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Abstract— Spatial knowledge constitutes a fundamental com- properties. The idea of this paper, is to take a step back
ponent of the knowledge base of a cognitive, mobile agent. This and see how a rigorous formal treatment can lead the way

paper introduces a rigorously defined framework for building — t4yards a powerful spatial representation for localizatiod
a cognitive spatial map that permits high level reasoning navigation

about space along with robust navigation and localization. Our o . .
framework builds on the concepts ofplaces and scenes expressed The contribution of the work presented here is a cognitive
in terms of arbitrary, possibly complex features as well as mapping framework that builds on the conceptsptdces

local spatial relations. The resulting map is topological and andscenesxpressed in terms of arbitrary, possibly complex
discrete, robocentric and specific to the agent’s perception. We features as well as local spatial relations. The resulting

analyze spatial mapping design mechanics in order to obtain . - . . o
rules for how to define the map components and attempt to MaP 1S topological and discrete, robocentric and specific to

prove that if certain design rules are obeyed then certain map the agent's perception. We analyze spatial mapping design
properties are guaranteed to be realized. The idea of this paper mechanics in order to obtain rules for how to define the map

is to take a step back from existing algorithms and literature  components and attempt to prove that if certain design rules
and see how a rigorous formal treatment can lead the way g6 gpheyed then certain map properties are guaranteed to be

towards a powerful spatial representation for localization and lized. M t lizati d iaati
navigation. We illustrate the power of our analysis and motivate reaiized. Moreover, we sUuggest localizaton and navigatio

our cognitive mapping characteristics with some illustrative ~Strategies that can be applied in this framework. Finally, w
examples. illustrate the power of our analysis and motivate our cagmit

mapping characteristics with illustrative examples.
|. INTRODUCTION The paper is organized as follows: after a general overview

An autonomous mobile agent needs to represent its si@t the framework, Section Ill presents the formal definition
roundings in order to reason an plan actions within it. Theéf the map and its components. Then, Section IV gives a
typical spatial knowledge representations used in mobil@ethod for expressing the map through a set of functions
robotics are purely metrical and rely on information exteelc @nd provides rules that must be obeyed in order for the
from simple, but accurate metric sensors. However, as tfidap to be valid. Sections V and VI propose methods for
robots are designed to perform human-like tasks in momerforming navigation as well as probabilistic localipati
and more complex and dynamic environments [3], [8], [14]within the framework. The paper concludes with a summary
metrical global maps become harder to control and obser@®d a brief discussion.

[5]. Moreover, it is not clear that the level of detail offdre

by such maps is necessary, or even desirable, when the agent
is a cognitive system intended to interact with the world in The role of a cognitive map is not to represent the world
a human-like way [5], [14]. It is commonly accepted [5],8S accurately as possible, but rather to allow the agent
[8], [9], [14], that the spatial knowledge of a cognitive age to act in an environment despite uncertainty and dynamic
should be abstracted in order to make it robust to dynami@riations. Such a map does not need to provide perfect
variations, easier to maintain and useful for spatial re@sp global consistency as long as the local spatial relatiors ar
At the same time, the agent should be able to exploit sensdpyeserved with sufficient accuracy. In our framework, the
information that might be complex and non-metric [3], [8],MaP is represented as a collection of basic spatial entities
[9], yet reflects crucial aspects of the environment. calledplaces _

This paper is motivated by desire to create a powerful A Place is defined by a subset of values of arbitrary,
cognitive mapping framework, which is suitable for cograti POSSibly complex, distinctive features and spatial refei
conceptualization, encompasses complex spatial infiomat reﬂe_ctln_g the structure of the environment. The fe_:atures
and provides robustness against natural changes in the 8fevide information about the world and can be perceived by
vironment, while maintaining a description that permits-fo @1 agent when at that place. In this sense, the places build on
mal proofs and derivations. Although the literature camtai the perception of the agent and are based on its perceptual
many algorithms for spatial mapping, there is little work orfapabilities. Additionally, we introduce the concept of a

the formal analysis of their fundamental requirements angfenewhich facilitates the generation of places by providing
groupings of similar feature values. In addition to this, a
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II. AN OVERVIEW OF THE FRAMEWORK



a cognitive map. First, the map is defined in terms of thés a vector representing local descriptors for fiiestrongest
agent's perception of space and adapts to its perceptuaypoints or the global descriptor.

