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Summary

To support the interpretation of measured molecular facts, like gene expression experi-
ments or EST sequencing, the functional or the system biological context has to be con-
sidered. Doing so, the relationship to existing biological knowledge has to be discovered.
In general, biological knowledge is worldwide represented in a network of databases. In
this paper we present a method for knowledge extraction in life science databases, which
prevents the scientists from screen scraping and web clicking approaches.
We developed a method for extraction of knowledge networks from distributed, heteroge-
neous life science databases. To meet the requirement of the very large data volume, the
method used is based on the concept of data linkage graphs (DLG). We present an efficient
software which enables the joining of millions of data points over hundreds of databases.
In order to motivate possible applications, we computed networks of protein knowledge,
which interconnect metabolic, disease, enzyme and gene function data.
The computed networks enabled a holistic relationship among measured experimental facts
and the combined biological knowledge. This was successfully applied for a high through-
put functional classification of barley EST and gene expression experiments with the per-
spective of an automated pipeline for the provisioning of controlled annotation of plant
gene arrays and chips.
Availability: The data linkage graphs (XML or TGF format), the schema integrated database
schema (GML or GRAPH-ML) and the graph computation software may be downloaded
from the following URL: http://pgrc.ipk-gatersleben.de/dlg/

1 Motivation

High throughput biotechnologies, like cDNA or oligo arrays, genome and EST sequencing
projects towards proteomics techniques, produce data from measured molecular facts. Those
facts could be gene expression, polypeptide concentration or EST sequences.

To support the interpretation of measured molecular facts in order to discover the functional
role of the measured molecule, the relationship to existing biological knowledge presented
in world wide distributed databases, has to be built. To make the data accessible to desktop
computers in the labs, the World Wide Web (WWW) is very popular. Techniques like manual
browsing towards web services are commonly used. Using these techniques, bioinformatician
may facilitate database embedded tools for linking wet-lab data to database knowledge in an
explorative way. Methods like sequence similarities, stochastic networks for pattern recognition
or text similarities queries are the selection operations, which are used for this data domain
[Ste02, SGBB01].
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One limiting drawback in this scenario is the data and tool distribution. Nowadays, we know
about hundreds of databases, with different but also overlapping content. Efforts for integrating
them were made in several projects using several methods. Because the majority is focused on
particular analytic scenarios and applications, none of them provided a holistic, uninterpreted
view to the world wide interlinked knowledge. Popular techniques, like data warehouses, multi
database query languages or database mediators solved the problem of database heterogeneties
and provided powerful query interfaces and helpful tools. But the original character of life
science databases as a highly dynamic and flexible network of knowledge is not supported.
Because the nature of the knowledge stored in the WWW is to be a network, we need to pro-
vide an efficient method for the extraction of data and in future knowledge networks [BK03].
The navigation and benefits of exploiting the data networks was motivated in [LMP+04]. Here
a system called BioNavigation supports the scientist in exploring the content within an inte-
grated database system using the BioMediation-system. This system supports the graph based
browsing and query building on top of integrated databases.

In this paper, we present a recently developed method for the efficient extraction and querying
of data networks from distributed, heterogeneous life science databases. Surprisingly compre-
hensive knowledge networks were computed and are available for public access. First applica-
tions of this networks were successfully used for a high throughput functional classification of
EST towards an automated pipeline for the provisioning of controlled annotation of plant gene
expression arrays. This and further applications will be described.

2 Method

To meet the requirement of the given flexibility of knowledge networks and to enable an ef-
ficient but also lightweight processing of very large volume of integrated data, the concept of
data linkage graphs (DLG) and an algorithm to efficient compute them has been developed.

2.1 Data schema graphs

The concept is the representation of integrated databases as a network of key attributes and its
values. Key attributes are those one which define unique identifier like EMBL sequence ac-
cessions, Gene Ontology (GO) terms [ABB+00] or EC numbers. To keep the modeled context
of the attributes, they are assigned to data entities. In the example above GO term and EMBL
sequence are entities, id and accession are the key attributes. Following this, we define schema
nodes S as a set of pairs S = (E, A), whereas E is the entity and A is the key attribute.

