, DOBSS obtains a decomposition scheme
by exploiting the property that follower types are independent of
each other. The key to the DOBSS decomposition is the observa-
tion that evaluating the leader strategy against a Harsanyi-transformed
game matrix is equivalent to evaluating against each of the game
matrices for the individual follower types.

We first present DOBSS in its most intuitive form as a Mixed-
Integer Quadratic Program (MIQP); we then present a linearized
equivalent Mixed-Integer Linear Program (MILP). The model we
propose explicitly represents the actions by leader and the optimal
actions for the follower types in the problem solved by the agent.
Note that we need to consider only the reward-maximizing pure
strategies of the follower types, since for a given fixed mixed strat-
egy x of the leader, each follower type faces a problem with fixed
linear rewards. If a mixed strategy is optimal for the follower, then
so are all the pure strategies in support of that mixed strategy.

We denote by x the leader’s policy, which consists of a vector of
probability distributions over the leader’s pure strategies. Hence,
the value xi is the proportion of times in which pure strategy i
is used in the policy. We denote by ql the vector of strategies of
follower type l ∈ L. We also denote by X and Q the index sets of
leader and follower l’s pure strategies, respectively. We also index
the payoff matrices of the leader and each of the follower types l by
the matrices Rl and Cl. Let M be a large positive number. Given
a priori probabilities pl, with l ∈ L, of facing each follower type
the leader solves the following:

maxx,q,a

∑
i∈X

∑
l∈L

∑
j∈Q

plRl
ijxiq

l
j

s.t.
∑

i∈X xi = 1∑
j∈Q q

l
j = 1

0 ≤ (al −
∑

i∈X Cl
ijxi) ≤ (1− ql

j)M
xi ∈ [0 . . . 1]
ql

j ∈ {0, 1}
a ∈ <

(1)

127

Here for a set of leader’s actions x and actions for each follower
ql, the objective represents the expected reward for the agent con-
sidering the a-priori distribution over different follower types pl.
The first and the fourth constraints define the set of feasible so-
lutions x as a probability distribution over the set of actions X .
Constraints 2 and 5 limit the vector of actions of follower type l, ql

to be a pure distribution over the set Q (that is each ql has exactly
one coordinate equal to one and the rest equal to zero). The two
inequalities in constraint 3 ensure that ql

j = 1 only for a strategy j
that is optimal for follower type l. Indeed this is a linearized form
of the optimality conditions for the linear programming problem
solved by each follower type. We explain these constraints as fol-
lows: note that the leftmost inequality ensures that for all j ∈ Q,
al ≥

∑
i∈X Cl

ijxi. This means that given the leader’s vector x,
al is an upper bound on follower type l’s reward for any action.
The rightmost inequality is inactive for every action where ql

j = 0,
since M is a large positive quantity. For the action that has ql

j = 1
this inequality states that the adversary’s payoff for this action must
be ≥ al, which combined with the previous inequality shows that
this action must be optimal for follower type l.

We can linearize the quadratic programming problem 1 through
the change of variables zl

ij = xiq
l
j , thus obtaining the following

mixed integer linear programming problem:

maxq,z,a

∑
i∈X

∑
l∈L

∑
j∈Q p

lRl
ijz

l
ij

s.t.
∑

i∈X

∑
j∈Q z

l
ij = 1∑

j∈Q z
l
ij ≤ 1

ql
j ≤

∑
i∈X zl

ij ≤ 1∑
j∈Q q

l
j = 1

0 ≤ (al −
∑

i∈X Cl
ij(

∑
h∈Q z

l
ih)) ≤ (1− ql

j)M∑
j∈Q z

l
ij =

∑
j∈Q z

1
ij

zl
ij ∈ [0 . . . 1]

ql
j ∈ {0, 1}
a ∈ <

(2)
DOBSS refers to this equivalent mixed integer linear program,

which can be solved with efficient integer programming packages.