capabilities. Second, the perceived features can be abstra Given the definition of features, we can now introduce the
and non-metric and describe for instance visual propeoties feature space
the world. In this sense, the map is subjective and robaoicentr

as the robot's observations do not have to be expressed in

terms of any objectively defined quantities or any globain which each tupl€ci, ..., (,,) of the feature valueg; =
coordinate system. The map is fragmented (consists of fa(x,¢) corresponds to a single point. We are now ready to
set of independent places), topological and does not requidefine the concept of scene

F=F1xFax...xFn,, (2)

maintaining global spatial consistency. Definition 1: We introduce a sefS;}; s, of scenessS;
This framework is designed so that a robot can buildefined as
from the bottom-up a cognitive map of the environment Si={(C1,--..Gu,)} CF (3)

which follow: rtain nitive principles. The i is tth

ch Tollows cerfain cogniive principles € idea is asuc:h thatv;S; # 0 andV,+;S; N'S; = 0. In other words,
such principles can actually lead to better performance Isncenes are (non-overlapping) collections of tuples otk
localization, navigation and loop-closing for robots nrayi bping P

in large-scale environments; e.g. see the practical d ns that could be perceived by the robot. Then, it is possible to

tions in [5], [8]. The work of [5] involves a similarly desigu specify the extent of a scene in the configuration space at

mapping framework to the one analyzed in this paper angne

motivates the need to take a step back and analyze what Cs,(t) = {x € C: (fi(x,t),..., fo,(x,t)) €S} (4)

des'fab'e properties of t.he cognitive map can be. p_rpvab is important to note that no assumptions need to be made
obtained. The next section provides a formal definition o

the place map and each of its components. about the prope_rties_ or strl_Jcture of _the _fegture functitpns i
order to determine if a point € C is within the spatial

[1l. DEFINITION OF THE PLACE MAP extent of a scene,; at timet. In particular, a closed-form

expression is not required as long as the feature values can

be obtained. This has important practical implicationstas i

fi(x,t):C xR — F, € R" (1) permits the use of more complex features.

The definition of scenes gives raise to a segmentation of

whereC represents theonfiguration spacef the agent (e.g. ) : .
C — R? if only position in a 2D metric space is consideredthe configuration space. Depending on the features, hoywever

andC = R? x SO(1) if the value of features can depend 0”:25 ;iﬂ(rjn?hn;flgg:s?ﬁtlen;tl;ffdotrrt]ii: I?)?ttlf?:erse lE;ttli(c)':lrllT(hggvsv
both position and heading),€ R represents time, and; is gep P

- . edge. Intuitively, the definition of scenes leads to a dorisi
the range of values of the featuife. Features thus provide . . . :
) . . . of metric space into regions based on properties such as
information about the world as it would be perceived by an

agent located at the configuratiahe C. Each feature can appearance. As SUCh’. two distant discpnnected region'd' coul
be time-varying. share S|m|I_ar_ propertles (see e.g. F|gu_re 1(a)). Addlilqna

An example feature-type is Euclidean distangég, ) — power to distinguish betwee_n such_ regions can_be attained
| —yl|2, ith 7 = [0, 00), which maps every pointig o “SiNd knowledge about spatially neighboring regions.

a value dependent on how fare C is to a specific landmark Consider a se{r;};=, of spatial relationsr; defined as
located aty € C. Features do not necessarily have to describe ri(x,t):CxR—-R; € R™, (5)

metric properties of the world (such as distance or size

Consider for instance a visibility-type feature for whigh = JVheTe Ri "cf the 'rangg of va'llues of the relation. Each
{0,1}, which relates every pose € C to a binary output spatial relationr; is defined with respect to the set of scenes

depending on whether or not a specific landmark is visible i i} and describes the spatial relation of the painin
e configuration spacé at timet¢ to some or all of those

that pose. Another example would be a featfirer, t) with . e S
7, :p[o 1], which represgnts the average hﬁg pe)rceived [Reenes. Relations permit discriminating between poiritggus

the robot’s visual sensor, or even the full HSV color spac r%gion-based concepts such as the region connection calcu-
in which caseZ; — [0, 1] ><’ [0,1] x [0, 1]. Such features ma ?Us, RCC [10], often applied in qualitative spatial reasoni

; v ’ T L y Moreover, in many cases, the values of relations can be
be time-varying e.g. due to changes in illumination.

