
iSeries

File Management
Version 5

ERserver
���





iSeries

File Management
Version 5

ERserver
���



© Copyright International Business Machines Corporation 1998, 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.



Contents

About File Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Who should read the File Management book. . . . . . . . . . . . . . . . . . . . . . . ix
What’s new in V5R2 File Management . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1. Introduction to File Management . . . . . . . . . . . . . . . . . . . . . . 1
File types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2. File processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
File management operations overview . . . . . . . . . . . . . . . . . . . . . . . . . 3
File security considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Object authority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Data authorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Authorities required for file operations . . . . . . . . . . . . . . . . . . . . . . . . 10
Limiting access to files and data when creating files . . . . . . . . . . . . . . . . . . . 11

Sharing files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Open considerations for files shared in a job . . . . . . . . . . . . . . . . . . . . . 13
I/O considerations for files shared in a job . . . . . . . . . . . . . . . . . . . . . . 14
Close considerations for files shared in a job . . . . . . . . . . . . . . . . . . . . . 14

Allocating file resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
File resource allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
File resources that must be allocated . . . . . . . . . . . . . . . . . . . . . . . . 15
How the server allocates resources . . . . . . . . . . . . . . . . . . . . . . . . . 16

Opening files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Scoping of opened files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Opening files using temporary file descriptions . . . . . . . . . . . . . . . . . . . . . 17
Open considerations when using *LIBL with a DDM file . . . . . . . . . . . . . . . . . 19
Detecting file description changes . . . . . . . . . . . . . . . . . . . . . . . . . 20
Displaying information about open files . . . . . . . . . . . . . . . . . . . . . . . 21
Monitoring file status with the open and I/O feedback area . . . . . . . . . . . . . . . . 22

File error detection and handling by the server. . . . . . . . . . . . . . . . . . . . . . 22
Messages and message monitors in files by the server . . . . . . . . . . . . . . . . . 23
Major and minor return codes in files by the server . . . . . . . . . . . . . . . . . . . 24
Recovering from file server errors . . . . . . . . . . . . . . . . . . . . . . . . . 26

Related information on file types . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Chapter 3. Using overrides . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Overrides: An overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Benefits of using overrides . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Summary of the override commands . . . . . . . . . . . . . . . . . . . . . . . . 30
Effect of overrides on some commands . . . . . . . . . . . . . . . . . . . . . . . 31
Using overrides in multithreaded jobs . . . . . . . . . . . . . . . . . . . . . . . . 33

Applying overrides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Overriding file attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Overriding file names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Overriding file names and file attributes . . . . . . . . . . . . . . . . . . . . . . . 36
Overriding the scope of an open file . . . . . . . . . . . . . . . . . . . . . . . . 36
How the server processes overrides . . . . . . . . . . . . . . . . . . . . . . . . 36
Effect of exits on overrides: scenario . . . . . . . . . . . . . . . . . . . . . . . . 44
Effect of TFRCTL on overrides-Scenario . . . . . . . . . . . . . . . . . . . . . . . 44
Overrides to the same file at the same call level: scenario 1. . . . . . . . . . . . . . . . 45
Overrides to the same file at the same call level: scenario 2. . . . . . . . . . . . . . . . 45
CL program overrides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Securing files against overrides . . . . . . . . . . . . . . . . . . . . . . . . . . 47

© Copyright IBM Corp. 1998, 2002 iii



Using a generic override for printer files . . . . . . . . . . . . . . . . . . . . . . . 48
Applying overrides when compiling a program . . . . . . . . . . . . . . . . . . . . . 49

Deleting overrides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Deleting overrides: scenario 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Deleting overrides: scenario 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Displaying overrides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Displaying all overrides for a specific activation group: scenario . . . . . . . . . . . . . . 53
Displaying merged file overrides for one file: scenario . . . . . . . . . . . . . . . . . . 53
Displaying all file overrides for one file: scenario . . . . . . . . . . . . . . . . . . . . 54
Displaying merged file overrides for all files: scenario . . . . . . . . . . . . . . . . . . 54
Displaying overrides with WRKJOB: scenario . . . . . . . . . . . . . . . . . . . . . 54
Displaying overrides: comprehensive scenario . . . . . . . . . . . . . . . . . . . . . 54
Displaying overrides: tips. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Redirecting files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Planning for redirecting files . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Redirecting files: tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Default actions for redirected files . . . . . . . . . . . . . . . . . . . . . . . . . 61

Chapter 4. Copying files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Copying physical or logical files . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Copying files: overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Copying files: commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Copying files: supported functions . . . . . . . . . . . . . . . . . . . . . . . . . 68
Copying files: basic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Creating the to-file (CRTFILE parameter) . . . . . . . . . . . . . . . . . . . . . . . . 77
Specifying CRTFILE(*YES) on either the CPYF or CPYFRMQRYF command . . . . . . . . . 78
Authorities, user profiles, and file capabilities of the to-file created by Copy File (CPYF) . . . . . 78

Adding, replacing, and updating records (MBROPT parameter). . . . . . . . . . . . . . . . 79
Specifying *REPLACE when copying files . . . . . . . . . . . . . . . . . . . . . . 79
Specifying *ADD when copying files. . . . . . . . . . . . . . . . . . . . . . . . . 79
Specifying *UPDADD when copying files . . . . . . . . . . . . . . . . . . . . . . . 83
Copying records into files that use trigger programs . . . . . . . . . . . . . . . . . . . 83

Selecting members to copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Copying file members: overview . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Allowed copy operations and parameters . . . . . . . . . . . . . . . . . . . . . . . 84
Copying all members or labels within a file . . . . . . . . . . . . . . . . . . . . . . 85
Copying only certain members or labels within a file. . . . . . . . . . . . . . . . . . . 85
Specifying the label identifier or member name for the copy operation . . . . . . . . . . . . 85
Special considerations for the Override Database File (OVRDBF), Override Diskette File

(OVRDKTF), and Override Tape File (OVRTAPF) commands . . . . . . . . . . . . . . 86
How the copy function adds members to the to-file . . . . . . . . . . . . . . . . . . . 86

Selecting the records to copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Selecting records using a specified record format name (RCDFMT Parameter) . . . . . . . . . 87
Selecting records by relative record numbers (FROMRCD and TORCD Parameters). . . . . . . 87
Selecting records by record keys (FROMKEY and TOKEY Parameters) . . . . . . . . . . . 88
Selecting a specified number of records (NBRRCDS Parameter) . . . . . . . . . . . . . . 92
Selecting records based on character content (INCCHAR Parameter) . . . . . . . . . . . . 93
Selecting records based on field value (INCREL Parameter). . . . . . . . . . . . . . . . 94
Copying deleted records (COMPRESS Parameter) . . . . . . . . . . . . . . . . . . . 96

Printing records (PRINT, OUTFMT, and TOFILE(*PRINT) parameters) . . . . . . . . . . . . . 97
Creating an unformatted print listing. . . . . . . . . . . . . . . . . . . . . . . . . 98

Copying between different database record formats (FMTOPT parameter) . . . . . . . . . . . 99
Specifying data for different field types and attributes . . . . . . . . . . . . . . . . . . 101
Converting universal coded character set (UCS-2) graphic fields. . . . . . . . . . . . . . 108
Converting System/370 floating point and null fields . . . . . . . . . . . . . . . . . . 109
Conversion rules for copying files . . . . . . . . . . . . . . . . . . . . . . . . . 110

iv File Management V5R2



Adding or changing source file sequence number and date fields (SRCOPT and SRCSEQ
Parameters) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Copying device source files to database source files . . . . . . . . . . . . . . . . . . 111
Copying database source files to device source files . . . . . . . . . . . . . . . . . . 111
Copying database source files to database source files . . . . . . . . . . . . . . . . . 112

Preventing errors when copying files . . . . . . . . . . . . . . . . . . . . . . . . . 112
Limiting recoverable errors during copy . . . . . . . . . . . . . . . . . . . . . . . 112
Preventing date, time, and timestamp errors when copying files . . . . . . . . . . . . . . 114
Preventing position errors when copying files . . . . . . . . . . . . . . . . . . . . . 115
Preventing allocation errors when copying files . . . . . . . . . . . . . . . . . . . . 116
Preventing copy errors that result from constraint relationships . . . . . . . . . . . . . . 117
Copying files not in check-pending status . . . . . . . . . . . . . . . . . . . . . . 117
Copying files in check pending status. . . . . . . . . . . . . . . . . . . . . . . . 117
Preventing copy errors related to your authority to files . . . . . . . . . . . . . . . . . 118

Improving copy performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Avoiding keyed sequence access paths . . . . . . . . . . . . . . . . . . . . . . . 118
Specifying fewer parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Checking record format level identifiers . . . . . . . . . . . . . . . . . . . . . . . 119

Year 2000 support: date, time, and timestamp considerations . . . . . . . . . . . . . . . . 119
Copying FROM logical file ZONED, CHARACTER, or PACKED field (with a DATFMT) TO a DATE

field in a physical to-file . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Copying FROM or TO a ZONED or PACKED field (that has no DATFMT) TO or FROM a DATE

type field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Restrictions for Year 2000 support . . . . . . . . . . . . . . . . . . . . . . . . . 123

Copying complex objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Copying files that contain user-defined functions . . . . . . . . . . . . . . . . . . . 123
Copying files that contain user-defined types . . . . . . . . . . . . . . . . . . . . . 123
Copying files that contain DataLinks . . . . . . . . . . . . . . . . . . . . . . . . 124
Copying files that contain large objects . . . . . . . . . . . . . . . . . . . . . . . 124
Copying files that contain Identity Columns or ROWID attributes. . . . . . . . . . . . . . 128

Copying between different servers . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Using the Copy From Import File (CPYFRMIMPF) command to copy between different servers 129
Using the Copy To Import File (CPYTOIMPF) command to copy between different servers . . . . 129
Notes on the CPYFRMIMPF command . . . . . . . . . . . . . . . . . . . . . . . 129
Restrictions on the CPYFRMIMPF command . . . . . . . . . . . . . . . . . . . . . 130
(CPYFRMIMPF) Importing data to the iSeries when the from-file is a database file or DDM file 130
(CPYFRMIMPF) Importing data to iSeries when the import file is a stream file . . . . . . . . 131
Parallel data loader support to use with the CPYFRMIMPF command. . . . . . . . . . . . 131
Handling data from the import file . . . . . . . . . . . . . . . . . . . . . . . . . 132
Delimited import file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Fixed formatted import file . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
Notes on the CPYTOIMPF command. . . . . . . . . . . . . . . . . . . . . . . . 135
Notes on the delimited import file (CPYTOIMPF command) . . . . . . . . . . . . . . . 135
Restrictions for the CPYTOIMPF command . . . . . . . . . . . . . . . . . . . . . 136
Copying data to the import file in a fixed format (CPYTOIMPF command) . . . . . . . . . . 136

Chapter 5. Working with spooled files . . . . . . . . . . . . . . . . . . . . . . . 137
Output spooling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Spooling device descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Summary of spooled file commands . . . . . . . . . . . . . . . . . . . . . . . . 139
Locating your spooled files . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
File redirection of spooled files . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Output queues of spooled files . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Summary of output queue commands . . . . . . . . . . . . . . . . . . . . . . . 141
Default printer output queues. . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Default server output queues. . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Contents v

||

||



Creating your own output queues . . . . . . . . . . . . . . . . . . . . . . . . . 142
Order of spooled files on an output queue . . . . . . . . . . . . . . . . . . . . . . 142
Using multiple output queues. . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Output queue recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Spooling writers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Summary of spooling writer commands . . . . . . . . . . . . . . . . . . . . . . . 144

Spooled file security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Controlling the number of spooled files in your server. . . . . . . . . . . . . . . . . . . 146
Command examples for additional spooling support . . . . . . . . . . . . . . . . . . . 146
Input spooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Summary of job input commands . . . . . . . . . . . . . . . . . . . . . . . . . 149
Job queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Transferring jobs in a queue . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Using an inline data file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Spooling subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Spooling library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Appendix A. Feedback area layouts . . . . . . . . . . . . . . . . . . . . . . . . 157
Open feedback area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Device definition list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Volume label fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

I/O feedback area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Common I/O feedback area . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
I/O feedback area for ICF and display files. . . . . . . . . . . . . . . . . . . . . . 173
I/O feedback area for printer files . . . . . . . . . . . . . . . . . . . . . . . . . 176
I/O feedback area for database files . . . . . . . . . . . . . . . . . . . . . . . . 177
Get attributes feedback area . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Appendix B. Double-byte character set support . . . . . . . . . . . . . . . . . . . . 185
Double-byte character set fundamentals. . . . . . . . . . . . . . . . . . . . . . . . 185

DBCS code scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Shift-control double-byte characters . . . . . . . . . . . . . . . . . . . . . . . . 189
Invalid double-byte code and undefined double-byte code . . . . . . . . . . . . . . . . 190
Using double-byte data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Double-byte character size . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Processing double-byte characters. . . . . . . . . . . . . . . . . . . . . . . . . . 191
Basic double-byte characters. . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Extended double-byte characters . . . . . . . . . . . . . . . . . . . . . . . . . 191
What happens when extended double-byte characters are not processed . . . . . . . . . . 191

DBCS device file support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
What a DBCS file is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
When to indicate a DBCS file . . . . . . . . . . . . . . . . . . . . . . . . . . 192
How to indicate a DBCS file . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Improperly indicated DBCS files. . . . . . . . . . . . . . . . . . . . . . . . . . 194

DBCS display support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Inserting shift-control double-byte characters . . . . . . . . . . . . . . . . . . . . . 195
Number of displayed extended double-byte characters . . . . . . . . . . . . . . . . . 196
Number of DBCS input fields on a display . . . . . . . . . . . . . . . . . . . . . . 196
Effects of displaying double-byte data at alphanumeric work stations . . . . . . . . . . . . 196

Copying DBCS files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Copying spooled DBCS files . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Copying nonspooled DBCS files . . . . . . . . . . . . . . . . . . . . . . . . . 196

Application program considerations for DBCS . . . . . . . . . . . . . . . . . . . . . 198
Designing application programs that process double-byte data . . . . . . . . . . . . . . 198
Changing alphanumeric application programs to DBCS application programs . . . . . . . . . 198

DBCS font tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

vi File Management V5R2



Commands for DBCS font tables . . . . . . . . . . . . . . . . . . . . . . . . . 199
Finding out if a DBCS font table exists . . . . . . . . . . . . . . . . . . . . . . . 199
Copying a DBCS font table onto tape or diskette . . . . . . . . . . . . . . . . . . . 200
Copying a DBCS font table from tape or diskette . . . . . . . . . . . . . . . . . . . 200
Deleting a DBCS font table . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Starting the character generator utility for DBCS font tables . . . . . . . . . . . . . . . 202
Copying user-defined double-byte characters . . . . . . . . . . . . . . . . . . . . . 202

DBCS font files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
DBCS sort tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Commands for DBCS sort tables . . . . . . . . . . . . . . . . . . . . . . . . . 203
Using DBCS sort tables on the server . . . . . . . . . . . . . . . . . . . . . . . 204
Finding out if a DBCS sort table exists . . . . . . . . . . . . . . . . . . . . . . . 204
Saving a DBCS sort table onto tape or diskette . . . . . . . . . . . . . . . . . . . . 204
Restoring a DBCS sort table from tape or diskette . . . . . . . . . . . . . . . . . . . 204
Copying a Japanese DBCS master sort table to a data file . . . . . . . . . . . . . . . . 204
Copying a Japanese DBCS master sort table from a data file . . . . . . . . . . . . . . . 205
Deleting a DBCS sort table . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

DBCS conversion dictionaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Server-supplied dictionary (for Japanese use only) for DBCS . . . . . . . . . . . . . . . 207
User-created dictionary for DBCS . . . . . . . . . . . . . . . . . . . . . . . . . 207
Commands for DBCS conversion dictionaries. . . . . . . . . . . . . . . . . . . . . 207
Displaying and printing the DBCS conversion dictionary . . . . . . . . . . . . . . . . . 212
Deleting a DBCS conversion dictionary . . . . . . . . . . . . . . . . . . . . . . . 213

DBCS conversion (for Japanese use only) . . . . . . . . . . . . . . . . . . . . . . . 214
Where you can use DBCS Conversion . . . . . . . . . . . . . . . . . . . . . . . 215
How DBCS Conversion works . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Using DBCS Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Performing DBCS Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Contents vii



viii File Management V5R2



About File Management

This book describes the file management portion of the Operating System/400 licensed program. File
management, formerly data management, provides applications with access to input and output file data
that is external to the application. There are several types of these input and output files, and each file
type has its own characteristics. In addition, all of the file types share a common set of characteristics.
This book describes the characteristics and programming use of database files and spooled files.

Who should read the File Management book
This book is intended primarily for the application programmer. This book should also be useful for those
responsible for tailoring their system to use double-byte data with the data management file support.

Before using this book, you should be familiar with general programming concepts and terminology, and
have a general understanding of the iSeries server and OS/400 operating system.

What’s new in V5R2 File Management
The traditional file management topic, formerly called data management, has been moved to the File
systems and management category of the iSeries Information Center. It joins the Integrated file system
topic.

© Copyright IBM Corp. 1998, 2002 ix



x File Management V5R2



Chapter 1. Introduction to File Management

Traditional file management, formerly known as data management, is the part of the operating system
that controls the storing and accessing of data by an application program. The data may be on internal
storage (for example, database), on external media (diskette, tape, printer), or on another system. File
management, then, provides the functions that an application uses in creating and accessing data on the
server and ensures the integrity of the data according to the definitions of the application.

File management provides functions that allow you to manage files (create, change, override, or delete)
using CL commands, and create and access data through a set of operations (for example, read, write,
open, or close). File management also provides you with the capability to access external devices and
control the use of their attributes for creating and accessing data.

If you want to make more efficient use of printers and diskette devices, file management provides the
capability of spooling data for input or output. For example, data being written to a printer can be held on
an output queue until the printer is available for printing.

On the iSeries server, each file (also called a file object) has a description that describes the file
characteristics and how the data associated with the file is organized into records, and, in many cases, the
fields in the records. Whenever a file is processed, the operating system (the Operating System/400 or
OS/400 program) uses this description.

You can create and access data on the system by using these file objects. File management defines and
controls several different types of files. Each file type has associated CL commands to create and change
the file, and you can also create and access data through the operations provided by file management.

For more information about the types of files that are defined and controlled by file management, see “File
types”.

File types
The file management functions support the following types of files:

v Database files are files (including distributed files) whose associated data is stored permanently in the
system.

v Device files are files that provide access to externally attached devices such as displays, printers,
tapes, diskettes, and other systems that are attached by a communications line. The device files
supported are:

– Display files, which provide access to display devices

– Printer files, which describe the format of printed output

– Tape files, which allow access to data files on tape devices

– Diskette files, which provide access to data files on diskette devices

– Intersystem communications function (OS/400-ICF) files, hereafter referred to as ICF files, which
allow a program on one server to communicate with a program on the same server or another server

v Save files are files that are used to store saved data on disk (without requiring diskettes or tapes).

v Distributed data management (DDM) files are files that allow access to data files stored on remote
servers.

Each file type has its own set of unique characteristics that determines how the file can be used and what
capabilities it can provide. The concept of a file, however, is the same regardless of what type of file it is.
When a file is used by a program, it is referred to by name, which identifies both the file description and,
for some file types, the data itself. This information is designed to help you understand the common
characteristics of all file types so you can use the files to their full capabilities.

© Copyright IBM Corp. 1998, 2002 1

|
|



Related tasks:

See the following links for information on the tasks you can perform against files:

v Copy files

v Open files

v Secure files

v Share files

v Temporarily override the properties of a file

2 File Management V5R2



Chapter 2. File processing

This chapter discusses basic aspects of processing files. Topics include:

v File management operations overview

v File security considerations

v Sharing files

v Allocating file resources

v Opening files

v File error detection and handling by the server

v Related information on file types

File management operations overview
File management supports many operations that high-level language programs can use to process data.
These include the following, which are grouped by category:

v File Preparation

OPEN Attaches a file to a program and prepares it for I/O operations. A file may be opened for any
combination of read, write, update, or delete operations.

ACQUIRE
Attaches a device or establishes a communications session for an open file in preparation for
I/O operations.

v Input/Output

READ Transfers a record from the file to the program. The data is made available to the program once
the read has been successfully completed.

WRITE
Transfers a record from the program to the file.

WRITE-READ
Combines the WRITE and READ operations as one operation.

UPDATE
Updates a record with changed data. The record must have been successfully read prior to the
update operation.

DELETE
Deletes a record in a file. The record must have been successfully read prior to the delete
operation.

v Commitment Control

COMMIT
Guarantees a group of changes are made as a complete transaction across multiple records or
multiple files.

ROLLBACK
Rolls back a group of changes to the point of the last commit operation.

v Completion

FEOD Positions the file at the last volume or at the end of data. For those programs processing files
for output, the last buffer of data is written. For those programs processing files for input, an
end-of-file condition is forced for the next input operation.

© Copyright IBM Corp. 1998, 2002 3



RELEASE
Detaches a device or a communications session from an open file. I/O operations can no longer
be performed for this device or session.

CLOSE
Detaches a file from a program, ending I/O operations. Any remaining data in the output buffer
that has not been written will be written prior to the completion of the close.

The operations listed above have certain restrictions based on file type and language support. For
example, a program may not write to a file that has been opened for read only. Similarly, a read-by-key
may not be issued for an ICF file. Since file overrides can occur during processing, an operation may not
be allowed for the type of file that is ultimately being processed. See Chapter 3, “Using overrides”, for
additional information.

Table 1 on page 4 lists the file types and the main operations that are allowed. There are additional
functions supported for some file types that are accomplished by additional operations or changes to these
operations. For information on these additional functions and how the operations given here apply to

display, tape, and diskette files, refer to either the Application Display Programming book or the Tape

and Diskette Device Programming book .

Table 2 on page 5 and Table 3 on page 7 map the OS/400-supported operations given in Table 1 to the
high-level language operations (BASIC, ILE C, ILE COBOL, PASCAL, PL/I, and ILE RPG programming
languages) supported on the server. For additional information on each operation and how it correlates to
the file declaration in the program, see the appropriate language information. Note that not all OS/400
operations are supported in all languages.

Table 1. File Types and Their Main Operations. A list of the file types and the main operations that are allowed within
each file type.

Operation

File Types

Database Diskette Tape Printer Display ICF DDM Save

OPEN

Read X X X - X X X X

Write X X X X X X X X

Update X - - - X1 - X -

Delete X - - - X1 - X -

READ

By relative
record
number

X - - - X1 - X -

By key X - - - - - X -

Sequential X X X - X X X X

Previous X - X - - - X -

Next X X X - X X X X

Invited

Device - - - - X X - -

WRITE-
READ

- - - - X X - -

4 File Management V5R2



Table 1. File Types and Their Main Operations (continued). A list of the file types and the main operations that are
allowed within each file type.

Operation

File Types

Database Diskette Tape Printer Display ICF DDM Save

WRITE

By relative
record
number

X - - - X1 - X -

By key X - - - - - X -

Sequential X X X X X X X X

FEOD X X X X - - X X

UPDATE

By relative
record
number

X - - - X1 - X -

By key X - - - - - X -

DELETE

By relative
record
number

X - - - - - X -

By key X - - - - - X -

ACQUIRE - - - - X X - -

RELEASE - - - - X X - -

COMMIT X - - - - - - -

ROLLBACK X - - - - - - -

CLOSE X X X X X X X X

Note:
1 Operation allowed only for subfile record formats

Table 2. High-Level Languages and Their OS/400 Operations. The OS/400-supported operations for each file type are
compared to the high-level language operations (BASIC, ILE C, and ILE COBOL programming languages) supported
on the server.

Operation

High-Level Languages

BASIC
ILE C/400 Programming
Language

ILE COBOL/400
Programming Language

OPEN

Chapter 2. File processing 5



Table 2. High-Level Languages and Their OS/400 Operations (continued). The OS/400-supported operations for each
file type are compared to the high-level language operations (BASIC, ILE C, and ILE COBOL programming languages)
supported on the server.

Operation

High-Level Languages

BASIC
ILE C/400 Programming
Language

ILE COBOL/400
Programming Language

Read OPEN INPUT fopen, _Ropen OPEN INPUT

Write OPEN OUTPUT fopen, _Ropen OPEN OUTPUT, OPEN
EXTEND

Update OPEN OUTIN fopen, _Ropen OPEN I-O

Delete OPEN OUTIN fopen, _Ropen OPEN I-O

READ

By relative record number READ REC _Rreadd READ

By key READ KEY _Rreadk, _Rformat READ KEY

Sequential READ NEXT, GET fread, fgetc, fgets, _Rreadf,
_Rreadl, _Rreadn, _Rreadp,
_Rreads, _Rformat,
_Rpgmdev

READ

Previous READ PRIOR _Rreadp READ

Next READ NXT, GET fread, _Rreadn READ, READ NEXT

Invited Device _Rreadindv READ

WRITE-READ _Rwriterd, _Rformat,
_Rpgmdev

WRITE

By relative record number WRITE REC _Rwrited WRITE

By key WRITE _Rwrite, _Rformat

Sequential WRITE fwrite, fputc, fputs, _Rwrite,
_Rformat, _Rpgmdev

WRITE

FEOD _Rfeod

UPDATE

By relative record number REWRITE REC _Rupdate REWRITE

By key REWRITE KEY _Rupdate REWRITE

DELETE

By relative record number DELETE REC _Rdelete DELETE

By key DELETE KEY _Rdelete DELETE

ACQUIRE _Racquire ACQUIRE

6 File Management V5R2



Table 2. High-Level Languages and Their OS/400 Operations (continued). The OS/400-supported operations for each
file type are compared to the high-level language operations (BASIC, ILE C, and ILE COBOL programming languages)
supported on the server.

Operation

High-Level Languages

BASIC
ILE C/400 Programming
Language

ILE COBOL/400
Programming Language

RELEASE _Rrelease DROP

COMMIT _Rcommit COMMIT

ROLLBACK ROLLBACK

CLOSE CLOSE, END fclose, _Rclose CLOSE, STOP RUN,
CANCEL

Table 3. High-Level Languages and Their OS/400 Operations. The OS/400-supported operations for each file type are
compared to the high-level language operations (PASCAL, PL/I, and ILE RPG programming languages) supported on
the server.

Operation

High-Level Languages

PASCAL PL/I
ILE RPG/400
Programming Language

OPEN

Read RESET, GET, READ,
READLN

OPEN INPUT OPEN

Write REWRITE, WRITE,
WRITELN

OPEN OUTPUT OPEN

Update UPDATE OPEN UPDATE OPEN

Delete UPDATE OPEN UPDATE OPEN

READ

By relative record number GET, READ READ KEY READ, CHAIN

By key READ KEY READ, READE, CHAIN

Sequential GET, READ, READLN READ NEXT, GET READ

Previous GET, READ, READLN READ PRV READP, READPE

Next GET, READ, READLN READ NXT, GET READ, READE

Invited Device READ

WRITE-READ EXFMT

WRITE

By relative record number PUT, WRITE, WRITELN WRITE, EXCPT primary file WRITE

By key WRITE KEY WRITE, EXCEPT

Sequential PUT, WRITE, WRITELN WRITE, PUT WRITE, EXCEPT

Chapter 2. File processing 7



Table 3. High-Level Languages and Their OS/400 Operations (continued). The OS/400-supported operations for each
file type are compared to the high-level language operations (PASCAL, PL/I, and ILE RPG programming languages)
supported on the server.

Operation

High-Level Languages

PASCAL PL/I
ILE RPG/400
Programming Language

FEOD FEOD

UPDATE

By relative record number PUT, WRITE, WRITELN REWRITE KEY UPDATE

By key REWRITE KEY UPDATE

DELETE

By relative record number DELETE DELETE

By key DELETE KEY DELETE

ACQUIRE ACQ

RELEASE REL

COMMIT use CL COMMIT PLICOMMIT subroutine COMMIT

ROLLBACK use CL ROLLBACK PLIROLLBACK subroutine ROLBK

CLOSE CLOSE, END CLOSE, STOP CLOSE, RETURN

File security considerations
This section describes some of the file security functions. The topics covered include the authorizations
needed to use files and considerations for specifying these authorities when creating a file. For more

information about using the security function on the server, see iSeries Security Reference or the

Tips and Tools for Securing Your iSeries book.

For more information on file security considerations, see the following topics:

v Object authority

v Data authorities

v Authorities required for file operations

v Limiting access to files and data when creating files

8 File Management V5R2

|

|

|

|

|



Object authority
The following topics describe the types of authority that can be granted to a user for a file. Also, you can
use the SQL GRANT and REVOKE statements to assign and remove these iSeries authorities to SQL
tables, including individual columns within those tables. You can find information about these statements in
the SQL Reference.

Object operational authority
Allows you to look at an object description and use the object as determined by your data authorities to
the object. Object operational authority is required to:

v Open the file for processing. You must also have read authority to the file. For device files that are not
using spooling, you must have object operational and also all data authorities to the device.

v Compile a program which uses the file description.

v Display the file description.

v Delete the file.

v Transfer ownership of the file.

v Grant and revoke authority.

v Change the file description.

v Move or rename the file.

Object existence authority
Object existence authority is required to:

v Delete the file.

v Save, restore, and free the storage of the file.

v Transfer ownership of the file.

Object management authority
Object management authority is required to:

v Grant and revoke authority. You can grant and revoke only the authority that you already have.

v Change the file description.

v Move or rename the file.

v Refer to a database file from another database file.

v Add triggers to and remove triggers from database files.

v Add referential and unique constraints to database files.

v Remove referential and unique constraints to database files.

v Change the attributes of a database file.

v Change the attributes of a SQL package.

Object reference authority
Allows you to refer to a database file from another database file. The operations that you can perform on
the referred-to database file are determined by the referring database file.