4.3 Bayesian Stackelberg Game for the Los
Angeles International Airport

We now illustrate how the security problems set forth by LAWA
police, i.e. where and when to deploy checkpoints and canines,
can be cast in terms of a Bayesian Stackelberg game. We focus
on the checkpoint problem for illustration, but the case of the ca-
nine problem is similar. At LAX, there are a specific number of
inbound roads on which to set up checkpoints, say roads 1 through
n, and LAWA police have to pick a subset of those roads to place
checkpoints on prior to adversaries selecting which roads to attack.
We assume that there are m different types of adversaries, each
with different attack capabilities, planning constraints, and finan-
cial ability. Each adversary type observes the LAWA-police check-
point policy and then decides where to attack. Since adversaries
can observe the LAWA police policy before deciding their actions,
this situation can be modeled via a Stackelberg game with the po-
lice as the leader.

In this setting the set X of possible actions for LAWA police
is the set of possible checkpoint combinations. If, for instance,
LAWA police were setting up one checkpoint thenX = {1, . . . , n}.
If LAWA police were setting up a combination of two checkpoints,
thenX = {(1, 2), (1, 3)...(n−1, n)}, i.e. all combinations of two
checkpoints. Each adversary type l ∈ L = {1, . . . ,m} can decide

to attack one of the n roads or maybe not attack at all (none), so
its set of actions is Q = {1, . . . , n, none}. If LAWA police select
road i to place a checkpoint on and adversary type l ∈ L selects
road j to attack then the agent receives a reward Rl

ij and the ad-
versary receives a reward Cl

ij . These reward values vary based on
three considerations: (i) the chance that the LAWA police check-
point will catch the adversary on a particular inbound road; (ii) the
damage the adversary will cause if it attacks via a particular in-
bound road; (iii) type of adversary, i.e. adversary capability. If
LAWA police catch the adversary when i = j we make Rl

ij a large
positive value and Cl

ij a large negative value. However, the prob-
ability of catching the adversary at a checkpoint is based on the
volume of traffic through the checkpoint (significant traffic will in-
crease the difficulty of catching the adversary), which is an input to
the system. If the LAWA police are unable to catch the adversary,
then the adversary may succeed, i.e. we make Rl

ij a large negative
value and Cl

ij a large positive value. Certainly, if the adversary at-
tacks via an inbound road where no checkpoint was set up, there
is no chance that the police will catch the adversary. The magni-
tude of Rl

ij and Cl
ij vary based on the adversary’s potential target,

given the road from which the adversary attacks. Some roads lead
to higher valued targets for the adversary than others. The game is
not a zero sum game however, as even if the adversary is caught,
the adversary may benefit due to publicity.

The reason we consider a Bayesian Stackelberg game is because
LAWA police face multiple adversary types. Thus, differing values
of the reward matrices across the different adversary types l ∈ L
represent the different objectives and valuations of the different at-
tackers (e.g. smugglers, criminals, terrorists). For example, a hard-
core, well-financed adversary could inflict significant damage on
LAX; thus, the negative rewards to the LAWA police are much
higher in magnitude than an amatuer attacker who may not have
sufficient resources to carry out a large-scale attack. If these are
the only two types of adversaries faced, then a 20-80 split of prob-
ability implies that while there is a 20% chance that the LAWA
police face the former type of adversary, there is an 80% chance
that they face an amatuer attacker. Our experimental data provides
detailed results about the sensitivity of our algorithms to the proba-
bility distributions over these two different adversary types. While
the number of adversary types has varied based on discusssions
with LAWA police, for any one adversary type the largest game
we have constructed, which was done for canine deployment, con-
sisted of 784 actions for the LAWA police (when multiple canine
units were active) for the seven possible terminals within the air-
port and 8 actions per adversary type (one for a possible attack on
each terminal, and one for none).

5. SYSTEM ARCHITECTURE
There are two separate versions of ARMOR, ARMOR-checkpoint

and ARMOR-canine. While in the following we focus on ARMOR-
checkpoint for illustration, both these versions use the same under-
lying architecture with different inputs. As shown in Figure 2, this
architecture consists of a front-end and a back-end, integrating four
key components: (i) a front-end interface for user interaction; (ii)
a method for creating Bayesian Stackelberg game matrices; (iii) an
implementation of DOBSS; (iv) a method for producing suggested
schedules for the user. They also contain two major forms of ex-
ternal input. First, they allow for direct user input into the system
through the interface. Second, they allow for file input of relevant
information for checkpoints or canines, such as traffic/passenger
volume by time of day, which can greatly affect the security mea-
sures taken and the values of certain actions. At this point we will

128

discuss in detail what each component consists of and how they
interact with each other.