. . estimated in practice by performing a dynamic action in
Other, more abstract, feature types are possible in thj . . ) .

. the environment (e.g. the agent moving between points in
framework. An example could be features typically em-

ployed in visual topological localization [3], [5], [9] shc configuration space that correspond to different scenes).
. . ) Consider, for instance, the adjacency relation for which
as clouds of image keypoints characterized by the loc

SIFT [7] or SURF [2] descriptors. Features such as the “gistw’ ie_C icl)fh}é ;Z?Oigjacsgﬁyb;egg)g?é; ti)n c;feriscg?tthe
of a scene [13] (principal components of outputs of spe;!tiaIIRcc_8 10 di teéSC ¢ I ted

oriented image filters) or other global image features appli [10] predica (externally connected) as

for visual place classification [9] could also be used in this rs, (T, t) = \/m € Cs, NEC(Cs,,Cs,)- (6)
framework in a straightforward manner. In such cgsér, t) S;

ng

Consider a seff;},’, of featuresf; defined as



Alternatively, a relation could be defined based on the
minimum distance between a regiciz, and a pointz in
the configuration space as follows

rs,(@,t) = min |z -yl ™

i

S2 Yellow P2

We have now defined scenes and spatial relations, the main
building blocks of the spatial entities constituting ourpna
Analogously to the feature space, we can introducepthee
descriptor space

(a) Map of the environment and metric extents of places.

81 82 83 Sl

D=FxRixRax...xRp,, (8) (b) Scenes defined in the feature space.

in which each tupleD = (Ci,...,Cn;,p1,---,pn,) Of the Ry
feature values and relation valugps= r;(x, t) corresponds
to a single point.

Definition 2: Let us define theplace mapas a set

M=A{P1,Pa,..., P, } 9)
of placesP; defined as
(c) Places defined in the descriptor space.
Pi={D}CD (10)
Fig. 1. lllustrative example of an environment and definitiohplaces in
such thatv;,P; # 0 andV,«;P; N P; = 0. the descriptor space.

In other words, similarly to scenes, places are groups
of values of features; however, they encompass additional
knowledge about the structure of the world encoded in théefined by the range of the hue values &g.= [0, 255].

values of relations. If we divide the feature space into regions as presented
As a result, it is possible to specify the extent of a plac# Figure 1(b), we can differentiate between three scenes:
in the configuration space at tinieas follows red (51), yellow (S:) and green &;). We can clearly see
that the scend&; corresponds to two separate rooms which
Cp.(t) = {zelC:(film1),.... fo,(x,1), could be distinguished if we consider their relations toeoth
ri(x,t), ... 1o, (2, t) € P} (11) scenes. Let us define an adjacency relation with respect
to the sceneSs, ri(x,t) : C x R — R; = {1,0} as

Note that not every point < C is necessarily assg;pne_d 0 explained in Section lll, and create the place descriptacsp

a place?;. The set of point2(t) = C / U{Cp, ()12 1S p" " 27 "1 that space, we can create four non-

denotedunassigned spacat timet¢. Again, no assumptions lapDi | by dividing th :
have to be made about the structure of the functions usg%fer apping place$ -7, by dviding the scend; into two
aces, one of which is adjacent to the sce&feand the

Zloet(e)z?:r?iweti?ea va:)lzjne; gfcf?stvl;irteh?na;ﬂg ;elgtggn:xizn?rgfe; ther is not. This division is reflected in the clustering o t
. P P descriptor space presented in Figure 1(c).

place at timet.

Let us discuss the properties of places in the configuration V. SPACE SEGMENTATION USING APPLICABILITY

space. Places are defined exclusively in terms of the valuesthe division of the feature space and descriptor space that
of features and spatial relations that are in functionalt:rmh gives rise to scenes and then to places can be expressed in
to (z € C,t € R). Moreover, places do not overlap in themany different ways. This section describes the segmentati
descriptor space. As a consequence, places do not overlaginterms of real-valued functions over space, which encode
configuration spacet;; icr Cp, (t) N Cp, (1) = 0. the degree of belonging to the different places or scenes.
Also, if features and relations are time-invariant, the Thjs view imposes certain restrictions on the functions and
extents of places will be time-invariant as well. Typicatlye  thereby on the features and relations used, but given that
nature of relations will mean that they are time-invariasit aihese are satisfied it is shown that a consistent segmentatio
long as the features are. Note that if the configuration spaggsits. As will be demonstrated in Sections V and VI, this
reflects both position and heading, the places might spreggormation can also be used to support both navigation and
across several positions and only a subset of headings. |ocalization. We describe these functions both for scenes a

