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Abstract. Quantum logic aims to capture essential quantum mechanical

structure in order-theoretic terms. The Achilles’ heel of quantum logic is the

absence of a canonical description of composite systems, given descriptions of
their components. We introduce a framework in which order-theoretic struc-

ture comes with a primitive composition operation. The order is extracted

from a generalisation of C*-algebra that applies to arbitrary dagger symmetric
monoidal categories, which also provide the composition operation. In fact,

our construction is entirely compositional, without any additional assump-

tions on limits or enrichment. Interpreted in the category of finite-dimensional
Hilbert spaces, it yields the projection lattices of arbitrary finite-dimensional

C*-algebras. Interestingly, there are models that falsify standardly assumed
correspondences, most notably the correspondence between noncommutativity

of the algebra and nondistributivity of the order.

1. Introduction

In 1936, Birkhoff and von Neumann questioned whether the full Hilbert space
structure was needed to capture the essence of quantum mechanics [3]. They ar-
gued that the order-theoretic structure of the closed subspaces of state space, or
equivalently, of the projections of the operator algebra of observables, may already
tell the entire story. To be more precise, we need to consider an order together
with an order-reversing involution on it, a so-called orthocomplementation, which
can also be cast as an orthogonality relation. Support along those lines comes from
Gleason’s theorem [21], which characterises the Born rule in terms of order-theoretic
structure. In turn, via Wigner’s theorem [43], this fixes unitarity of the dynamics.

These developments prompted Mackey to formulate his programme for the math-
ematical foundations of quantum mechanics: the reconstruction of Hilbert space
from operationally meaningful axioms on an order-theoretic structure [31]. In 1964,
Piron “almost” completed that programme for the infinite-dimensional case [34, 35].
Full completion was achieved much more recently, by Solèr in 1995 [40].1

Birkhoff and von Neumann coined the term ‘quantum logic’, in light of the devel-
opments in algebraic logic which were also subject to an order-theoretic paradigm.
In particular they observed that the distributive law for meets and joins, which is
key to the deduction theorem in classical logic, fails to hold for the lattice of closed
subspaces for a Hilbert space [3].

Date: February 21, 2013.
1See also the survey [41], which provides a comprehensive overview of the entire reconstruction,

drawing from the fundamental theorem of projective geometry. Reconstructions of quantum theory

have recently seen a great revival [24, 6]. In contrast to the Piron-Solèr theorem, this more
recent work is mainly restricted to the finite-dimensional case, and focuses on operational axioms

concerning how (multiple) quantum and classical systems interact.
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This failure of distributivity and hence the absence of a deduction theorem re-
sulted in rejection of the quantum ‘logic’ idea by a majority of logicians. However,
while the name quantum logic was retained, many of its researchers also rejected
the direct link to logic, and simply saw quantum logic as the study of the order-
theoretic structure associated to quantum phenomena, as well as other structural
paradigms that were proposed thereafter [20, 30].

The quantum logic paradigm. In the Mackey-Piron-Solèr reconstruction, the
elements of the partially ordered set become the projections on the resulting Hilbert
space, that is, the self-adjoint idempotents of the algebra of operators on the Hilbert
space:

(1) p ◦ p = p, p† = p.

Conversely, the ordering can be recovered from the composition structure on these
projections:

(2) p ≤ q ⇐⇒ p ◦ q = p,

and the orthogonality relation can be recovered from it, too:

(3) p ⊥ q ⇐⇒ p ◦ q = 0.

In fact, the reconstruction does not produce Hilbert space, but Hilbert space
with superselection rules. That is, depending on the particular nature of the or-
dering that we start with, it either produces quantum theory or classical theory, or
combinations thereof.

The presence of “quantumness” is famously heralded in order-theoretic terms by
the failure of the distributive law, giving rise to the following comparison.

classical

quantum
' distributive

nondistributive

This translates as follows to the level of operator algebra.

classical

quantum
' commutative

noncommutative

Thus, the combination yields the following slogan.

(4)
distributive

nondistributive
' commutative

noncommutative
This is indeed the case for the projection lattices of arbitrary von Neumann algebras:
the projection lattice is distributive if and only if the algebra is commutative [36,
Proposition 4.16], and has been a guiding thought within the quantum structures
research community.