Figure 2: ARMOR System Flow Diagram

5.1 Interface
The ARMOR interface, seen in Figure 3, consists of a file menu,

options for local constraints, options to alter the action space, a
monthly calendar and a main spreadsheet to view any day(s) from
the calendar. Together these components create a working inter-
face that meets all the requirements set forth by LAWA officers for
checkpoint and canine deployment at LAX.

The base of the interface is designed around six possible ad-
justable options; three of them alter the action space and three im-
pose local constraints. The three options to alter the action space
are the following: (i) number of checkpoints allowed during a par-
ticular timeslot; (ii) time interval of each timeslot; (iii) number of
days to schedule over. For each given timeslot, we construct a new
game. As discussed in Section 4.4, given knowledge of the total
number of inbound roads, the number of checkpoints allowed dur-
ing that timeslot determines the available actions for the LAWA
police, whereas the action space of the adversary is determined as
discussed in Section 4.4 by the number of inbound roads. Thus,
we can set up the foundation for the Bayesian Stackelberg game
by providing all the actions possible in the game. Once the action
space has been generated, it can be sent to the back-end to be set
up as a Bayesian Stackelberg game, solved, and returned as a sug-
gested schedule, which is displayed to the user via the spreadsheet.
The third option determines how many iterations of the game will
be played (as it determines the number of days to schedule over).

Once the game is solved, there are three options that serve to
restrict certain actions in the generated schedule: (i) forced check-
point; (ii) forbidden checkpoint; (iii) at least one checkpoint. These
constraints are intended to be used sparingly to accommodate sit-
uations where a user, faced with exceptional circumstances and
extra knowledge, wishes to modify the output of the game. The
user may impose these restrictions by forcing specific actions in
the schedule. In particular, the ”forced checkpoint" option sched-
ules a checkpoint at a specific time on a specific day. The ”forbid-
den checkpoint" option designates a specific time on a specific day
when a checkpoint should not be scheduled. Finally, the ”at least
one checkpoint" option designates a set of time slots and ensures

that a checkpoint is scheduled in at least one of the slots. We will
return to these constraints in Section 5.3.

Figure 3: ARMOR Interface

The spreadsheet in the interface serves as the main mechanism
for viewing, altering, and constraining schedules. The columns cor-
respond to the possible checkpoints, and the rows correspond to the
time frames in which to schedule them. Up to a full week can be
viewed within the spreadsheet at a single time with each day being
marked as seen in Figure 3. Once a particular day is in view, the
user can assign to that day any constraints that they desire. Each
constraint is represented by a specific color within the spreadsheet,
namely green, red, and yellow for forced, forbidden, and at least
constraints respectively.

5.2 Matrix Generation and DOBSS
Given the submitted user information, the system must create

a meaningful Bayesian Stackelberg game matrix as suggested in
Section 4.3. The previous section illustrates the generation of the
action space in this game. Based on the pre-specified rewards as
discussed in Section 4.3, we can provide the rewards for the LAWA
police and the adversaries to generate a game matrix for each ad-
versary type. After the final game matrices are constructed for each
adversary type, they are sent to the DOBSS implementation, which
chooses the optimal mixed strategy over the current action space.

To demonstrate the process, assume there are three possible in-
bound roads or checkpoint locations (A, B, C), one possible times-
lot to schedule over, and two checkpoints available for schedul-
ing. Given this scenario, the unique combinations possible include
scheduling checkpoints A and B, A and C, and B and C, over the
given time frame. We will assume that checkpoints A and B are
highly valuable while C, although not completely invaluable, has
a very low value. Based on this information, a likely mixed strat-
egy generated by DOBSS would be to assign a high probability to
choosing action A and B, say seventy percent, and a low probabil-
ity to both the other actions, say fifteen percent each. Whatever the
mixed strategy actually comes out to be, it is the optimal strategy
a user could take to maximize security based on the given infor-
mation. This mixed strategy is then stored and used for the actual
schedule generation.