Object alter authority
Allows you to alter the attributes of a database file or SQL package. Object alter authority is required to:

v Add triggers to and remove triggers from database files.

v Add referential and unique constraints to database files.

v Remove referential and unique constraints to database files.

v Change the attributes of a database file.

v Change the attributes of a SQL package.

Chapter 2. File processing 9



Data authorities
You can use data authorities to limit user access to the data in files.

You need the following authorities to perform the associated operations:

Execute
Run a program or locate an object in a library.

Read Open any file for input, compile a program using the file, or display the file description.

Add Add new records to the file.

Update
Open a database file for update.

Delete Open a database file for delete.

For files other than database and save files, the execute, the add, update, and delete authorities are
ignored.

Authorities required for file operations
Table 4 lists the file object authority required for file functions. Table 5 on page 11 lists the data authority
required for file functions. This is the same information that was presented in the previous two sections,
but it is listed by function rather than by authority.

Table 4. Object Authority Required for File Operations. The file object authority required for file functions

Function Object Operational
Object

Existence Object Management
Object

Reference
Object
Alter

Open, I/O, close
file1

X

Compile a program
using the file
description

X

Display file
description

X

Delete file X X
Save/restore X
Transfer ownership X X
Grant/revoke
authority

X X

Change file
description

X X

Move file X X
Rename file X X
Replace file X X X
Refer to another file
2

X X

Add or remove file
constraints 3

X X

Add or remove
triggers 4

X X

Change attributes 5 X X

10 File Management V5R2



Table 4. Object Authority Required for File Operations (continued). The file object authority required for file functions

Function Object Operational
Object

Existence Object Management
Object

Reference
Object
Alter

:
1 For device files that are not using spooling, you must also have object operational and all data authorities to

the device.

2 For database files only.

3 For database files only. Parent files need object management or object reference authority. Dependent files
need object management or object alter authority.

4 For database files only. Files need object management or object alter authority.

5 For database files and SQL packages only. Files need object management or object alter authority.

Table 5. Data Authority Required for File Operations. The data authority required for file functions.

Function Execute Read Add Update Delete

Open, I/O, close file1 X X2 X3 X3

Compile a program using
the file description

X

Run a program or locate
an object in a library

X

Display file description X
Replace file X
Add or remove triggers 4 X X5 X6 X7

:
1 For device files that are not using spooling, you must also have object operational and all data authorities to

the device.

2 Open for output for database and save files.

3 Open for update or delete for database files.

4 For database files only.

5 Add authority required in addition to Read authority for inserting triggers.

6 Update authority required in addition to Read authority for updating triggers.

7 Delete authority required in addition to Read authority for deleting triggers.

Limiting access to files and data when creating files
Specifying authorities allows you to control access to a file.

Specifying authorities when creating files:

To specify public authority when you create a file, use the AUT parameter on the create command.

What public authority is:

Public authority is authority that is available to any user who does not have specific authority to the file or
who is not a member of a group that has specific authority to the file. That is, if the user has specific
authority to a file or the user is a member of a group with specific authority, then the public authority is not
checked when a user performs an operation to the file. Public authority can be specified as:

Chapter 2. File processing 11



v *LIBCRTAUT. All users that do not have specific user or group authority to the file have authority
determined by the library in which the file is being created. The library value is specified by the
*CRTAUT command to establish a public authority for this library.

v *CHANGE. All users that do not have specific user or group authority to the file have authority to use
the file. The *CHANGE value is the default public authority. *CHANGE grants any user object
operational and all data authorities.

v *USE. All users that do not have specific user or group authority to the file have authority to use the file.
*USE grants any user object operational, execute, and read data authority.

v *EXCLUDE. Only the owner, security officer, users with specific authority, or users who are members of
a group with specific authority can change or use the file.

v *ALL. All users that do not have specific user or group authority to the file have all data authorities and
all object authorities.

v Authorization list name. An authorization list is a list of users and their authorities. The list allows users
and their different authorities to be grouped together.

Specifying or changing authorities on existing files:

To specify or change public authority on an existing file, use the Edit Object Authority (EDTOBJAUT),
Grant Object Authority (GRTOBJAUT), or Revoke Object Authority (RVKOBJAUT) commands to grant or
revoke the public authority of a file.

For more information about using the security function on the server, see the iSeries Security Reference or

the Tips and Tools for Securing Your iSeries book .

Sharing files
File management on iSeries provides several levels of support for shared files. The server automatically
provides the first level of support. By default, the server lets many users and more than one job use one
file at the same time. The server allocates the file and its associated resources for each use of the file in
such a way that it can prevent conflicting uses. Within the same job, programs can share files if one
program opens the same file more than once or if different programs open the same file. Even though the
same file is being used, each open operation creates a new path from the program to the data or device,
so that each open represents an independent use of the file.

Open data path

A closer level of sharing within a job allows more than one program to share the same path to the data or
device. This path, called an open data path, is the path through which all of the read and write operations
for the file are performed. You can use this level of sharing by specifying the SHARE parameter on the
create file, change file, and override file commands. The SHARE parameter allows more than one program
to share the file status, positions, and storage area. It can improve performance by reducing the amount of
main storage the job needs and by reducing the time it takes to open and close the file. iSeries bases this
level of sharing on two models:

v The original program model is the set of functions for compiling source code and creating high-level
language programs on the iSeries server before the Integrated Language Environment (ILE) model was
introduced.

v The ILE model is the set of constructs and interfaces that provide a common run-time environment and
run-time bindable application program interfaces (APIs) for all ILE-conforming high-level languages.

Shared files in the original program model

In the original program model, the SHARE(*YES) parameter lets two or more programs that run in the
same job share an open data path (ODP). It connects the program to a file. If not specified otherwise,

12 File Management V5R2



every time a file is opened a new open data path is built. You can specify that if a file is opened more than
once and an open data path is still active for it in the same job, the active ODP for the file can be used
with the current open of the file; a new open data path does not have to be created. This reduces the
amount of time that is required to open the file after the first opened to open the file after the first open,
and the amount of main storage that is required by the job. You must specify SHARE(*YES) for the first
open and other opens of the same file to share the open data path. A well-designed (for performance)
application will normally do a shared open on database files that multiple programs will open in the same
job. Specifying SHARE(*YES) for other files depends on the application.

Shared files in the ILE model

In the ILE model, shared files are scoped either to the job level or to the activation group level. An
activation group is a substructure of a run-time job. It consists of server resources (storage for program
or procedure variables, commitment definitions, and open files) that are allocated to one or more
programs. An activation group is like a miniature job within a job.

Any programs that run in any activation group can share shared files that are scoped to the job level. Only
programs that run in the same activation group can share shared files that are scoped to the activation
group level.

Sharing files: considerations

Sharing files allows you to have programs within a job interact in ways that would otherwise not be
possible. However, you should read the following topics to learn more about the effects of opening,
performing read and write operations, and closing shared files:

v Open considerations for files shared in a job

v I/O considerations for files shared in a job

v Close considerations for files shared in a job

You should also see the appropriate documentation for all of the file types to understand how this support
works, and the rules your programs must follow to use it correctly.

Note: Most high-level language programs process an open or a close operation independent of whether
or not the file is being shared. You do not specify that the file is being shared in the high-level
language program. You indicate that the file is being shared in the same job through the SHARE
parameter. You specify the SHARE parameter only on the CREATE, CHANGE, and OVERRIDE file
commands. Refer to your appropriate language information for more information.

Open considerations for files shared in a job
Consider the following points when you open a shared file in the same job by specifying SHARE(*YES).

v You must make sure that when the shared file is opened for the first time in a job, all the open options
that are needed for subsequent opens of the file are specified. If the open options specified for
subsequent opens of a shared file do not match those specified for the first open of a shared file, an
error message is sent to the program. (You can correct this by making changes to your program to
remove any incompatible options.)

For example, PGMA is the first program to open FILE1 in the job and PGMA only needs to read the file.
However, PGMA calls PGMB which will delete records from the same shared file. Because PGMB will
delete records from the shared file, PGMA will have to open the file as if it, PGMA, is also going to
delete records. You can accomplish this by using the correct specifications in the high-level language.
(In order to accomplish this in some high-level languages, you may have to use file operation
statements that are never run. See your appropriate language information for more details.)

v Sometimes sharing a file within a job is not possible. For example, one program may need records from
a file in arrival sequence, and another program may need the records in keyed sequence. Or, you may
use the same file for printing output, but want to produce the output from each program separately. In

Chapter 2. File processing 13



these situations, you should not share the open data path. You would specify SHARE(*NO) on the
override command to ensure that programs do not share the file within the job.

v If debug mode is entered with UPDPROD(*NO) after the first open of a shared file in a production
library, subsequent shared opens of the file share the original open data path and allow the file to be
changed. To prevent this, specify SHARE(*NO) on the OVERRIDE command before opening files while
debugging your program.

v The use of commitment control for the first open of a shared file, requires that all subsequent shared
opens also use commitment control.

v If you did not specify a library name in the program or the OVERRIDE command (*LIBL is used), the
server assumes that the library list has not changed since the last open of the same shared file with
*LIBL specified. If the library list has changed, you should specify the library name on the OVERRIDE
command to ensure that you opened the correct file.

v The server processes overrides and program specifications that are specified on the first open of the
shared file. Overrides and program specifications specified on subsequent opens, other than those that
change the file name or the value specified on the SHARE or LVLCHK parameters on the OVERRIDE
command, are ignored.

I/O considerations for files shared in a job
The server uses the same input/output area for all programs sharing the file, so the order of the operations
is sequential regardless of which program does the operation. For example, if Program A is reading
records sequentially from a database file and it reads record 1 just before calling Program B, and Program
B also reads the file sequentially, Program B reads record 2 with the first read operation. If Program B
then ends and Program A reads the next record, it receives record 3. If the programs were not sharing the
file, Program A would read record 1 and record 2, and Program B would read record 1.

For device files, the device remains in the same state as the last I/O operation.

For display and ICF files, programs other than the first program that opens the file may acquire more
display or program devices or release display or program devices already acquired to the open data path.
All programs sharing the file have access to the newly acquired devices, and do not have access to any
released devices.

Close considerations for files shared in a job
The processing done when a program closes a shared file depends on whether other programs currently
share the open data path. If there are other programs, the main function that is performed is to detach
from the file the program that is requesting the close. For database files, the program also releases any
record locks that it holds.. The program will not be able to use the shared file unless it opens it again. All
other programs sharing the file are still attached to the ODP and can perform I/O operations.

If the program closing the file is the last program sharing the file, then the close operation performs all the
functions it would if the file had not been opened with the share option. This includes releasing any
allocated resources for the file and destroying the open data path.

The function provided by this last close operation is the function that is required for recovering from certain
run-time errors. If your application is written to recover from such errors and it uses a shared file, this
means that all programs that are attached to the file when the error occurs will have to close the file. This
may require returning to previous programs in the call stack and closing the file in each one of those
programs.

Allocating file resources
Resources are those parts of the server that are required by a job or task, including main storage, devices,
the processing unit, programs, files, libraries, and folders. When you write a high-level language program,
you should be aware of what resources the server has allocated for each file type.

14 File Management V5R2



Normally, the server will perform the allocation whenever a requested operation requires it. For example,
the server allocates resources for each file that is used in a program when the file is opened.

To ensure that all of the resources that are needed by a program are available before the program is run,
you can use the Allocate Object (ALCOBJ) CL command in the job before you run the program. In
particular, the ALCOBJ command can allocate database files and most devices.

The following operations are examples of operations that require resource allocation:

v Open

v Acquire

v Starting a program on a remote server

See the following topics for more information:

v “File resource allocation”

v “File resources that must be allocated”

v “How the server allocates resources” on page 16

File resource allocation
When a high-level language program uses a file, several operations require that the server allocate the
resources that are needed to perform that operation. The server generally does this to ensure that multiple
users do not use the file in conflicting ways.

For example, the server will not allow you to delete a file while any application program is using it. The
server does this by obtaining a lock on the file when it opens. The delete file operation also attempts to
get a lock on the file and is unsuccessful because the program using the file still has the lock from when
the file was opened, and the locks conflict.

File resources that must be allocated
The file resources that the server must allocate depend on the type of file and the operation. File
resources consist of the following:

v Open

– For printer and diskette files that are spooled (SPOOL(*YES)), the file resources include the file
description, the specified output queue, and storage in the server for the spooled data. Because the
data is spooled, the device need not be available.

– For database files, the file resources consist of the entire file; this includes the file, member, data,
and the associated access path.

– For printer and diskette files that are not spooled (SPOOL(*NO)) as well as for tape files, display
files, and some ICF files, the file resources include the file description and the device. For ICF files
that use APPC, APPN, or intrasystem communications, the file resources include the file description
and the session resources that are associated with the device.

– For save files, the file resources consist of the entire file, including the file and data.

– For DDM files, the file resources include the file description and the session resources that are
associated with the device.

v Acquire operation

For display files and ICF files that do not use APPC/APPN or intrasystem communications, the server
allocates the device as a resource. For ICF files that use APPC/APPN or intrasystem communications,
resources include the session resources that are associated with the device.

v Starting a program on a remote server

Session resources that are needed for APPC and APPN.

Chapter 2. File processing 15



How the server allocates resources
When it allocates resources, the server waits for a predefined time if the resources are not immediately
available. If the resources do not become available within the time limit, the server generates an error. If
you are using the ALCOBJ command, the command fails. If your program is performing a file operation,
that operation fails, and the server sends an error message to the program message queue. You may
attempt to use the error handling functions of your high-level language to try the operation again. For
example, if an open operation fails because another job is using the device associated with the file, you
could retry the open operation a specified number of times, in the hope that the other job would finish with
the device and your program would then be able to use it.

The length of time that the server waits when allocating resources is specified on the ALCOBJ command
and on the WAITFILE parameter of the CL command used to create the file. If the ALCOBJ command is
used prior to running a program, then the value of the WAITFILE parameter does not matter, because the
resources will be available.

If your application has error handling procedures for handling device errors occurring on device files, you
should specify a value of something other than *IMMED to allow the server to recover from the error. The
allocation of resources requested by your program on an open or acquire operation that allows your
program to recover from the error will not be successful until the server recovery procedures have been
completed for the device.

The following describes the values that are allowed for the WAITFILE parameter:

Values Definition

*IMMED
This value specifies that no wait time is allowed. An immediate allocation of the file resources is
required.

*CLS The job default wait time is used as the wait time for the file resources to be allocated.

number-of-seconds
Specify the maximum number of seconds that the program is to wait for the file resources to be
allocated. Valid values are 1 through 32767 (32 767 seconds).

Opening files
When you want an application to use a file, you do so by referring to that file by name. The file description
for that file will then control how the program and the server will interact.

You have two options regarding how your application program uses the file description:

v You can use the file description as it currently exists. In this case, the server uses the file description as
is, without any change.

v You can change some or all of the parameters that are associated with the file description. A change
made to a file description can be permanent or temporary. See the appropriate book for the device that
you are using for information about permanent changes.

See the following topics for information on how the server handles open files:

v “Scoping of opened files” on page 17

v “Opening files using temporary file descriptions” on page 17

v “Open considerations when using *LIBL with a DDM file” on page 19

v “Displaying information about open files” on page 21

v “Detecting file description changes” on page 20

v “Monitoring file status with the open and I/O feedback area” on page 22

16 File Management V5R2



Scoping of opened files
Files that are opened within the user default activation group are scoped to the call level number of the
calling program (default). A call level number is a unique number that the server assigns to each call
stack entry. Files that are opened within a named activation group are scoped to the activation group level
(default). You can change the scope of an open operation by using override commands. For example, you
can change the scope of an open operation to the job level. For more information on using overrides to
change the scope of an open operation, see Chapter 3, “Using overrides” on page 29. For information on
displaying the scope of existing open operations, see “Displaying information about open files” on page 21.

Opening files using temporary file descriptions
Temporary changes can provide greater flexibility to the application. The server makes temporary changes
when the program is first establishing a path to the file by opening the file. Temporary changes can be
made in one of two ways:

v By information that is specified within the program itself, and which is passed as parameters on the
open operation.

v By using override CL commands in the input stream that is used to set up the run-time environment for
the application

The ability to use the first way depends very much on which programming language you used to write the
program. Some programming languages do not allow you to control the open process to any great extent.
These languages do the open process more or less automatically and control what information gets
passed. Other languages allow you to have greater control over the open process.

You can use the second option regardless of which programming language you use. The iSeries server
provides override CL commands for each file type. By including override commands with the application,
you may temporarily change the file description in a file that the program wants to use.

You can use both options together. Information that is contained in the application can change some
parameters; an override command can change others. Both can change the same parameter. The
operating system follows this order when making temporary changes to a file:

1. The file description provides a base of information.

2. Change information received from the application during the open process is applied first to the base
information.

3. Change information found in the override command is applied last. If both the change information from
the application and the override change the same information, the override has precedence.

Only the application that makes the changes can see the temporary changes. The file, as seen by another
application, remains unchanged. In fact, two applications may use the same file at the same time, and
each may change it temporarily according to its needs. Neither application is aware the other has made a
temporary change. Figure 1 on page 18 and Figure 2 on page 19 illustrate the permanent and temporary
change processes.

Chapter 2. File processing 17



Figure 1. Permanently Changing a File

18 File Management V5R2



Once an application establishes a connection between itself and the file by opening the file, it can then
proceed to use the file for either input or output operations. In the case of a database file, the open
process establishes a path between the application and the actual database file. For device files, a path is
established between the application and the actual device, or to a spooled file if the spooling attribute is
active for the device file. In all cases, the application connects to what it wants to use, and those
connections determine what input or output operations are valid. Not all operations are valid with all file
types. The application must be aware of what file types it uses and then use only those operations which
are valid for those types.

Open considerations when using *LIBL with a DDM file
Take note of the following considerations when you open DDM files and specify *LIBL for the library:

Figure 2. Temporarily Changing a File

Chapter 2. File processing 19



v The server first searches the library list for a local database file with the specified member. Even if the
local database file is located in a library later in your library list than the library containing the DDM file,
the local database file containing the specified member is used.

Therefore, if you want to open a DDM file using *LIBL, you must ensure that there are no local
database files with the same name, and that contain the specified member, anywhere in your library list.

v If the server does not locate a local database file with the specified member, it searches the library list
for the first file that has the specified name. If this file is not of the proper type, or if it does not contain
the specified member, an open failure occurs.

Therefore, if you want to open a DDM file using *LIBL, you must ensure that the DDM file you want to
open is the first file in your library list with the specified name.

Detecting file description changes
When a program that uses externally described files is compiled, the high-level language compiler extracts
the record-level and field-level descriptions for the files referred to in the program and makes those
descriptions part of the compiled program. When you run the program, you can verify that the descriptions
with which the program was compiled are the current descriptions.

The server assigns a unique level identifier for each record format when it creates the associated file. The
server uses the following information to determine the level identifier:

v Record format name

v Field name

v Total length of the record format

v Number of fields in the record format

v Field attributes (for example, length and decimal positions)

v Order of the field in the record format

Note: It is possible for files with large record formats (many fields) to have the same format level
identifiers even though their formats may be slightly different. Problems can occur when copying
these files if the record format names of the from-file and the to-file are the same.

Display, printer, and ICF files may also use the number of and order of special fields called indicators to
determine the level identifier.

If you change the DDS for a record format and change any of the items in the preceding list, the level
identifier changes.

To check the record format identifiers when you run the program, specify LVLCHK(*YES) on the create file
or change file commands.

The level identifiers of the file opened and the file description that is part of the compiled program are
compared when the file is opened and LVLCHK(*YES) is specified. The server does a format-by-format
comparison of the level identifiers. If the identifiers differ or if any of the formats specified in the program
do not exist in the file, a message is sent to the program to identify the condition.

When the identifiers differ, this means that the file format has changed. If the changes affect a field that
your program uses, you must compile the program again for it to run properly. If the changes do not affect
the fields that your program uses, you can run the program without compiling again by entering an
override command for the file and specifying LVLCHK(*NO). Specifying LVLCHK(*NO) causes the server
to omit the level identifier check when the file opens. For example, suppose that you add a field to the end
of a record format in a database file, but the program does not use the new field. You can enter the
Override with Database File (OVRDBF) command with LVLCHK(*NO) to enable the program to run without
compiling again.

20 File Management V5R2



There are several CL commands available to you to check the changes. You can use the Display File
Field Description (DSPFFD) command to display the record-level and field-level descriptions or, if you
have the source entry utility (SEU), you can display the source file containing the DDS for the file. You can
display the format level identifier that is defined in the file by using the Display File Description (DSPFD) or
the DSPFFD commands. The format level identifier which was used when the program was created can
be displayed by the Display Program References (DSPPGMREF) command.

There are also some changes to a file description that will not cause an error when the file opens. These
happen because the record format identifiers did not change or because your program does not use the
changed formats. You can add or remove formats from a file without affecting existing programs that do
not use the added or deleted formats.

Even though the level identifier does not change, some DDS functions that you add or delete could require
changes in the logic of your program. You should review the functions you added or deleted to determine
whether the program logic requires changes.

Normally, the use of LVLCHK(*YES) is a good file integrity practice. The use of LVLCHK(*NO) can produce
unpredictable results.

Displaying information about open files
You can display information about your open files in two ways:

v Type dspjob option(*opnf) on any command line and press Enter.

v Type wrkjob option(*opnf) on any command line and press Enter.

The following screen displays:

Display Open Files

Job . . : QPADEV0027 User . . : KELLYMR Number . . . : 032138
Number of open data paths . . . . . . . . . . : 2

Member/
File Library Device Scope Activation Group
QDUI80 QSYS QPADEV0027 *ACTGRPDFN 0000000002 *DFTACTGRP
QDDSPOF QSYS QPADEV0027 *ACTGRPDFN 0000000002 *DFTACTGRP

Press Enter to continue.

F3=Exit F5=Refresh F10=Display I/O details F12=Cancel F16=Job menu

The Scope column identifies the level to which the open is scoped. *ACTGRPDFN indicates that the open
is scoped to the activation group level. If the file opened in the user default activation group, the open is
scoped to the call level number of the calling program. If the file opened in a named activation group, the
open is scoped to the activation group level. *JOB indicates that the open is scoped to the job level. You
can change the scope of an open operation by using override commands. For information on how to use
overrides to change the scope of an open operation, see Chapter 3, “Using overrides”.

The Activation Group column identifies the number and name of the activation group. *DFTACTGRP
indicates the default activation group.

Chapter 2. File processing 21



Monitoring file status with the open and I/O feedback area
The server monitors the status of a file in feedback areas once it has successfully opened the file. As the
server performs operations on a file, it updates the feedback areas to reflect the latest status. These
feedback areas give you greater control over applications and provide important information when errors
occur.

The feedback areas are established at open time, and there is one feedback area for each open file. One
exception is for shared files, which share feedback areas as well as the data path between the program
and the file. For more information on shared opens, see “Sharing files” on page 12.

Some high-level languages on the server allow you to access the status and other information about the
file against which operations are being performed. There are two feedback areas of interest to you:

v Open feedback area

This area contains information of a general nature about the file after the server has successfully
opened the file. Examples include the name and library of the file and the file type. See “Open feedback
area” on page 157 for a complete list of the information that you can retrieve from the open feedback
area. In addition to general information about the file, the open feedback area also contains file-specific
information after the server has successfully opened the file. The applicable fields depend on the file
type.

The open feedback area also contains information about each device or communications session that is
defined for the file.

v Input/output feedback area

There are two sections of the I/O feedback area that are updated on the successful completion of input
and output operations:

– Common area

This area contains information about I/O operations that were performed on the file. This includes the
number of operations and the last operation performed. See “I/O feedback area” on page 167 for a
complete list of the information that you can retrieve from the common I/O feedback area.

– File-dependent feedback area

This area contains file-specific information for display, database, printer, and ICF files; for example,
the major and minor return code and amount of data received from the device. See “I/O feedback
area for ICF and display files” on page 173, “I/O feedback area for printer files” on page 176, and
“I/O feedback area for database files” on page 177 for a complete list of the information that you can
retrieve from the file-dependent I/O feedback area.

The above information areas can be useful to you. For example, when an error occurs with a device file,
the program could determine predefined error handling operations based on the major/minor return code in
the file-dependent feedback area. If data is being received from a communications device and the
application on the other end sends an error, the program could determine that the next operation should
be to wait until the next block of data is sent indicating the error. Possibly, the next operation may be to
close the file and end the conversation with the application on the other side or wait for the next request
from the application.

Another way might include detecting the type of file that actually opened to determine the type of
operations that are allowed. If the file type is printer, only output operations are allowed.

File error detection and handling by the server
The server can detect errors when a file is opened, when a program device is acquired or released, during
I/O operations to a file, and when the file is closed. When appropriate, the server will automatically try to
run a failing operation again, up to a retry limit. When a retry is successful, neither operator nor program
action is required.

22 File Management V5R2



How the server reports errors:

The server reports errors that can affect the processing of the program in any or all of the following ways:

v A notify, status, diagnostic, or escape message may be sent to the program message queue of the
program using the file. These messages may also appear in the job log, depending on the message
logging level that is set for the job. See “Messages and message monitors in files by the server” for
more information.

v The high-level language may return a file status code.

v A major and minor return code is returned in the I/O feedback area for intersystem communications
function (ICF), display, and printer files. See “Major and minor return codes in files by the server” on
page 24 for more information.

v A notify, status, diagnostic, or escape message may be sent to the operator message queue
(QSYSOPR) or the history message queue (QHST).

v Information regarding the error may be saved in the server error log for use by the problem analysis
and resolution programs.

v An alert message may be sent to an operator at another server in the network.

v The normal program flow may be interrupted and control may be transferred to an error-handling
subroutine, or other language operations may occur. For additional information about how to handle
run-time errors, see the appropriate book for the high-level language.

Only some of these are significant to a program that is attempting error recovery.

Actions to take when you receive an error:

See “Recovering from file server errors” on page 26 for information on the actions you should take when
you receive an error.

Nonrecoverable errors:

Not all file errors allow programmed error recovery. Some errors are permanent; that is, the file, device, or
program cannot work until you take some corrective action. This might involve resetting the device by
varying it off and on again, or correcting an error in the device configuration or the application program.
Some messages and return codes inform the user or the application program of conditions that are
information rather than errors, such as change in the status of a communications line, or server action
taken for an unexpected condition. In many cases, it is possible for the application program to test for an
error condition and take some preplanned recovery action which allows the program to continue without
intervention from the operator.

For more information:

The CL Programming book discusses how to use the debug functions to resolve unexpected errors
that you encounter in the application programs.

See the Getting Started with iSeries 400 topic for information on handling problems. It also describes
programs that are available for analyzing and reporting server errors and hardware failures.

Messages and message monitors in files by the server
Displayed messages are the primary source of information for an operator or a programmer who is testing
a new application. A message usually contains more specific information than the file status code, the
indicators, and the major and minor return code. The control language lets you monitor messages so that

the CL program can intercept a message and take corrective action. See the CL Programming book

Chapter 2. File processing 23



for more information about message types and message monitors. In most high-level languages, the file
status code and return codes (which are described in the following section) are more convenient sources
of information.

Message numbers are assigned in categories to make it easier for a program to monitor for a group of
related messages. Table 6 shows the message number ranges that are assigned for file error messages.

Table 6. OS/400 File Management Message Number Ranges. Message number ranges that are assigned for file error
messages, in order to make it easier for a program to monitor for a group of related messages.

Message IDs Operation Message Type

CPF4001-40FF Open Diagnostic and status.

CPF4101-43FF Open Escapes that make the file unusable.

CPF4401-44FF Close Diagnostic and status.

CPF4501-46FF Close Escapes that make the file unusable.

CPF4701-48FF I/O, Acquire, and Release Notify with a default reply of cancel,
status and escapes that do not make
the file or device unusable.

CPF4901-49FF I/O, Acquire, and Release Notify with a default reply of ignore or
go.

CPF5001-50FF I/O, Acquire, and Release Notify with a default reply of cancel.

CPF5101-53FF I/O, Acquire, and Release Escapes that make the file or device
unusable.

CPF5501-56FF I/O, Acquire, and Release Escapes that make the file or device
unusable.

Some status messages, CPF4018 for example, are preceded by a diagnostic message that provides
additional information. Diagnostic messages may be kept in the job log, depending on the message
logging level of the job. If a CL program monitors for CPF4018, CPF5041, or similar messages, it can
retrieve the accompanying diagnostic message from the program message queue.

If an error occurs for which an escape message is issued and the message is not monitored, your
program will be ended and the message displayed for the operator. You can also monitor status
messages, but if you do not monitor them the program continues. Most high-level languages except CL
monitor for all the file errors that you are likely to encounter, and provide some standard recovery.
Depending on the severity of the error, the high-level language may simply end the program and issue a
message of its own. Alternatively, the application programmer may code an error recovery routine to
handle errors that are anticipated in that particular application.

Within these error-handling routines, it is usually necessary to examine the file status or major and minor
return codes to determine the cause of the error. The books for the language you are using explain how to
access file status and major and minor return codes. The information for each language also explains the
file status codes as each language defines them.

Major and minor return codes in files by the server
Major and minor return codes report errors and certain status information for ICF, display, and printer files.
They are not used for other files. They usually appear as four characters: the first two refer to the major

24 File Management V5R2



code and the second two refer to the minor code. The major code indicates the general type of error, and
the minor provides further detail. Minor codes, except zero, have the same or a similar meaning,
regardless of the major code with which they are combined.

The application program can test the return code after each I/O operation. If the major return code is 00,
the operation completed successfully and the minor return code contains status information that indicates
whether a read or a write operation should be performed next. A major return code of 04 or higher
indicates that an error occurred. The program may test for any specific errors for which it will attempt
programmed recovery. The application program may test for a specific condition by comparing the major
and minor codes as a unit, or may identify a class of conditions by testing the major code alone.