Categorical quantum mechanics. More recently, drawing on modern devel-
opments in logic and computer science, and mainly a branch called type-theory,
Abramsky and Coecke introduced a radically different approach to quantum struc-
tures that has gained prominence, which takes compositional structure as the start-
ing point [1]. Proof-of-concept was provided by the fact that many quantum in-
formation protocols which crucially rely on the description of compound quantum
systems could be very succinctly derived at a high level of abstraction.

In what is now known as categorical quantum mechanics, composition of sys-
tems is treated as a primitive connective, typically as a so-called dagger symmetric
monoidal category. Additional axioms may then be imposed on such categories to
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capture the particular nature of quantum compoundness. In other words, a set
of equations that axiomatise the Hilbert space tensor products is generalised to a
broad range of theories. Importantly, at no point is an underlying vector-space like
structure assumed.

In contrast to quantum logic, this approach led to an abstract language with
high expressive power, that enabled one to address concretely posed problems in
the area of quantum computing (see e.g. [4, 12, 18, 27]) and quantum foundations
(see e.g. [9]), and that has even led to interesting connections between quantum
structures and the structure of natural language [16, 8].

One of the key insights of this approach is the fact that many notions that
are primitive in Hilbert space theory, and hence quantum theory, can actually
be recovered in compositional terms. For example, given the pure operations of
a theory, one can define mixed operations in purely compositional terms, which
together give rise to a new dagger symmetric monoidal category [37]. We will refer
to this construction, as (Selinger’s) CPM–construction. While this construction
applies to arbitrary dagger symmetric monoidal categories (as shown in [7, 10]),
Selinger also assumed compactness [29], something that we will also do in this
paper. These structures are called dagger compact categories.

Another example, also crucial to this paper, is the fact that orthonormal bases
can be expressed purely in terms of certain so-called dagger Frobenius algebras,
which only rely on dagger symmetric monoidal structure [15, 2]. In turn, these
dagger Frobenius algebras enable one to define derived concepts such as stochastic
maps. All of this still occurs within the language of dagger symmetric monoidal cat-
egories [14]. We will refer to this construction as the Stoch–construction. Similarly,
finite-dimensional C*-algebras can also be realised as certain dagger Frobenius al-
gebras, internal to the dagger compact category of finite-dimensional Hilbert spaces
and linear maps, the tensor product, and the linear algebraic adjoint [42].

Recently [11], the authors proposed a construction, called the CP*–construction,
that generalises this correspondence to certain dagger Frobenius algebras in arbi-
trary dagger compact caterories. At the same time, this construction unifies the
CPM–construction and the Stoch-construction, starting from a given dagger com-
pact category. The resulting structure is an abstract approach to classical-quantum
interaction, with Selinger’s CPM–fragment playing the role of the “purely quan-
tum”, and the abstract stochastic maps fragment playing the role of the “purely
classical”.2

Overview of this paper. In this paper, we take this framework of “generalised
C*-algebras” as a starting point, and investigate the structure of the dagger idempo-
tents. We will refer to these as in short as projections too, since these dagger idem-
potents provide the abstract counterpart to projections of concrete C*-algebras.

We show that, just as in the concrete case, one always obtains a partially ordered
set with an orthogonality relation. However, equation (4) breaks down in general.
More specifically, in the dagger compact category of sets and relations with the
Cartesian product as tensor and the relational converse as the dagger, there are
commutative algebras with nondistributive projection lattices.

2There is an earlier unification of the CPM–construction and the Stoch-construction [38], into
which our construction faithfully embeds, see [11]. However, this construction does not support

the interpretation of “generalised C*-algebras” [11].
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As mentioned above, the upshot of our approach is that it resolves a problem
that rendered quantum logic useless for modern purposes: providing an order struc-
ture representing compound systems at an abstract level, given the ones describing
the component systems. Since we start with a category with monoidal structure, of
course composition for objects is built in from the start, and it canonically lifts to
algebras thereon. Let us emphasise that our framework relies solely on dagger cat-
egorical and compositional structure: the (sequential) composition of morphisms,
and the (parallel) tensor product of morphisms. This is a key improvement over
previous work [22, 26, 23, 28] that combines order-theoretic and compositional
structure.3

2. Background

For background on symmetric monoidal categories we refer to the existing litera-
ture on the subject [13]. In particular we will rely on their graphical representations,
which are surveyed in [39].