5.3 Mixed Strategy and Schedule Generation
Once an optimal mixed strategy has been chosen by DOBSS and

stored within the system, a particular combination of actions must
be chosen to be displayed to the user. Consider our example from
the previous section involving three possibilities (checkpoints A
and B, A and C, B and C)) and their probabilities of 70%, 15%

129

and 15%. Knowing this probability distribution, we can formu-
late a method to randomly select between the combinations with
the given probabilities. Each time a selection is made, that com-
bination is sent to the user interface to be reviewed by the user as
necessary. So, if for instance combination one was chosen, the user
would see checkpoint A and B as scheduled for the given timeslot.

In rare cases, as mentioned in Section 5.1, a user may have for-
bidden a checkpoint, or required a checkpoint. ARMOR accom-
modates such user directives when creating its schedule, e.g. if
checkpoint C is forbidden, then all the probability in our exam-
ple shifts to the combination A and B. Unfortunately, by using this
capability frequently (e.g. frequent use of forbidden and required
checkpoints), a user can completely alter the mixed strategy pro-
duced as the output of DOBSS, defeating DOBSS’s guarantee of
optimality. To avoid such a possibility, ARMOR incorporates cer-
tain alerts (warnings) to encourage non-interference in its schedule
generation. For example, if a combination has zero or very low
probability of being chosen and the user has forced that checkpoint
combination to occur, ARMOR will alert the user. Similarly, if a
combination has a very high likelihood and the user has forbidden
that event, ARMOR will again alert the user. However, ARMOR
only alerts the user; it does not autonomously remove the user’s
constraints. Resolving more subtle interactions between the user
imposed constraints and DOBSS’s output strategy remains an issue
for future work.

When a schedule is presented to the user with alerts as men-
tioned above, the user may alter the schedule by altering the for-
bidden/required checkpoints, or possibly by directly altering the
schedule. Both possibilities are accomodated in ARMOR. If the
user simply adds or removes constraints, ARMOR can create a new
schedule. Once the schedule is finalized, it can be saved for actual
use, thus completing the system cycle. This full process was de-
signed to specifically meet the requirements at LAX for checkpoint
and canine allocation.

6. DESIGN CHALLENGES
Designing and deploying the ARMOR software on a trial basis

at LAX posed numerous challenges and problems to our research
group. We outline some key lessons learned during the design and
deployment of ARMOR:

• Importance of tools for randomization: There is a critical
need for randomization in security operations. Security offi-
cials are aware that requiring humans to generate randomized
schedules is unsatisfactory because as psychological stud-
ies have often shown [15], humans have difficulty randomiz-
ing, and also they can fall into predictable patterns. Instead,
mathematical randomization that appropriately weighs the
costs and benefits of different action, and randomizes with
appropriate weights leads to improved results. Security offi-
cials were hence extremely enthusiastic in their reception of
our research, and eager to apply it to their domain.

• Importance of manual schedule overrides: While ARMOR
incorporates all the knowledge that we could obtain from
LAWA police and provides the best output possible, it may
not be aware of dynamic developments on the ground. For
example, police officers may have very specific intelligence
for requiring a checkpoint on a particular inbound road. Hence,
it was crucial to allow LAWA police officers (in rare in-
stances when it is necessary) to manually override the sched-
ule provided.

• Importance of providing police officers with operational flex-
ibility: When initially generating schedules for canine pa-
trols, we created a very detailed schedule, micro-managing
the patrols. This did not get as positive a reception from the
officers. Instead, an abstract schedule that afforded the offi-
cers some flexibility to respond to dynamic situation on the
ground was better received.

7. EXPERIMENTAL RESULTS
Our experimental results explore the runtime efficiency of DOBSS

(in Section 7.1) and evaluate the solution quality and implementa-
tion of the ARMOR system (in Section 7.2).

7.1 Runtime Analysis
Here we compare the runtime results of DOBSS versus Multiple

LPs, described in Section 2, given the specific domain used for
canine deployment at LAX. The aim of this analysis is to show that
DOBSS is indeed the most suitable procedure for application to
real domains such as the LAX canine and checkpoint allocation. To
that end, we used the data from a full week of canine deployment to
analyze the time necessary to generate a schedule given the DOBSS
method and the Multiple LPs method. For completeness we show
the results given one to four adversary types where four adversary
types is the actual amount LAWA has set forth as necessary.