Most major and minor return codes are accompanied by any one of several message numbers, for which
the typical recovery action is similar. The individual languages file status codes; they may set based on the
major and minor return codes.

Table 7 defines the major return codes. See the Application Display Programming book for specific
definitions of the major and minor return codes as they are used for display files and the message
numbers associated with each. Similar specific definitions for printer files and each of the communications

types valid on an ICF file can be found in the Printer Device Programming book and the books for
each communications type.

Table 7. Major Return Code Definitions. The major return codes and their definitions are outlined.

Code Definition

00 The operation requested by your program completed successfully. The
minor includes state information, such as change direction.

02 Input operation completed successfully, but job is being ended (controlled).
The minor includes state information.

03 Successful input operation, but no data was received. The minor includes
state information.

04 Error occurred because an output operation was attempted while data was
waiting to be read.

08 An acquire operation failed because the device has already been acquired
or the session has already been established.

11 A read-from-invited-program-devices operation failed because no device or
session was invited.

34 An input exception occurred. The data length or record format was not
acceptable for the program.

80 A permanent (unrecoverable) server or file error occurred. Programmer
action is required to correct the problem.

81 A permanent (unrecoverable) device or session error occurred during an I/O
operation.

82 A device or session error occurred during an open or acquire operation.
Recovery may be possible.

Chapter 2. File processing 25



Table 7. Major Return Code Definitions (continued). The major return codes and their definitions are outlined.

Code Definition

83 A device or session error occurred during an I/O operation. Recovery may
be possible.

Recovering from file server errors
The following topics describe the actions you should take to recover from errors that you receive. “Major
and minor return codes in files by the server” on page 24 describes return codes.

Normal completion of errors by the server
A major and minor return code of 0000 indicates that the operation requested by your program completed
successfully. Most of the time, the server issues no message. In some cases, the server might use a
diagnostic message to inform the user of some unusual condition that it could not handle, but which might
be considered an error under some conditions. For example, it might ignore a parameter that is not valid,
or it might take some default action.

For communications devices, a major return code of 00, indicating successful completion with data
received, is accompanied by a minor return code that indicates what operation the application program is
expected to perform next. The nonzero minor does not indicate an error. No message is issued.

Completion with exceptions of errors by the server
The server assigns several rather specific major return codes to conditions for which a specific response
from the application program is appropriate.

A major return code of 02 indicates that the requested input operation completed successfully, but the
server is ending the job in a controlled. The application program should complete its processing as quickly
as possible. The controlled cancel is intended to allow programs time to end in an orderly manner. If your
program does not end within the time specified on the ENDJOB command, the server will end the job
without further notice.

A major return code of 03 indicates that an input operation completed successfully without transferring any
data. For some applications, this might be an error condition, or it might be expected when the user
presses a function key instead of entering data. It might also indicate that all the data has been processed,
and the application program should proceed with its completion processing. In any case, the contents of
the input buffer in the program should be ignored.

A major and minor code of 0309 indicates that the server received no data and is ending the job in a
controlled manner. A major and minor code of 0310 indicates that there is no data because the specified
wait time has ended. Other minor return codes accompanying the 02 or 03 major code are the same as
for a 00 major code, indicating communications status and the operation to be performed next.

A major return code of 04 indicates that an output exception occurred. Specifically, your program
attempted to send data when data should have been received. This is probably the result of not handling
the minor return code properly on the previous successful completion. Your program can recover by simply
receiving the incoming data and then repeating the write operation.

A major return code of 34 indicates that an input exception occurred. The received data was either too
long or incompatible with the record format. The minor return code indicates what was wrong with the
received data, and whether the data was truncated or rejected. Your program can probably handle the
exception and continue. If the data was rejected, you may be able to read it by specifying a different
record format.

Two other return codes in this group, 0800 and 1100, are both usually the result of application
programming errors, but are still recoverable. 0800 indicates that an acquire operation failed because the

26 File Management V5R2



device has already been acquired or the session has already been established. 1100 indicates that the
program attempted to read from invited devices with no devices invited. In both cases, the program
ignored the request that is not valid, and the program may continue.

No message is issued with a 02 major code or most minor codes with the 03 major code, but the other
exceptions in this group are usually accompanied by a message in the CPF4701-CPF47FF or
CPF5001-CPF50FF range.

Permanent server or file error
A major return code of 80 indicates a serious error that affects the file. The application program must close
the file and reopen it before attempting to use it again, but recovery is unlikely until the problem causing
the error is found and corrected. To reset an error condition in a shared file by closing it and opening it
again, all programs sharing the open data path must close the file. This may require returning to previous
programs in the call stack and closing the shared file in each of those programs. The operator or
programmer should refer to the text of the accompanying message to determine what action is appropriate
for the particular error.

Within this group, several minor return codes are of particular interest. A major and minor code of 8081
indicates a serious server error that probably requires an APAR. The message sent with the major and
minor return code may direct you to run the Analyze Problem (ANZPRB) command to obtain more
information.

A major and minor code of 80EB indicates that incorrect or incompatible options were specified in the
device file or as parameters on the open operation. In most cases you can close the file, end the program,
correct the parameter that is not valid with an override command, and run the program again. The override
command affects only the job in which it is issued. It allows you to test the change easily, but you may
eventually want to change or re-create the device file as appropriate to make the change permanent.

Permanent device or session error on I/O operation
A major return code of 81 indicates a serious error that affects the device or session. This includes
hardware failures that affect the device, communications line, or communications controller. It also includes
errors due to a device being disconnected or powered off unexpectedly and abnormal conditions that were
discovered by the device and reported back to the server. Both the minor return code and the
accompanying message provide more specific information regarding the cause of the problem.

Depending on the file type, the program must either close the file and open it again, release the device
and acquire it again, or acquire the session again. To reset an error condition in a shared file by closing it
and opening it again, all programs sharing the open data path must close the file. In some cases, the
message may instruct you to reset the device by varying it off and on again. It is unlikely that the program
will be able to use the failing device until the problem causing the error is found and corrected, but
recovery within the program may be possible if an alternate device is available.

Some of the minor return codes in this group are the same as those for the 82 major return code. Device
failures or line failures may occur at any time, but an 81 major code occurs on an I/O operation. This
means that your program had already established a link with the device or session. Therefore, the
program may transfer some data, but when the program starts from the beginning when it starts again. A
possible duplication of data could result.

Message numbers accompanying an 81 major code may be in the range that indicates either an I/O or a
close operation. A device failure on a close operation simply may be the result of a failure in sending the
final block of data, rather than action specific to closing the file. An error on a close operation can cause a
file to not close completely. Your error recovery program should respond to close failures with a second
close operation. The second close will always complete, regardless of errors.

Chapter 2. File processing 27



Device or session error on open or acquire operation
A major return code of 82 indicates that a device error or a session error occurred during an open or
acquire operation. Both the minor return code and the accompanying message will provide more specific
information regarding the cause of the problem.

Some of the minor return codes in this group are the same as those for the 81 major return code. Device
or line failures may occur at any time, but an 82 major code indicates that the device or session was
unusable when your program first attempted to use it. Thus no data was transferred. The problem may be
the result of a configuration or installation error.

Depending on the minor return code, it may be appropriate for your program to recover from the error and
try the failing operation again after some waiting period. You should specify the number of times you try in
your program. It may also be possible to use an alternate or backup device or session instead.

Message numbers accompanying an 82 major code may be in the range indicating either an open or an
acquire operation. If the operation was an open, it is necessary to close the partially opened file and
reopen it to recover from the error. If the operation was an acquire, it may be necessary to do a release
operation before trying the acquire again. In either case, you should specify a wait time for the file that is
long enough to allow the server to recover from the error.

Recoverable device or session errors on I/O operation
A major return code of 83 indicates that an error occurred in sending data to a device or receiving data
from the device. Recovery by the application program is possible. Both the minor return code and the
accompanying message provide more specific information regarding the cause of the problem.

Most of the errors in this group are the result of sending commands or data that are not valid to the
device, or sending valid data at the wrong time or to a device that is not able to handle it. The application
program may recover by skipping the failing operation or data item and going on to the next one, or by
substituting an appropriate default. There may be a logic error in the application.

Related information on file types
Refer to the following books for more information on the file types discussed in this chapter:

v Database files: Database Programming

v Display files: Application Display Programming

v DDM files: Distributed Data Management

v ICF files: ICF Programming

v Printer files: Printer Device Programming

v Save files: Backup and Recovery

v Tape and diskette files: Tape and Diskette Device Programming

28 File Management V5R2



Chapter 3. Using overrides

These topics explain how to use overrides on iSeries:

v “Overrides: An overview”

v Applying overrides

v Deleting overrides

v Displaying overrides

v Redirecting files

Overrides: An overview
An override is a CL command that temporarily changes a file name, a device name, or remote location
name associated with the file, or some of the other attributes of a file. You can enter override commands
interactively from a display station or submit them as part of a batch job. You can include them in a control
language (CL) program, or issue them from other programs by calling the program QCMDEXC.
Regardless of how they are issued, overrides remain in effect only for the job, program, or display station
session in which they are issued. Furthermore, they have no effect on other jobs that may be running at
the same time.

When you create an application program, the file names specified in the program associate files with it.
The server lets you override these file names or the attributes of the specified file when you compile a
program or run a program.

You can use overrides to change most, but not all, of the file attributes that are specified when the file is
created. In some cases, you can specify attributes in overrides that are not part of the original file
definition. Refer to the command descriptions in the CL topic for details.

Overriding a file is different from changing a file in that an override does not permanently change the
attributes of a file. For example, if you override the number of copies for a printer file by requesting six
copies instead of two, the file description for the printer file still specifies two copies, but six copies are
printed. The server uses the file override command to determine which file to open and what its file
attributes are.

How you work with overrides:

The server supplies three override functions:

v “Applying overrides” on page 33

v “Deleting overrides” on page 50

v “Displaying overrides” on page 53

Handling overrides for message files is different in some respects from handling overrides for other files.
You can override only the name of the message file, and not the attributes. For more information on

message handling, refer to the CL Programming book.

Related information:

“Benefits of using overrides” on page 30 provides information about the types of situations where overrides
can be especially useful.

“Summary of the override commands” on page 30 provides a list of the commands that you can use to
work with overrides.

© Copyright IBM Corp. 1998, 2002 29

|



“Effect of overrides on some commands” on page 31 provides information about how the override
commands interact with other server functions.

“Using overrides in multithreaded jobs” on page 33 lists restrictions for using overrides in multithreaded
jobs.

Benefits of using overrides
Overrides are particularly useful for making minor changes to the way a program functions or for selecting
the data on which it operates without having to recompile the program. Their principal value is in allowing
you to use general purpose programs in a wider variety of circumstances. Examples of items where you
can use overrides include the following:

v Changing the name of the file to process

v Selecting the database file member to process

v Indicating whether to spool output

v Directing output to a different tape unit

v Changing printer characteristics such as lines per inch and number of copies

v Selecting the remote location to use with an ICF file

v Changing the characteristics of a communications session

Summary of the override commands
You can process override functions for files by using the following CL commands:

DLTOVR
The Delete Override command deletes one or more file overrides, including overrides for message
files, that were previously specified in a call level.

DSPOVR
The Display Override command displays file overrides at any active call level, activation group
level, or job level for a job.

OVRDBF
The Override with Database File command iverrides (replaces) the database file named in the
program, overrides certain parameters of a database file that is used by the program, or overrides
the file and certain parameters of the file to be processed.

OVRDKTF
The Override with Diskette File command overrides (replaces) the diskette file named in the
program, overrides certain parameters of a diskette file that is used by the program, or overrides
the file and certain parameters of the file to be processed.

OVRDSPF
The Override with Display File command overrides (replaces) the display file named in the
program, overrides certain parameters of a display file that is used by the program, or overrides
the file and certain parameters of the file to be processed.

OVRICFF
The Override with Intersystem Communications Function File command overrides the file that is
named in the program, and overrides certain parameters of the processed file.

OVRMSGF
The Override with Message File command overrides a message file that is used in a program. The
rules for applying the overrides in this command are different from the other override commands.

For more information on overriding message files, see the CL Programming book.

30 File Management V5R2



OVRPRTF
The Override with Printer File command overrides (replaces) the printer file named in the program,
overrides certain parameters of a printer file that is used by the program, or overrides the file and
certain parameters of the file to be processed.

OVRSAVF
The Override with Save File command overrides (replaces) the file named in the program,
overrides certain attributes of a file that is used by the program, or overrides the file and certain
attributes of the file to be processed.

OVRTAPF
The Override with Tape File command overrides (replaces) the file named in the program,
overrides certain attributes of a file that is used by the program, or overrides the file and certain
attributes of the file to be processed.

Effect of overrides on some commands
The following commonly used commands ignore overrides entirely:

v ADDLFM

v ADDPFM

v ALCOBJ

v APYJRNCHG

v CHGOBJOWN

v CHGPTR

v CHGSBSD

v CHGXXXF (all change file commands)

v CLRPFM

v CLRSAVF

v CPYIGCTBL

v CRTDKTF

v CRTDUPOBJ

v CRTAUTHLR

v CRTSBSD

v CRTTAPF

v DLCOBJ

v DLTF

v DLTAUTHLR

v DSPDBR

v DSPFD

v DSPFFD

v DSPJRN

v EDTOBJAUT

v EDTDLOAUT

v ENDJRNPF

v GRTOBJAUT

v INZPFM

v MOVOBJ

v RGZPFM

v RMVJRNCHG

Chapter 3. Using overrides 31



v RMVM

v RNMOBJ

v RTVMBRD

v RVKOBJAUT

v SBMDBJOB

v SIGNOFF

v STRDBRDR

v STRJRNPF

Note: Save operations and restore operations ignore all file overrides that are related to the respective
media (tape, diskette, save file).

The server does not apply overrides to any server files that are opened as part of an end-of-routing step
or end-of-job processing. For example, you cannot specify overrides for the job log file. In some cases,
when you need to override something in a server file, you may be able to change it through a command
other than an override command. For example, to change the output queue for a job log, the output queue
could be changed before sign-off using the OUTQ parameter on the Change Job (CHGJOB) command to
specify the name of the output queue for the job. If the printer file for the job log contains the value *JOB
for the output queue, the output queue is the one that is specified for the job.

The following commands allow overrides for the SRCFILE and SRCMBR parameters only:

v CRTCMD

v CRTICFF

v CRTDSPF

v CRTLF

v CRTXXXPGM

v CRTPRTF

v CRTSRCPF

v CRTTBL

v CRTPF

v (All create program commands. These commands also use overrides to determine which file will be
opened by a compiled program. See “Applying overrides when compiling a program” on page 49 for
more information.)

The following command allows overrides for the TOFILE, MBR, SEQONLY, LVLCHK, and INHWRT
parameters:

OPNQRYF

The following commands allow overrides, but do not allow changing the MBR to *ALL:

v CPYFRMPCD

v CPYTOPCD

The following commands do not allow overrides to affect the display files that they use. Overrides to the
printer files they use should not change the file type or the file name. Some restrictions are placed on
changes that may be made to printer files used by these commands, but the server can not guarantee that
all combinations of possible specifications will produce an acceptable report.

DMPOBJ and DMPSYSOBJ
(In addition to the preceding limitations, these commands do not allow overrides to the file they
dump.)

32 File Management V5R2



DSPXXXXXX
(All display commands. The display commands that display information about a file do not allow
overrides to that file.)

DSPIGCDCT

EDTIGCDCT

GO (You can override message files.)

PRTXXXXXX
(All print commands.)

QRYDTA

TRCXXX
(All trace commands.)

WRKXXXXXX
(All work-with commands.)

Using overrides in multithreaded jobs
You can use the following overrides in a multithreaded job (with some restrictions, noted below):

v Override with Database File (OVRDBF) command. You can run this command from the initial thread of
a multithreaded job. Only the overrides that are scoped to the job or an ILE activation group affect open
operations that are performed in a secondary thread.

v Override with Printer File (OVRPRTF) command. You can run this command from the initial thread of a
multithreaded job. Only the overrides that are scoped to the job or an ILE activation group affect open
operations that are performed in a secondary thread.

v Override with Message File (OVRMSGF) command. You can run this command from the initial thread of
a multithreaded job. This command affects only message file references in the initial thread. Message
file references that are performed in secondary threads are not affected.

v Delete Override (DLTOVR) command. You can run this command from the initial thread of a
multithreaded job.

The other override commands are not permitted, and are ignored, in multithreaded jobs.

Applying overrides
You can perform two general types of overrides:

v File overrides

File overrides let you override the following things:

– File attributes

– File names

– File attributes and file names simultaneously

– File open scope

– File types

For more information on overriding file types, see “Redirecting files” on page 59.

v Overrides for program device entries

Overrides for program device entries let you override the attribute of an ICF file that provides the link
between the application and each of the remote servers or devices with which your program
communicates. For more information on overrides on program device entries, see the ICF Programming

book.

How to apply overrides:

Chapter 3. Using overrides 33



The following scenarios provide detailed examples of how you perform each of the override types:

v “Overriding file attributes”

v “Overriding file names” on page 35

v “Overriding file names and file attributes” on page 36

v “Overriding the scope of an open file” on page 36

For additional information:

The following topics provide additional information about how overrides work on iSeries and how they
affect and are affected by different events:

v “How the server processes overrides” on page 36

v “Effect of exits on overrides: scenario” on page 44

v “Effect of TFRCTL on overrides-Scenario” on page 44

v “Overrides to the same file at the same call level: scenario 1” on page 45

v “Overrides to the same file at the same call level: scenario 2” on page 45

v “CL program overrides” on page 46

v “Securing files against overrides” on page 47

v “Using a generic override for printer files” on page 48

v “Applying overrides when compiling a program” on page 49

Overriding file attributes
The simplest form of overriding a file is to override some attributes of the file. File attributes are built as a
result of the following:

v Create file and add member commands. Initially, these commands build the file attributes.

v Program using the files. At compile time, the user program can specify some of the file attributes. (The
attributes that you can specify depend on the high-level language in which the program is written.)

v Override commands. At the time when a program runs, these commands can override the file attributes
previously built by the merging of the file description and the file parameters specified in the user
program.

For example, assume that you create a printer file OUTPUT whose attributes are:

v Page size of 60 by 80

v Six lines per inch

v Two copies of printed output

v Two pages for file separators

v Overflow line number of 55

The Create Printer File (CRTPRTF) command looks like this:
CRTPRTF FILE(QGPL/OUTPUT) SPOOL(*YES) +

PAGESIZE(60 80) LPI(6) COPIES(2) +
FILESEP(2) OVRFLW(55)

You specify the printer file OUTPUT in your application program with an overflow line number of 58 and a
page size of 66 by 132.

However, before you run the application program, you want to change the number of printed copies to 3,
and the overflow line to 60. The override command looks like this:
OVRPRTF FILE(OUTPUT) COPIES(3) OVRFLW(60)

Then you call the application program, and three copies of the output print.

34 File Management V5R2



When the application program opens the OUTPUT file, the server merges the file-specified attributes,
program-specified attributes, and override-specified attributes to form the open data path. The server uses
the open data path when the program runs. The server merges file-specified overrides with the
program-specified attributes first. Then it merges these merged attributes with the override attributes. In
this example, when the OUTPUT file is opened and output operations are performed, spooled output will
be produced with a page size of 66 by 132, six lines per inch, three copies, two file separator pages, and
overflow at 60 lines.

Figure 3 explains this example.

Overriding file names
Another simple form of overriding a file is to change the file that is used by the program. This may be
useful for files that you moved or renamed after the program compiled.

For example, you want to print the output from your application program by using the printer file
REPORTS instead of the printer file OUTPUT (the application program specifies the OUTPUT printer file).
Before you run the program, enter the following:
OVRPRTF FILE(OUTPUT) TOFILE(REPORTS)

Figure 3. Overriding File Attributes

Chapter 3. Using overrides 35



The CRTPRTF command must have created the file REPORTS before it can use the file.

Overriding file names and file attributes
This form of overriding files is simply a combination of overriding file attributes and overriding file names.
With this form of override, you can override the file that is to be used in a program and you can also
override the attributes of the overriding file. For example, you want the output from your application
program to print using the printer file REPORTS instead of the printer file OUTPUT (the application
program specifies the OUTPUT printer file). In addition to having the application program use the printer
file REPORTS, you want to produce three copies. Assume that the following command created the file
REPORTS:
CRTPRTF FILE(REPORTS) SPOOL(*YES) +

PAGESIZE(68 132) LPI(8) OVRFLW(60) +
COPIES(2) FILESEP(1)

Before you run the program, type the following command:
OVRPRTF FILE(OUTPUT) TOFILE(REPORTS) COPIES(3)

Then call the application program, and the program produces three copies of the output using the printer
file REPORTS.

Note that this is not equal to the following two override commands:

Override 1 OVRPRTF FILE(OUTPUT) TOFILE(REPORTS)
Override 2 OVRPRTF FILE(REPORTS) COPIES(3)

Only one override is applied for each call level for an open of a particular file; therefore, if you want to
override the file that the program uses and also override the attributes of the overriding file from one call
level, you must use a single command. If you use two overrides, the first override uses the printer file
REPORTS to print the output. The server ignores the second override.

Overriding the scope of an open file
To change the scope of a file open operation, use the open scope (OPNSCOPE) parameter on the
appropriate override command. The values for the OPNSCOPE parameter can be either *JOB or
*ACTGRPDFN (default). Use this parameter to change the scope of an open operation from the call level
number or activation group level to the job level.

For example, the following override command scopes the open operation of the BILLING file to the job
level:
OVRDBF FILE(BILLING) OPNSCOPE(*JOB)

How the server processes overrides
Figure 4 on page 37 shows a representation of a job running in the integrated language environment.

36 File Management V5R2



In the description that follows, the reference keys refer to the corresponding reference keys in Figure 4.

In the integrated language environment, overrides can be scoped to the call level, the activation-group
level (the default), and the job level. A job is a piece of work that the server performs. An interactive job
begins when a user signs on and ends when a user signs off. Overrides (A) that are scoped to the job
level affect all programs that are running in any activation group within the job. There can be only one
active override for a file at the job level. If you specify more than one, the most recent one takes effect. An
override that is scoped to the job level remains in effect until one of the following occurs:

v The job ends

v The server explicitly deletes the override

Figure 4. A Job in the Integrated Language Environment

Chapter 3. Using overrides 37



v Another job level override for the same file replaces the override

This is true regardless of the call level in which the overrides were specified. For example, an override that
is issued in call level 3 that is scoped to the job level remains in effect when call level 3 is deleted.
Overrides can be scoped to the job level by specifying OVRSCOPE(*JOB) on the override command.

Overrides (B) that are specified in the user default activation group can be scoped to the call level or to
the job level. They cannot be scoped to the user default activation group level. However, overrides (C and
D) that are specified in a named activation group can be scoped to the call level, activation group level, or
the job level. Overrides (C) scoped to a named activation group level remain in effect until the server
replaces or deletes the override, or until the server deletes the named activation group.

Overrides (D) that are scoped to the call level within a named activation group remain in effect until they
are replaced, deleted, or until the program in which they were issued ends. Overrides can be scoped to
the call level by specifying OVRSCOPE(*CALLLVL) on the override command.

Overrides that are scoped to a named activation group level apply only to programs that run in the named
activation group. They have no effect on programs that run in other named activation groups or in the user
default activation group.

Call levels identify the subordinate relationships between related programs when one program calls
another program within a job. Overrides that are scoped to the call level remain in effect from the time
they are specified until they are replaced, or deleted, or until the program in which they are specified ends.
This is true whether you issue the override in the user default activation group or in a named activation
group.

For example:

38 File Management V5R2



Several commands, such as Work with Job (WRKJOB), Work with Active Jobs (WRKACTJOB), or Display
Job (DSPJOB), have options that allow you to display the call stack of an active job. There is a one-to-one
relationship between a program that is displayed in the call stack and the call level. The first program
name displayed (at the top of the list) on the call stack is the program at call level 1 for that job. Call level
1 is the lowest call level for a job. The second program name displayed is the program at call level 2 for
that job. The last program name displayed is the program at the highest call level for that job.

In the example in Figure 5, the Transfer Control (TFRCTL) command to PGMC causes PGMC to replace
PGMB from the call stack. A CALL command places another program in the call stack. A RETURN
command removes a program from the stack.

Processing priority of overrides
The server processes overrides when an open operation occurs in the following order:

1. Call level overrides up to and including the level of the oldest procedure in the activation group are
applied first.

2. Activation group level overrides that were specified within the same activation group that the open
operation was issued are applied.

Figure 5. Call Levels within a Job

Chapter 3. Using overrides 39



3. Call level overrides below the level of the oldest procedure in the activation group are applied.

4. Job level overrides are applied.

How the server processes overrides-scenario 1
The following shows an example of how overrides work in multiple activation groups:

When program I opens file ZZZ, file ZZZ has the following attributes:

CPI(12)
From call level 4

FILE(YYY)
From call level 3

LPI(5) From call level 9

FOLD(*YES)
From call level 2

DEV(P2)
From call level 5

The server processes the overrides in the following order:

Program A (in user default activation group)
Call Level 2 OVRPTRF FILE(YYY) FOLD(*YES) OVRSCOPE(*CALLLVL)

CALL PGM B

Call Level 3 Program B (in activation group 8)
OVRPTRF FILE(ZZZ) TOFILE(YYY) DEV(P1) LPI(6) +

OVRSCOPE(*CALLLVL)
CALL PGM C

Call Level 4 Program C (in user default activation group)
OVRPTRF FILE(ZZZ) CPI(12) OVRSCOPE(*CALLLVL)
CALL PGM D

Call Level 5 Program D (in activation group 21)
OVRPTRF FILE(YYY) DEV(P2) OVRSCOPE(*JOB)
CALL PGM E

Call Level 6 Program E (in activation group 21)
OVRPTRF FILE(ZZZ) LPI(12) OVRSCOPE(*ACTGRPDFN)
CALL PGM F

Call Level 7 Program F (in activation group 8)
OVRPTRF FILE(ZZZ) LPI(9) OVRSCOPE(*CALLLVL)
CALL PGM G

Call Level 8 Program G (in activation group 8)
OVRPTRF FILE(ZZZ) DUPLEX(*NO) +

OVRSCOPE(*ACTGRPDFN)
CALL PGM H

Call Level 9 Program H (in activation group 8)
OVRPTRF FILE(YYY) LPI(5) OVRSCOPE(*ACTGRPDFN)
CALL PGM I

Call Level 10 Program I (in activation group 8)
OPEN FILE(ZZZ)

Figure 6. Example of Override Processing in Multiple Activation Groups. An example of how overrides work in multiple
activiation groups.

40 File Management V5R2



1. File ZZZ opens at call level 10. The server looks for any overrides issued at call level 10 that were
scoped to the call level. There are no such overrides.

2. The server searches the next previous call level (level 9) for applicable overrides that were scoped to
the call level. There are no such overrides. (The override issued in call level 9 is for file YYY and
does not apply.)

3. The server searches call level 8 for applicable overrides that were scoped to the call level. There is
an override for file ZZZ; however, it is scoped to the activation group level. The server does not
process this override until it has processed all overrides with call levels greater than or equal to the
call level of the oldest procedure in activation group 8. In this example, the call level of the oldest
procedure in activation group 8 is 3. Therefore, the server will process all call level overrides that are
issued at call levels greater than or equal to 3 before processing the activation group override that is
issued at call level 8.

4. The server searches call level 7 for applicable overrides that were scoped to the call level. Because
the override issued at call level 7 is scoped to the call level, it is processed. The LPI(9) attribute is
assigned to file ZZZ.

5. The server searches call level 6 for applicable overrides that were scoped to the call level. Notice that
call level 6 is in activation group 21. There is an override for file ZZZ; however, it is scoped to the
activation group level of activation group 21. The server ignores this override altogether because it is
scoped to an activation group other than activation group 8.

6. The server searches call level 5 for applicable overrides that were scoped to the call level. There are
no such overrides. (The override issued in call level 5 is for file YYY and does not apply.)

7. The server searches call level 4 for applicable overrides that were scoped to the call level. Because
the override issued at call level 4 is scoped to the call level, it is processed. The CPI(12) attribute is
assigned to file ZZZ.

8. The server searches call level 3 for applicable overrides that were scoped to the call level. Because
the override issued at call level 3 is scoped to the call level, it is processed. Notice that the file being
opened has been changed to YYY from ZZZ. The DEV(P1) attribute is assigned to file YYY. The
LPI(9) attribute is changed to LPI(6) and is assigned to file YYY.

Call level 3 is the call level of the oldest procedure in activation group 8. Therefore, any overrides (for
file YYY) that were scoped to the activation group level of activation group 8 are processed. The
override issued at call level 9 is processed. This changes the LPI(6) attribute to LPI(5).

9. The server searches call level 2 for applicable overrides that were scoped to the call level. The
override issued in call level 2 is processed. This assigns the FOLD(*YES) attribute to file YYY.

10. The server searches call level 1 for applicable overrides that were scoped to the call level. There are
no such overrides.

11. The server searches the job level for applicable overrides that were scoped to the job level. Because,
the override issued in call level 5 was scoped to the job level and it is for file YYY, it is processed.
This changes the DEV(P1) attribute to DEV(P2).

How the server processes overrides-scenario 2
When several overrides that override the file type to be used by a program are applied, only the attributes
specified on the overrides of the same type as the final file are applied. In the following example, assume
that program MAKEMASTER attempts to open the diskette file DKA:

Chapter 3. Using overrides 41



In the preceding example, the file that program MAKEMASTER actually opens is the diskette file DKB
because of the following reasons:

v Override 6, which is applied first, does not cause file DKA to be overridden with any other file.

v Override 5, which is applied second, causes file DKA to be overridden with printer file PRTB.

v Override 4 is ignored at this level because override 5 changed the file name to PRTB.

v Override 3, which is applied third, causes file PRTB to be overridden with diskette file DKA.

v Override 2, which is applied fourth, causes file DKA to be overridden with printer file PRTA.

v Override 1, which is applied last, causes file PRTA to be overridden with diskette file DKB.