In order to construct networks, edges have to be defined. In the matter of fact, life science
database are strongly interconnected. Studies assume a connection rate of at least 80% in life
science databases [BK03]. This is manifested by a number of hyperlinks in the Web presen-
tation of the databases, references in XML documents or in primary key / foreign key pairs in
relational data structures. We use this relationships and extract out of them the edges R among
the schema nodes S. Formally, R is a subset of all possible combinations of two elements from
S. Thus, we write:

R ⊆ S × S (1)
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Because, we are interested in real existing relationships among schema nodes, we restrict R by:

Rlink = {(s, f), (f, s) | s, f ∈ S ∧ f is in relation to s} (2)
Rfunc = {(s1, s2), (s2, s1) | s1, s2 ∈ S ∧ s1.E = s2.E} (3)

R = Rlink ∪Rfunc (4)

In other words, we consider two kinds of bidirectional relations among key attributes:

Rlink: Inter-entity relationships, which are modeled as links in the particular databases. Those
could be represented by: HTML hyper links, primary key/foreign key, object references
etc.

Rfunc: Inner-entity relationships, which are modeled as functional dependency among attributes
in one entity. Those could be represented by: co-occurrence in one HTML page, childs
of the same XML parent item or modeling as attributes of one relational table.

With this rules we are able to construct a graph as a pair of entity and relationship sets: α =
(S, R), that comprises a database network at schema level.

2.2 Data linkage graphs

The next step is the extension of the schema graph toward the instantiated data networks. Thus,
we have to consider the attribute values, the stored data in the databases. In the context of the
above example, we have a Gene Ontology term id GO:0005975, which identifies the term
carbohydrate metabolism or the EMBL accession BAY074321, which identifies a
sequence, coding for alpha-galactosidase. If we include this attribute values in our
model and construct data networks, we will end up with graphs of interacting database entries.
We extend the pair S to a triple, with one additional element V . Thereby, V is an element of the
data domain of S, e.g. all valid EMBL accessions or Gene Ontology term identifier. We define
data nodes SV as a set of a triple: SV = (E, A, V ) | V ∈ dom(S). If we imply the existence
of a = relation in all used data domains for our key attributes A, we can define relationships
⇀↽ among two elements of a data node (sv1, sv2 ∈ SV ), if one of the subsequent conditions is
fulfilled. Furthermore, we assume the existence of two operations selection σ and projection π,
which are borrowed from relational algebra. If we use SV as a relational table, the selection
returns all those tuples (data nodes), in which a certain element is equal to a given one. To
decide the equality, we use the = operation. In our application, the projection reduce the data
node tuples to one specified element.

{(sv1.E, sv1.A), (sv2.E, sv2.A)} ⊂ Rlink

πsv1.A(σsv2.A=sv2.V (sv2.E))

=

πsv2.A(σsv1.A=sv1.V (sv1.E)) (5)

or

{(sv1.E, sv1.A), (sv2.E, sv2.A)} ⊂ Rfunc

σsv1.A=sv1.V (sv1.E)

=

σsv2.A=sv2.V (sv2.E) (6)
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Colloquially, two data nodes are in relation if,

1. the schema nodes are in relation and the data elements are the equal (equation 5), or

2. the data nodes are mappable to the same schema and the tuples come from the same
instance, e.g. table row or Web page (equation 6).

To illustrate these types of relationships, the relationships between two data sources are visu-
alized in figure 1: Assuming that there are the EMBL and the Gene Ontology (GO) database.
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s c h e m a g r a p h :
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Figure 1: example for the relationships in schema and data linkage graphs

Each comprise three attributes in one entity. With known inter-attribute relationships (e. g.
derived from hyperlinks among EMBL and GO), our example includes three relations:

Rfunc1 = (EMBL.ACC,EMBL.GOA)

Rfunc2 = (GO.ACC, GO.INTERPRO)

Rlink1 = (EMBL.GOA,GO.ACC)

On the basis of the above defined relation ⇀↽ we can compute a set of data node pairs:

RV ⊆ SV × SV (7)

such that

(sv1, sv2) ∈ RV ∧ sv1 ⇀↽ sv2 (8)
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Finally, we are able to describe networks of data nodes as set of graphs with the structure
β = (SV, RV ).

Using DLGs in combination with an efficient graph query engine, a general concept for a
novel flexible, lightweight database integration becomes possible. Flexible means no schema
or data integration, with all the conflicts needs to be solved. Leigthweigt, because only the key
attributes values have to be accessed physically, parsed and downloaded respectively.