In Figure 4 we summarize the runtime results for our Bayesian
games using DOBSS and Multiple LPs. We tested our results on
the Bayesian games provided from the canine domain with num-
ber of adversary types varying between one to four. Each game
between the agent (LAWA) and one adversary type is modeled as
a normal form game. Thus, there are four normal form games de-
signed for the game between the agent (LAWA) and the various
adversary types for the base case. The size of each of these normal
form games is (784,8) corresponding to 784 strategies for the agent
(LAWA) and 8 for the adversary. We then used the 7 generated in-
stances, taken from an arbitrary week of canine deployment, of this
base case to obtain averaged results.

The x-axis in Figure 4 shows the number of follower types the
leader faces starting from 1 to 4 adversary types, and the y-axis
of the graph shows the runtime in seconds ranging from 0 to 1200
seconds. All the experiments that were not concluded in 20 min-
utes (1200 seconds) were cut off. From the graph we summarize
that DOBSS outperforms the multiple-LPs method by a significant
margin given our real canine domain. In the graph, while multiple-
LPs could solve the problem only till 2 adversary types, DOBSS
could solve for all four adversary types within 80s.

Hence the conclusion that the DOBSS method is faster than the
multiple-LPs method. Consequently, we conclude that DOBSS is

Figure 4: Runtimes: DOBSS and Multiple-LP methods

130

(a) 1 Checkpoint (b) 2 Checkpoints

(c) 3 Checkpoints (d) Canines

Figure 5: DOBSS Strategy v/s Uniformly Random Strategy

the algorithm of choice for Bayesian Stackelberg games [9], espe-
cially given the particular games created by real security domains
such as the canine patrolling problem presented in this paper.

7.2 Evaluation of ARMOR
We now evaluate the solution quality obtained when DOBSS is

applied to the LAX security domain. We offer three types of eval-
uation. While our first evaluation is “in the lab," ARMOR is a de-
ployed assistant, and hence our remaining two evaluations are of its
deployment “in the field." With respect to our first evaluation, we
conducted four experiments. The first three compared ARMOR’s
randomization with other randomization techniques, in particular
a uniform randomization technique that does not use ARMOR’s
weights in randomization. The uniformly random strategy gives
equal probabilities to all possible actions.

The results of the first experiment are shown in Figures 5(a), 5(b)
and 5(c). The x-axis represents the probabilities of occurrence type
1 and type 2 adversaries. Since the actual number of adversary
types used for LAX is secure information we use 2 adversary types
for simplicity in this analysis. The x-axis shows the probability
p of adversary type 2 (the probability of adversary type 1 is then
obtained on 1-p). The y-axis represents the reward obtained. Figure
5(a) shows the comparison when one checkpoint is placed. For
example, when adversary of type 1 occurs with a probability of 0.1
and type 2 occurs with a probability of 0.9, the reward obtained
by the DOBSS strategy is −1.72 whereas the reward obtained by a
uniform random strategy is −2.112. It is important to note that the
reward of the DOBSS strategy is strictly greater than the reward of
the uniform random strategy for all probabilities of occurrence of
the adversaries.

Figure 5(b) also has the probability distribution on the x-axis and
the reward obtained on the y-axis. It shows the difference in the ob-
tained reward when 2 checkpoints are placed. Here also the reward
in the case of the DOBSS strategy is greater than the reward of the
uniform random strategy. When we have 2 checkpoints, the type 2
adversary chooses the action none (to not attack). This leads to the
observation that the rewards of the DOBSS strategy and the reward
of the uniform strategy are the same when only the type 2 adver-
sary is present. Figure 5(c) presents the case of 3 checkpoints. Here
the reward values obtained by DOBSS in the 3 checkpoint case are
always positive — this is because the chances of catching the ad-

Table 2: Variation in Usage Percentage

Checkpoint Number 1 2 3 4 5
Week 1 33.33 4.76 33.33 0 28.57
Week 2 19.04 23.80 23.80 14.28 19.05

versary of type 1 improve significantly with 3 checkpoints. This
also leads to the reward of DOBSS decreasing with the decrease
in the probability of occurrence of the adversary of type 1. Note
that the type 2 adversary as with the case of 2 checkpoints, decides
none and hence the reward of the DOBSS strategy and the uni-
formly random strategy are the same when only type 2 adversary is
present.