Therefore, the file that program MAKEMASTER opens is the diskette file DKB. Because file DKB is a
diskette file, the server overrides only those attributes that are specified on the Override with Diskette File
(OVRDKTF) commands: VOL(MASTER) from override 6; DEV(DKT02) from override 3; and
LABEL(DKFIRST) from override 1.

Override 1 OVRDKTF FILE(PRTA) TOFILE(DKB) +
LABEL(DKFIRST)

CALL PGM(A)

Program A
Override 2 OVRPRTF FILE(DKA) TOFILE(PRTA) +

SPOOL(*YES)
CALL PGM(B)

Program B
Override 3 OVRDKTF FILE(PRTB) TOFILE(DKA) +

DEV(DKT02) LABEL(DKLAST)

Override 4 OVRDKTF FILE(DKA) TOFILE(DKC) +
DEV(DKT02) LABEL(DKTTST)

CALL PGM(C)

Program C
Override 5 OVRPRTF FILE(DKA) +

TOFILE(PRTB) +
SCHEDULE(*JOBEND)

CALL PGM(D)

Program D
Override 6 OVRDKTF FILE(DKA) +

VOL(MASTER)
CALL PGM(MAKEMASTER)

Program MAKEMASTER
(Program
MAKEMASTER
attempts to open file
DKA, but actually
opens the diskette file
DKB.)

Figure 7. An example of how the server processes overrides.. An example of how the server processes overrides,
outlining the process from Override 1 to 6.

42 File Management V5R2



The attributes specified on the Override with Printer File (OVRPRTF) commands are ignored (even though
they might have been allowed on the OVRDKTF commands). Refer to “Redirecting files” on page 59 for
more information on the effect of overrides that change the file type.

Processing overrides: General principles
The server processes overrides according to the following general principles:

v Overrides applied include any that are in effect at the time a file is opened by an application program,
when a program that opens a file is compiled, or when certain server commands are used. (See
“Overriding file attributes” on page 34, “Applying overrides when compiling a program” on page 49, and
“Effect of overrides on some commands” on page 31). Thus, any overrides that are to be applied must
be specified either before the file is opened by a program or before a program that opens the file is
compiled. It is not necessary that overrides must be supplied for every file that is used in a program.
Any file name for which no override is supplied is used as the actual file name.

v Override commands that are scoped to the job level remain in effect until they are replaced, deleted, or
until the job in which they are specified ends. For more information on deleting overrides, see “Deleting
overrides” on page 50.

v There can be only one active override for a file at each level (job level, activation group level, or call
level). If more than one override for the same file exists at the same level, the most recent one is active.

For an example of how the server processes overrides when more than one override for the same file
exists at the same level, see “Overrides to the same file at the same call level: scenario 1” on page 45.

v Override commands that are scoped to the job level apply to all programs that are running in the job
regardless of the call level or activation group in which the overrides are specified.

v Override commands that are scoped to an activation group level apply to all programs that are running
in the activation group regardless of the call level in which the overrides are specified.

v An override command (scoped to the call level) that is entered interactively exists at the call level for the
caller of that command processor. For example, an override (scoped to the call level) that is entered on
the command entry display cannot be deleted or replaced from a command processor that is called
from the command entry display.

v The call level of an override (scoped to the call level) that is coded in a CL program is the call level of
the CL program.

v An override (scoped to the call level) outside a program in a batch job takes the call level of the batch
job command processor.

v If an override command (scoped to the call level) is run using a call to the QCMDEXC program, the
override takes the call level of the program that called the QCMDEXC program. For an example, see
“CL program overrides” on page 46.

v Exits (ENDPGM, RETURN, or abnormal exits) from a call operation delete overrides scoped to that call
level. However, they do not delete overrides that are issued in that call level when they are scoped to
the activation group level or the job level.

For an example, see “Effect of exits on overrides: scenario” on page 44.

v The TFRCTL command causes one program to be replaced by another program at the same call level.
The program, to which control is transferred, runs at the same call level as the program that contained
the TFRCTL command. An override command in a program that transfers control to another program is
not deleted during the transfer of control.

For an example, see “Effect of TFRCTL on overrides-Scenario” on page 44.

v Several overrides (possibly one per call level, one at the activation group level, and one at the job level)
to a single file are allowed. They are processed according to the priorities in “Processing priority of
overrides” on page 39.

For an example of processing overrides, see “How the server processes overrides-scenario 1” on
page 40.

v You can protect an override from being overridden by overrides at lower call levels, the activation group
level, and the job level; specify SECURE(*YES) on the override. For an example, see “Securing files
against overrides” on page 47.

Chapter 3. Using overrides 43



Effect of exits on overrides: scenario
Exits (ENDPGM, RETURN, or abnormal exits) from a call operation delete overrides that are scoped to
that call level. However, they do not delete overrides that are issued in that call level that are scoped to
the activation group level or the job level. For example, a RETURN command deletes all overrides scoped
to that call level. Thus, overrides that are scoped to the call level in called programs that end with a
RETURN or ENDPGM command do not apply to the calling program. This is not true for programs that
use the Transfer Control (TFRCTL) command.

In Figure 8, the RETURN command deletes the first override in program B, and FILE X is opened in
program A. However, the RETURN command does not delete the second override because it is scoped to
the job level. FILE B is opened in program A when program A processes the Open FILE A command.

Effect of TFRCTL on overrides-Scenario
The TFRCTL command replaces one program with another program at the same call level. The program
to which control is transferred runs at the same call level as the program that contained the TFRCTL
command. An override command in a program that transfers control to another program is not deleted
during the transfer of control. In the following example, program A transfers control to program B, and
program B runs in the same call level as program A. The Override with Database File (OVRDBF)
command causes the file to be positioned at the last record of the member when it is opened and is used
for both programs A and B.

Program A
.
.
.

CALL PGM(B)

Program B
Override 1 OVRDBF FILE(X) FILE(Y)
Override 2 OVRDBF FILE(A) TOFILE(B) +

OVRSCOPE(*JOB)
.
.
.

RETURN

OPEN FILE X
.
.
.

OPEN FILE A

Figure 8. Example of Effect of Exits on Overrides. An example that outlines the effects of exits on overrides.

44 File Management V5R2



Overrides to the same file at the same call level: scenario 1
When you enter two overrides for the same file name at the same call level, the second override replaces
the first override. This allows you to replace an override at a single call level, without having to delete the
first override (see “Deleting overrides” on page 50). For example:

Assume that program REORDER uses the diskette file QDKTSRC. Override 1 causes the first call to
program REORDER to use the source file with a label of X for its processing. Override 2 causes the
second call to program REORDER to use the source file with a label of Y for its processing.

Overrides to the same file at the same call level: scenario 2
When you enter two overrides for the same file name at the same call level, the second override replaces
the first override.

In the following example, when the program attempts to open FILE A, FILE B overrides FILE A because of
override 2. Because only one override can be applied for each call level, the server ignores override 1,
and the file opened by the program is FILE B.

CALL PGM(A)

Program A

OVRDBF FILE(INPUT) POSITION(*END)

(INPUT is opened and positioned at the last
record of the member and closed after
processing.)

TFRCTL PGM(B)
Program B

(INPUT is opened and positioned at the last
record of the member.)

Figure 9. An example of the TFRCTL command.. The TFRCTL command replaces one program with another program
at the same call level, which is outlined in the figure below.

Override 1 OVRDKTF FILE(QDKTSRC) LABEL(X)
CALL PGM(REORDER)

Override 2 OVRDKTF FILE(QDKTSRC) LABEL(Y)
CALL PGM(REORDER)

Figure 10. An example of replacing an override at a single call level without having to delete the first override.. The
following figure shows how to replace an override at a single call level, without having to delete the first override.

Chapter 3. Using overrides 45



To open FILE C, replace the two Override with Database File (OVRDBF) commands with the following
command:
OVRDBF FILE(A) TOFILE(C)

This does not prevent applying an override at the same call level or job level in which the file is created.
Regardless of which attribute is encountered first, file attributes on the override take the place of
corresponding attributes on the create statement for the file.

CL program overrides
If a CL program overrides a file and then calls a high-level language program, the override remains in
effect for the high-level language program. However, if a high-level language program calls a CL program
that overrides a file, the server deletes the override automatically when control returns to the high-level
language program.

The file opened is DK1, not MSTOUT. This is because the server deletes the override in the CL program
when the CL program ends.

Program A
.
.
.

Override 1 OVRDBF FILE(B) TOFILE(C)
Override 2 OVRDBF FILE(A) TOFILE(B)

.

.

.
OPEN FILE A

.

.

.

Figure 11. An example of the server response to the open file command using overrides.. Only one override can be
applied for each call level. The following example outlines how the server ignores the first override and performs the
second override.

High-level language program:

CALL PGM(CLPGM1)

CL Program CLPGM1
OVRDKTF FILE(DK1) TOFILE(MSTOUT)

.

.

.
ENDPGM

High-level language program:

OPEN DK1

Figure 12. An example of CL program overrides.. The following figure outlines the relationship between CL program
and high-level language program overrides.

46 File Management V5R2



To perform an override from a high-level language program, call the QCMDEXC program from the
high-level language program. The override specified on the QCMDEXC command, takes the call level of
the program that called QCMDEXC. High-level language program:
CALL QCMDEXC PARM(’OVRDKTF FILE(DK1) +

TOFILE(MSTOUT)’ 32)
OPEN DK1

The file MSTOUT opens because of the override that is requested by the call to the QCMDEXC program.

In an actual program, you might want to use data that is supplied by the program as a parameter of the
override. You can do this by using program variables in the call to QCMDEXC. For more information on
the use of program variables, refer to the appropriate language information.

Securing files against overrides
On occasion, you may want to prevent the person or program that calls your program from changing the
file names or attributes you have specified. You can prevent additional file overrides by coding the
SECURE(*YES) parameter on a file override command for each file that needs protection. This protects
your file from overrides at lower call levels, the activation group level, and the job level.

The following shows an example of a protected file:

When the example calls program EREPORT, it attempts to open the files INPUT and PRINT1. EREPORT
actually opens file NEWEMP, member N77. Because override 3 specifies SECURE(*YES), the server does
not apply override 2. When the example calls program ELIST, it also attempts to open the files INPUT and
PRINT1. ELIST actually opens files OLDEMP, member N67. Because override 4 has the same name as
override 3 and is at the same call level as override 3, it replaces override 3. Thus, the file is no longer
protected from overrides at lower call levels, and the server applies override 2 for program ELIST.

PRINT1 is affected only by override 1, which is in effect for both programs EREPORT and ELIST.

Override 1 OVRPRTF FILE(PRINT1) SPOOL(*NO)

Override 2 OVRDBF FILE(NEWEMP) TOFILE(OLDEMP) +
MBR(N67)

CALL PGM(CHECK)

Program CHECK
Override 3 OVRDBF FILE(INPUT) +

TOFILE(NEWEMP) MBR(N77) +
SECURE(*YES)

CALL PGM(EREPORT)

Program EREPORT
(NEWEMP and PRINT1 are opened.)

Override 4 OVRDBF FILE(INPUT) +
TOFILE(NEWEMP) MBR(N77)

CALL PGM(ELIST)

Program ELIST
(OLDEMP and PRINT1 are opened.)

Figure 13. An example of a protected file. A protected file is used to prevent a person or program from changing the
file names or attributes you have specified on that file.

Chapter 3. Using overrides 47



Using a generic override for printer files
The OVRPRTF command allows you to have one override for all the printer files in your job with the same
set of values. Without the generic override, you would have to do a separate override for each of the
printer files.

Applying OVRPRTF with *PRTF: scenario
You can apply the OVRPRTF command to all printer files by specifying *PRTF as the file name.

The OVRPRTF command with *PRTF is applied if there is no other override for the printer file name at the
same call level. The following example shows how *PRTF works:

When program X opens the file OUTPUT, the opened file has the following attributes:

COPIES(6)
From Override 1

LPI(6) From Override 1

When program X opens the file PRTOUT (or any printer file other than OUTPUT), the opened file has the
following attributes:

COPIES(1)
From Override 2

LPI(8) From Override 2

Applying OVRPRTF with *PRTF from multiple call levels: scenario
The following example shows how printer-file overrides are applied from multiple call levels by using the
*PRTF value.

When program X opens the file PRT1, the opened file has the following attributes:

Override 1 OVRPRTF FILE(OUTPUT) COPIES(6) +

LPI(6)
Override 2 OVRPRTF FILE(*PRTF) COPIES(1) +

LPI(8)
CALL PGM(X)

Figure 14. An example of the OVRPRTF command and the *PRTF parameter. The following figure gives an example
of the OVRPRTF command and the *PRTF parameter.

Program A
Override 1 OVRPRTF FILE(*PRTF) COPIES(1)
Override 2 OVRPRTF FILE(PRT2) COPIES(2)
Override 3 OVRPRTF FILE(PRT4) COPIES(2)

CALL PGM(B)

Program B
Override 4 OVRPRTF FILE(*PRTF) LPI(4)
Override 5 OVRPRTF FILE(PRT3) LPI(8)
Override 6 OVRPRTF FILE(PRT4) LPI(8)

CALL PGM(X)

Figure 15. An example of printer-file overrides. By using the *PRTF value, you can apply printer-file overrides from
multiple call levels.

48 File Management V5R2



COPIES(1)
From Override 1

LPI(4) From Override 4

Because no specific overrides are found for PRT1, *PRTF overrides (1 and 4) are applied.

When program X opens the file PRT2, the opened file has the following attributes:

COPIES(2)
From Override 2

LPI(4) From Override 4

Because no specific override is found for PRT2 in program B, override 4 is applied. In program A, override
2 specifies PRT2 and is applied.

When program X opens the file PRT3, the opened file has the following attributes:

COPIES(1)
From Override 1

LPI(8) From Override 5

In program B, override 5 specifies PRT3 and is applied. Because no specific override is found for PRT3 in
program A, override 1 is applied.

When program X opens the file PRT4, the opened file has the following attributes:

COPIES(2)
From Override 3

LPI(8) From Override 6

In program B, override 6 specifies PRT4 and is applied. In program A, override 3 specifies PRT4 and is
applied.

Applying overrides when compiling a program
Overrides may be applied at the time a program is being compiled for either of two purposes:

v To select the source file

v To provide external data definitions for the compiler to use in defining the record formats to be used on
I/O operations

Overrides to the source file are handled just like any other override. They may select another file, another
member of a database file, another label for diskette or tape, or change other file attributes.

You can also apply overrides to files that are used within the program being compiled, if they are being
used as externally described files in the program. These files are not opened at compile time, and thus the
overrides are not applied in the normal manner. These overrides are used at compile time only to
determine the file name and library that will be used to define the record formats and fields for the
program to use I/O operations. Any other file attributes specified on the override are ignored at compile
time. It is necessary that these file overrides be active at compile time only if the file name specified in the
source for the program is not the file name that contains the record formats that the application needs.

The file name that is opened when the compiled program is run is determined by the file name that the
program source refers to, changed by whatever overrides are in effect at the time the program runs. The
file name used at compile time is not kept. The record formats in the file that is actually opened must be
compatible with those that were used when the program was compiled. Obviously, the easiest way to

Chapter 3. Using overrides 49



assure that records are compatible is to have the same overrides active at run time that were active at
compile time. If your program uses externally described data and a different field level file is used at run
time, it is usually necessary to specify LVLCHK(*NO) on the override. See “Redirecting files” on page 59
for details.

The following example shows how overrides work when compiling a program:

The program INVENTORY opens the printer file REPORTS in place of printer file LISTOUT and creates
output at 8 lines per inch.

The program INVENTORY is created (compiled) from the member INVN42 in the database file
SRCPGMS. Override 4, which is applied first, overrides an optional file attribute. Override 1, which is
applied last, causes the file RPGSRC to be overridden with the database file SRCPGMS, member
INVN42.

The program INVENTORY is created with the printer formats from the file REPORTS. Assume that the
source for the program INVENTORY, which is taken from file SRCPGMS and member INVN42, contains
an open to the printer file LISTOUT. Override 3, which is applied first, causes the file LISTOUT to be
overridden with OUTPUT. Override 2, which is applied last, overrides OUTPUT with REPORTS. Other
attributes may be specified here, but it is not necessary because only the record formats are used at
compile time.

At run time, override 3 is no longer active, because program A has ended. Therefore override 2 has no
effect on LISTOUT. However, override 5, which is active at run time, replaces LISTOUT with REPORTS
and specifies 8 lines per inch. Because the same file is used for compilation and run-time, you can leave
level checking on.

Deleting overrides
When a program that has been called returns control to the calling program, the server deletes any
overrides specified in the call level of the called program. This does not include overrides that are scoped
to the activation group level or the job level. Overrides that are scoped to the activation group level remain
in effect until they are explicitly deleted, replaced, or until the activation group in which they are specified
is deleted. Overrides that are scoped to the job level remain in effect until they are explicitly deleted,
replaced, or until the job in which they are specified ends.

Override 1 OVRDBF FILE(RPGSRC) +
TOFILE(SRCPGMS) MBR(INVN42)

Override 2 OVRPRTF FILE(OUTPUT) TOFILE(REPORTS)
CALL PGM(A)

Program A
Override 3 OVRPRTF FILE(LISTOUT) +

TOFILE(OUTPUT)
Override 4 OVRDBF FILE(RPGSRC) WAITFILE(30)

CRTRPGPGM PGM(INVENTORY) +
SRCFILE(RPGSRC)

RETURN

Override 5 OVRPRTF FILE(LISTOUT) +
TOFILE(REPORTS) LPI(8)

CALL PGM(INVENTORY)

Figure 16. An example over overrides when compiling a program.. The following example shows how overrides work
when compiling a program.

50 File Management V5R2



When control is transferred to another program (TFRCTL command), the overrides in the call level of the
transferring program are not deleted.

You can also explicitly delete overrides on your server by using the Delete Override (DLTOVR) command.
The DLTOVR command can delete overrides that are scoped to the call level, activation group level, or the
job level. To delete overrides that are scoped to the activation group level, you do not need to specify a
value for the OVRSCOPE parameter because OVRSCOPE(*ACTGRPDFN) is the default. To delete
overrides that are scoped to the job level, you must specify OVRSCOPE(*JOB) on the DLTOVR
command.

To identify an override, use the file name that is specified on the FILE parameter of the override command.
You can delete all overrides at the current level (call level, activation group level, or job level) by specifying
value *ALL for the FILE parameter.

See the following topics for additional information on deleting overrides:

v “Deleting overrides: scenario 1”

v “Deleting overrides: scenario 2”

Deleting overrides: scenario 1
In the following example, assume that all the commands are entered at the same call level:

Delete override 1 causes override 1 to be deleted. Delete override 2 causes the remaining overrides
(overrides 2 and 3) to be deleted.

Deleting overrides: scenario 2
In the following example, assume that commands 1, 2, and 14 are entered interactively, at call level 1:

Override 1 OVRDBF FILE(DBA) +
TOFILE(DBB)

Override 2 OVRPRTF FILE(PRTC) +
COPIES(2)

Override 3 OVRDKTF FILE(DKT) +
EXCHTYPE(*BASIC)

Delete Override 1 DLTOVR FILE(DBA)
Delete Override 2 DLTOVR FILE(*ALL)

Figure 17. An example of deleting overrides.. The following example outlines how to delete overrides.

Chapter 3. Using overrides 51



Command 1 causes an override at level 1 from file DBA to file DBB.

Command 2 calls program A and creates a new call level (call level 2).

Command 3 causes an override at level 2 from file DBB to file PRTC. Also, the LPI attribute of file PRTC
is overridden to 6.

Command 4 causes an override at the job level from file DBC to file DBD.

Command 5 transfers control from program A to program B at the same call level (call level 2).

Command 6 causes an override at level 2 from file DKTE to file DKTF.

Command 7 causes an override at activation group level 4 from file DSPG to file DSPH.
OVRSCOPE(*ACTGRPDFN) is the default.

Command 8 deletes any overrides of files DBA and DBB at level 2. The override specified by command 3
is deleted, but the override specified by command 1 is not deleted. Because an override for DBA cannot
be found at level 2, the override-not-found escape message (CPF9841) is sent.

Command 9 monitors for a message to prevent a function check, but it specifies no action to be taken if
the message is sent.

Command 10 deletes all remaining overrides at level 2. The override specified by command 6 is deleted,
but the overrides specified by commands 1, 4, and 7 are not deleted.

Command 11 deletes overrides to file DBC that are scoped to the job level. The override specified by
command 4 is deleted.

Command 12 deletes the override to file DSPG that was scoped to activation group level 4 by command
7.

Command 13 causes a return to level 1, and level 2 is deleted. If any overrides were specified at level 2
(scoped to the call level) between command 10 and command 12, they are deleted at this point. Also, if

Program A (in user default activation group)
Command 1 OVRDBF FILE(DBA) TOFILE(DBB) SECURE(*YES)
Command 2 CALL PGM(B)

Program B (in activation group 4)
Command 3 OVRPRTF FILE(DBB) TOFILE(PRTC) LPI(6) OVRSCOPE(*CALLLVL)
Command 4 OVRDBF FILE(DBC) TOFILE(DBD) OVRSCOPE(*JOB)
Command 5 TFRCTL PGM(C)

Program C
Command 6 OVRDKTF FILE(DKTE) TOFILE(DKTF) OVRSCOPE(*CALLLVL)
Command 7 CALL PGM(QCMDEXC) +

PARM(’OVRDSPF FILE(DSPG) TOFILE(DSPH)’ 31)
Command 8 DLTOVR FILE(DBA DBB) LVL(*)
Command 9 MONMSG MSGID(CPF9841)
Command 10 CALL PGM(QCMDEXC) PARM(’DLTOVR FILE(*ALL) LVL(*)’ 24)

Command 11 DLTOVR FILE(DBC) OVRSCOPE(*JOB)
Command 12 DLTOVR FILE(DSPG)
Command 13 RETURN
Command 14 DLTOVR FILE(*ALL)

Figure 18. An example of deleting overrides.. The following example outlines how to delete overrides using call levels.

52 File Management V5R2



any overrides were specified at level 2 (scoped to the activation group level) between command 10 and
12, they are deleted assuming that activation group 4 is ended after the RETURN.

Command 14 causes all overrides specified at call level 1 to be deleted. The override specified by
command 1 is deleted.

Note: Command 14 would not delete any overrides that were scoped to the job level. (However, there are
none in this example at the time command 14 is issued). In general, to delete all overrides at the
job level, you would have to specify DLTOVR FILE(*ALL) OVRSCOPE(*JOB).

Displaying overrides
You can use the Display Override (DSPOVR) command to display file overrides at the job level, the
activation group level, and at multiple call levels for a job. You can display all file overrides or overrides for
a specific file.

The file overrides may be merged before being displayed. A merged override is the result of combining
overrides from the job level to the current level or any specified call level, producing a composite override
which will be applied when the file is used at the specific call level. The current call level is the call level of
the program that is currently running. This program is the last program name that is displayed on the call
stack. This command may be requested from either a batch or interactive environment. You can also
access this function from option 15 (Display file overrides) from the Work with Job menu (using the
WRKJOB command) or by selecting option 15 (Display file overrides) from the Display Job menu (using
the DSPJOB command).

See the following topics for more information on displaying overrides:

v “Displaying all overrides for a specific activation group: scenario”

v “Displaying merged file overrides for one file: scenario”

v “Displaying all file overrides for one file: scenario” on page 54

v “Displaying merged file overrides for all files: scenario” on page 54

v “Displaying overrides with WRKJOB: scenario” on page 54

v “Displaying overrides: comprehensive scenario” on page 54

v “Displaying overrides: tips” on page 59

Displaying all overrides for a specific activation group: scenario
To display all overrides for a specific activation group, you type:
DSPOVR FILE(REPORTS) ACTGRP(*)

This displays all the overrides for the REPORTS file for the activation group in which the override is
issued. ACTGRP(*) is the default and is shown here for illustration purposes. To specify an activation
group other than the one the command is to be issued in, specify the name of the activation group on the
ACTGRP parameter.

Displaying merged file overrides for one file: scenario
To display the merged file override for a particular file at a specific call level, you type:
DSPOVR FILE(REPORTS) MRGOVR(*YES) LVL(3)

This command produces a display that shows the merged override for the file REPORTS at call level 3
with text descriptions of each keyword and parameter. Any applicable overrides at the job level, the
activation group level, and at call levels 1, 2, and 3 are used to form the merged override, but overrides at
higher call levels are ignored. If the call level specified is not active, all applicable overrides up to the
current level are used.

Chapter 3. Using overrides 53



Displaying all file overrides for one file: scenario
To display all file overrides for a specific file up to a specific call level, you type:
DSPOVR FILE(REPORTS) MRGOVR(*NO) LVL(2)

This command produces a display that shows the file name, the call level for which the override was
requested, the type of override, and the override parameters in keyword-parameter form. If no file
overrides are found for the file up to and including the specified call level, escape message CPF9842 is
sent. If you are using DSPOVR in a CL program, you might want to add a MONMSG command following
the DSPOVR command to prevent your program from ending if there are no overrides for the file. This
technique is illustrated in some of the examples later in this chapter. For more information on the

MONMSG command, refer to the CL Programming book.

Displaying merged file overrides for all files: scenario
To display the merged file overrides for all files at the current call level, you type:
DSPOVR FILE(*ALL) MRGOVR(*YES) LVL(*)

This command produces a display showing the file name, the type of override, and the merged overrides
in keyword-parameter form, where only the keywords and parameters entered on the commands are
displayed. This is the same as what happens when you type DSPOVR with no parameters. Only those
keywords for which parameters were specified are displayed. The associated text descriptions are not
displayed. Overrides at call levels greater than 999 are not displayed.

Displaying overrides with WRKJOB: scenario
When overrides are displayed not by the DSPOVR command, but through an option on one of the server
interfaces to work with jobs (for example, WRKJOB), all file overrides from the job level to the current call
level are displayed. This would be the same as typing the following command:
DSPOVR FILE(*ALL) MRGOVR(*NO) LVL(*)

This produces a display showing the file name, the level (call level, activation group level, or job level) for
which the override was requested, the type of override, and the override parameters in keyword-parameter
form for each override.

Because the display overrides function uses a copy of the internal control blocks, overrides that were
deleted between the time the display overrides function was called and the time the output was produced
may not be reflected in the output. This can occur only when the overrides in another job are being
displayed.

Displaying overrides: comprehensive scenario
The following example is intended only to illustrate what the various forms of the display override
command can do. The DSPOVR command is typically entered interactively or added temporarily to a CL
program, or to any high-level language program via QCMDEXC, to verify that the proper overrides are in
effect at the time a program is called or a file is opened. Assume that commands 1, 2, 3, and 18 are
entered at call level 1:

54 File Management V5R2



Command 1 overrides the value of the COPIES attribute of file PRTA at level 1 to 3.

Command 2 overrides the value of the WAITFILE attribute of file DBC at level 1 to *IMMED.

Command 3 calls program A and creates a new call level, 2.

Command 4 causes an override at level 2 from file PRTB to file PRTA. Also, the command overrides the
value of the COPIES attribute to 6.

Command 5 overrides the the value of the WAITFILE attribute for file DBC at level 2 to 60.

Command 6 causes an override of file DBE to file DBF and scopes the override to the job level.

Command 7 displays a merged override for file PRTB at level 2 with text descriptions of each keyword and
parameter, as shown in Figure 20 on page 56. The to-file is PRTA because of command 4, and the
COPIES attribute is 3 because of command 1.

Program A (in the user default activation group)
Command 1 OVRPRTF FILE(PRTA) COPIES(3)
Command 2 OVRDBF FILE(DBC) WAITFILE(*IMMED)
Command 3 CALL PGM(B)

Program B (in activation group 5)
Command 4 OVRPRTF FILE(PRTB) TOFILE(PRTA) COPIES(6) +

OVRSCOPE(*CALLLVL)
Command 5 OVRDBF FILE(DBC) WAITFILE(60) OVRSCOPE(*CALLLVL)
Command 6 OVRDBF FILE(DBE) TOFILE(DBF) OVRSCOPE(*JOB)
Command 7 DSPOVR FILE(PRTB) MRGOVR(*YES)
Command 8 CALL PGM(C)

Program C (in activation group 5)
Command 9 CALL PGM(QCMDEXC) PARM(’OVRDSPF FILE(DSPE) +

TOFILE(DSPF) OVRSCOPE(*CALLLVL)’ 50)
Command 10 OVRDBF FILE(DBC) TOFILE(DBD) OVRSCOPE(*CALLLVL)
Command 11 DSPOVR FILE(DBC) MRGOVR(*NO) LVL(3)
Command 12 DSPOVR FILE(DBD) MRGOVR(*NO) LVL(2)
Command 13 MONMSG MSGID(CPF9842)
Command 14 OVRDSPF FILE(CREDITS) TOFILE(DEBITS)
Command 15 CALL PGM(QCMDEXC) PARM(’DSPOVR FILE(*ALL) MRGOVR(*YES) +

LVL(*) OUTPUT(*)’ 47)
Command 16 RETURN

Command 17 DSPOVR FILE(*ALL) MRGOVR(*NO)
Command 18 RETURN
Command 19 DSPOVR FILE(*ALL) MRGOVR(*NO) LVL(2) OUTPUT(*)

Figure 19. An example of displaying overrides. The following example outlines how to display overrides.

Chapter 3. Using overrides 55



Command 8 calls program B and creates the new call level 3.