Diagrams will be read from bottom to top. Wires represent the objects of the
category, while boxes or dots or any other entity with incoming and outcoming
wires – possibly none – represents a morphism, and their type is determined by
the respective number of incoming and outgoing wires. The directions of arrows on
wires represent duals of the compact structure.

Our main objects of study are symmetric Frobenius algebras, defined as follows.
Let us emphasise that this is a larger class of Frobenius algebra than just the
commutative ones, which previous works on categorical quantum mechanics have
mainly considered.

Definition 2.1. Let (C,⊗, I) be a symmetric monoidal category which carries a
dagger structure, that is, an identity-on-objects contravariant involutive endofunc-
tor † : Cop → C. A Frobenius algebra in C is an object A of C together with
morphisms

: A⊗A→ A : I → A : A→ A⊗A : A→ I

satisfying the following equations, called associativity (top), coassociativity (bot-
tom), (co)unitality, and the Frobenius condition:

= ==

===

= =

A Frobenius algebra is symmetric when the following equations hold:

= =

3The construction in [22] needs the rather strong extra assumption of dagger biproducts, while

the construction in [26] requires the weaker assumption of dagger kernels. The intersection of both
constructions can be made to work, provided one additionally assumes a weak form of additive

enrichment [23].
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A dagger Frobenius algebra is a Frobenius algebra that additionally satisfies the
following equation:

=
( )†

=
( )†

Symbolically, we denote the multiplication of two points p, q : I → A, that is,

◦ (p⊗ q) : I → A ,

as p · q. Also, since the multiplication fixes its unit, and the dagger fixes the
comultiplication given the multiplication, we will usually represent our algebras as

(A, ).

Remark 2.2. In [11], rather than symmetry, the stronger condition of normalisabil-
ity is used. As this condition implies symmetry for dagger Frobenius algebras [11,
Theorem 2.6], the results in this paper apply unchanged to normalisable Frobenius
algebras.

We write FHilb for the category of finite-dimensional Hilbert spaces and linear
maps, with the tensor product as the monoidal structure, and linear adjoint as the
dagger.

Theorem 2.3 ([42]). Symmetric dagger Frobenius algebras in FHilb are in 1-to-1
correspondence with finite-dimensional C*-algebras. �

Recall that FHilb is a compact category [29], that is, we can coherently pick a
compact structure on each object as follows. If H is a Hilbert space and H∗ is its
conjugate space, the triple:(
H, εH : C→ H∗ ⊗H :: 1 7→

∑
i

|i〉 ⊗ |i〉, ηH : H⊗H∗ → C :: |ψ〉 ⊗ |φ〉 7→ 〈ψ|φ〉

)
is a compact structure which can be shown to be independent of the choice of
basis–see [13] for more details. We depict the maps εH and ηH respectively as:

and compactness means that they satisfy:

= = .

Each symmetric dagger Fobenius algebra also canonically induces a ‘self-dual’
compact structure. The cups and caps of this compact structure are given by:

:= := ,

and one easily verifies that it follows from the axioms of a symmetric Frobenius
algebra that the required ‘yanking’ conditions hold:

= = .
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3. Abstract projections

A projection of a C*-algebra is a *-idempotent. In this section we will recast this
definition in light of Theorem 2.3, that is, we will identify what these projections
are when a C*-algebra is presented as a symmetric dagger Frobenius algebra in
FHilb, as in [42].

We claim that the projections of a C*-algebra arise as points p : I → H satisfying:

(5) =

pp p

=
p

where the symmetric dagger Frobenius algebra is the one induced by Theorem 2.3.

Note that the first condition is simply idempotence of -multiplication of points,
and the second one is self-conjugateness with respect to the compact structure
induced by the symmetric dagger Frobenius algebra. Symbolically, we denote this
conjugate of p as p∗.

A C*-algebra is realised as a symmetric dagger Frobenius algebra as follows.
Each finite dimensional C*-algebra decomposes as a direct sum of matrix algebras.
These can then be represented as endomorphism monoids End(H) in FHilb, which
are triples of the following form:(
H∗⊗H , 1H∗ ⊗ ηH⊗ 1H : (H∗⊗H)⊗ (H∗⊗H)→ H∗⊗H , εH : C→ H∗⊗H

)
,

Diagrammatically, for an endomorphism monoid the multiplication and its unit
respectively are:

The elements ρ : Cn → Cn of the matrix algebra are then represented by underlying
points:

pρ := ρ : C→ (Cn)∗ ⊗ Cn

By compactness, each point of type C → (Cn)∗ ⊗ Cn is of this form. By Theo-
rem 2.3 we know that all symmetric dagger Frobenius algebras in FHilb arise in
this manner.