A. Example 1 - Abstract Features and Relations places, denoting the feature/descriptor space (as thewagse

be) by A, and an arbitrary point in that space by The

Consider a simple example of a small environment pre- -
P P P feasoning is analogous for both cases.

sented in Figure 1(a) consisting of 4 rooms characterized by : g N . ,
the color of the floor. We define a single featytgx, t) : e\f/i\aee(;ntargduce a se{g;};2, of applicability functionsg;
C xR — F; that corresponds to the hue of the floor color a

the locationz € C = R2. Then, the feature space is simply gi(A): A— G, C (RTU{0}), 12)



Definition 3: Given the set of applicability functions If a; are piece-wise analytic functions and each applica-
{gi}2,, we define a clustek; C A as bility function g, is analytic on.A, then y; is piece-wise
., analytic on a partitioning o (where the partitioning is a
Ki={A€A:gi(4) > g;(4) > 0,¥i # j} (13) funcgon of thepdomainsgon wélichi are anzlytic). ’
and note especially that(4) = 0= A ¢ K,. The requirement thak;, Vi are real analytic functions
Definition 3 suggests that we can think of the functignsd) on all of C is sufficient but not necessary. In some cases
asmeasure®f how applicable a point is to the cluste#C;.  this requirement is too restrictive; e.g. it prohibits bina
The clusters are non-overlapping. V,.;K;NIC; = 0. We  (true/false) type features. The following result provides
now examine the requirements this places on the spatiallseful augmentation.
defined feature and relation functions. Proposition 2: Suppose that; = (x¢ + x¢)x? and y; =
To do this let us introduce an additional function (Xgl + X,‘})X?, where x{ and xj are real analytic functions
N o onC, andx¢ and ¢ are piecewise constant ¢h Moreover,
Xi(@) = gi(4d) = gl (@,1), .., an, (@,1)) (14) X! and y! are functions taking values if0,1} over allC.
which represents the applicability over the configuratiomssume thaty? — X} # C whereC is a constant. Then
space. (Here, the; may be features only or features andthe segmentation of space into places is consistent, as per
relations, depending on whethgtr = F or A = D.) As a Definition 4.

result, it is similarly possible to specify the extent of aqs Proof: Note first that with no loss of generality we
in the configuration space at tinteas follows can ignore the effect of? and x? and consider only the
Cr.(t) = {zeC:yi(m)>x;(x)>0, Vi#j} remaining functions.xf is a constant function = C,
N = () = 0.3 15) on each open domaib; ., where{J, cl(D; )} = C, and
Q) = {=:xi(x)=0,vi} ( analogously for . Then,x; —y; is a piecewise real analytic

However, this leaves parts @f undefined wherever ng;  function on each non-empty;; . s £ D; ,ND; 5, andy; —
is greater than any other. If this occurs anywhere but on apy = x{ — xj + Co — Cg 0n Dy 4 5. The zero set of this
infinitesimal borderline between places/scenes, it remtss function can only have a non-zero Lebesgue measuye-f
an ambiguity. To avoid this we introduce the following: X7 is constant, which is disallowed. |
Definition 4: Let ;(S) > 0 denote the Lebesgue measure The last proposition accounts for discrete-valued feature
of the setS and A the set of all points not defined by Eq. 15.types to be used in admissibility functions as a special
If u(A) =0, the spatial segmentation dy;} is said to be case (given that they are accompanied by a continuous
consistent component).
Proposition 1: Suppose thak; is a piecewise analytical  Features of the typg;(x,t) : C — {0, 1} are useful since
function, i.e. thaty; = {xi,a, if x € D; o}, Vo Wherea is  so-called visibility features are of this type. That is, anpo
a countable index and where eagh, is a real analytic y* e C is either visible {) or not visible () from another
function on its open domai; , for all . Assume that pointx € C. The support of a visibility featuré; (x,¢) : C —
w(Die) > 0 and {{J, cl(D; o)} = C wherecl(D; ) is  {0,1} belongs to the class of so-called star-shaped sets; e.qg.
the closure ofD;, in C. In the same way, lety;, = see [4].
{xj.8, if x €Djs},Vs in the same way. Now assume that |n the final corollary, we show how two useful classes
xi andy; are not identical on any entire intersection of theiof feature functions can be combined in an applicability
analytical pieces (except where both are identically zero) function to provide a consistent segmentation of space:

VavB : Do ND;p # 0 = Corollary 2: Assume that
= xi(x) Zx;(x)Vxi(x)=x;x)=00onD; ,ND, 3

If the above holds for all pair$ # j, the segmentation of
space into place via Eg. 15 is consistent, as per Definition 4.
Proof: The functiony; — ;, is real and analytic on W_here a_,l; are binary-valu_e-d features from,_ and a{ are

each non-empty;; » 5 £ ;. , N D, 5 Because of this, on Pl€ce-wise constarzt functions taken froi(2 is any logical
D;;..5 the zeros ofy; — y; are isolated unlesg; andy; are  €Xpression on the;. Assume tha — xj # C' whereC'
equivalent functions, which is disallowed by the assumptio IS @ constant. Then the segmentation of space into places is
except where both functions are identically zero. Thus, thePnsistent, as per Definition 4.
Lebesgue measure of the zero setyef— x; is zero (the
borders of theD; , 3 also have measure 0). The propositio
follows immediately. [ ] As a theoretical illustration, consider a small office with
A simple, but useful, corollary of this proposition is asthree desks (see Figure 2(a)). The desks each have a com-
follows. puter screen and one additionally a framed picture. They are
Corollary 1: The segmentation of space into places vigartially surrounded by partitions which block the view.
Eqg. 15 is consistent, as per Definition 4,xf and x; are Four places have been assigned, all defined by different
real analytic functions on the domaih andy; # x; onC. features { omitted for clarity):

Xi = Qi ({afbrear) | D Ninad +x¢ (16)
keMa

et Example 2 - Distance and Visibility Features



- 7 — V. NAVIGATION
= = 40 * =8 The places discussed in Section Il provide the segmen-
3 : 3
4

tation of space into discrete units, and allow an agent to

) ok ! localize itself in the environment, by evaluating places’
1 ! 8 descriptor sets at its current location using its sensorsaf

B \ L \ - must, besides allowing for localization, provide a means fo
(a) Configuration 1 (b) Configuration 2 navigating through it. We do this in terms phths which

represent the (potential) movement from one (start) place t

Fig. 2. Two configurations of an office and their consequeat@lregions. gnother (goa|) pIace. Just as places are defined by dessripto
so each path is associated witlpath precept

Definition 5: Let S represent the space of low-level sensor

« P - “Close to door object” inputs available to the agent. Similarly, I€ represent the

X1(®) = faoor. (x) = m o space of low-level control outputs. Then, a path precept is a
« P, - “Close to picture and"picture visible” mapping from a low-level sensory statec S to a control
xz2(x) = fpi%(x) * fpice (x) = Ipic, (x) - m outputo € O:
« Ps - “Close to computer b and in front of desk” TS O (17)
X3(®) = faesk; (T) - feompa, (T) A path is always associated with exactly one precSgs
= faesk, (T) - m of course given by the system instantiation, and may include
» P, - “Close to computer ¢ and computer c visible”  virtual sensor modalities, such as local metric maps buét o
X4(®) = feomps, (T) * feomps, (T) a period of time. It is in general a richer representatiomtha
= feomps, () - m the feature spac#, and allows for low-level considerations
Here, such as obstacle avoidance and other reactive behaviours.
o The above definition is very general and admits path
Foien (®) = { Lif picture unoccluded frome precepts that produce any sort of output. We therefore
ey 0 otherwise distinguish betweeproper andimproper path precepts.

Definition 6: A proper path precept will, if applied con-
tinuously while moving from the start place of the path, grin
the agent to the goal place.