Subsequently we describe the concrete construction of schema networks and the computation
of data networks, in form of data linkage graphs (DLGs).

3 Implementation

In order to use the described concept for joining millions of data points in over hundreds of
databases, we designed and implemented an efficient algorithm for the computation of DLGs.
The prerequists are (1) a graph of schema nodes and (2) for all schema nodes, the attribute
values.

3.1 Data Import

For the first task, we designed a protein knowledge network, which interconnects metabolic,
disease, enzyme and gene functional data. In this context, we merged the data schema of the
public databases UNIPROT (UP), Gene Ontology, OMIM, BRENDA and KEGG and derived
a graph of schema nodes. This graph, available at (http://pgrc.ipk-gatersleben.
de/dlg/, comprises 318 nodes and 234 edges, which cover the majority of the currently
available protein related databases. In a collaboration with the University of Bielefeld, Ger-
many, methods are developed to construct schema graphs automatically. This will be realized
based on public available life science database repositories, like the NAR Database Categories
List, pattern recognition in life science database WWW-presentation and the tracking of their
hyperlinks.

The retrieval of the key attribute values was realized by a combination of an in-house devel-
oped parser, the Sequence Retrieval System (SRS) [EUA96] and a database mediator called
BioDataServer (BDS) [BLSS04]. In this way, a file of key values for each schema node was
generated. The results are 318 files comprising around 5.6*107 key values. Hereby, we ob-
served a 10-fold redundancy. This potential for high compression rate motivates to the com-
putation of a hash table, mapping each key value to an integer. If we assume a 64-bit coded
integer, a 10-character identifier from the Gene Ontology can be stored in 8 bytes. This saves
storage capacity in a way, so that is it possible now to represent the data linkage graphs in
modern computer main memory.

3.2 Data network computation

This properties influenced the strategy for the DLG computation. The standard way for the
computation of transitive entity relations are index supported joins. Such queries are com-
monly used to find data relationships in integrated databases. Examples of such queries are
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those, mapping sequence data to the predicted functional role of the coded gene. The common
established strategy is to import relevant data into a data warehouse and execute queries. Be-
cause of the complexity of such queries, the feasible number of tables and tuples in such joins
is limited.

In other words, if all of the i schema nodes were joined (./) and a cascading merge join was
used, we would have a polynomial complexity, because database management systems are
optimized for a data storage using secondary memory, usually hard discs and the cascading
sort-merge join is the commonly used join implementation in relational database management
systems. The complexity of each merge join is O(n). Consequently, the overall complexity is:

Ojoin = O(n)table1./table2 ∗ . . . ∗O(n)tablei−1./tablei

= O(n)i (9)

The consequence is the limitation to use case specific data warehouses, which disables a com-
prehensive database integration. Thus, there is a complexity problem for comprehensive data
queries over huge data warehouses using big systems like SRS or even ORACLE. They sup-
port efficient joins only for a limited number of data, tables or databases. More comprehensive
queries would result in days of waiting or even system failures.

To avoid those problems and to improve the implementation, we investigated main memory
based data structures and algorithms. We discussed previously that the nodes in our data net-
works show high redundancy and a compression rate of factor 10 can be achieved. Thus, we
where able to represent all nodes by 5.6*107 64-bit pointer to 5.4*108 data nodes. This data
structure took around 4GByte. Using this data structure, we pre-compute all possible joins in
main memory.

A C++ program loads all data nodes into main memory and computes all possible graphs.
For this, we used the recursive breadth-first search (BFS) algorithm in combination with index
structures like hash maps, B-trees and bit vectors. The resulted graphs where stored in a flat re-
lational structure: (graphid, node depth, parent entity, parent attribute,
child entity, child attribute, parent value, child value).

This graphs are available in csv-format at the URL given bellow. Because of the recently
finished graph computation, no data format optimization was done. The representation in a
hierarchical data structure, like XML, is ad-hoc realizable, but not yet used practically. The
graph computation took 3 weeks on a 2GHz Opteron server, whereas 12 GByte of main memory
and 2 CPUs were used.