We can now verify the above stated claim on how the projections of a C*-algebra
arise in this representation. For these points pρ the conditions of equation (5)
respectively become:

ρ ρ
=

ρ

ρ
= ρ =

ρ†

=
ρ†

that is, using again compactness, ρ ◦ ρ = ρ = ρ†, i.e. idempotence and self-
adjointness.
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We can now generalise the definition of projection to points p : I → A to

arbitrary symmetric dagger Frobenius algebras (A, ) in any dagger symmetric
monoidal category.

Definition 3.1. A projection of a symmetric dagger Frobenius algebra (A, )
in a dagger symmetric monoidal category C is a morphism p : I → A satisfying
equations (5).

The next section studies the structure of these generalised projections of abstract
C*-algebras.

Before that, we compare abstract projections to copyable points. These played
a key role for commutative abstract C*-algebras, because they correspond to the
elements of an orthonormal basis that determines the algebra [15]. However, as we
will now see, in the noncommutative case, there simply do not exist enough copyable
points (whereas the projections do have interesting structure, as the next section
shows). Recall that a point x : I → A is copyable when the following equation is
satisfied.

(6) =

x x x

Lemma 3.2. Copyable points of symmetric dagger Frobenius algebras are central.

Proof. Graphically:

x

=

x

x= x = xx =

x

=

x

.

The middle equation follows from symmetry of (A, ). �

Let us examine what this implies for the example of A = (Cn)∗ ⊗ Cn in FHilb

above. Equivalently, we may speak about n-by-n matrices, so that becomes
actual matrix multiplication. Because it is well known that the central elements of
matrix algebras are precisely the scalars, any copyable point is simply a scalar by the
previous lemma. But substituting back into (6) shows that the only scalar satisfying
this equation is 0 (unless n = 1). That is, no noncommutative symmetric dagger
Frobenius algebra in FHilb can have nontrivial copyable points. This explains why
we prefer to work with (abstract) projections.

4. Quantum logics for abstract C*-algebras

Definition 4.1. A zero projection of (A, ) is a projection 0: I → A satisfying

0 · p = 0

for all other projections p : I → A of (A, ).

We will assume that an algebra always has a zero projection.

Definition 4.2. An orthogonality relation is a binary relation satisfying the fol-
lowing axioms:

• symmetry : a ⊥ b ⇐⇒ b ⊥ a ;
• antireflexivity above zero: a ⊥ a =⇒ a = 0 ;
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• downward closure: a ≤ a′, b ≤ b′, a′ ⊥ b′ =⇒ a ⊥ b .

Lemma 4.3. We have

=

Proof. First, note the following stardard equation for Frobenius algebras:

= = =

Then, the result follows from associativity:

= = = = .

�

Lemma 4.4. For projections we have:

(i) (p · q)∗ = q∗ · p∗ ;
(ii) If p · q is a projection, then p · q = q · p.

Proof. (i) We have

(p · q)∗ =


qp

∗ =
p q

=

p q

=

pq

= q∗ · p∗ ,

where the middle equation follows from Lemma 4.3. (ii) If p · q = r then, by
self-conjugateness of projections and (i), q ·p = q∗ ·p∗ = (p ·q)∗ = r∗ = r = p ·q. �

Theorem 4.5. In a dagger symmetric monoidal category, projections on a sym-
metric dagger Frobenius algebra with a zero projection are partially ordered and
come with an orthogonality relation.

Proof. The order is defined as p ≤ q ⇐⇒ p · q = p. Reflexivity follows by the
idempotence of projections. If p · q = p and q · p = q then by Lemma 4.4 (ii)
we have p = q, so the order is anti-symmetric. If p · q = p and q · r = q then
p · r = p · q · r = p · q = p, so the order is transitive.

Orthogonality is defined as p ⊥ q ⇐⇒ p · q = 0. Symmetry follows by Lemma
4.4 (ii) and anti-reflexivity above 0 by idempotence of projections. If p · p′ = p,
q · q′ = q and p′ · q′ = 0 then p · q = p · p′ · q′ · q = p · 0 · q = p · 0 = 0 where we twice
relied on Lemma 4.4 (ii). �

Remark 4.6. The zero projection guarantees that the partially ordered set has a
bottom element.