Command 9 causes an override at level 3 from file DSPE to file DSPF. An override done via a call to the
QCMDEXC program takes the call level of the program that called the QCMDEXC program.

Command 10 causes an override of file DBC to file DBD.

Command 11 displays all overrides for file DBC from the job level to level 3, as shown in Figure 21. The
overrides specified by commands 10, 5, and 2 are displayed in keyword-parameter form. Observe that this
form of the DSPOVR command shows all the overrides for the selected file, regardless of redirection. The
three overrides that are shown would not be merged because of the name change at level 3.

Display Override with Printer File

File . . . . . . . . . . . . . . : PRTB
Call level . . . . . . . . . . . : *
Merged . . . . . . . . . . . . . : *YES

Keyword Value
Name of file being overridden . . : FILE PRTB
Overriding to printer file . . . : TOFILE PRTA
Library . . . . . . . . . . . . . : *LIBL
Number of copies . . . . . . . . : COPIES 3

Press Enter to continue.

F3=Exit F12=Cancel

Figure 20. Override with Printer File Display. The following example describes the Display Override with Printer File
command.

Display All File Overrides

Call level . . . . . . . . . . . : 3

Type options, press Enter.
5=Display override details

Opt File Level Type Keyword Specifications
_ DBC 3 DB TOFILE(*LIBL/DBD)
_ 2 DB WAITFILE(60)
_ 1 DB WAITFILE(*IMMED)

F3=Exit F5=Refresh F12=Cancel

Figure 21. All File Overrides Display (One File). The following example describes the All File Overrides Display.

56 File Management V5R2



Command 12 attempts to display all file overrides for file DBD from the job level to level 2. Because no
overrides for file DBD exist at levels 1 or 2, no overrides are displayed, and the override-not-found escape
message (CPF9842) is sent.

Command 13 monitors for message CPF9842 on the preceding command. The monitor specifies no action
to be taken, but will prevent a function check if the message is sent.

Command 14 causes an override of the display file CREDITS to the display file DEBITS. The override is
scoped to the activation group level of activation group 5. OVRSCOPE(*ACTGRPDFN) is the default.

Command 15 displays the merged overrides at the job level to call level 3 for all files in
keyword-parameter form, as shown in Figure 22. File DBC is overridden to file DBD because of command
10 (commands 5 and 2 are therefore not effective). File DSPE is overridden to file DSPF because of
command 9. File PRTB is overridden to file PRTA and COPIES(3) because of commands 4 and 1. File
DBE is overridden to file DBF because of command 6. The file DEBITS overrides the file CREDITS
because of command 14.

If you enter a 5 on the line for PRTB, you get a detail display like the one shown in Figure 20 on page 56.
If you enter an 8 on this same line, you get a display showing commands 4 and 1 on separate lines, as
shown in Figure 23 on page 58. These are the overrides that were merged to form the PRTB override.

Display All Merged File Overrides

Call level . . . . . . . . . . . : *

Type options, press Enter.
5=Display override details 8=Display contributing file overrides

Opt File Type Keyword Specifications
_ DSPE DSP TOFILE(*LIBL/DSPF)
8 PRTB PRT TOFILE(*LIBL/PRTA) COPIES(3)
_ DBC DB TOFILE(*LIBL/DBD)
_ PRTA PRT COPIES(3)
_ DBE DB TOFILE(*LIBL/DBF)
_ CREDITS DSPF TOFILE(*LIBL/DEBITS)

F3=Exit F5=Refresh F11=All file overrides F12=Cancel

Figure 22. All Merged File Overrides Display. The following example describes the All Merged File Overrides Display.

Chapter 3. Using overrides 57



Command 16 causes a return to level 2, and level 3 is deleted. The overrides issued at level 3 that are
scoped to the call level are implicitly deleted. The override issued by command 14 is not deleted because
it is scoped to the activation group level.

Command 17 displays all overrides issued for the job level to the current call level (level 2), as shown in
Figure 24. The overrides specified in commands 1, 2, 4, 5, 6, and 14 display in keyword-parameter form.
The override issued in command 10 is not displayed because call level 3 is no longer active. Pressing F11
on this display allows you to see a display that is similar to the one shown in Figure 22 on page 57.

Command 18 causes a return to level 1, and level 2 is deleted. The overrides issued at level 2 that are
scoped to the call level are implicitly deleted. The override that is caused by command 14 (scoped to the
activation group level) is implicitly deleted when activation group 5 ends. In this example, assume that
activation group 5 is a nonpersistent activation group and that ends when command 18 processes. The
override caused by command 6 is not deleted.

Display Contributing File Overrides

File . . . . . . . . . . . . . . : PRTB
Call level . . . . . . . . . . . : *

Type options, press Enter.
5=Display override details

Opt Level Type Keyword Specifications
_ 2 PRT TOFILE(*LIBL/PRTA) COPIES(6)
_ 1 PRT COPIES(3)

F3=Exit F5=Refresh F12=Cancel F14=Display previous override

Figure 23. Contributing File Overrides Display. The following example describes the Contributing File Overrides
Display.

Display All File Overrides

Call level . . . . . . . . . . . : *

Type options, press Enter.
5=Display override details

Opt File Level Type Keyword Specifications
_ CREDITS *ACTGRP PRT TOFILE(*LIBL/DEBITS)
_ PRTB 2 PRT TOFILE(*LIBL/PRTA) COPIES(6)
_ DBC 2 DB WAITFILE(60)
_ 1 DB WAITFILE(*IMMED)
_ PRTA 1 PRT COPIES(3)
_ DBE *JOB DB TOFILE(*LIBL/DBF)

F3=Exit F5=Refresh F11=All merged file overrides F12=Cancel

Figure 24. All File Overrides Display (All Files). The following example describes the All File Overrides Display.

58 File Management V5R2



Command 19 displays all overrides for the job level to call level 2 in keyword-parameter form. Because
level 2 is no longer active, only the overrides scoped to the job level (command 6) and those specified at
level 1 in commands 1 and 2 are displayed.

Displaying overrides: tips
Note that when specifying a call level, as in the first two examples in this section, the call level on which
you first entered override commands may not be level 1. Depending on the contents of the first program
and first menu specified in your user profile, and any other programs or menus you may have come
through, you may have entered your first override commands at level 3 or 4. You may enter WRKJOB and
select option 11 (call stack) to see what programs are running at lower call levels.

Unless you know exactly what you want to see, it is usually best to request the override display with no
parameters, because options on the basic override display allow you to select a detailed display of any
override you are interested in. The specific options available are:

v From the merged display of all overrides, you can request the display that is not merged, as in
“Displaying overrides with WRKJOB: scenario” on page 54.

v From the unmerged display of all overrides, you can request the merged display.

v From the merged display of all overrides, you can request a merged detail display of any override,
equivalent to the command in “Displaying merged file overrides for one file: scenario” on page 53.

v From the merged display of all overrides, you can request a display of all the individual overrides that
contributed to the merged display, showing the level (call level or job level) for which each was
requested.

v From either the display of contributing overrides or the display (not merged) of all overrides, you can
request a detail display of the override for a particular file at a single call level.

Redirecting files
File redirection lets you use overrides to direct data input or output to a device of a different type; for
example, to send data that was intended for a diskette to a printer instead. This use of overrides requires
somewhat more foresight than the override applications listed above, because the program must be able
to accommodate the different characteristics of the two devices involved.

To override to a different type of file, use the override command for the new type of file. For example, if
you are overriding a diskette file with a printer file, use the Override with Printer File (OVRPRTF)
command.

This section applies to using an application program only. Server code may or may not support file
redirection. Refer to “Effect of overrides on some commands” on page 31 for rules on how server code
processes overrides.

You use the OVRDBF command to redirect a file to a Distributed Data Management (DDM) file. If the
remote server is another iSeries server, all normal rules discussed in this chapter apply. If the remote
server is not an iSeries server or System/38, then normally you should not specify an expiration date or
end-of-file delay. For more information, refer to the Distributed Data Management book.

When you replace the file that is used in a program with another file of the same type, the new file is
processed in the same manner as the original file. If you redirect a field-level file, or any other file that
contains externally described data, you should usually specify LVLCHK(*NO) or recompile the program.
Even when you turn level checking off, the record formats in the file must remain compatible with the
records in the program. If the formats are not compatible, the results cannot be predicted.

Chapter 3. Using overrides 59



Overrides that have a TOFILE parameter value other than *FILE remove any database member
specifications that may be on overrides applied at higher call levels. The member name will default to
*FIRST unless it is specified with the change to the file name or library or on another override at a lower
call level.

If you change to a different type of file, the server ignores device-dependent characteristics and records
that the server reads or writes sequentially. You must specify some device parameters in the new device
file or the override. The server uses defaults for others. The effect of specific redirection combinations is
described later in this section.

The server ignores any attributes that are specified on overrides of a different file type than the final file
type. The parameters SPOOL, SHARE, and SECURE are exceptions to this rule. The server accepts the
parameters from any override that is applied to the file, regardless of device type.

For more information on redirecting files, see the following topics:

v Planning for redirecting files

v Redirecting files: tips

v Default actions for redirected files

Planning for redirecting files
Table 8 summarizes valid file redirections.

To use this chart, identify the file type that you want to override in the FROM-FILE columns, and the file
type that you want to override in the TO-FILE column. The intersection specifies an I or O or both; this
means that the substitution is valid for these two file types when used as input files or as output files.

For instance, you can override a diskette output file with a tape output file, and a diskette input file with a
tape input file. The chart refers to file type substitutions only. That is, you cannot change the program
function by overriding an input file with an output file.

Table 8. File Redirections. Valid file redirections are summarized in the following table:

To-File

From-File

Printer

intersystem
communications
function (ICF) Dis- kette Display Data- base Tape

Printer O* O O O O O

ICF O I/O O I O I I/O O I O I O I

Diskette O O I O I O I O I O I

Display O I/O O I O I I/O O I O I O I

Database O O I O I O I O I O I

Tape O O I O I O I O I O I

:

v I=input file O=output file I/O=input/output file

v *=redirection to a different type of printer

Redirecting files: tips
Some redirection combinations present special problems due to the specific characteristics of the device.
In particular:

v You should not redirect save files.

v You can redirect nonsequentially processed database files only to another database file or a DDM file.

60 File Management V5R2

|

|

|

|



v You can redirect Display files and ICF files that use multiple devices (MAXDEV or MAXPGMDEV > 1)
only to a display file or ICF file.

v Redirecting a display file to any other file type, or another file type to a display file, requires that the
program be recompiled with the override active if there are any input-only or output-only fields. This is
necessary because the display file omits these fields from the record buffer in which it does not use
them, but other file types do not.

Default actions for redirected files
The charts in this section describe the specific defaults that the server takes when it redirects files, and
which defaults it ignores for each redirection combination.

From Printer

To ICF: Records are written to the file one at a time. Printer control information is ignored.

Display: Records are written to the display with each record overlaying the previous record. For
program-described files, you can request each record using the Enter key. Printer control
information is ignored.

Database: Records are written to the database in sequential order. Printer control information is
ignored.

Diskette: The amount of data written on diskette is dependent on the exchange type of the
diskette. Diskette label information must be provided in the diskette file or on an override
command. Printer control information is ignored. Refer to the Tape and Diskette Device
Programming

book for a description of exchange types.

Tape: Records are written to the tape in sequential order. Tape label information must be specified
in the tape file or on an override command. Printer control information is ignored.

From ICF input

To Display: Records are retrieved from the display one at a time. Type in the data for each record
and press the Enter key when the record is complete.

Database: Records are retrieved from the database.

Diskette: Records are retrieved in sequential order. Diskette label information must be provided in
the diskette file or on an override command. Refer to the Tape and Diskette Device Programming

book for a description of exchange types.

Tape: Records are retrieved in sequential order. Tape label information must be specified in the
tape file or on the override command.

Chapter 3. Using overrides 61



From ICF output

To Printer: Records are printed and folding or truncating is performed as specified in the printer file.

Display: Records are written to the display with each record overlaying the previous record.

Database: Records are written to the database in sequential order.

Diskette: The amount of data written on diskette is dependent on the exchange type of the
diskette. Diskette label information must be provided in the diskette file or on an override
command. Refer to the Tape and Diskette Device Programming

book for a description of exchange types.

Tape: Records are written to the tape in sequential order. Tape label information must be specified
in the tape file or on the override command.

From ICF input/output

To Display: Input records are retrieved from the display one at a time. Type in the data for each
record and press the Enter key when the record is complete. Output records are written to the
display with each record overlaying the previous input or output record. Input and output records
are essentially independent of each other and may be combined in any manner.

From Diskette input

To ICF: Records are retrieved from the ICF file one at a time.

Display: Records are retrieved from the display one at a time. Type in the data for each record
and press the Enter key when the record is complete. A nonfield-level device file must be
specified. Diskette label information is ignored.

Database: Records are retrieved in sequential order. Diskette label information is ignored.

Tape: Records are retrieved in sequential order. If a label value is specified in the program, that
value is used as the label for the tape file.

From Diskette output

To ICF: Records are written to the ICF file one at a time.

Database: Records are written to the database in sequential order.

Display: Records are written to the display with each record overlaying the previous record. You
can request each output record using the Enter key.

Printer: Records are printed and folding or truncating is performed as specified in the printer file.

Tape: Records are written on tape in sequential order.

62 File Management V5R2



From Display input

To ICF: Records are retrieved from the ICF file one at a time.

Diskette: Records are retrieved in sequential order. Diskette label information must be provided in
the diskette file or on an override command. Refer to the Tape and Diskette Device Programming

book for a description of exchange types.

Database: Input records are retrieved.

Tape: Records are retrieved in sequential order. Tape label information must be specified in the
tape file or on an override command.

From Display output

To ICF: Records are written to the ICF file one at a time.

Database: Records are written to the database in sequential order.

Diskette: The amount of data written on diskette is dependent on the exchange type of the
diskette. Diskette label information must be provided in the diskette file or on an override
command. Refer to the Tape and Diskette Device Programming

book for a description of exchange types.

Tape: Records are written on tape in sequential order. Tape label information must be specified in
the tape file or on an override command.

Printer: Records are printed and folding or truncating is performed as specified in the printer file.

From Display input/output

To ICF: Input records are retrieved from the ICF file one at a time. Output records are written to the
ICF file one at a time. The relationship between the input and output records is determined by the
application program.

From Database input (sequentially processed)

To ICF: Records are retrieved from the ICF file one at a time.

Display: Records are retrieved from the display one at a time. Type in the data for each record
and press the Enter key when the record is complete. A nonfield-level device file must be
specified.

Diskette: Records are retrieved in sequential order. Diskette label information must be provided in
the diskette file or on an override command. Refer to the Tape and Diskette Device Programming

book for a description of exchange types.

Tape: Records are retrieved from tape in sequential order. Tape label information must be
specified in the tape file or on an override command.

Chapter 3. Using overrides 63



From Database output (sequentially processed)

To Printer: The number of characters printed is determined by the page size specified. If folding is
specified, all of a record is printed.

ICF: Records are written to the ICF file one at a time.

Display: Records are written to the display with each record overlaying the previous record. You
can request each output record using the Enter key.

Diskette: The amount of data written on diskette depends on the exchange type of the diskette.
Diskette label information must be provided in the diskette file or on an override command. Refer
to the Tape and Diskette Device Programming

book for a description of exchange types.

Tape: Records are written on tape in sequential order. Tape label information must be specified in
the tape file or on an override command.

From Tape input

To ICF: Records are retrieved from the ICF file one at a time.

Display: Records are retrieved from the display one at a time. Type in the data for each record
and press the Enter key when the record is complete. A nonfield-level device file must be
specified. Tape label information is ignored.

Database: Records are retrieved in sequential order. One record is read as a single field. Tape
label information is ignored.

Diskette: Records are retrieved in sequential order. If a label value is specified in the program, that
value is used as the label for the diskette file.

From Tape output

To Printer: Records are printed, and folding or truncating is performed as specified in the printer file.

ICF: Records are written to the ICF file one at a time. Tape label information is ignored.

Diskette: The amount of data written on diskette depends on the exchange type of the diskette. If
a label value is specified in the program, that value is used as the label for the diskette file. Refer
to the Tape and Diskette Device Programming

book for a description of exchange types.

Display: Records are written to the display with each record overlaying the previous record. You
can request each output record using the Enter key.

Database: Records are written to the database in sequential order.

64 File Management V5R2



Chapter 4. Copying files

You can use the copy function to move data between device files, database files, or both device and
database files with the iSeries field-level sensitive copy function. This function allows you to rearrange,
enlarge, or drop any of the fields. You can also define database files.

These topics explain how to use copy functions on iSeries:

v Copying physical or logical files

v Copying files: overview

v Creating the to-file (CRTFILE parameter)

v Adding, replacing, and updating records (MBROPT parameter)

v Selecting members to copy

v Selecting the records to copy

v Printing records (PRINT, OUTFMT, and TOFILE(*PRINT) parameters)

v Copying between different database record formats (FMTOPT parameter)

v Adding or changing source file sequence number and date fields (SRCOPT and SRCSEQ Parameters)

v Preventing errors when copying files

v Improving copy performance

v Year 2000 support: date, time, and timestamp considerations

v Copying complex objects

v Copying between different servers

Copying physical or logical files
To copy a physical or logical file (the from-file) on iSeries into another physical file (the to-file), which does
not yet exist, you can use the CPYF command, as in the following example:

CPYF FROMFILE(PERSONNEL/PAYROLL)
TOFILE(TESTPAY/PAYROLL) MBROPT(*ADD)
CRTFILE(*YES) ERRLVL(10)

Full service copy support:

A variety of copy commands that are modified by numerous parameters gives you a great deal of flexibility
in the way you copy your data. For instance, you usually can copy your data into existing files (or to-files).
As shown in the example above, you can use the CRTFILE parameter on the CPYF or CPYFRMQRYF
commands to create the to-file during the copy operation. See “Creating the to-file (CRTFILE parameter)”
on page 77 for details.

See “Copying files: overview” on page 66 to learn about the basic functions relating to the iSeries copy
commands.

Copy only the information you need:

The copy function lets you specify selected records and members of your files:
v “Adding, replacing, and updating records (MBROPT parameter)” on page 79
v “Selecting members to copy” on page 83
v “Selecting the records to copy” on page 87

Copy across different formats and servers:
v “Copying between different database record formats (FMTOPT parameter)” on page 99. You can copy

from a source file to a data file or from a data file to a source file. If the from-file or to-file is a device

© Copyright IBM Corp. 1998, 2002 65

|



file, this function is automatic. If both files are database files, you must specify FMTOPT(CVTSRC). If
either file is a device file or inline data file, the FMTOPT parameter does not apply.

v “Copying between different servers” on page 128. This is especially important for when you are using
Data Warehousing, and when you want to use existing export products from other platforms to move
data to the iSeries server.

Make the copy function work for your particular needs:

You can accomplish a wide variety of tasks with careful use of the options that are available to you
through the copy function.
v “Printing records (PRINT, OUTFMT, and TOFILE(*PRINT) parameters)” on page 97
v “Adding or changing source file sequence number and date fields (SRCOPT and SRCSEQ

Parameters)” on page 111
v “Preventing errors when copying files” on page 112
v “Improving copy performance” on page 118
v “Year 2000 support: date, time, and timestamp considerations” on page 119

Copying files: overview
You can use the copy function to move data between device files, between database files (including
distributed DB2 Multisystem files), or between device and database files. Unlike traditional copy utilities,
the iSeries copy function is field-level sensitive. Therefore, if you use the copy function, you can rearrange,
enlarge, or drop any of the fields. The server also provides a way to define database files. Specific copy
commands simplify dealing with tape and diskette units, database source files, and open query files.

For more information on copying files, see the following topics:

v Copying files: commands

v Copying files: supported functions

v Copying files: basic functions

Copying files: commands
You can copy records to and from files by using the following commands:

CPYF Copy File copies all or part of a file from the database or external device to the database or
external device.

CPYFRMDKT
Copy from Diskette copies from a diskette file to a database or device file. The from-file must be a
diskette file for this command, but the to-file can be a physical, program-described printer, tape, or
diskette file. You can obtain a formatted listing of the records by using the IBM-supplied printer file,
QSYSPRT.

CPYTODKT
Copy to Diskette copies a database or device file to a diskette file. The to-file must be a diskette
file. The from-file can be a physical, logical, tape, diskette, or inline data file.

CPYFRMTAP
Copy from Tape copies from a tape file to a database or device file. The from-file must be a tape
file, but the to-file can be a physical file, diskette file, tape file, or program-described printer file.
You can obtain a formatted listing of the records by using QSYSPRT.

CPYTOTAP
Copy to Tape copies from a database or device file to a tape file. The to-file must be a tape file,
but the from-file can be a physical, logical, diskette, tape, or inline data file.

CPYSRCF
Copy Source File copies a database source file to a source physical file and converts the data in
the from-file to the to-file CCSID. You can create a formatted listing by using QSYSPRT (the file is

66 File Management V5R2

|

|

|

|



changed for source records and is different from other copy command file formats). Record data is
copied from the from-file to the to-file, disregarding differences in record formats (similar to the
FMTOPT(*NOCHK) parameter option on the CPYF command, except for the CCSIDs.)

CPYFRMQRYF
Copy from Query File copies an open query file to a database or device file.

The server does not reclaim DDM conversations for a job when a copy command produces an error.

Note: In releases prior to Version 3 Release 2, copy errors caused the Reclaim Resources (RCLRSC)
command to run, which also ran the Reclaim Distributed Data Management Conversations
(RCLDDMCNV) command. Although the RCLRSC command still runs, it no longer runs the
RCLDDMCNV command when a copy error occurs.

If you specify a DDM file and a local file on the CPYF or CRYSRCF commands, the server does not verify
that the remote and local files are not the same file on the source server. If you specify one DDM file, you
can potentially copy to and from the same file.

For information on how to copy DBCS-open fields to graphic fields (including the option of removing
trailing single-byte blanks for the DBCS-open field first), see “DBCS-graphic fields using FMTOPT(*MAP)
or FMTOPT(*NOCHK)” on page 107.

Throughout this topic, unless the text specifies a specific command, the term copy commands refers to
all the commands just described.

The device and database files where you can perform copy operations are shown in Table 9.

Table 9. Copy Operations

From-Files To-Files

DDM DDM
Diskette1 Diskette1

Logical Physical2

Open Query3 Printer
Physical *PRINT4

Inline Data5 Tape
Tape
:
1 If the from-file and the to-file are both diskette files, the to-file must be spooled.

2 If the to-file does not exist before the copy operation, the copy operation will create a physical file as the
to-file if you specified:

v CRTFILE(*YES) on the CPYF command and the from-file is a physical or logical file.

v CRTFILE(*YES) on the CPYFRMQRYF command.

3 Open query files can only be copied by using the CPYFRMQRYF command. CPYFRMQRYF is not allowed
for open query files that use DDM files.

4 If TOFILE(*PRINT) is specified, the from-file records are copied to the IBM-supplied printer device file
QSYSPRT and formatted according to the OUTFMT parameter.

5 An inline data file (which is handled like a device file) is included as part of a batch job when the job is read
by a reader program.

While copying records, some of the copy commands can perform the following functions:

v Copy from or to the first file member, a particular file member, a generic set of members, or all file
members (FROMMBR and TOMBR parameters).

v Add a member to a physical to-file if the member does not exist.

Chapter 4. Copying files 67



v Add records to an existing file member, replace the contents of an existing member (MBROPT
parameter), or update duplicate key records in a to-file member.

v Select certain records to copy by one of the following methods:

– Selecting records by record format name when a multi-format logical file is copied (RCDFMT
parameter).

– Specifying records by starting at a relative record number and ending at a relative record number
(FROMRCD and TORCD parameters).

– Specifying records by starting with a specific record key value and ending with another specific
record key value (FROMKEY and TOKEY parameters).

– Specifying the number of records that you want to copy (NBRRCDS parameter).

– Selecting records by the contents of one or more character positions in the record or in a field in the
record (INCCHAR parameter).

– Selecting records according to the values that are contained in one or more fields in the record
(INCREL parameter).

– Disregard or include deleted records in the from-file during the copy if processing the from-file in
arrival sequence (COMPRESS parameter).

v Print copied records, excluded records, or error records (PRINT parameter) in a specified format
(OUTFMT parameter).

v Copy records whose from-file and to-file record formats are different (FMTOPT parameter). When
formats are different, you can perform any of the following actions:

– Map fields whose names are the same in the from-file and to-file record formats and whose field
attributes are compatible (*MAP value).

– Drop fields in the from-file record format that do not exist in the to-file record format (*DROP value).

– Copy data directly (left to right) disregarding any differences (*NOCHK value).

v Copy from a source file to a data file or from a data file to a source file. If the from-file or to-file is a
device file, this function is automatic. If both files are database files, you must specify
FMTOPT(*CVTSRC).

v Change sequence numbers and zero dates in the sequence number and date source fields when
copying to a source physical file (SRCOPT parameter). When renumbering is to be done, the starting
sequence number and the increment value can be specified (SRCSEQ parameter).

v End the copy after a specified number of recoverable errors are encountered (ERRLVL parameter).

v Create the to-file as part of the copy operation (CRTFILE parameter).

See the CL topic for the specific parameters supported by each copy command.

Copying files: supported functions
The following tables ( Table 10 and Table 11 on page 71) provide a summary of the specific copy functions
(using the copy commands) you can use for copying records by the types of files being copied from and
to. The functions with their associated parameters are listed down the left side, and the file types (and if
each can be a from-file and a to-file) are shown across the top. An X indicates that the associated
parameter is valid for the type and use of file under which it occurs.

Table 10. Summary of Copy Functions for Database Files

Copy Function Parameter

Database Files1

Physical Logical

From To From To

Select files FROMFILE2 X X

TOFILE X

68 File Management V5R2



Table 10. Summary of Copy Functions for Database Files (continued)

Copy Function Parameter

Database Files1

Physical Logical

From To From To

Select members FROMMBR X X

TOMBR X

Add to, replace, or update
existing records

MBROPT X

Create the to-file CRTFILE3 X X X

Print copied, excluded, and
error records

PRINT4 X X X

Select by record format RCDFMT X

Select by relative record
number

FROMRCD X X5

TORCD X X5

Select by key field value FROMKEY X X

TOKEY X X

Specify number of records
to copy

NBRRCDS X X

Select by character content INCCHAR X X

Select by field value INCREL X X

Process different database
record formats

FMTOPT X X X

Update sequence number
and date

SRCOPT X X X

Specify start value and
increment

SRCSEQ X X X

Print character and hex
format

OUTFMT4 X X X

Maximum recoverable
errors allowed

ERRLVL X X X

Disregard or include
deleted records

COMPRESS6 X X

Chapter 4. Copying files 69



Table 10. Summary of Copy Functions for Database Files (continued)

Copy Function Parameter

Database Files1

Physical Logical

From To From To

Note:
1 DDM files will appear to act like database files, with exceptions noted in the Distributed Data Management

book.

2 On the CPYFRMQRYF command, the FROMOPNID parameter is used to identify an open identifier for the
open query file to be copied from. The FROMFILE parameter is used in all other copy commands.

3 If the to-file does not exist before the copy operation and the from-file is a physical or logical file, the copy
operation will create a physical file as the to-file if you specified CRTFILE(*YES) on the copy commands.

4 You can specify a program-described printer file so that the copy will produce a list with no special formatting
or page headings, or you can specify TOFILE(*PRINT) to produce a formatted list. You can specify
PRINT(*COPIED) to produce a formatted list of the copied records, you can specify PRINT(*EXCLD) to
produce a formatted list of the records excluded by the INCCHAR or INCREL parameters, and you can
specify PRINT(*ERROR) to produce a formatted list of records causing ERRLVL errors. When you request a
list by specifying the TOFILE(*PRINT) parameter, the OUTFMT parameter specifies whether the data is
printed in character or in both character and hexadecimal form.

5 You can specify the FROMRCD and TORCD parameter values for a logical file if it has an arrival sequence
access path.

6 You cannot specify COMPRESS(*NO) if:

v The to-file member or a logical file member based on the to-file member has a keyed access path with any
of the following attributes:

– Unique keys (UNIQUE keyword specified in the DDS)

– Floating-point key field or logical numeric key field and not MAINT(*REBLD)

– Select/omit specifications in the DDS (without the DYNSLT keyword specified) and not MAINT(*REBLD)

v Field-level mapping or source/data conversion is required (FMTOPT parameter).

v An EOFDLY wait time is specified for the from-file on an Override Database File (OVRDBF) command.

Note: To copy deleted records, the from-file must be processed in arrival sequence.

70 File Management V5R2



Table 11. Summary of Copy Functions for Device Files

Copy Function Parameter

Device Files

Inline Data Diskette Tape Printer

From To From To From To From To

Select files FROMFILE X X1 X

TOFILE X1 X X

Select members FROMMBR X X

TOMBR X X

Add to or replace
existing records

MBROPT

Create the to-file CRTFILE

Print copied or
excluded records

PRINT2 X X X X X X

Select by record
format

RCDFMT

Select by relative
record number

FROMRCD X X X

TORCD X X X

Select by key field
value

FROMKEY

TOKEY

Specify number of
records to copy

NBRRCDS X X X

Select by character
content

INCCHAR X X X

Select by field value INCREL

Process different
database record
formats

FMTOPT

Update sequence
number or date

SRCOPT

Specify start value
and increment

SRCSEQ

Print character or
hex format

OUTFMT2 X X X X X X

Maximum
recoverable errors
allowed

ERRLVL X

Disregard or include
deleted records

COMPRESS

Note:
1 If the from-file and to-file are diskette files, you must specify that the to-file be spooled [SPOOL(*YES)] on a

CRTDKTF, CHGDKTF, or OVRDKTF command.