1 @€ Xyesi Note that, in an unpredictable real-world applications thi
Jaesr, (@) = { 0 otherwise property of path precepts is a random variable; a precept
. ) . . might be more or less proper depending on its success rate.
whereX,.i IS a region projecting straight outward from theAIso, a dynamic world implies that path precepts may cease

edge of the desk — cf. Figure 2(b). . to be proper due to changes in the environment.
These applicability functions fulfill the requirements of

Proposition 2, as the radial components have different ceA- Principles for path precepts

ters. It is assumed that there is a threshold for the applica- The fundamental attribute of a proper path precept is that
bility functions, below which a point is not considered parthe output brings the agent to the place to which the path is
of any of the places (hence the circular borders). In effecleading. Places, in turn, are defined in terms of descriptors
the regions belonging to the four places “compete” for th@hese two facts give rise to the following basic rule for
space and the best match wins out at each point. creating proper path precepts:

These features exemplify the different sorts of functional Remark 1:A path precept should be defined such that
aspects that define places to a cognitive agent. In a reattwoit, given a sensory state, produces a control output that
scenario, places would likely be characterized by a largés expected to increase the relative (compared to those of
number of features combined, for increased robustness. Fswmpeting places) applicability function of the goal place
the same reason, the granularity of places would typically Thus, the form of the precept naturally arises from the
also be finer. Also, since the features would be selectetbscriptor that define places: A precept that keeps success-
autonomously by a robotic agent their definition might bédully increasing the applicability function must eventyal
less human-comprehensible than the above selection, Stittach the goal place; conversely, the goal cannot be reached
this discrepancy will ideally be kept small, so that the gpat without increasing it. Obviously, the method of accom-
conceptualization of human and robot are invariant to simil plishing this can vary. Local hill-climbing approaches are
types of features. general, but suffer from local maxima, whereas global maxi-

In Figure 2(b), the same office is shown after a rearrangenization though more robust requires more information and
ment of the desks. Note how the regions, though their shagephisticated control. The actual control policy choseh wi
and size have changed, remain well-defined and how tliepend on available sensory information, control outpartd,
cognitively conceptualized places (in the sense of havingfficiency considerations.
functionally conceived features) maintain their semasitc Remark 2:If the instantiation permits applicability to be
nificance despite having entirely different metric promst evaluated outside of the immediate surroundings of the

and analogously foffcomp2, and feomps,. The “in front of”
feature is also binary:



capacity to approach,;. except by a straight line, then this
e path precept is not proper to the paths frém and P, to

Po.
"‘G In the same way, the natural path precept frém to
P3 (moving toward computer b) is not proper to that path.
G Figure 3(b) shows a graph containing the paths which have
L proper precepts. Note that the path frgPn to P, is more
(a) Paths leading from place 1 to (b) Place graph for the office. proper than its reverse.
places 2 and 4. The distinction between proper and improper path precepts
Fig. 3. Examples of paths. is not clear-cut even in this simple example: there are point
in P3 from which the picture irP; is visible, and points in
P, where the computer iP, cannot be seen.
current configurationz € C and if the control output is  If the room is rearranged, as in Figure 2(b), then while the
of an abstraction level that admits set-pointCinthen the path precepts remain the same (being defined as in Remark 2)
following specialization of the above rule can be made: they will no longer be proper or improper to the degree
> indicated by the graph in Figure 3(b). An agent relying on

(18) that information to navigate in the office may fail to do so,
but can update its representation by invalidating paths tha
wherex* is the set-point for the agent's controllérjs the fail and creating new ones from the unchanged precepts.
goal place, and; the applicability function for placé:.
The above principles may still leave some ambiguity as VI. LOCALIZATION

to the precise contents of the precept; different desaspto According to the definition ofplaces in Section IIl,

may suggest entirely different movement rules, and the Waye the true values of place descriptors (features and
different descriptors change with movement may be more Watial relations)D; = (¢ et Pt pn.t) Ob-
- by Sng,ty by ooy Mg,

less easy to predict in varying sensory circumstances. AfYinaq at timet for location z(¢), the place to which that
implementation that mixes different types of descripto W . o 1responds is uniquely identified. Consider a function

therefore require a facility for estimating the applicéil D(z,t) = (fi(z, 1) Fo (1), 71 (2, 1) I (2,1))
) ? A nf ) ) ) sy i ng b

of the goal place at a distance — or at least, caching,; nrovides the true values of place descriptors for lonat
= D(x(t),t), the true place is

such information when it is available — and, based on thi§3 and timet. Then, for D,
producing a local navigation goal for lower-level navigati '

to carry out. ) However, in the real world an agent is moving through
Apart from being proper, a path precept also needs @pace, following paths to get from place to place and needs

be well-defined for all sensor states. Moreover, it shoulth naintain its localization in the face of uncertainty. Let
be efficient in execution (i.e. minimizing the time, distanc us denote the observation of all descriptors at timas

energy etc. necessary to reach the goal) and efficient Bt — D, + e, wheree is an error. We view the agent's

evaluate (i.e. computationally). progress from place to place as a Markov process with
B. Example L, the state at (discrete) timeand D, the measurement.