Given a symmetric dagger Frobenius algebra (A, ), we will denote the partial

order and orthogonality of the previous theorem as Proj(A, ). The following
two examples correspond to the “pure classical” and the “pure quantum” in the
“concrete” case of FHilb.



COMPOSITIONAL QUANTUM LOGIC 9

Example 4.7. Commutative dagger special Frobenius algebras (H, ) in FHilb

correspond to orthonormal bases of H [15]. For Proj(H, ), we obtain the atom-
istic Boolean algebra whose atoms are the 1-dimensional projections on the basis
vectors.

Example 4.8. If H is a finite-dimensional Hilbert space with any chosen compact
structure on it, then L(H) = (H∗⊗H, ) is a symmetric dagger Frobenius alge-
bra in FHilb. For Proj(L(H)) we obtain the usual projection lattice of projections
H → H, the paradigmatic example in [3].

Remark 4.9. In [11], it is shown that algebras of the form (A∗ ⊗ A, ) are
those that realise Selinger’s CPM–construction as a fragment of the encompassing
CP*–construction. The commutative dagger special Frobenius algebras were the
ones used to underpin abstract categories of stochastic maps in [14].

Proposition 4.10. Let (A, ) be any symmetric dagger Frobenius algebra in

any dagger symmetric monoidal category. For p, q ∈ Proj(A, ), the following
are equivalent:

(a) p and q commute;

(b) p · q ∈ Proj(A, );

(c) p · q is the greatest lower bound of p and q in the partial order Proj(A, ).

Proof. Unfold the definitions of Theorem 4.5. �

In general, every commutative monoid of idempotents is a meet-semilattice with
respect to the order p ≤ q ⇐⇒ p·q = p, and if it is furthermore finite, then it is even
a (complete) lattice. As shown in [14], in this case the notion of an idempotent can
be generalised to arbitrary types A→ B. Considered together for all algebras, this
always yields a cartesian bicategory of relations in the sense of Carboni-Walters [5].
The conclusion we draw from the previous proposition is the following: considering
noncommutative algebras obstructs the construction of the categorical operation of
composition.

5. Composing quantum logics

Given two symmetric dagger Frobenius algebras we can define their tensor as
follows.

(A, )⊗ (B, ) := (A⊗B, )

It is easily seen to inherit the entire algebraic structure. So we can define a compo-
sitional structure on the corresponding partial orders with orthogonality as follows.

Proj(A, )⊗ Proj(B, ) := Proj(A⊗B, ) .

By a bi-order map we mean a function of two variables that preserves the order in
each argument separately when the other one is fixed (cf. bilinearity of the tensor
product).

Theorem 5.1. The following is a bi-order map.

−⊗− : Proj(A, )× Proj(B, )→ Proj(A, )⊗ Proj(B, )

(p, q) 7→ p⊗ q
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If the monoidal structure moreover preserves zeros, that is, if 0A is a (necessarily
unique) zero with respect to A then for all q : I → B we have that 0A ⊗ q is a zero
with respect to A ⊗ B, then the map − ⊗ − also preserves orthogonality in each
component.

Proof. If p · p′ = p then:

(p⊗ q) · (p′ ⊗ q) =
p′p qq

=
p′p qq

= (p · p′)⊗ (q · q) = p⊗ q .

If p · p′ = 0 then (p⊗ q) · (p′ ⊗ q) = (p · p′)⊗ (q · q) = 0A ⊗ q = 0A⊗B . �

Remark 5.2. The assumption of the existence of zero projections as well as the
assumption of monoidal structure preserving zeros, are both comprehended by the
single assumption of the existence of a “zero scalar”, that is, a morphism 0I : I → I
such that for any other morphisms f, g : A→ B we have that 0I ⊗ f = 0I ⊗ g. We
can then define zero projections 0A := λA ◦ (0I ⊗ 1A) ◦ λ−1A where λA : A ' I ⊗A.

6. Commutativity versus distributivity

Having abstracted projection lattices to the setting of arbitrary dagger symmetric
monoidal categories, we can now consider other models than Hilbert spaces.