2 You can specify a program-described printer file so that the copy will produce a list with no special formatting
or page headings, or you can specify TOFILE(*PRINT) to produce a formatted list. You can specify
PRINT(*COPIED) to produce a formatted list of the copied records, you can specify PRINT(*EXCLD) to
produce a formatted list of the records excluded by the INCCHAR or INCREL parameter, and you can specify
PRINT(*ERROR) to produce a formatted list of records causing ERRLVL errors. When you request a list by
specifying the TOFILE(*PRINT) parameter, the OUTFMT parameter specifies whether the data is printed in
character or in both character and hexadecimal form.

Chapter 4. Copying files 71



Copying files: basic functions
As indicated in Table 10 on page 68 and Table 11 on page 71, you can copy from a physical or logical
database file, open query file, diskette file, tape file, or inline data file. The to-file can be a physical
database file, diskette file, tape file, program-described printer file, or *PRINT. When you specify
TOFILE(*PRINT), the CPYSRCF command uses a different format from the other copy commands. This
format shows source information in a more readable format, and for multiple member copies the members
are copied and listed in alphabetical order.

If you are copying from a database file and the to-file does not exist, you must specify CRTFILE(*YES)
and identify the file name and library name on the TOFILE parameter in order to create the to-file. You
cannot copy from a diskette to a diskette unless the to-file is spooled and a diskette spooling writer is not
active.

The from-file (not including the CPYFRMQRYF command where the from-file is not opened), to-file, and
the QSYSPRT printer file (if TOFILE(*PRINT), PRINT(*COPIED), PRINT(*EXCLD), or PRINT(*ERROR) is
specified) are opened with the SHARE(*NO) attribute. Because the copy may not function correctly with a
shared file, it will end with an error message if the from-file, to-file, or QSYSPRT printer file is overridden
to SHARE(*YES) and the file has already been opened in the job.

If you specify TOFILE(*PRINT), the records are copied to the IBM-supplied printer file QSYSPRT, and the
OUTFMT parameter formats the list.

If you do not want a formatted list or if you want to use first-character forms control (CTLCHAR(*FCFC) on
the Create Printer File (CRTPRTF) or Override with Printer File (OVRPRTF) command), you should
specify a program-described printer file name (such as QSYSPRT) instead of *PRINT on the TOFILE
parameter.

File types and copying
When the from-file and to-file are different types (source and data), the following is true. For the
CPYFRMQRYF command, the from-file is always treated as a data file:

v If the from-file or to-file is a device file (or an inline data file), the copy function will automatically add or
delete the source sequence number and date fields for each record copied.

v If the from-file and to-file are database files, you must specify FMTOPT(*CVTSRC) to perform the
operation. The sequence number and date fields are added or deleted as they are for a device file, and
the data part of each record is copied without regard to the field definitions in the file record formats.
For a source physical to-file, you can use the SRCSEQ parameter to control how sequence numbers
are created if you also specified SRCOPT(*SEQNBR).

Record sequence and copying
The access path is the sequence in which records are organized in a database file. There are two types
of access paths: keyed sequence and arrival sequence. With the copy function, you can process records
in a database file in either arrival sequence or keyed sequence. An arrival sequence copy transfers
records in the order in which they physically exist in the from-file. Relative record numbers represent this
order. The relative record number is the position where the records physically exist in storage. Because
records are always added to the end of the file, the relative record number represents the order in which
records arrived in the file.

A keyed sequence copy selects and transfers records by key value from a keyed physical file. This may
result in a different physical order in the to-file. The to-file will be a reorganized version of the from-file.
The relative record number of a specific record may change when a file is copied by key value:

72 File Management V5R2



Relative Record Number Arrival Sequence Keyed Sequence

1 1011 0016
2 0762 0762
3 0810 0810
4 3729 1011
5 0016 3729

You can copy a keyed physical file in arrival sequence by specifying the FROMRCD or TORCD parameter
on the COPY commands. When you do this, the keyed sequence access path is not used to retrieve the
records in key sequence. The records are retrieved in arrival sequence. This is helpful when the physical
relative record location in the file is significant and needs to remain the same as it is in the original file.
Specifying FROMRCD(1) is a good way to copy all the records in arrival sequence. Copying a physical file
in arrival sequence instead of keyed sequence is also faster.

The kind of copy you run is determined by the type of from-file and the method of selecting records to
copy. In general, files are copied using their keyed sequence, if they have one, otherwise, their arrival
sequence. For more information on the selection methods, refer to “Selecting the records to copy” on
page 87.

A copy from a keyed file to a keyed file usually places records at the end of the to-file in key field order, by
the from-file key, regardless of their physical order in the from-file. But if you select records in the from-file
by relative record number (using the FROMRCD or TORCD parameter), they are physically placed at the
end of the to-file in relative record number order, regardless of their keyed sequence in the from-file. The
following example shows the result of a COPY command that specifies from record 3 to record 5:

FROM-FILE TO-FILE

Relative Record
Number Key

Relative Record
Number Key

1 1011 . —

2 0762 . —

3 0810 < Arrival
< Sequence
< Copy

1401 0810

4 3729 1402 3729

5 0016 1403 0016

When the to-file has a keyed sequence, the records appear in correct order in the to-file when using the
keyed sequence access path. A copy by relative record number always copies by arrival sequence.

Resending copy file completion message
If you run a COPY command from a CL program, the completion message indicating the number of
records that are copied is not sent directly to the system operator. You can direct this message to the
system operator by resending it (SNDPGMMSG command) from the CL program, using the following CL
program as an example:
PGM
DCL &MSGID TYPE(*CHAR) LEN(7)
DCL &MSGDTA TYPE(*CHAR) LEN(82)
CPYF FROMFILE(LIB1/XXX) TOFILE(LIB2/XXX) +

MBROPT(*ADD)
RCVMSG MSGID(&MSGID) MSGDTA(&MSGDTA) +

MSGTYPE(*COMP) RMV(*NO)
SNDPGMMSG MSGID(&MSGID) MSGF(QCPFMSG) +

MSGTYPE(*INFO) TOMSGQ(QSYSOPR) +
MSGDTA(&MSGDTA)

ENDPGM

Chapter 4. Copying files 73



The copy function sends one of the following completion messages for each from-file member/label
successfully copied to the to-file:

v CPC2955 is the normal copy completion message.

v CPC2956 is used when COMPRESS(*NO) is specified.

v CPC2957 indicates that no records were copied.

v CPC2954 is sent as a second completion message after the CPC2955, CPC2956, or CPC2957
completion message is sent, when you have specified MBROPT(*UPDADD). It will indicate the number
of records that were updated.

Monitoring for copy errors
The escape message CPF2817 is sent to indicate many different error conditions. Except for the empty
from-file member case which is described later, when this message is sent:

v A physical file is not created (even if CRTFILE(*YES) was specified on a copy command).

v No members are added to a to-file that is a physical file.

v No to-file member is cleared (even if MBROPT(*REPLACE) was specified).

v The to-file is not opened, so no file is created on a diskette or tape volume. If the to-file is spooled, no
spooled file is created.

v No records are copied.

The CPF2817 escape message is always preceded by at least one diagnostic message that indicates the
specific error condition. The message identifier of the diagnostic message which immediately precedes the
CPF2817 escape is used as message replacement data (MSGDTA parameter on the SNDPGMMSG
command) for the CPF2817 escape message. This allows you to monitor for specific error cases from the
CPF2817 escape message by using the CMPDTA parameter on the MONMSG command.

For example, message CPF2802 is a diagnostic message. It indicates that the from-file cannot be found.
You can monitor for just the from-file not found condition as follows:
PGM

/* The replacement text of escape
CPF2817 contains the msg ID
CPF2802 for the ’from-file not
found’ condition */

CPYF FROMFILE(NOLIB/NOFILE) TOFILE(D504/KEY) +
FROMMBR(NOMBR) TOMBR(MBR1) MBROPT(*ADD)

MONMSG MSGID(CPF2817) CMPDTA(CPF2802) +
EXEC(SNDPGMMSG TOPGMQ(*EXT) +
MSG(’File NOFILE in NOLIB not found’))

ENDPGM

Any error other than from-file not found, including any other error reported with a CPF2817 escape
message, causes a check in this program because the MONMSG command applies only to the CPF2817
escape when it has the compare data from message CPF2802.

If you are running the CPYFRMQRYF command, it does not normally close the open query file after
completing the copy. However, if you are running the CPYFRMQRYF command from a command entry
line, any error messages occurring after the OPNQRYF command is successfully run will close the file
unless you specified TYPE(*PERM) on the OPNQRYF command. The server automatically runs a Reclaim
Resources (RCLRSC) command if an error message occurs. If the OPNQRYF command specified
TYPE(*PERM), the server does not automatically close the file.

The following messages can be sent as diagnostic messages, followed immediately by a CPF2817 escape
message. Some of these messages can also be sent as other message types (such as an informational or
escape message). When the message is sent as a diagnostic message type, the message identifier
appears in the replacement text of the CPF2817 escape message. You can monitor the condition by using
the CMPDTA parameter on the MONMSG command:

74 File Management V5R2



CPD2807 CPD2808
CPD2809 CPD2810
CPD2811 CPD2812
CPD2825 CPD2968
CPD2969 CPD2970
CPD2971 CPD2972
CPD2973 CPD2974
CPD2975 CPD2976
CPD2979 CPD2980
CPD2981 CPF2801
CPF2802 CPF2803
CPF2804 CPF2805

CPF2806 CPF2807
CPF2808 CPF2810
CPF2811 CPF2812
CPF2813 CPF2814
CPF2816 CPF2819
CPF2820 CPF2821
CPF2822 CPF2823
CPF2825 CPF2826
CPF2827 CPF2831
CPF2832 CPF2833
CPF2834 CPF2836
CPF2837 CPF2839

CPF2840 CPF2841
CPF2842 CPF2843
CPF2844 CPF2847
CPF2848 CPF2849
CPF2851 CPF2853
CPF2854 CPF2855
CPF2856 CPF2857
CPF2860 CPF2861
CPF2862 CPF2863
CPF2864 CPF2865
CPF2868 CPF2869
CPF2870 CPF2871

CPF2872 CPF2873
CPF2874 CPF2877
CPF2878 CPF2879
CPF2881 CPF2883
CPF2884 CPF2890
CPF2891 CPF2893
CPF2960 CPF2962
CPF2963 CPF2965
CPF2969 CPF9807
CPF9808 CPF9820
CPF9830

Monitoring for zero records in the from-file
There are some special considerations for copy when the from-file is a physical or logical file and one or
more members to be copied are empty. A member is considered empty in the following cases:

v You specified COMPRESS(*NO) on the CPYF command, and the from-file member contains no
records.

v You specified COMPRESS(*YES) for a COPY command, and the from-file members contain no
undeleted records.

Members copied involving record selection (CPYFRMQRYF command or the INCCHAR and INCREL
parameters of the CPYF command) that produce no records are not considered empty.

When the to-file is a printer file (including *PRINT), or when the to-file is a physical file and you specified
MBROPT(*ADD) or MBROPT(*UPDADD), empty from-file members are copied because no existing data
will be destroyed. Each member that is copied is identified by a normal copy completion message. If the
to-file is spooled, an empty spooled file is produced for each empty from-file member. If the PRINT
parameter on the CPYF command specifies *COPIED, *EXCLD, or *ERROR, the empty members are
shown in the lists, and no records are printed.

Except for the CPYFRMQRYF command, an empty from-file member is never copied to a diskette or tape
file, or to a physical file when MBROPT(*REPLACE) is specified. Empty from-file members are skipped for
these types of to-files, and a CPF2869 message is sent (as either an informational or diagnostic message)
to identify each empty member. The empty members are skipped to avoid destroying existing data. When
an empty from-file member is skipped, the following considerations apply:

v A tape or diskette file is not produced on the output volume. If the diskette file is spooled, no spool
output file is created.

v An existing to-file physical file member is not cleared.

v If the to-file does not exist and you specified CRTFILE(*YES) on a copy command, a physical file is
created.

v If the to-file is a physical file and the to-file member does not exist, a member is added to the file.

v If the PRINT parameter on the CPYF command specifies *COPIED, *EXCLD, or *ERROR, the empty
members are not shown in the lists.

When the copy command specifies a generic name or *ALL for the FROMMBR parameter, each empty
from-file member skipped is identified by message CPF2869, sent as an informational message. If all the
from-file members are skipped, a CPF2870 diagnostic message is sent after all the CPF2869 informational
messages, followed by a CPF2817 escape message.

When the copy command specifies a single member name or FROMMBR(*FIRST), or when there is an
override for the from-file that forces a single member to be processed, an empty member that is skipped is
identified by the diagnostic message CPF2869. The CPF2869 diagnostic message is followed by a
CPF2817 escape message.

Chapter 4. Copying files 75



In the following example, the from-file and to-file are both database files, and EMPTY1 and EMPTY2 are
empty members in the from-file.
PGM

/* No need to monitor for zero records
when MBROPT(*ADD) specified */

CPYF FROMFILE(D504/GEORGE) TOFILE(D504/KEN) +
FROMMBR(EMPTY1) TOMBR(MBR1) MBROPT(*ADD)

CPYF FROMFILE(D504/GEORGE) TOFILE(D504/KEN) +
FROMMBR(EMPTY2) TOMBR(MBR2) MBROPT(*REPLACE)

MONMSG MSGID(CPF2817) CMPDTA(CPF2869) +
EXEC(CLRPFM FILE(D504/KEN) MBR(MBR2))

/* Monitor for zero records and
send a message when all members
to copy are empty */

CPYF FROMFILE(D504/GEORGE) +
TOFILE(D504/NEWFILE) FROMMBR(EMPTY*) +
TOMBR(NEWMBR) MBROPT(*REPLACE)

MONMSG MSGID(CPF2817) CMPDTA(CPF2870) +
EXEC(SNDPGMMSG TOPGMQ(*EXT) +
MSG(’All members to copy are empty’))

ENDPGM

For the first CPYF command, MBROPT(*ADD) is specified, so an escape message is not sent to the
program because of the empty from-file member. Note that if MBR1 does not exist before the copy, it is
added to the to-file (if either the from-file member is empty or contains data).

For the second CPYF command, copy does not clear the to-file member when the from-file member is
empty, so the MONMSG command after the second CPYF command starts the CLRPFM command to
clear the to-file member when the from-file member is empty.

For the third CPYF command, the CPF2817 escape message has compare data of CPF2870 if all
members to be copied are empty because the generic from-file member name, EMPTY*, requests that
multiple members be copied.

Creating a duplicate to-file member
When your application requires an exact duplicate of the records in the to-file member (if either the
from-file is empty or contains data), an alternative solution is to use the Clear Physical File Member
(CLRPFM) command:
CLRPFM FILE(X) MBR(XYZ)
CPYF FROMFILE(Y) TOFILE(X) TOMBR(XYZ) +

MBROPT(*ADD)

Because MBROPT(*ADD) is specified, the CPYF command completes normally even if there is no data in
file Y. MBR(XYZ) in file X contains an exact duplicate of the records in the member in file Y.

CPYFRMQRYF command support for CCSIDs
The Copy from Query File (CPYFRMQRYF) command provides CCSID conversions for character and
DBCS fields. The Open Query File (OPNQRYF) command converts all character and DBCS fields to the
current job CCSID, except for fields that have a CCSID of 65535 or where *HEX is specified on the
MAPFLD parameter. If the current job CCSID is 65535, then no conversions are done by OPNQRYF. The
CPYFRMQRYF command may also do conversions to the to-file field CCSIDs, so it is possible that double
conversions will be done and data may be lost. To avoid the possibility of doing double conversions,
change the job CCSID to 65535 before doing an OPNQRYF if you plan to do a CPYFRMQRYF.

CPYFRMQRYF uses a different query format. It is the same as the open query file format except for the
CCSIDs for character and DBCS fields. The CCSIDs in this query format are determined according to the
following:

v If the OPNQRYF job CCSID is 65535, all character and DBCS fields in the query format have the same
CCSIDs as the open query file format.

76 File Management V5R2



v If the OPNQRYF job CCSID is not 65535, all character and DBCS fields in the query format have their
CCSIDs reset to the associated single-byte, mixed or double-byte CCSIDs of the OPNQRYF job
CCSID, based on the field type. Fields with a CCSID of 65535 remain unchanged. If there is no
associated mixed or double-byte CCSID for the OPNQRYF job CCSID, 65535 is used.

You can find more information on CCSIDs in the National Language Support topic in the iSeries
Information Center.

CPYSRCF command support for CCSIDs
Using the Copy Source File (CPYSRCF) command automatically converts data in the from-file to the to-file
CCSID. If you do not want the character data converted, use the CPYF command with
FMTOPT(*NOCHK).

Copy commands support for null values
You can copy files that contain null-capable fields by using the CPYF and CPYFRMQRYF commands. The
FMTOPT parameter allows mapping of null-capable fields. The INCREL parameter allows selection of
records that are based on whether a field is or is not null.

While copying the records to the to-file, the following commands ignore null values in the from-file:

CPYTOTAP
CPYTODKT

CPYFRMTAP
CPYFRMDKT

The following conditions or values on the CPYF or CPYFRMQRYF command ignore null values in the
from-file while copying the records to the to-file:

FMTOPT(*NOCHK)

FMTOPT(*CVTSRC)

Device to-file

Record selection involving null values may still be done, but only the user-specified or default value in the
buffer (rather than a null value) is copied to the to-file. Null values cannot be preserved in these instances.
Any print listings produced when a copy command is run (including TOFILE(*PRINT), PRINT(*COPIED),
PRINT(*EXCLUDE), and PRINT(*ERROR)) also ignore null values.

Creating the to-file (CRTFILE parameter)
To copy a physical or logical file when no to-file exists to receive the data, you can create the to-file by
specifying CRTFILE(*YES). Specify the name of the new to-file on the TOFILE parameter. Qualify the
name with the name of an existing library for which you have the required authority. (You must also have
authority to the CRTPF command). You cannot override the created to-file that you specified to a different
file or library.

CRTFILE(*YES) automatically adds members and records to the new file.

The newly created file has certain authorities, capabilities, and a user profile associated with it. For more
information, see “Authorities, user profiles, and file capabilities of the to-file created by Copy File (CPYF)”
on page 78. Your server specifies different identifiers and attributes to the new file based on whether you
use the CPYF or CPYFRMQRYF command. See “Specifying CRTFILE(*YES) on either the CPYF or
CPYFRMQRYF command” on page 78.

Chapter 4. Copying files 77



Specifying CRTFILE(*YES) on either the CPYF or CPYFRMQRYF
command
If you specify CRTFILE(*YES) on the CPYF command, the to-file that is created has the same record
format and type of access path as the from-file. The file level and the format level identifiers of the new
to-file are identical to the file level and the format level identifiers of the from-file. The text of from-file
members that are copied is used as the text of any to-file members that are created.

When the from-file is a logical file, the server assigns the following physical file attributes: SIZE(*NOMAX),
ALLOCATE(*NO), and CONTIG(*NO). If the from-file is a logical file with multiple record formats, the to-file
is created with the format that is specified on the RCDFMT parameter on the CPYF command. See
“Selecting records using a specified record format name (RCDFMT Parameter)” on page 87 for more
information on the RCDFMT parameter.

If you specify CRTFILE(*YES) on the CPYFRMQRYF command, the file level and the format level
identifiers of the new to-file are generated at the time the new to-file is created. Furthermore, the physical
file’s attributes match the first file that is specified on the FILE parameter of the corresponding Open Query
File (OPNQRYF) command. However, the server assigns some of the attributes. The file is created with
CONTIG(*NO), SIZE(*NOMAX), ALLOCATE(*NO), AUT(*NORMAL) and FILETYPE(*DATA).

The name, type, length, null capability, date, or time format, separators, and decimal positions attributes of
each field on the format that is specified are used. The file is created without key fields and is an arrival
sequence physical file.

In some cases, the OPNQRYF command changes the format of the format that is specified on the new
to-file. The new to-file format may become null-capable when the OPNQRYF command uses one of the
following grouping functions:
v %STRDEV
v %VAR
v %SUM
v %AVG
v %MIN
v %MAX

Note: A new to-file with a changed format has a format level identifier that is different from the format
level identifier that is specified on the OPNQRYF command.

Authorities, user profiles, and file capabilities of the to-file created by
Copy File (CPYF)
When the Copy File (CPYF) command creates the local physical file, the from-file gives the created to-file
all the authorities of the from-file. These authorities include public, private, and authorization lists. When
CPYFRMQRYF creates the local physical file, the authorities given are of the first file that is specified on
the FILE parameter of the corresponding Open Query File (OPNQRYF) command. The authorities include
public, private, and authorization lists.

In both cases, the owner of the created to-file is the user profile running the copy command. The user
running the copy command inherits *ALL authority to the object. This is true unless the user is a member
of a group profile and has OWNER(*GRPPRF) specified for the profile.

If you specify OWNER(*GRPPRF), the group profile becomes the owner of the to-file. In this case, if the
user profile running the copy command does not have authority to add a member or write data to the new
file, the copy command fails.

78 File Management V5R2



The created to-file does not maintain the file capabilities of the from-file. The to-file allows update, delete,
read, and write operations, regardless of whether the from-file allowed these operations. Following are
special considerations for the new to-file:

v If the number of records copied into a member is greater than the maximum size of the created to-file,
the to-file is extended without intervention by the system operator.

v If the from-file is an SQL table, view, or index, the created to-file will be a physical file that is not an
SQL table. However, when the from-file contains LOBs, datalinks, or user-defined types, the created
to-file is an SQL table.

v If the from-file is an SQL table, the default values are not preserved. The default data type value will
apply to the created physical file.

v If the from-file has a trigger program associated with it, the CPYF and CPYFRMQRYF commands do
not copy the trigger information to the to-file when the CRTFILE parameter is used.

v If you create a new file (CRTFILE(*YES)) from a file with constraints, the constraint definitions do not
copy to the new file.

v If you create a new file (CRTFILE(*YES)) from a file with user-defined functions, the user-defined
functions do not copy to the new file.

Adding, replacing, and updating records (MBROPT parameter)
On the CPYF, CPYFRMDKT, CPYFRMQRYF, CPYFRMTAP, or CPYSRCF commands, you can add or
replace existing data in the to-file by specifying different attributes on the MBROPT parameter. The CPYF
command also allows you to update duplicate key records and add non-duplicate key records to a to-file
member.

You can do these tasks by specifying *REPLACE, specifying *ADD, or specifying *UPDADD on the
MBROPT parameter (see Specifying *REPLACE when copying files).

For more information, see Copying records into files that use trigger programs.

Specifying *REPLACE when copying files
By specifying *REPLACE, you essentially clear the member. The copied records are the only records in
the member when the operation completes. You must have authority to clear the member in order to
specify MBROPT(*REPLACE).

For copy commands other than the CPYFRMQRYF command, when you specify *REPLACE, copy
command processing fails if the from-file does not contain any records. When you specify *REPLACE on
the CPYFRMQRYF command, the to-file member will be cleared even if the open query file contains no
records.

*REPLACE is the default value for the CPYSRCF command. All other copy commands have the default
value of *NONE; however, *NONE is valid only for copying to a device file.

Specifying *ADD when copying files
When you specify *ADD, each record copied is added to the end of the existing records in the member. It
is important to note that this is always true, even for keyed files. However, with keyed files, the added
records appear to be merged in key sequence when accessed through a keyed access path. When
copying from query files, the relative record numbers of the resulting file may not correspond to those in
the original file.

When *ADD is specified, the copy completes normally even if the from-file contains no records.

Chapter 4. Copying files 79

|
|

|
|
|
|

|



When three files are copied with MBROPT(*ADD) to a database file that is not keyed, the resulting to-file
would look like Figure 25.

Figure 25. Result of Copies with MBROPT(*ADD) Specified

80 File Management V5R2



See “Adding or changing source file sequence number and date fields (SRCOPT and SRCSEQ
Parameters)” on page 111 for source file considerations in this operation, and “Copying deleted records
(COMPRESS Parameter)” on page 96 for considerations for deleted records.

If MBROPT(*ADD) is specified, records are always physically added at the end of the file, even if it is a
keyed sequence file. In the following illustration, FILEDB1 is a keyed physical from-file, and FILEDB2 is a
keyed physical to-file. The files are shown as they physically appear in storage. FILEDB2 already has
three records in it.

If you specify MBROPT(*ADD), FROMKEY(1 2), and TOKEY(1 5), four records are added in key field
order to the end of FILEDB2.

Chapter 4. Copying files 81



The added records, however, appear to be merged in the new file when viewed through a keyed sequence
access path.

There are several ways to select records for copying . One method is selection by relative record number.
(See “Selecting records by relative record numbers (FROMRCD and TORCD Parameters)” on page 87.)

82 File Management V5R2



Using the preceding example, if you selected records to copy to a third file from FILEDB2 by relative
record number, from number 3 through 5, you would copy the records with a key value of 24, 2, and 3, not
4, 5, and 9.

Specifying *UPDADD when copying files
When you specify *UPDADD on the CPYF command, a from-file key value builds before the from-file
record moves into the to-file. The from-file builds this key value by using the key specifications of the
to-file. Before the key value is built, the server performs any necessary field or data mapping, data
conversion, or record selection. The server checks the to-file to see if this key value already exists in it
(duplicate key of the from-file data). If the key value does exist in the to-file,the from-file record that
contains the key value updates that to-file record.

The following apply if you specify MBROPT(*UPDADD) on the CPYF command:

v The to-file must be a local database physical file that contains a primary or unique key.

v You may not specify CRTFILE(*YES). The to-file must exist before you run CPYF.

v CPYF cannot copy from multiple formats.

v Detected duplicate keys are not skipped but updated with the new from-file record value. Duplicate key
errors (CPF5026) are not included as ERRLVL errors.

v CPF5027 will be included as an ERRLVL error. This error can occur if another process has a record that
is locked. To avoid this error, you may want to pre-allocate the to-file within your job before performing
the CPYF. You can use the WAITRCD parameter on the CRTPF and CHGPF commands to limit the
length of time that the commands spend waiting for a record lock to be released in the to-file.

v All existing FMTOPT values are allowed. However, when using MBROPT(*UPDADD), take care to avoid
updating records that you do not want to update. Also avoid updating the same record multiple times
when it is not desired.

v Nulls are not used in determining duplicate key values if FMTOPT(*NOCHK) is specified or if the
from-file is a device file.

v You must have the minimum following authorities to the to-file:
– Object operational (*OBJOPR)
– Add (*ADD)
– Update (*UPD)

Copying records into files that use trigger programs
A trigger program is a program that contains a set of trigger actions. A trigger action is a set of actions
(high-level language statements, SQL statements, or iSeries utilities) that are performed automatically
when a specified change operation (trigger event) occurs on a specified table or file. For more information
on triggers and trigger programs, see the Triggers section of the Database Programming book.

If records are copied to a physical file that has an *INSERT trigger program associated with it, the trigger
program is called each time a record is copied to the file. The trigger program is not called if deleted
records are copied. If an error occurs while the trigger program is running, the copy operation fails.
However, records that were successfully copied before the error occurred remain in the to-file.

If a from-file has a trigger program associated with it, the CPYF and CPYFRMQRYF commands do not
copy the trigger information to the to-file when the CRTFILE parameter is used.

Selecting members to copy
iSeries gives you several options for copying file members:

v “Copying all members or labels within a file” on page 85

v “Copying only certain members or labels within a file” on page 85

Chapter 4. Copying files 83



“Copying file members: overview” gives an explanation of how the system handles this process.

For more information:

For more details, see the following topics:
v Allowed copy operations and parameters
v “Specifying the label identifier or member name for the copy operation” on page 85
v “Special considerations for the Override Database File (OVRDBF), Override Diskette File (OVRDKTF),

and Override Tape File (OVRTAPF) commands” on page 86
v How the copy function adds members to the to-file

Copying file members: overview
You can copy multiple database members or diskette labels to corresponding like-named to-file members
or labels. They can also be copied and concatenated, one after another, into a single to-file member or
label. If the to-file is a spooled file, then the copy command copies each member or label to a separate
spooled file. If TOFILE(*PRINT) is specified, then all the members/labels are copied to a single spooled
file, with the records for each member/label starting on a new page.

A single member or label, or multiple members or labels, can be copied to corresponding like-named to-file
members or labels by specifying TOMBR(*FROMMBR), TOLABEL(*FROMMBR), or
TOMBR(*FROMLABEL) depending on the copy command used. If the to-file is tape, you cannot specify
this unless you are copying from a single from-file member or label. *FROMMBR is the default value for
the TOMBR parameter on the CPYSRCF command, which copies the from-file members to like-named
to-file members.

For more information:

For additional information, see the following topics:
v “How the copy function adds members to the to-file” on page 86
v “Allowed copy operations and parameters”

Allowed copy operations and parameters
This table shows the file types into which you can copy members or labels based on the source file type:

Diskette To: Database To:

Database (physical file) Database (physical file)
Diskette (Note 1) Diskette
Tape (Note 2) Tape (Note 2)
Printer Printer
*PRINT *PRINT

Notes:

1. The to-file must be spooled for diskette-to-diskette copy operations.

2. Multiple from-file members or labels can only be copied to a single tape file label.

This table shows the valid member or label parameters for copy commands:

Table 12. Valid Member or Label Parameters for Copy Commands

FROMMBR1 FROMLABEL TOMBR TOLABEL

CPYF X X
CPYFRMDKT X X
CPYFRMQRYF X

84 File Management V5R2

|

|



Table 12. Valid Member or Label Parameters for Copy Commands (continued)

FROMMBR1 FROMLABEL TOMBR TOLABEL

CPYFRMTAP X X
CPYSRCF X X
CPYTODKT X X
CPYTOTAP X
CPYFRMIMPF X X
CPYTOIMPF X X
:
1 FROMMBR is not a parameter on the CPYFRMQRYF command because the members to be queried are

specified on the OPNQRYF command.