. . Localization is then carried out iteratively according ket
As a simple example of path precepts derived from placf%llowing formula:

descriptors, regard the office in Figure 2(a). The simplicit
of each place’s applicability function makes it easy to defin p (Lt | {D}+, {Oé}t—l) (19)
path precepts through Remark 2. Take for exanipte2: R

=>p (Lt | Lt—1,Dt704t—1)

x* = argmax (Xi (x) — max x;(x)
xeC J#i

given byL, £i: D, € P;.

x* = argmax (XQ(X) — max x; (X)) = Ppic Li—s
xER2 J#2 N
In other words, the precept is simply to move towards the xp (Lt’l D}, {a}t’2>

picture in order to reach plac®,. Figure 3(a) illustrates
how different points in placé; will give rise to different
trajectories into placé,, and correspondingly for placg,.
Note that once the agent enters the goal place and detect
this, there’s no point in continuing to the set point; thehpat ~
precept is simply meant to take it within the boundary of the p (Lt | Lo, D, at_l) (20)
place. _ =7-p (ﬁt \ Lt) p(Li | L1, 0-1)

The above path precept f@, does not necessarily work
as well in P; and P4, however. If it is assumed that the Here, v is a normalization constant, ang, is the action
agent is unable to detect the picture behind the partitiooh(s taken at timet; that is, a choice of a path to follow and an
as by virtual sensing), or if it lacks the obstacle avoidancaccording path precept.

where{D}, represents all measurements up until timand
equivalently for the actions.
él'he probability update in Eqg. 19 is computed as follows:



The factors in Eq. 20 represent respectively the mealistribution over exact locations, nor over descriptor values
surement integration step, and the prediction step, of the.
localization update. Observed descriptor values are conditionally independent

of place, given true descriptor valuéy’:
A. Prediction

The prediction step encapsulates the probability of tran- p (Dt | Lt) (24)
sitioning from one place to another given the action . A / / /
If =, andx,, are the configurations at timeandt + 1 B D,epp (Dt | D)p(D | L) dD

respectively, then The first factor is simply the likelihood of the observation.

p(Lig1 | Le, o) (21) Expressed L_Jsing the probability distribution of the measur
ment error, it becomes:
= / P(Lig1 [ @) p(@ gt | Le, o )dy 11 R , R )
; (D1 D) =pe (D= D) (25)
t+1
_ If observation errors are taken to be conditionally indepen
= 1-p(x T, x| Ly)dxda; - . o .
// P(@es1|@r, a)p(@: | Le)deides dent, given the true descriptor values, the likelihood fiomc
Pl can be written:
The factorp(z;,, | x:, ;) represents the evolution of p(ﬁt | D') (26)
the exact configuration during the transition, and can be ny n,
computed via the Fokker-Planck equation (see e.qg. [11]); we = Hp <g” | Q) Hp (it | pi)
assume the continuous-time process can be written: i=1 i=1
nf N
d€ = fa(&)dr + N(&)dn (22) = Hpei (é-zt - Ci) Hpe; (Pie — pi)
E(O) = Iy i=1 i—1
i1 = &(min{7:S5,(&(7),7) =0}) wheree; ande; are the errors associated with the measure-

) ) ment of feature and relationi, respectively.
where f, represents the motion model, given the chosen The second factor in Eq. 24 represents the way descriptor

path precept, andl represents the random evolution ofy4jyes are distributed inside places. One way of dealin wit
a stochastic process such as a Brownian motinis a i js to assume a normalized distribution &f over P,

configurat'ic.)n—dependent transformqtion of the prqce&eenoi i.e. a constant. However, this distribution is dependent on
The transition ends when the stopping conditfargiven by he details of the instantiation. If it cannot be modeled or

the path precept, evaluates (o - _ estimated, another approach is to evaluate
The resulting integral is very difficult to compute in

general, and an analytic solution will not be feasible excep p(D"| L) (27)
for the very simplest cases. / S(D m
L . . = D" — D (x,t Ly)d
Because of this, it may be more profitable to view the state weC ( (@ )p(@]|L)d"=
transition probabilities as hidden model parameters: / p(x| L)
x

p(Lipr =51 Lo =4,0) = 0y (23) ev [VD(@,1)]

, . , , where ¥ denotes allxz which satisfy D' = D(x,t). 0 is
Given an initial estimate fof; ;. and observations of out- {he pirac distribution, and the final step uses the geneliz
comes of action execution in a real or simulated setting, trgeca”ng property of integrals over Dirac distributions. is
parameters can be iteratively estimated through Expectati e dimension of.