3.3 Data network queries

We loaded the graphs into an ORACLE 10g database table. Some example queries were per-
formed, like a query for all reachable data nodes starting from a given one. The application for
such a query is e.g. the assignment of EMBL sequences to Gene Ontology controlled vocab-
ulary, metabolic pathways in KEGG, diseases in OMIM etc. The former necessary join was
replaced by a simple start-destination-search in the graphs. This search retrieves all graphs that
connect a given start-node to an end-node. In SQL this may expressed as a self join:
select g2.data from graphs g1, graphs g2
where g1.graphid = g2.graphid and
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g1.parent entity = ’EMBL’ and
g1.parent attribute = ’ACCESSION’ and
g2.child entity = ’GO TERM’ and
g2.child attribute = ’ACCESSION’
The complexity of such a query is derived from the complexity of the two selection operations
for selecting the graphs containing the queried start and end node, and additionally their union.
Using indexes for the selection, the complexity is O(log n). Applying merge join on sorted
graph identifiers, the complexity is O(n). Therefore, the overall complexity of the above query
is:

Ographquery = O(log n) + O(log n) + O(n)

= O(n) (10)

If we don’t take in account that we need to compute the DLG with the BFS complexity (because
it will be necessary only once per database update), this will be a significant reduction of the
polynomial join complexity.

4 Discussion

The analysis and interpretation of wet-lab data, performed at a typical scientist desk is an it-
erative process of tool application and database exploration. A frequent task in biology is the
functional gene annotation, which is often accomplished by finding similarities or patterns in
known, experimentally annotated sequence data. One common application of this paradigm
is, for instance, (1) the mapping of translated nucleic sequences by direct sequence homology
recognition using the BLAST tool [AGM+90] in an annotated, merged polypeptide sequence
database like NRPEP (ftp://ftp.ncbi.nih.gov/blast/db/FASTA/nr.gz). The
hits which match known proteins link to the original databases and have to be (2) extracted
eighter manually or using parsers. Finally, all linked databases have to be inspected for getting
relevant information for the input sequences.

The datasets on functional aspects of sequences and proteins present in life science databases
are mainly derived from literature or provided from the database annotation team in textual form
in natural language. In contrast, the use of a controlled vocabulary (CV) is a necessary concept
for making annotations computational comparable. Using CVs, automized phenotypic classifi-
cation for a huge number of wet-lab data is possible without human interaction or interpretation
of textual description of a protein function. There are several systems, implementing such kind
of systematic knowledge representation: the MIPS Functional Catalog [MFG+02], the Gene
Ontology Database [ABB+00], GeneQuiz [ABL+99], OMIM [HSA+02], KEGG [KGKN02]
or MapMan [TBG+04]. All those databases where more or less manually constructed.

4.1 Functional mapping to controlled vocabulary

Here we present an application of the DLGs to map general functional sequence annotation to
controlled vocabulary in a computational way.

The basic idea of the functional categorization is to (1) take BLAST [AGM+90] hits for a num-
ber of EST, e. g. an EST library, (2) extract the database identifiers from the hit descriptions,
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(3) find them in the data linkage graphs and finally (4) query the data link graphs to (5) find a
path from the found database identifier to the interesting annotation database entity. In first use
cases, this work flow was implemented to map Bests to their functional role in the Gene On-
tology (GO) Database. The result is the assignment of ESTs to the three GO ontologies. The
work flow has been implemented by an SQL-query, using the start-destination query pattern
presented before. Figure 2 visualizes this process.

E S T l i b r a r y PIR
EMBLEMBL

UP

GB

DDBJDDBJ

GO terms

assign BLAST hits to

DLG nodes (start nodes)

BLAST against public

databases

Start-destination-search

query on top of DLGs to

map start-nodes to

destination nodes (GO 

term) 

S t e p 1 S t e p 2
S t e p 3

S t e p 4S t e p 5
Figure 2: work flow to assign ESTs to GO terms

In order to evaluate the computational mapping of ESTs to GO terms, a set of 440 EST has
been mapped computational to a GO term in around 2 minutes using an ORACLE 10g on a
2GHz Itanium server. Those ESTs represent genes which are used for an IPK internal cDNA
macro array. Thus, the functional role of those gene has been studied in detailed from institute’s
scientists, but had never been before included in GO. For the automatic annotation using the
described pipeline, the cut-off criteria for the used BLAST results was an e-value less then
1E-10. The results of the annotation have been manually checked. We discovered, that 6%
had a false assignment to GO terms. 80% were assigned unquestionable correct. The rest of
14% were not clearly decidable but tended to be correct. Those first investigations have been
recently done. Thus, the data is available on request from the authors.