The three experiments reported above allow us to conclude that
DOBSS weighted randomization provides significant improvements
over uniform randomization in the same domain, thus illustrat-
ing the utility of our algorithms. We continue these results in the
following fourth experiment, focusing now on canine units. Fig-
ure 5(d) shows the comparison of the reward obtained between
scheduling canine units with DOBSS and scheduling them with a
uniform random strategy (denoted URS). In the uniform random
strategy, canines are randomly assigned to terminals with equal
probability. The x-axis represents the weekday and the y-axis repre-
sents the reward obtained. We can see that DOBSS performs better
even with 3 canine units as compared to 6 canine units being sched-
uled using the uniform random strategy. For example, on Friday,
the reward of a uniformly random strategy with 6 canine units is
−1.47 whereas the reward of 3, 5 and 6 canines with DOBSS is
1.37, 3.50 and 4.50 respectively. These results show that DOBSS
weighted randomization with even 3 canines provides better results
against uniform randomization in the same domain with 6 canines.
Thus our algorithm provides better rewards and can help in reduc-
ing the cost of resources needed.

Now we analyze the performance of ARMOR as it is deployed
in the field. In the next evaluation, we examine ARMOR’s setting
of checkpoints at LAX. The first experiment examines the change
in checkpoint deployment during a fixed shift (i.e. keeping the time
fixed) over two weeks. The results are shown in Table 2. The num-
bers 1 to 5 in the table denote the checkpoint number (we have
assigned arbitrary identification numbers to all checkpoints for the
purpose of this experiment) and the values of the table show the per-
centage of times this checkpoint was used. For example, in week
1, checkpoint 2 was used just less than 5% of times, while check-
point 2 was used about 25% of the times in week 2. We can make
two observations from these two weeks: (i) we do not have uniform
randomization of these checkpoints, i.e. there is great variance in
the percentage of times checkpoints are deployed; (ii) the check-
point deployment varies from week to week, e.g. checkpoint 4 was
not used in week 1, but it was used 15% of the times in week 2.

The goal of the next experiment was to provide results on the
sensitivity analysis, specifically, how the probabilities of different
actions will change if we change the proportion of adversary types.
Figure 6 shows the variation in strategy for placing two check-
points together when the probability of occurrence of the adversary
changes. The x-axis shows the variation in the probability of occur-
rence of the adversary types, whereas the y-axis shows the variation
in the probabilities in the DOBSS strategy. For example, when ad-
versary of type 1 occurs with a probability of 1, the probability of
placing both checkpoints 1 and 4 is 0.353, when the adversaries
1 and 2 occur with probabilities 0.4 and 0.6 respectively, then the
probability of placing checkpoints 3 and 4 is 0.127. We can ob-

131

Figure 6: Sensitivy Analysis

serve that there is very little to no variation in the probabilities in
the DOBSS strategies when the probabilities of occurrence of the
two adversary types vary from .1 to .9. This indicates that our re-
sults are not particularly sensitive to variations in probabilities of
opponents except at the very extremes.

Our final evaluation is a more informal evaluation based on feed-
back from the LAWA police. First, they have provided very pos-
itive feedback about the deployment. They suggest that the tech-
nique they had previously used was not one of randomization, but
one of alternating checkpoints (e.g. if checkpoint 1 was active
today, it would be inactive tomorrow); such a routine can bring
about determinism in the scheduling which we have avoided. Sec-
ond, ARMOR has eliminated the burden for creating schedules,
thus reducing routine work and allowing LAWA police to focus
on more important tasks. Third, several arrests have been made at
checkpoints scheduled by ARMOR: typically these involved cars
attempting to carry weapons into LAX. This does not necessarily
suggest that ARMOR’s schedule was responsible because this is
not a controlled experiment per se. Nonetheless, it illustrates that
the first line of defense at the outer airport perimeter is helping al-
leviate the threat of violence at the airport.