Copying all members or labels within a file
For database or diskette files, copy all members by specifying *ALL on the the FROMMBR or
FROMLABEL parameter.

For diskette files, when you specify FROMLABEL(*ALL) on the CPYFRMDKT command and you specify
a LABEL parameter value on an OVRDKTF command, only the single-file label identifier specified in the
override is copied.

Copying only certain members or labels within a file
For database or diskette files, you first specify a generic name on the FROMMBR or FROMLABEL
parameter. You then modify the generic name to indicate the starting character string that each member or
label has in common, then follow it with an * (asterisk). For example, if you specified FROMMBR(ORD*),
the copy command would copy all database members or diskette labels that start with ORD.

Note:

v If a generic name is specified for the FROMLABEL parameter on the CPYFRMDKT command
and a LABEL parameter value is also specified on an Override Diskette File (OVRDKTF)
command, the command copies only the single-file label identifier that you specified on the
override.

v If you copy a generic set from a diskette, and a label that is being copied continues on another
diskette volume, then the copy command copies all the affected labels on the continuation
volume. This is also true when you copy all labels.

Specifying the label identifier or member name for the copy operation
If you specify TOMBR (*FIRST), the copy operation does not specify a label identifier. Therefore, you must
specify a label identifier (LABEL parameter) either:

v In the device file on an OVRDKTF command (for a diskette file) OR

v On an OVRTAPF command (for a tape file)

If you specify the special value *FIRST, *DKTF, or *TAPF on the copy command, then the copy command
uses the label from the device file description.

If the from-file is diskette or tape, the copy command uses the from-file label as the label for a diskette or
tape to-file. If the to-file is a database file, the command uses the nonblank characters to the extreme right
of the from-file label for the member name of the to-file. The command uses up to a maximum of either 10
characters or to the period at the extreme right in the from-file label. The copy operation uses only valid
member names for a database to-file. It does not ensure that a to-file label is valid for tape or diskette, so
a label identifier that is nonstandard or not valid may be used for the to-file.

Chapter 4. Copying files 85



If the from-file is a tape file that is not labeled, then a to-file member or label name is created that
corresponds to the data file on the tape from-file in the form of CPYnnnnn, where nnnnn is the tape
sequence number of the data file.

If you specify a tape or diskette label in the FROMMBR or TOMBR parameter, it can have a maximum
length of 10 characters. If the label contains special characters or more than 10 characters, you must
specify the label on one of the following commands:
v Create Tape File (CRTTAPF)
v Change Tape File (CHGTAPF)
v Override with Tape File (OVRTAPF)
v Create Diskette File (CRTDKTF)
v Change Diskette File (CHGDKTF)
v Override with Diskette File (OVRDKTF)

Special considerations for the Override Database File (OVRDBF),
Override Diskette File (OVRDKTF), and Override Tape File (OVRTAPF)
commands
For a database from-file or to-file, if a MBR parameter is specified on an OVRDBF (Override Database
File) command, then the override member name is used instead of the value specified on the copy
command. If the TOFILE parameter is specified with no MBR parameter value on the OVRDBF command,
then the first member (in creation order) in the database file is used instead of the member specified on
the copy command. For a diskette or tape from-file or to-file, if a LABEL parameter is specified on an
OVRDKTF or OVRTAPF command, respectively, the override label name is used instead of the label
specified on the copy command.

If you copy multiple members or labels to corresponding like-named to-file members or labels, then you
cannot use an override to a single to-file member or label unless you also override the from-file to a single
member or label.

How the copy function adds members to the to-file
The copy function adds a member to the to-file when the member does not exist. The member name used
is either the TOMBR parameter value from the copy command, or the member name that is specified in an
override for the to-file.

If TOMBR(*FROMMBR) or TOMBR(*FROMLABEL) is specified on the copy command (and is not
overridden), the from-file member names or label identifiers are used for the members added to the file.

If TOMBR(*FIRST) is specified on the copy command, or if there is an override that specifies a TOFILE
parameter with no MBR parameter, then no member name is known. The copy function does not add a
member in this case unless the following are true:

v You specified CRTFILE(*YES) on the copy command

v The copy function must create the to-file

Except for the CPYFRMQRYF command, when the copy function creates the to-file without a specific
member name specified, the from-file name is used for the member that is added to the to-file. When
using the CPYFRMQRYF command, the member added to the physical file that is created by the copy
operation has the name specified by the TOMBR parameter. If you specify TOMBR(*FIRST), the to-file
member has the same name as the to-file file name that is specified on the TOFILE parameter of the
CPYFRMQRYF command. The copy command ignores the MBROPT parameter value when it creates the
to-file, and adds records to the new file members.

If the from-file is a database file, the copy command uses the member text and SEU source type of the
from-file member for the member that is added to the to-file. If the from-file is a device or inline data file,
the copy command takes the text from message CPX0411; the SEU source type is TXT. If both the

86 File Management V5R2



from-file and to-file are database source files, the SEU source type information in the added member will
be the same as the from-file member. When it adds the to-file member, the copy command always assigns
the SHARE(*NO) and EXPDATE(*NONE) attributes to the to-file member. The copy command also sets
the creation date of the new member to the current system date (not the date when the from-file member
was added).

When the copy command adds a member to a to-file that is a parent file, the constraint becomes
established at that time.

Selecting the records to copy
The following topics show how you can use parameters on the copy commands to select only the specific
records that you want to copy:

v “Selecting records using a specified record format name (RCDFMT Parameter)”

v “Selecting records by relative record numbers (FROMRCD and TORCD Parameters)”

v “Selecting records by record keys (FROMKEY and TOKEY Parameters)” on page 88

v “Selecting a specified number of records (NBRRCDS Parameter)” on page 92

v “Selecting records based on character content (INCCHAR Parameter)” on page 93

v “Selecting records based on field value (INCREL Parameter)” on page 94

v “Copying deleted records (COMPRESS Parameter)” on page 96

The copy command parameters for record selection (FROMRCD, TORCD, FROMKEY, TOKEY, INCCHAR,
and INCREL) are not on the CPYFRMQRYF command because you select records on the OPNQRYF
command.

See the Database Programming book for details on record selection by using open query file. For a

detailed description of all considerations for each parameter, see the CL Programming book.

Selecting records using a specified record format name (RCDFMT
Parameter)

Note: You can use this parameter on the CPYF command only.

When you copy from a logical file to a physical file and the logical file has more than one record format,
you must specify a record format name unless you specify FMTOPT(*NOCHK). If you use
FMTOPT(*NOCHK), then you can specify RCDFMT(*ALL) to copy all from-file record formats to the to-file.
The command uses this record format name to select records to copy.

This example shows how you can use the copy command to copy records from the logical file ORDFILL to
the physical file INVOICE by using the record format ORDHDR:
CPYF FROMFILE(DSTPRODLB/ORDFILL) +

TOFILE(DSTPRODLB/INVOICE) RCDFMT(ORDHDR) +
MBROPT(*ADD)

When you copy from a logical file that has more than one record format to a device file, you can specify
either a single record format to be used or specify RCDFMT(*ALL) to copy using all the record formats. If
the record formats have different lengths, the command pads the shorter records with blanks.

Selecting records by relative record numbers (FROMRCD and TORCD
Parameters)

Note: You can use this parameter on the CPYF command only.

Chapter 4. Copying files 87



Relative record numbers can be specified for a copy from any file type except a keyed logical file. A keyed
physical file can be copied in arrival order if relative record numbers are specified for the FROMRCD or
TORCD parameter. Records can be copied:

v From a specified record number (FROMRCD parameter) to a specified record number (TORCD
parameter) OR

v Until a specified number of records (NBRRCDS parameter) has been copied (see “Selecting a specified
number of records (NBRRCDS Parameter)” on page 92)

If the command reaches the end of the file before it reaches the specified ending record number or
number of records, the copy completes normally.

When a relative record number is specified, records are copied, starting with the specified relative record
number, in the order in which they physically exist in the database file being copied from. This is true even
if the physical file has a keyed sequence access path. You can use the COMPRESS parameter with the
FROMRCD and TORCD parameters to further define which records you want to select for copying (see
“Copying deleted records (COMPRESS Parameter)” on page 96).

If the from-file is a physical file or a logical file with an arrival sequence access path, the TORCD value is
a relative record number that counts both the deleted and undeleted records ahead of it. If the from-file is
a device file or inline data file, the TORCD value is a record number that includes only undeleted records
(even for an I-format diskette file).

Deleted records retain their position among records that are not deleted. However these records do not
necessarily retain their relative record number when they are copied if they are in the specified subset and
COMPRESS(*NO) is specified. If you specify COMPRESS(*YES), the command skips the deleted records
and does not copy them. In this case, when the record number that is specified (FROMRCD parameter) is
a deleted record, copying starts with the first undeleted record that follows.

This example shows how you can use the command to copy records from relative record number 500 to
relative record number 1000 in the file EMP1 to the file EMP1T.
CPYF FROMFILE(PERSONNEL/EMP1) +

TOFILE(TESTLIB1/EMP1T) MBROPT(*REPLACE) +
FROMRCD(500) TORCD(1000)

Note: If you use record numbers to select records, you cannot use record keys (FROMKEY/TOKEY
parameters) to select records on the same CPYF command.

For information about using the FROMRCD and TORCD parameters with distributed files, see the DB2
Multisystem for iSeries book.

Selecting records by record keys (FROMKEY and TOKEY Parameters)

Note: You can use this parameter on the CPYF command only.

You can specify record keys to copy only from a keyed database file. You can copy records:

v From a specified key value (FROMKEY parameter) to a specified key value (TOKEY parameter) OR

v Until a specified number of records (NBRRCDS parameter) is reached (see “Selecting a specified
number of records (NBRRCDS Parameter)” on page 92

If the command reaches the end of the file before it reaches the specified ending key value or number of
records, the copy completes normally.

If no record in the from-file member has a key that is a match with the FROMKEY value, but there is at
least one record with a key greater than the specified value, the first record copied is the first record with a
key greater than the FROMKEY value. If the specified key value is greater than any record in the member,
the command sends an error message and does not copy the member.

88 File Management V5R2



You can specify *BLDKEY on the FROMKEY and TOKEY parameters to use a list of character and
numeric values in their natural display form for the fields in a key. The command converts each element to
the corresponding key field data type. The command then provides the composite key value (a key that is
comprised of more than one field) to the database.

If you specify fewer values than the complete database key contains, the command builds a partial key
and passes it to the database. If you specify more values than the database key contains, an ending error
occurs. The command always applies values to the consecutive fields that are in the extreme left of the
key so that it is impossible to skip key fields.

The command pads character fields on the right with blanks. The command adjusts numeric fields to the
implied decimal point in the key field with the correct zero padding.

All regular rules for specifying numeric fields in an external character format apply. The command does not
allow a floating-point value of *NAN (Not a Number).

See “Example: build-key function” on page 90 and “Example: using FROMKEY and TOKEY” on page 90
for specific coding examples.

It is also important to understand “Key string comparisons made by the copy operation” in order to
interpret various warning messages.

Note: If you use record keys to select records, you cannot use relative record numbers
(FROMRCD/TORCD parameters) to select records on the same CPYF command.

You should not specify COMPRESS(*NO) when selecting records by record key from a keyed physical file.
Because the keyed access path of a file does not contain deleted records, the copy command never
copies them, so the compression is automatic.

Because deleted records are canceled in a copy by this method, it is also possible that the relative record
numbers have changed in the new file, even if you have specified MBROPT(*REPLACE).

See the following topics for more information about specifying data for:

v “Variable-length fields used by record keys (FROMKEY and TOKEY)” on page 91

v “Date, time, and timestamp fields used by record keys (FROMKEY and TOKEY)” on page 91

v “Null-capable fields used by record keys (FROMKEY and TOKEY)” on page 91

v “Different CCSIDs used by record keys (FROMKEY and TOKEY)” on page 92

v “DBCS-graphic fields used by record keys (FROMKEY and TOKEY)” on page 92

Key string comparisons made by the copy operation
The check made by the copy operation (when the TOKEY value is specified) is a logical character
comparison between the key string for each record retrieved and the key string that is:

v Specified explicitly (using the first TOKEY parameter format) OR

v Built implicitly by the copy operation (that uses the list of values that are given)

A warning message is sent (but the copy operation continues) if this comparison gives different results
than the ordering in which the database identifies the records in the keyed access path. The order may be
different if:

v The key contains mixed ascending and descending fields

v The key contains fields for which a sort sequence other than *HEX is in effect OR

v The key contains any of the following DDS keywords:

ABSVAL
Absolute value

Chapter 4. Copying files 89



ALTSEQ
Alternative collating sequence

ALWNULL
Allow null

DATFMT
Date format (*MDY, *DMY, *YMD, *JUL, SAA *EUR, or SAA *USA)

DIGIT Digit force

SIGNED
Signed numeric

TIMFMT
Time format (*USA)

ZONE Zone force

If there are both ascending and descending fields in the file key, the first (the far left) key field determines
whether the copy operation uses an ascending or descending key test to look for the last record to copy.

Using *BLDKEY is the easiest way to specify (and ensure correct padding) values for packed, binary, and
floating-point fields.

Example: build-key function
An example of the build-key function is:

Key Field Number Type Length Decimal Precision Value

1 CHAR 6 KEN
2 ZONED 6 2 54.25
3 BINARY 4 1 10.1

You could specify the FROMKEY (or TOKEY) parameter as follows:
FROMKEY( 2 x’D2C5D5404040F0F0F5F4F2F50065’)

Or, you could use the *BLDKEY value and specify the FROMKEY as follows:
FROMKEY(*BLDKEY (KEN 54.25 10.1))

Another example using key fields 1 and 2 is:
FROMKEY(2 ’KEN 005425’)

Or, you can specify the *BLDKEY value:
FROMKEY(*BLDKEY (KEN 54.25))

Example: using FROMKEY and TOKEY
In this example, the copy command copies records in the file EMP1 to the file EMP1T. EMP1T is a file in a
test library. Because you only need a subset of the records, you specify a from-key value and a to-key
value. Both are full key values. Note that a 1 specified in the FROMKEY and TOKEY parameters indicates
the number of key fields to be used in searching the record keys, starting with the first key field.
CPYF FROMFILE(PERSONNEL/EMP1) +

TOFILE(TESTLIB1/EMP1T) MBROPT(*REPLACE) +
FROMKEY(1 438872) TOKEY(1 810199)

All positions in a key value should be specified. If the value is shorter than the key field length, it will be
padded on the right with zeros. Thus, a 5-position key field specified as FROMKEY(1 8) causes a search
for a key equal to hex F800000000. If the key value contains blanks or special characters, you must
enclose them in apostrophes.

90 File Management V5R2



Variable-length fields used by record keys (FROMKEY and TOKEY)
When the number of key fields and a value are used to specify the FROMKEY or TOKEY parameter, the
string should include the 2-byte length field for each variable-length key field. You must pad the
variable-length key field with blanks so that keys following the variable-length key field are in the correct
position. You can specify the data in hexadecimal format.

When you specify *BLDKEY on the FROMKEY or TOKEY parameter for variable-length key fields, specify
the character string without the 2-byte length field. Only the amount of data that is entered for the key
value is used for key comparisons. You can specify a zero-length string for variable-length key fields.

Date, time, and timestamp fields used by record keys (FROMKEY and TOKEY)
When the number of key fields and a value are used to specify the FROMKEY or TOKEY parameter, no
conversion of data occurs if the corresponding key field in the from-file is a date, time, or timestamp field.
The user input string that you specify (including the separators) must be in the same format as the date,
time, or timestamp field. If it is not, a file open error may occur, or the records copied may not be the
desired result.

If *BLDKEY is specified for the FROMKEY or TOKEY parameter and the corresponding key field in the
from-file is a date, time, or timestamp field, the system attempts to convert the user-input key field value to
the format (and separators) of the from-file field. The following rules apply to the conversion:

v If the from-field is a date key field, the system first determines if the user-input key value is in the
same format and has the same separator as specified in the current job under which the copy
command is running. This can be *MDY, *DMY, *YMD, or *JUL for the format and slash (/), hyphen (-),
period (.), comma (,), or blank ( ) for the separator. If the user-input key value is not in the current job
specified format and separator form, it determines if it is in one of the Systems Application Architecture
(SAA) formats (*ISO, *USA, *EUR, or *JIS). It also determines if it is in a YYYYDDD form (no
separator). If the system can determine the user-input key value is in one of these forms, the input
string is converted to the actual format (and separator) of the from-file date field, which is used for the
key comparison. If the user-input string format cannot be determined or the length or data value is not
valid, the system issues a diagnostic message. You must left-justify the date portion of the user-input
key value; it can contain trailing blanks.

v If the from-field is a time key field, the system first determines if the user-input key value is in the
same format and has the same separator as specified in the current job under which the copy
command is running. This may be HHMMSS for the format and colon (:), comma (,), period (.), or blank
( ) for the separator. If the user-input key value is not in the current job specified format and separator
form, the system determines if it is in one of the SAA formats (*ISO, *USA, *EUR, or *JIS). If the system
can determine the user-input key value is in one of these forms, the input string is converted to the
actual format (and separator) of the from-file time field, which is used for the key comparison. If the
user-input string format cannot be determined, or the length or data value is not valid, the system issues
a diagnostic message. You must left-justify the time portion of the user-input key value; it can contain
trailing blanks.

v If the from-field is a timestamp key field, the system first determines if the user-input key value is in
the SAA format or YYYYMMDDHHMMSS form. If the system determines the user-input key value is in
one of these forms, the input string is converted to the actual SAA timestamp format, which is used for
the key comparison. If the user-input string format cannot be determined, or the length or data value is
not valid, the system issues a diagnostic message. You must left-justify the timestamp portion of the
user-input key value; it can contain trailing blanks.

Null-capable fields used by record keys (FROMKEY and TOKEY)
When you use the number of key fields and a value to specify the FROMKEY or TOKEY parameter, the
copy command ignores the null values. The command uses only the buffer default values for values that
are actually null for the comparison.

When you specify *BLDKEY on the FROMKEY or TOKEY parameter, none of the *BLDKEY values can
refer to a null-capable field. If they do, the system sends an error message.

Chapter 4. Copying files 91



Different CCSIDs used by record keys (FROMKEY and TOKEY)
When you use the number of key fields and a value to specify the FROMKEY or TOKEY parameter, the
copy command does not make any CCSID conversions to the input string.

When *BLDKEY is specified on the FROMKEY or TOKEY for character, DBCS-open, DBCS-either, or
DBCS-only fields, the value specified is assumed to be in the CCSID of the process in which the copy
command is running. The copy command converts each of these key values from the job CCSID to the
CCSID of the from-file key field. If no conversion table is defined or an error occurs while converting the
input key value, a message is sent and the copy operation ends. If the value can be correctly converted,
the converted value is used to build the key value that determines the first and last record to be copied.

DBCS-graphic fields used by record keys (FROMKEY and TOKEY)
When the number of key fields and a value are used to specify the FROMKEY or TOKEY parameter, no
conversions are done on the input string. The input string is used as is.

When you specify *BLDKEY on the FROMKEY or TOKEY for DBCS-graphic fields, you should enclose the
DBCS data in shift-out and shift-in characters. The copy command assumes that the DBCS data is in the
associated DBCS CCSID of the job CCSID. The shift-out and shift-in characters are removed before
building the key. A message is sent and the copy operation ends:

v If the input string is not enclosed in shift-out and shift-in (SO-SI) characters OR

v The data cannot be converted to the DBCS CCSID of the from-file key field

Selecting a specified number of records (NBRRCDS Parameter)

Note: You can use this parameter on the following commands: CPYF, CPYFRMDKT, CPYFRMQRYF,
CPYFRMTAP, CPYTODKT, and CPYTOTAP.

When you specify a FROMKEY or FROMRCD parameter, you can specify the number of records
(NBRRCDS parameter) to be copied instead of the TOKEY or TORCD parameter. You cannot specify both
the NBRRCDS and the TORCD or TOKEY parameters. The specified number of records is copied starting
with the specified from-key value or from-record number.

You can specify the NBRRCDS parameter without specifying the FROMKEY or FROMRCD parameter.
The copy command copies records by starting with the first record in the file. Note that the number of
records specified is the number of records actually copied to the to-file, which includes

v Deleted records in the from-file if COMPRESS(*NO) is specified, but DOES NOT INCLUDE

v Records excluded by the INCCHAR and INCREL parameters

This example shows how you can use the copy command to copy 1000 records in the file EMP1 to the file
EMP1T. The command copies records from the first member in EMP1 and replace the records in the first
member in EMP1T.
CPYF FROMFILE(PERSONNEL/EMP1) +

TOFILE(TESTLIB1/EMP1T) MBROPT(*REPLACE) +
NBRRCDS(1000)

You can also use the NBRRCDS parameter to examine a subset of records on a list:
CPYF FROMFILE(PERSONNEL/EMP1) TOFILE(*PRINT) +

FROMRCD(250) NBRRCDS(10) OUTFMT(*HEX)

When you successfully copy an open query file, the file position is unpredictable. If you want to run a
different program with the same files or run another CPYFRMQRYF, you must position the file or close the
file and open it with the same OPNQRYF command. You may position the file with the Position Database
File (POSDBF) command. In some cases, you can use a high-level language program statement.

92 File Management V5R2



Selecting records based on character content (INCCHAR Parameter)

Note: You can use this parameter on the CPYF command only.

You can select records on the basis of the content of characters that start in a specific position in the
record or field. You can use the INCCHAR parameter with the FROMKEY or FROMRCD parameter. You
can select records first by their key value or relative record number, and then by characters in some
position in the record or field.

You can test for any character string of 1 through 256 bytes. If the character string contains any special
characters or blanks, you must enclose the entire string in apostrophes.

You can also specify *CT (contains) as the operator for the INCCHAR parameter. This specifies that the
copy command should scan each record in the from-file for the selection character string. You can specify
any valid starting position in the field or record for the start of the scan. The data will then be scanned
from that position to the byte to the extreme right of the field or record.

If you specify both the INCCHAR and INCREL parameters, the copy command copies a record only if it
satisfies both the INCCHAR and INCREL conditions.

This example shows how you can test for all records in the file DBIN that have an XXX starting in position
80. It then shows how you can copy these records to the file DKTOUT. Because this example includes
testing for positions relative to the length of the whole record, you must specify *RCD on the INCCHAR
parameter.
CPYF FROMFILE(DBIN) TOFILE(DKTOUT) +

INCCHAR(*RCD 80 *EQ XXX)

If you were testing for an XXX in a position in a particular field in the record, you would specify the field
name instead of *RCD, and the starting position of the character relative to the start of the field.
CPYF FROMFILE(DBIN) TOFILE(DKTOUT) +

INCCHAR(FLDA 6 *EQ XXX)

A field name cannot be specified if RCDFMT(*ALL) is specified when copying from a multiple-format
logical file, or if the from-file is a device file or inline data file.

See the following topics for additional information about specifying data for:

v “Variable-length fields used by the INCHAR parameter”

v “Null-capable fields used by the INCHAR parameter” on page 94

v “Different CCSIDs used by the INCHAR parameter” on page 94

v “DBCS-graphic fields used by the INCHAR parameter” on page 94

Variable-length fields used by the INCHAR parameter
When you specify *RCD for the INCCHAR parameter, the starting position represents the position in the
buffer. The 2-byte length field of variable-length fields must be considered when determining the position.
Use single-byte blanks (X'40') to pad variable-length fields if the INCCHAR value spans multiple fields.

You can specify variable-length fields for the INCCHAR string when you specify a field name. The starting
position represents the position in the data portion of the variable-length from-field value. The number of
bytes that are compared is the number of bytes in the value that is specified for the INCCHAR string. If the
actual data in the variable-length from-field is shorter than the value specified for the INCCHAR parameter,
the from-field data is padded with single-byte blanks (X'40') for the comparison.

You cannot specify a zero-length string for the INCCHAR value.

Chapter 4. Copying files 93



Null-capable fields used by the INCHAR parameter
The INCCHAR parameter allows null-capable character-field and null-capable DBCS-field names to be
specified. However, any logical comparison with a null-field value tests as false, and the record is not
copied. The copy command performs no special processing if the you specify the *RCD special value as
the field name. The command only compares buffer default values for actual null values.

Different CCSIDs used by the INCHAR parameter
When you specify *RCD for the INCCHAR parameter, the copy command does not perform any
conversions on the input string. The command compares the byte string that you entered at the specified
position in the record buffer of the from-file.

When you specify a field name, the command assumes that the input string is in the CCSID of the job in
which the copy command runs. The input string is converted to the CCSID of the from-field. If no
conversion table is defined or if an error occurs while converting the input string, a message is sent and
the copy operation ends. If the command can correctly convert the value, the command uses the
converted value for record selection.

DBCS-graphic fields used by the INCHAR parameter
When you specify a graphic field for the INCCHAR parameter, you should enclose the DBCS data in
shift-out and shift-in characters. The command assumes that the data is in the associated DBCS CCSID of
the job CCSID. There must be a valid conversion to the field CCSID; otherwise, an error occurs. The
shift-out and shift-in characters are removed before doing the comparison. The position specifies the
DBCS character position in which to begin the comparison.

Selecting records based on field value (INCREL Parameter)

Note: You can use this parameter on the CPYF command only.

You use the INCREL parameter to select records for copying by testing for the value of an entire field.
Unlike the INCCHAR parameter, you can use the INCREL parameter only when you are copying from a
database file, and you can test for different values in different fields on one copy command.

You can use as many as 50 AND and OR relationships on one INCREL parameter. The OR relationship
groups the AND relationships. For example, the following INCREL parameter essentially says this: If field
FLDA is greater than 5 and field FLDB is less than 6, select the record. If FLDB is equal to 9 (FLDA is any
value), select the record.
INCREL((*IF FLDA *GT 5) (*AND FLDB *LT 6) +

(*OR FLDB *EQ 9))

The value you specify must be compatible with the field type. You must enclose each INCREL relational
set in parentheses.

The value *IF must be specified as the first value in the first set of comparison values, if there is only one
set or several sets of comparison values. If more than one set of comparison values are specified, either
*AND or *OR must be specified as the first value in each set after the first set of values.

In the following discussion, an IF group refers to an IF set, optionally followed by one or more AND sets.
An OR group refers to an OR set, optionally followed by one or more AND sets. All the comparisons
specified in each group are done until a complete group, which is a single IF set or OR set having no AND
sets following it, yields all true results. If at least one group has a true result, the copy command includes
the record in the copied file.

The first set of comparison values (*IF field-name operator value) and any AND sets logically connected
with the IF set are evaluated first. If the results in all of the sets in the IF group are true, the testing ends
and the record is copied. If any of the results in the IF group are false and an OR group follows, another
comparison begins. The command evaluates the OR set and any AND sets that follow it (up to the next

94 File Management V5R2



OR set). If the results in the OR group are all true, the record is included. If any result is false and another
OR group follows, the process continues until either an OR group is all true or until there are no more OR
groups. If the results are not all true for any of the IF or OR groups, the record is excluded (not copied to
the to-file).

If you specify both the INCCHAR and INCREL parameters, the copy command copies a record only if it
satisfies both the INCCHAR and INCREL conditions.

You cannot specify the INCREL parameter if you specify RCDFMT(*ALL) when copying from a
multiple-format logical file.

See the following for additional information on specifying data for:

v “Variable-length fields used by the INCREL parameter”

v “Date, time, and timestamp fields used by the INCREL parameter”

v “Null-capable fields used by the INCREL parameter” on page 96

v “Different CCSIDs used by the INCREL parameter” on page 96

v “DBCS-graphic fields used by the INCREL parameter” on page 96

Variable-length fields used by the INCREL parameter
You can use variable-length character fields for the INCREL parameter. Enter the character value without
the 2-byte length field. The length of the data that is entered determines the number of bytes that are used
for the comparison. If the actual data in the variable-length from-field is shorter than the value specified for
the INCREL parameter, the from-field data is padded with single-byte blanks (X'40') for the comparison.

Date, time, and timestamp fields used by the INCREL parameter
The INCREL parameter allows date, time, and timestamp fields. The copy command compares the input
field value chronologically to the value in the date, time, or timestamp field to determine if it should select
the record. The system attempts to convert the input string and the actual field value to an internal form
that is chronologically compared. These rules apply to the conversion:

v If the from-field is a date field, the system determines if the user-input field value is in the same
format and has the same separator as specified in the current job under which the copy command is
running. The format could be *MDY, *DMY, *YMD, or *JUL and could use a slash (/), hyphen (-), period
(.), comma (,), or blank ( ) for the separator. If the user-input field value does not use the same format
or separator form of the current job, the system determines if it is one of the SAA formats (*ISO, *USA,
*EUR, OR *JIS) or if it is a YYYYDDD form with no separators. If the system determines that the
user-input field value is one of these forms, it converts the input string to an internal form. The from-field
is then converted to its internal form, and the comparison is made. If the user-input string format cannot
be determined, or the length or data value is not valid, a diagnostic message is issued and the copy
operation ends. You must left-justify the date portion of the user-input field value; it can contain trailing
blanks.

v If the from-field is a time field, the system determines if the user-input field value is in the same
format and has the same separator as specified in the current job under which the copy command is
running. The format could be HHMMSS and have a colon (:), comma (,), period (.), or blank ( ) for the
separator. If the user-input field value is not in the specified format and separator form of the current
job, the system determines if it is in one of the SAA formats (*ISO, *USA, *EUR, or *JIS). If the system
determines that the user-input key value is in one of these forms, it converts the input string to an
internal form. The from-field is then converted to its internal form, and the chronological comparison is
made. If the user-input string format cannot be determined or the length or data value is not valid, a
diagnostic message is issued and the copy operation ends. You must left-justify the time portion of the
user-input field value; it can contain trailing blanks.

v If the from-field is a timestamp field, the system first determines if the user-input field value is in the
SAA format or YYYYMMDDHHMMSS form (no separators). If the system determines that the user-input
field value is in one of these forms, it converts the input string to an internal form. The from-field is then
converted to its internal form and the chronological comparison is made. If the user input string format

Chapter 4. Copying files 95



cannot be determined, or the length or data value is not valid, a diagnostic message is issued and the
copy operation ends. You must left-justify the timestamp portion of the user-input field value; it can
contain trailing blanks.