Because of this promising results and to demonstrate the flexibility of the approach, another
annotation mapping was computed to KEGG [KGKN02] metabolic pathways. This query took
on the same server approximately 45 minutes. We were able to identify 18,607 out of 111,090
sequences stored in the IPK CR-EST database [KLF+05], which show enzymatic activity. By
using the data linkage graphs and starting from either EMBL, Genbank, DDBJ, PIR or SWIS-
SPROT/TREMBL in the BLAST results. 21% of these ESTs assigned to functional categories
belong to carbohydrate metabolism, 19% to amino acid- and 17% energy metabolism. In con-
trast, using BLAST results only 1906 functional descriptions containing an EC numbers were
found. Hence, compared to BLAST the sensitivity of functional annotation was increased 10-
fold. Figure 3 shows a simple statistic over the non-redundant metabolic annotated ESTs.
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Figure 3: mapping of ESTs from the CR-EST database to GO terms

4.2 Database network discovery

Beside the above mentioned graph queries, further analysis will be done. Scenarios are knowl-
edge discovery, by context specific joining of graphs, like building context networks of data on
specific diseases, regulatory elements, protein data and gene variants. This can be supported
by a multidimensional, structural analysis of integrated databases, like centrality analysis for
the identification of key elements of data networks. Furthermore, quality control of public
databases is an important challenge in modern bioinformatics. Using DLGs we can e. g. in-
stance extraction all networks that include contradicting data nodes for the same schema node.

The URL http://pgrc.ipk-gatersleben.de/dlg/ can be used to download the
data schema graph (GML or GraphML format), the data linkage graphs (CSV format) or exam-
ples of context specific extracted metabolic knowledge networks for plants (GML or GraphML
format). Later are queried using SQL by joining the DLGs over the enzymes (EC numbers)
which are present in glycolysis metabolic pathway and protein which are reported in Brassicae,
Triticeae and Solanacea. Thus we extracted networks of knowledge to enzymes in barley which
show catalytic activity in glycolysis. Figure 4 gives an impression of such a data network. A
high resolution and comfortable version is from this figure is available, using the graph datafiles
in a graph viewer. The files and a link to a viewer are available using the URL given previously.

5 Outlook

Beside the presented application of the data linkage graphs, it is possible to perform more com-
prehensive applications of the presented concepts. The description was used to give a proof-
of-principle. More use cases and further more detailed quality control of the computational
sequence annotation mappings are on the road map. Further plans are underway to expand the
data basis and implement a user friendly and flexible tool to perform queries on top of data
linkage graphs to discover knowledge in networks of life science databases.
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Figure 4: data network of enzymes in barley showing catalytic activity in glycolysis (high-
resolution image: http://pgrc.ipk-gatersleben.de/dlg/Hordeum Glycolysis.
pdf)
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[MFG+02] H. W. Mewes, D. Frishman, U. Güldener, G. Mannhaupt, K. Mayer, M. Mokrejs,
B. Morgenstern, M. Münsterkötter, S. Rudd, and S. Weil. MIPS: a database for
genomes and protein sequences. Nucleic Acids Research, 30(1):31–34, 2002.

[SGBB01] R. Stevens, C. Goble, P. Baker, and A. Brass. A classification of tasks in bioinfor-
matics. Bioinformatics, 17(2):180–188, 2001.

[Ste02] L. Stein. Creating a bioinformatics nation. Nature, 417:119–120, 2002.

[TBG+04] O. Thimm, O. Blasing, Y. Gibon, A. Nagel, S. Me yer, P. Kruger, J. Selbig, L. A.
Muller, S. Y. Rhee, and M. Stitt. MAPMAN: a user-driven tool to display ge-
nomics data sets onto diagrams of metabolic pathways and other biological pro-
cesses. Plant Journal, 37(6):914–914, 2004.

Journal of Integrative Bioinformatics, 4(3):68, 2007 11

http://journal.imbio.de/

	Motivation
	Method
	Data schema graphs
	Data linkage graphs

	Implementation
	Data Import
	Data network computation
	Data network queries

	Discussion
	Functional mapping to controlled vocabulary
	Database network discovery

	Outlook