MaX|m|zat|9n. L p (x| L) can be modeled either as a constant a¥gr or

The basic constraint is that’,; 6; j» = 1. Reasonable gstimated based on observations. If a place is defined irsterm

initial estimates will vary with instantiation, and may beqf an applicability function, the spatial information eueal
taken from appropriately defined relations; as an examplg, it can also be used to model this distribution.
a transition to a nearby or adjacent place might be assigned

m—1

a higher probability by default. The simplest assumption is VII. DiscussION
that of uniform probability:0; ; . = 1/np wherenp is the  Despite the fact that the framework presented in the
number of places. previous section represents a certain view on the structure

of a cognitive map, it is also very general and allows
for expressing many existing approaches as specific cases.
After the action is finished, the measurement step incoonsider for instance the topological map constituting a
porates observations of descriptors into the probabilisy d part of the Multi-Layered Conceptual Spatial Represeoitati
tribution. As is seen below, this expression is complicdted presented in [14]. The authors propose to create a topealbgic
the fact that knowing the place does not imply a probabilityepresentation on top of a two-dimensional metric line map,

B. Measurement integration



and ground each topological node around a point anchoredThe framework has been shown to entail existing spatial
to the metric map. Such approach can be easily expressegresentations. In the future, we hope to demonstrate in-

in our framework if we define a feature = f(x,t) = =,

stantiations built directly on the proposed framework, athi

wherex € C = R? represents the coordinates on the metrigvill prove the viability of the approach and its usefulness i
map, and a set of applicability functiorfgy;(¢)};*, such higher-level reasoning.

that g;(¢) = 1/(1 + |¢; — ¢]|) for each of then, topological
nodes, wherg; is the center of the node expressed in the
coordinates of the metric line map. (1]
The generality of the presented approach can accommo-
date a very wide range of different methods for abstracting2]
space into places. Exact grid decomposition [1] as well
as fixed decomposition can both be described in terms
this framework, given properly chosen features, as can the
“islands of reliability” of [12]. Even a system such as the
Spatial Semantic Hierarchy [6] is possible to express in[4]
these terms; however, to accomplish this, a relatively high
level of abstraction must be assumed for the features an!
the sensor input. Nevertheless, it is our expectation th
such requirements will not apply in general to powerful and
cognitively well-founded instantiations of this framewor

(7]
(8]

A. Future work

Possible directions in which to extend this work include:

1) Feature selectionWithin this paper we have assumed
a set of features as given. In a practical system, an ager[ﬂ]
will have access to high-dimensional low-level sensor data
and the features used for building scenes will need to be
abstracted from this data. This can be done in either a pr@p]
programmed or an automatic manner.

2) Virtualized sensors:Herein, features are defined asf11]
functions of single points in configuration space; in effect
a feature is conceived of as an abstract sensor output whijie;
the agent is at that point. In practice, techniques thatallo
information to be integrated over time may serve as “viftual
sensor input permitting more advanced features to be defined

3) Clustering: This paper has suggested one way of
clustering the feature space into scenes using applit;abili[14]
functions. Methods for automatic and dynamically updated
clustering could be applied.

4) Spatial reasoning:One principal use for segmenting
space, in a cognitive systems context, is high-level spatia
reasoning, planning, learning and communication. It would
be useful to explore the implications of a feature-basedepla
concept when integrated as a component of a full cognitive
system.

VIII. CONCLUSIONS

We have presented a general framework for building a
spatial map based on places and scenes which supports lo-
calization and navigation using arbitrary features andhéiig
level spatial relations. We suggested how the framework
would be used to instantiate a system with cognitively
plausible features, as well as how to extract precepts for
moving from one place to another. Probabilistic expression
used for localization in the framework were presented and
the necessity for additional assumptions was highlighted.
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