We will be interested in the category Rel of sets and relations, where the
monoidal structure is taken to be Cartesian product, and the dagger is given by re-
lational converse. This setting will provide a counterexample to equation (4). Here,
symmetric dagger Frobenius algebras were identified by Pavlovic (in the commu-
tative case) and Heunen–Contreras–Cattaneo (in general) in [33] and [25], respec-
tively. They are in 1-to-1 correspondence with small groupoids. As it turns out,
even in the commutative case, groupoids may yield nondistributive projection lat-
tices.

Proposition 6.1. Let G be a groupoid, and (G, ) the corresponding symmetric

dagger Frobenius algebra in Rel. Elements of Proj(G, ) are in 1-to-1 correspon-
dence with subgroupoids of G, i.e. subcategories of G that are groupoids themselves.

Proof. This follows directly from [25, Theorem 16]. �

It immediately follows that in Rel, like in FHilb, the abstract projection lattice
is a complete lattice, even though we are not dealing with finite sets.

Corollary 6.2. If (G, ) is a symmetric dagger Frobenius algebra in Rel, then

Proj(G, ) forms a complete lattice.

Proof. The collection of subgroupoids is closed under arbitrary intersections. �

In fact, for our counterexample to equation (4), it suffices to consider groups (i.e.
single-object groupoids). In this case abstract projections correspond to subgroups,
and it is known precisely under which conditions the lattice of subgroupoids is
distributive, thanks to the following classical theorem due to Ore. A group is
locally cyclic when any finite subset of its elements generates a cyclic group.

Theorem 6.3. The lattice of subgroups of a group G is distributive if and only if
G is abelian and locally cyclic.
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Proof. See [32, Theorem 4]. �

Perhaps the simplest example of an abelian group that is not locally cyclic is
Z2 × Z2. It has three nontrivial subgroups, namely:

a := Z2 × {0};
b := {(0, 0), (1, 1)};
c := {0} × Z2.

But evidently distributivity breaks down: a ∧ (b ∨ c) = a 6= 0 = (a ∧ b) ∨ (a ∧ c).
By Theorem 6.3, we know that the converse (distributive =⇒ commutative)

holds for groups, but what about for arbitrary groupoids. Consider the groupoid
with two objects x, y and the only non-identity arrows f : x→ y and f−1 : y → x.
The lattice of subgroupoids has the following Hasse diagram:

{1x, 1y, f, f−1}

{1x}

{1x, 1y}

{1y}

∅
which is indeed distributive, but f ◦ f−1 6= f−1 ◦ f . Thus we have proven the
following corollary.

Corollary 6.4. For symmetric dagger Frobenius algebras (G, ) in Rel:

(G, ) is commutative
6 +3

Proj(G, ) is distributive.6ks

�

Let us finish by remarking on the copyable points in Rel. As in FHilb, they
differ from the projections. But unlike in FHilb, where there are only trivial
copyable points, copyable points in Rel are more interesting, for similar reasons as
the above corollary.

Lemma 6.5. If (G, ) is a symmetric dagger Frobenius algebra in Rel corre-
sponding to a groupoid G, then its copyable points correspond to the connected
components of G.

Proof. A point x of G in Rel corresponds to a subset X ⊆ Mor(G). Copyability
now means precisely that

X2 = {(g, fg−1) | f ∈ X, g ∈ Mor(G),dom(f) = dom(g)}.

Hence if f ∈ X, and g ∈ Mor(G) has dom(f) = dom(g), then also g ∈ X. Because
G is a groupoid, this means thatX is precisely (the set of morphisms of a) connected
component of G. �
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7. Further work

From the point of view of traditional quantum logic, a number of questions arise,
in particular about which categorical structure yields which order structure:

• when is the orthogonality relation an orthocomplementation?
• when do we obtain an orthoposet?
• when do we obtain an orthomodular poset?
• when is the partial order a (complete) lattice?
• when is this lattice Boolean, modular or orthomodular?

Conversely, what does the lattice structure say about the category? An important
first step is the characterisation of dagger Frobenius algebras in more example
categories besides FHilb and Rel.

There is a clear intuition of the comultiplication of the algebra being a “logical
broadcasting operation” in the sense of [17]. A more general question then arises
on the general operational significance of the partial ordering and orthogonality
relation constructed in this paper.

One of the more recent compelling results which emerged from quantum logic
is the Faure-Moore-Piron theorem [19] on the reconstruction of dynamics from the
lattice structure together with the its operational interpretation. A key ingredient
is the reliance on Galois adjoints. Does this construction have a counterpart within
our framework, and its (to still be understood) operational significance?
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