8. SUMMARY
Establishing security around airports, ports, or other infrastruc-

ture of economic or political importance is a challenge that is faced
today by police forces around the world. While randomized mon-
itoring (patrolling, checking, searching) is important — as adver-
saries can observe and exploit any predictability in launching an
attack — randomization must use different weighing functions to
reflect the complex costs and benefits of different police actions.
This paper describes a deployed agent assistant called ARMOR
that casts the monitoring problem as a Bayesian Stackelberg game,
where randomized schedule generation for police forces can ap-
propriately weigh the costs and benefits as well as uncertainty over
adversary types. ARMOR combines three key features: (i) it uses
the fastest known solver for Bayesian Stackelberg games called
DOBSS, where the dominant mixed strategies provide schedule
randomization; (ii) its mixed-initiative based interface allows users
to occasionally adjust or override the automated schedule based on
their local constraints; (iii) it alerts the users in case mixed-initiative
overrides appear to degrade the overall desired randomization. AR-
MOR has been successfully deployed at the Los Angeles Inter-
national Airport, randomizing allocation of checkpoints since Au-
gust 2007 and canine deployment since November 2007. ARMOR
thus represents a successful transition of multi-agent algorithmic
advances that represent the culmination of research published in

AAMAS [12, 10, 9] for the past two years into the real-world.

9. ACKNOWLEDGEMENTS
ARMOR’s deployment at LAX has only been possible due to the

exceptional effort by LAWA police to strike a collaboration. This
research was supported by the United States Department of Home-
land Security through the Center for Risk and Economic Analysis
of Terrorism Events (CREATE) under grant number 2007-ST-061-
000001. However, any opinions, finidngs, and conclusions or rec-
ommendations in this document are those of the authors and do not
necessarily reflect views of the United States Department of Home-
land Security. We would also like to thank the National Science
Foundation for their contributions under grant number IS0705587.

10. REFERENCES
[1] General Description: Just the Facts.

http://www.lawa.org/lax/justTheFact.cfm, 2007.
[2] N. Billante. The Beat Goes On: Policing for Crime

Prevention.
http://www.cis.org.au/IssueAnalysis/ia38/ia38.htm, 2003.

[3] G. Brown, M. Carlyle, J. Salmeron, and K. Wood. Defending
Critical Infrastructure. Interfaces, 36(6):530–544, 2006.

[4] V. Conitzer and T. Sandholm. Computing the Optimal
Strategy to Commit to. In EC, 2006.

[5] D. Fudenberg and J. Tirole. Game Theory. MIT Press, 1991.
[6] J. C. Harsanyi and R. Selten. A Generalized Nash Solution

for Two-person Bargaining Games With Incomplete
Information. Management Science, 18(5):80–106, 1972.

[7] R. C. Larson. A Hypercube Queuing Model for Facility
Location and Redistricting in Urban Emergency Services.
Computer and OR, 1(1):67–95, 1974.

[8] A. Murr. The Element of Surprise. Newsweek National News,
http://www.msnbc.msn.com/id/21035785/site/newsweek/page/0/,
28 September 2007.

[9] P. Paruchuri, J. P. Pearce, J. Marecki, M. Tambe, F. Ordóñez,
and S. Kraus. Playing games for security: An efficient exact
algorithm for solving bayesian stackelberg games. In
AAMAS, 2008.

[10] P. Paruchuri, J. P. Pearce, M. Tambe, F. Ordóñez, and
S. Kraus. An Efficient Heuristic Approach for Security
Against Multiple Adversaries. In AAMAS, 2007.

[11] P. Paruchuri, M. Tabme, F. Ordóñez, and S. Kraus. Safety in
Multiagent Systems by Policy Randomization. In SASEMAS,
2005.

[12] P. Paruchuri, M. Tambe, F. Ordóñez, and S. Kraus. Security
in Multiagent Systems by Policy Randomization. In AAMAS,
2006.

[13] S. Ruan, C. Meirina, F. Yu, K. R. Pattipati, and R. L. Popp.
Patrolling in a Stochastic Environment. In 10th Intl.
Command and Control Research and Tech. Symp., 2005.

[14] D. Stevens and et. al. Implementing Security Improvement
Options at Los Angeles International Airport.
http://www.rand.org/pubs/documented_briefings/2006/
RAND_DB499-1.pdf, 2006.

[15] W. A. Wagenaar. Generation of Random Sequences by
Human Subjects: A Critical Survey of Literature. 1972.

132