Null-capable fields used by the INCREL parameter
The INCREL parameter allows a value of *NULL as input for a field value. You can use the *EQ and *NE
operators with the *NULL value to test whether a field in a database file contains the null value or not. *EQ
means that the value is null, and *NE means that the value is not null when you specify the *NULL value.
The *NULL value is not limited to null-capable fields.

Different CCSIDs used by the INCREL parameter
The copy command assumes that the input string for character, DBCS-open, DBCS-either, or DBCS-only
fields are in the CCSID of the job in which the copy command is running. The input string is converted to
the CCSID of the from-field. If no conversion table is defined or an error occurs while converting the input
string, a message is sent and the copy operation ends. If the copy command can correctly convert the
value, it uses the converted value for record selection.

DBCS-graphic fields used by the INCREL parameter
When you specify a graphic field for the INCREL parameter, you should enclose the DBCS data in
shift-out and shift-in characters. The copy command assumes that the data is in the associated DBCS
CCSID of the job CCSID. There must be a valid conversion to the field CCSID. Otherwise, an error
occurs. The shift-out and shift-in characters are removed before doing the comparison.

Copying deleted records (COMPRESS Parameter)

Note: You can use this parameter on the CPYF command only.

You can copy deleted and undeleted records from one physical file member to another by specifying
COMPRESS(*NO) on a copy command.

You may want to copy deleted records to preserve the relative record numbers of records that are copied
from the from-file. If you do not use COMPRESS(*NO), only records that are not deleted are copied from
the from-file. There are “Requirements of COMPRESS(*NO) parameter and the CPYF command”,
“Restrictions of COMPRESS(*NO) parameter and the CPYF command”, and more “Details of
COMPRESS(*NO) parameter and the CPYF command” on page 97 about copying deleted records.

Requirements of COMPRESS(*NO) parameter and the CPYF command
To use COMPRESS(*NO), the following conditions must be true:

v The from-file and to-file must both be physical files.

v The from-file and to-file must both be the same type (either source or data).

v The from-file and to-file must either have identical record formats or you must specify
FMTOPT(*NOCHK) to perform the copy.

v You must use all the following (default) parameter values on the copy command:
– PRINT(*NONE)
– INCCHAR(*NONE)
– INCREL(*NONE)
– SRCOPT(*SAME)
– ERRLVL(0)

Restrictions of COMPRESS(*NO) parameter and the CPYF command
You cannot specify COMPRESS(*NO) for the following types of access paths over the to-file, including
when the access path is contained in a logical file and is based on the to-file member:

v Unique keys (you specified the UNIQUE keyword in the DDS).

v Select/omit specifications without the DYNSLT keyword (in the DDS for the file), and immediate or
delayed maintenance (MAINT(*IMMED) or MAINT(*DLY) specified on the CRTPF or CRTLF command).

96 File Management V5R2



v Floating-point key field or logical numeric key field (in the DDS for the file), and immediate or delayed
maintenance (MAINT(*IMMED) or MAINT(*DLY) specified on the CRTPF or CRTLF command). Note
that a logical numeric key field is one of the following:

– A numeric key field in a logical file

– A field specified as a to field on the JFLD keyword that has different attributes than in the based-on
physical file

– A field specified as a sequencing field on the JDUPSEQ keyword that has different attributes than in
the based-on physical file

You cannot specify COMPRESS(*NO) for any of the following cases:

v If you use the JRNPF command to journal the to-file

v If the to-file member is in use or if any access path over the to-file member is in use

v If you specify an EOFDLY wait time for the from-file on an OVRDBF command.

Details of COMPRESS(*NO) parameter and the CPYF command
COMPRESS(*NO) may allow the system to copy more quickly because records are transferred in blocks,
but this is not always true. Usually, the COMPRESS(*NO) function does not significantly affect
performance. One of the factors you should consider before you specify COMPRESS(*NO) is that the
internal system function that must be used to perform this type of copy invalidates any keyed access paths
that use the to-file member before the records are copied and then rebuilds the access paths after the
copy is complete. The run time and resource that are required to rebuild the keyed access paths may be
larger than the performance benefit that is gained by copying deleted records.

If COMPRESS(*NO) is not specified, the system may still use the internal functions to perform the copy,
but the choice of how the copy is performed is based on the number of records in the from-file and to-file
members before the copy, and the number of keyed access paths over the to-file member.

If MBROPT(*REPLACE) is specified, all keyed access paths over the to-file member must be invalidated
and rebuilt, so specifying COMPRESS(*NO) does not cause any additional overhead for rebuilding access
paths.

If the from-file is a keyed physical file and neither a FROMRCD nor TORCD relative record number value
is specified on the copy commands to force the file to be processed in arrival sequence,
COMPRESS(*NO) has no meaning because a keyed access path never contains any deleted records.

Printing records (PRINT, OUTFMT, and TOFILE(*PRINT) parameters)

Note: You can use the parameters described in this topic on the CPYF, CPYFRMDKT, CPYFRMQRYF,
and CPYFRMTAP commands.

You can print a list of all records copied, all records excluded, or all records causing ERRLVL output
errors. You do this by specifying PRINT special values on a copy command. You can specify one or more
of these listings on a single copy command, using character or hexadecimal format.

You can also print an unformatted listing of records. See “Creating an unformatted print listing” on page 98
for more information.

Printing a list of all records copied:

To print a list of all of the records that you copied, specify TOFILE(*PRINT) on the copy command. The
records are printed using the IBM-supplied printer file QSYSPRT.

Printing a list of excluded records:

Chapter 4. Copying files 97



Specify *EXCLD on the PRINT parameter to print a listing of only the records that you excluded from the
copy. When you specify PRINT(*EXCLD), the records print in the from-file format.

Printing a list of copied records:

Specify *COPIED on the PRINT parameter to print a listing of only the records that you copied. When you
specify PRINT(*COPIED) and MBROPT(*UPDADD), the records copied and the records updated appear
on the same listing. A message follows each updated record that states that it was an update.

Printing a list of records that cause errors:

Specify *ERROR on the PRINT parameter to print a listing of the records that caused ERRLVL output
errors. (The ERRLVL parameter still controls the number of recoverable errors that can occur.) See
“Preventing errors when copying files” on page 112 for information on error recovery and the ERRLVL
parameter. Only the number of records up to one (1) greater than the ERRLVL value that is specified are
printed in the *ERROR listing. The listing is similar to the PRINT(*COPIED) and PRINT(*EXCLD) listings.

Selecting the format of the listing:

Use the OUTFMT parameter to specify whether your listing prints in character or hexadecimal format. The
default value is *CHAR, and records print in character format. If you specify *HEX, records print in both
character and hexadecimal format.

If you specify TOFILE(*PRINT), the OUTFMT parameter again specifies the format that is used to print the
records.

When you specify PRINT(*EXCLD), the records print in the from-file format. All character data is in the
CCSID specified in the from-file field. For TOFILE(*PRINT) and PRINT(*COPIED) listings, and when the
to-file is a print file, character data is in the CCSID specified in the to-file fields.

Example:

In this example, all records that are not copied (or excluded records) are printed:
CPYF FROMFILE(DKTIN) TOFILE(LIB1/PF) +

MBROPT(*ADD) INCCHAR(*RCD 80 *EQ X) +
PRINT(*EXCLD)

The records print in character format.

Creating an unformatted print listing
If you want an unformatted print listing or if the from-file records should be formatted using first-character
forms control (CTLCHAR(*FCFC), you must specify a program-described printer device file name. This file
name can be QSYSPRT or user-defined (instead of *PRINT).

To format the from-file records using first-character forms control, specify CTLCHAR(*FCFC) on the Create
Printer File (CRTPRTF), Change Printer File (CHGPRTF), or Override Printer File (OVRPRTF) command.

For copy commands where TOFILE(*PRINT) is specified with a PRINT parameter value of *COPIED,
*EXCLD, or *ERROR (or any combination), the following limits apply:

v The QSYSPRT file must be spooled [SPOOL(*YES)]

v You must specify the QSYSPRT in the device file or on the OVRPRTF command, because separate
print files open for each file requested.

All records are copied to a single spooled file, and the data for each member or label identifier copied
begins on a new print page.

98 File Management V5R2



Copying between different database record formats (FMTOPT
parameter)
(CPYF and CPYFRMQRYF commands)

When you copy from a database file to a database file, you must use the FMTOPT parameter if the record
formats are not identical or if the files are different types (source or data). If either file is a device file or
inline data file, the FMTOPT parameter does not apply. The records are truncated or padded with blanks
or zeros when record lengths are different. A message is sent if the records are truncated.

For database files, when either FMTOPT(*CVTSRC) or FMTOPT(*NOCHK) is specified and the record
data copied from any from-file record is not long enough to fill a to-file record, the extra bytes in the to-file
record are set to a default value. If a default value other than *NULL is specified in the DDS (DFT
keyword) for a field, that field is initialized to the specified default; otherwise, all numeric fields are
initialized to zeros, all character fields are initialized to blanks, all date, time, and timestamp fields are
initialized to the current server date and time. If *NULL is specified on the DFT keyword, only the default
buffer value is used. A *NULL default is ignored.

If the from-file or to-file is a device file or an inline data file, copy automatically adds or deletes the source
sequence number and date fields for each record copied.

If one file is a data file and the other a source file, you must specify FMTOPT(*CVTSRC) to perform the
copy. The sequence number and date fields are added or deleted as appropriate and the data part of each
record is copied without regard to the other field definitions in the file record formats. The SRCSEQ
parameter can be used to control how the sequence numbers are created, provided SRCOPT(*SEQNBR)
is also specified.

For database-to-database copies, you can reconcile any differences in record formats by specifying:

v *DROP to drop those fields in the from-file record format for which there are no fields of the same name
in the to-file record format.

v *MAP to convert fields in the from-file to the attributes of like-named fields in the to-file and to fill extra
fields in the to-file, that are not in the from-file, with their default values. The default values are:

– The parameter value (including *NULL) for the DFT keyword, if specified for the field

– Blanks (for character fields without the DFT keyword)

– Zeros (for numeric fields without the DFT keyword)

– Current date, time, or timestamp for those type fields without the DFT keyword

*MAP is required if fields with the same name are in different positions in the file record formats, even
though these fields have the same attributes.

v *DROP and *MAP to drop fields in the from-file not named in the to-file and to convert remaining fields
through mapping rules to fit the to-file fields that have different attributes or positions.

v *NOCHK to disregard the differences. Data is copied left to right directly from one file to the other. Null
values are ignored. The copied records are either truncated or padded with default buffer values.
Because no checking is done, fields in the to-file may contain data that is not valid for the field as
defined.

Dropping and mapping fields are based on a comparison of field names. Unless all the fields in the
from-file have the same name in the to-file, you must specify *DROP. If the names are the same, but the
attributes or position in the record is different, you must specify *MAP. Dropped fields are not copied.
There must be at least one like-named field in both record formats to do mapping.

When *MAP is specified, fields in the to-file record format that do not exist in the from-file record format
are filled with their default values, as described earlier in this section. For fields that have the same name

Chapter 4. Copying files 99



and attributes, the field in the from-file record format is mapped to the field with the same name in the
to-file record format, even if their positions in the formats are different.

For example, the field CUSNO is the first field in the record format ORDHD, but it is the second field in
record format ORDHD1. When the CUSNO field is copied with *MAP, it is mapped to the second field of
ORDHD1.

Note: It is possible for files with large record formats (many fields) to have the same format level
identifiers even though their formats may be slightly different. Problems can occur when copying
these files if the record format names of the from-file and the to-file are the same. When copying
such files using FMTOPT(*NONE) or FMTOPT(*MAP), it is recommended that the record format
names of the from-file and the to-file be different.

For more information, see the following topics:

v Specifying data for different field types and attributes

v Converting universal coded character set (UCS-2) graphic fields

v Converting System/370 floating point and null fields

v Conversion rules for copying files

Table 13 summarizes the database-to-database copy operations for each value on the FMTOPT
parameter.

Table 13. Database-to-Database Copy Operations

FMTOPT
Parameter
Values
(see note
4)

Database File Record Formats

ALL Field Names in
From-and To-Files Are
the Same (like-named)

SOME Field Names in
From-and To-Files Are
the Same

NO Field Names in Either File Are the Same

Attributes and relative
order also the same (see
note 1)

Attributes and relative
order not the same (see
note 1)

Like-named
fields have
identical
attributes and
relative order
(see note 1)

Not all
like-named
fields have
identical
attributes and
relative order
(see note 1)

*NONE Complete copy Command ends Command ends Command ends Command
ends

*DROP Complete copy (value
ignored)

Command ends If there are
extra fields in
the from-file,
they are
dropped, all
others are
copied. If there
are extra fields
in the to-file, the
command ends.
If there are
extra fields in
the from-file and
in the to-file, the
command ends.

Command ends Command
ends

100 File Management V5R2

|

|

|

|

|



Table 13. Database-to-Database Copy Operations (continued)

FMTOPT
Parameter
Values
(see note
4)

Database File Record Formats

ALL Field Names in
From-and To-Files Are
the Same (like-named)

SOME Field Names in
From-and To-Files Are
the Same

NO Field Names in Either File Are the Same

*MAP (see
note 2)

Complete copy (value
ignored)

Complete copy
(corresponding fields are
mapped)

If there are extra fields in the
from-file, the command ends. If
there are extra fields in the to-file,
they are filled, and the like-named
fields are mapped. If there are
extra fields in the to-file and the
from-file, the command ends.

Command
ends

*MAP and
*DROP
(see note
2)

Complete copy (value
ignored)

Complete copy
(corresponding fields are
mapped)

Extra fields in the from-file are
dropped; like-named fields are
mapped; extra fields in the to-file
are filled.

Command
ends

*NOCHK Complete copy (value
ignored)

Complete copy (direct data transfer disregarding fields) (see note 3)

Notes:

1. Field attributes include the data type (character, zoned, packed, binary or floating point), field length, decimal
position (for numeric fields), date or time format (for date or time fields), null capability, CCSID, and whether the
field has variable length or fixed length.

2. Mapping consists of converting the data in a from-file field to the attributes of the corresponding (like-named)
to-file field. If the attributes of any corresponding fields are such that the data cannot be converted, the copy is
ended.

3. The records are padded or truncated as necessary. Data in the from-file may not match the to-file record format.

4. Any other value specified for the FMTOPT parameter is ignored when the *CVTFLOAT value or the *NULLFLAGS
value is specified (except the *CVTFLOAT and *NULLFLAGS values).

Specifying data for different field types and attributes

Variable-length fields using FMTOPT(*MAP)
FMTOPT(*MAP) can be used to map data between fixed- and variable-length fields and between
variable-length fields with different maximum lengths.

When mapping a variable-length field with a length of zero to a:

v variable-length to-field, the to-field length is set to zero.

v fixed-length to-field, the to-field is filled with single-byte blanks (X'40'), unless the to-field is a DBCS-only
field. A DBCS-only to-field is set to X'4040's and surrounded by shift-out and shift-in (SO-SI) characters.

The following applies when the from-field does not have a length of zero and graphic fields are not being
mapped to or from bracketed DBCS fields.

Mapping variable-length fields to variable-length fields
The length of a variable-length from-field is copied to a variable-length to-field when the from-field data
length is less than or equal to the maximum length of the to-field. If the from-field data length is greater
than the maximum length of the to-field, the data of the from-field is truncated to the maximum length of
the to-field, and the to-field length is set to the maximum length. The data is truncated in a manner that
ensures data integrity.

Chapter 4. Copying files 101



Note: In the examples, x represents a blank, < represents the shift-out character, and > represents the
shift-in character. The 2-byte length is actually a binary number shown as a character to make the
example readable.

Mapping variable-length fields to fixed-length fields
If the data length of the from-field is less than or equal to the to-field length, the data is copied to the
fixed-length to-field and padded to ensure data integrity.

If the length of the from-field data is greater than the to-field length, the from-field data is copied to the
to-field and truncated on the right in a manner that ensures data integrity.

Mapping fixed-length fields to variable-length fields
If the to-field has a maximum length greater than or equal to the from-field length, the from-field data is
copied to the data portion of the to-field and padded to the right with single-byte blanks. The to-field length
is set to the length of the from-field length.

102 File Management V5R2



If the length of the from-field is greater than the maximum length of the variable-length to-field, the length
portion of the variable-length to-field is set to the maximum length of the variable-length to-field. The data
from the fixed-length from-field is copied to the data portion of the variable-length to-field and truncated on
the right in a way that ensures data integrity.

Date, time, and timestamp fields using FMTOPT(*MAP) or FMTOPT(*NOCHK)
FMTOPT(*MAP) or FMTOPT(*NOCHK) must be specified on the CPYF command if:

v The from-file is a database data file.

v The to-file is a physical data file.

v The record formats are not identical.

Corresponding date, time, and timestamp fields in the from-file and to-file must have the same format
attribute and separator for the record formats to be identical. For the CPYFRMQRYF command, the same
is true except that the open query file record format is used (rather than a from-file format).

When using FMTOPT(*NOCHK), record data is copied directly from left to right into the to-file without any
regard to field types.

When using FMTOPT(*CVTSRC), data portions of records are directly copied from left to right into the
to-file without any regard to the field types.

When using FMTOPT(*DROP), fields in the from-file but not in the to-file are dropped. If any like-named
fields in the from-file and to-file are date, time, or timestamp fields, the corresponding field must be the

Chapter 4. Copying files 103



same type, have the same format attribute and separator, and have the same relative position in the
record format as the like-named field, otherwise FMTOPT(*MAP) may also be required.

FMTOPT(*MAP) allows copying between like date, time, and timestamp field types regardless of the
format or separator. Also, copies from and to date, time, and timestamp fields are allowed from and to
zoned-decimal or character field types, provided the lengths, formats, and values can be converted.
FMTOPT(*MAP) is required in this case for conversion to the to-field type (format and separator, if it
applies).

Table 14 on page 104 outlines the conversion possibilities for the date, time, and timestamp.

Table 14. Conversion Table

Data types Forms
Allowable Field
Length Direction Data Type Formats

Allowable
Field
Length

Date Any date format 6, 8, or 10 <--> Date Any 6, 8, or 10
Zoned (MMDDYY) 6,0 <--> Date Any 6, 8, or 10
Zoned (DDMMYY) 6,0 <--> Date Any 6, 8, or 10
Zoned (YYMMDD) 6,0 <--> Date Any 6, 8, or 10
Zoned (YYDDD) 5,0 <--> Date Any 6, 8, or 10
Character (MMdDDdYY) 6 min <--> Date Any 6, 8, or 10
Character (DDdMMdYY) 6 min <--> Date Any 6, 8, or 10
Character (YYdMMdDD) 6 min <--> Date Any 6, 8, or 10
Character (YYdDDD) 6 min <--> Date Any 6, 8, or 10
Character (*USA) 6 min ----> Date Any 6, 8, or 10
Character (*ISO) 6 min ----> Date Any 6, 8, or 10
Character (*EUR) 6 min ----> Date Any 6, 8, or 10
Character (*JIS) 6 min ----> Date Any 6, 8, or 10
Character (YYYYDDD) 6 min ----> Date Any 6, 8, or 10
Time Any time format 8 <--> Time Any 8
Zoned (HHMMSS) 6,0 <--> Time Any 8
Character (HHtMMtSS) 4 min ----> Time Any 8
Character (*USA) 4 min ----> Time Any 8
Character (*ISO) 4 min ----> Time Any 8
Character (*EUR) 4 min ----> Time Any 8
Character (*JIS) 4 min ----> Time Any 8
Character (HHtMMtSS) 8 min <---- Time Any 8
Timestamp SAA format 26 <--> Timestamp SAA 26
Zoned (YYYYMMDDHHMMSS) 14,0 <--> Timestamp SAA 26
Character SAA format 14 min ----> Timestamp SAA 26
Character (YYYYMMDDHHMMSS) 14 min <--> Timestamp SAA 26
Note: In the format columns,

d = date separator value

t = time separator value

any = job formats or SAA formats

In the allowable field-length column, min means the specified length is the minimum required for a conversion
attempt. Conversion errors may still occur if the length is not long enough for the desired or assumed format. Refer
to the DDS Reference for more information on the date, time, and timestamp data types and keywords.

When converting a character field to a date, time, or timestamp field; FMTOPT(*MAP) is specified;
and the corresponding from- and to-field names match; an attempt is made to determine what similar date
form the character field is in. The following applies:

104 File Management V5R2



v For converting a character field to a date field, the minimum length required for the character field is
6. The server first determines if the character field data is in the same format and has the same
separator as specified in the current job under which the copy command is running. This may be *MDY,
*DMY, *YMD, or *JUL for the format and slash (/), hyphen (-), period (.), comma (,), or blank ( ) for the
separator. If the character field is not in the current job specified format and separator form, it
determines if it is in one of the SAA formats (*ISO, *USA, *EUR, or *JIS), or if it is in a YYYYDDD form
(no separator). If the server determines the character field is in one of the these forms, it converts it to
the date to-field. The date portion of the character field must be left justified and can contain trailing
blanks.

v For converting a character field to a time field, the minimum length required for the character field is
4. The server first determines if the character field data is in the same format and has the same
separator as specified in the current job under which the copy command is running. This may be *HMS
for the format and colon (:), comma (,), period (.), or blank ( ) for the separator. If the character field is
not in the current job specified format and separator form, the server determines if it is in one of the
SAA formats (*ISO, *USA, *EUR, or *JIS). If the server determines the character field is in one of these
forms, it converts it to the time to-field. The time portion of the character field must be left justified and
can contain trailing blanks.

v For converting a character field to a timestamp field, the minimum length required for the character
field is 14. The server first determines if the character field data is in one of the following:

– SAA format

– YYYYMMDDHHMMSS form

If the server determines the character field is in one of these forms, it converts it to the timestamp
to-field. The timestamp portion of the character field must be left justified and can contain trailing blanks.

When converting a date, time, or timestamp field to a character field; FMTOPT(*MAP) is specified;
and the corresponding from and to-file field names match; the server attempts to convert the date, time, or
timestamp field into the form specified by the current job. The following applies:

v For converting a date field to a character field, the minimum length required for the character field is
6. The server first determines the date format and separator attribute of the current job under which the
copy command is running. This may be *MDY, *DMY, *YMD, or *JUL for the format and slash (/),
hyphen (-), period (.), comma (,), or blank ( ) for the separator. The date field is converted into the
character field in the specified format of the current job. For character fields that are longer than
required for the conversion, the data is left justified and trailing blanks are added.

v For converting a time field to a character field, the minimum length required for the character field is
8. The server first determines the time separator attribute of the current job under which the copy
command is running. This may be colon (:), comma (,), period (.), or blank ( ). The time field is
converted into the character field in the *HMS format (including the specified separator of the current
job). For character fields that are longer than required for the conversion, the data is left justified and
trailing blanks are added.

v For converting a timestamp field to a character field, the minimum length required for the character
field is 14. The timestamp field is converted into the character field in the YYYYMMDDHHMMSS form
(no separators). For character fields that are longer than required for the conversion, the data is left
justified and trailing blanks are added.

When converting a zoned decimal field to a date, time, or timestamp field, FMTOPT(*MAP) is
specified and the corresponding from- and to-field names match, the server assumes the zoned decimal
field is in the form specified by the current job. The following applies:

v For converting a zoned decimal field to a date field, the server assumes the zoned decimal field
data is in the same date format (no separators) as specified in the current job under which the copy
command is running. This may be *MDY, *DMY, *YMD, or *JUL. The length of the zoned decimal field
must be 5,0 (if the current job format is *JUL) or 6,0 (if the current job format is *MDY, *DMY, or *YMD).
The server attempts to convert or copy it to the date to-field.

Chapter 4. Copying files 105



v For converting a zoned decimal field to a time field, the server assumes the zoned decimal field
data is in the *HMS format (no separators). The length of the zoned decimal field must be 6,0. The
server attempts to convert or copy it to the time to-field.

v For converting a zoned decimal field to a timestamp field, the server assumes the zoned decimal
field data is in the YYYYMMDDHHMMSS form (no separators). The length of the zoned decimal field
must be 14,0. The server attempts to convert or copy it to the timestamp to-field.

When converting a date, time, or timestamp field to a zoned decimal field, FMTOPT(*MAP) is
specified and the corresponding from- and to-field names match, the server uses the current job specified
form to determine what format the zoned decimal data should be in. The following applies:

v For converting a date field to a zoned decimal field, the server assumes the zoned decimal field
data is to be in the same date format (no separators) as specified in the current job under which the
copy command is running. This may be *MDY, *DMY, *YMD, or *JUL. The length of the zoned decimal
field must be 5,0 (if the current job format is *JUL) or 6,0 (if the current job format is *MDY, *DMY, or
*YMD). The server attempts to convert or copy the date field to it.

v For converting a time field to a zoned decimal field, the server assumes the zoned decimal field
data is to be in the *HMS format (no separators). The length of the zoned decimal field must be 6,0.
The server attempts to convert or copy the time field to it.

v For converting a timestamp field to a zoned decimal field, the server assumes the zoned decimal
field data is to be in the YYYYMMDDHHMMSS form (no separators). The length of the zoned decimal
field must be 14,0. The server attempts to convert or copy the timestamp field to it.

Any conversion not successful because of a data value, data format, or data-length error causes an
information message to be sent. The to-file field is set with its default value.

Null-capable fields using FMTOPT(*MAP) or FMTOPT(*NOCHK)
FMTOPT(*MAP) or FMTOPT(*NOCHK) must be specified on the CPYF command if:

v The from-file is a database data file.

v The to-file is a physical data file.

v The record formats are not identical.

For the record formats to be identical, corresponding fields in the from-file and to-file must both be
null-capable or not null-capable. For the CPYFRMQRYF command, the same is true except that the open
query file record format is used (rather than a from-file format).

When you use FMTOPT(*MAP):

v Null values are copied from null-capable from-file fields to null-capable to-file fields that are named alike.
This copying can only happen if the field attributes and lengths are compatible.

v Fields that are not null-capable can also be copied from and to null-capable fields, provided the field
attributes and lengths are compatible. The results to expect in the to-file field are:

– Copying a null-capable field to a null-capable field

Null values in the from-file field are copied to the to-file field. Values that are not null in the from-file
field are also copied to the to-file field. For values that are not null in the from-file field that cause
conversion errors during the copy, the default value of the to-file field is placed into the to-file field.

– Copying a field that is not null capable to a null-capable field

Values that are not null in the from-file field are copied to the to-file field. For values in the from-file
field that cause conversion errors during the copy operation, the default value of the to-file field is
placed into the to-file field.

– Copying a null-capable field to a field that is not null capable

Values that are not null in the from-file field are copied to the to-file field. If a conversion error occurs
when copying values that are not null or the from-file field value is null, the to-file field default value
is placed into the to-file.

106 File Management V5R2



When you use FMTOPT(*NONE), the null values in the from-file are copied to the to-file when copying a
database file to a physical data file with identical record formats.

When you use FMTOPT(*DROP), the null values are copied.

When you use FMTOPT(*NOCHK) or FMTOPT(*CVTSRC), the record data is copied directly from left to
right into the to-file without any regard to field types. Null values are not copied if *NOCHK or *CVTSRC is
specified, because the record formats need not be identical. Either a user-specified or default value is
copied to the to-file rather than a null value.

CCSIDs using FMTOPT(*MAP) or FMTOPT(*NOCHK)
When FMTOPT(*NOCHK) is specified, no CCSID conversions are done. Record data is copied directly
from left to right into the to-file without any regard to field types or CCSIDs.

When FMTOPT(*MAP) is specified and a valid conversion is defined between the CCSID of the from-field
and the CCSID of the to-file field, the character data is converted to the CCSID of the to-file field.
However, if the CCSID of the from-file field or the CCSID of the to-file field is 65535, no conversions are
done.

When FMTOPT(*NONE) is specified, the from-file and to-file attributes must be the same, unless one of
the CCSIDs in corresponding fields is 65535.

For the CPYFRMQRYF command, the FMTOPT rules are the same except that the changed query format
is used instead of a from-file format.

DBCS-graphic fields using FMTOPT(*MAP) or FMTOPT(*NOCHK)
When mapping graphic fields to bracketed DBCS fields, shift-out and shift-in characters are added around
the DBCS data. When mapping from bracketed-DBCS fields to graphic fields, the shift-out and shift-in
characters are removed. For variable-length fields, the graphic field length is expressed in the number of
DBCS characters and the bracketed DBCS length is expressed in number of bytes (including the shift-out
and shift-in characters). This difference is accounted for when mapping variable-length graphic fields to or
from variable bracketed DBCS fields.

When using the CPYF command with FMTOPT(*MAP) to copy a DBCS-open field to a graphic field, a
conversion error occurs if the DBCS-open field contains any SBCS data (including blanks). When copying
to a graphic field, it may be desirable to ignore trailing SBCS blanks that follow valid DBCS data (in a
DBCS-open field). This allows the copy operation to be done without a conversion error. This type of copy
may be done using a combination of the OPNQRYF and CPYFRMQRYF commands. The OPNQRYF
command is used to remove trailing single-byte blanks and place the data into a variable-length
DBCS-open field. The CPYFRMQRYF command with FMTOPT(*MAP) specified is used to copy the
variable-length DBCS-open field to the graphic field.

For example, assume the DBCS-open fields in the file named FILEO are copied into graphic fields in the
file named FILEG. An additional file (FILEV) must be created.

The DDS for the original from-file FILEO:
******* ************** Beginning of data *****************************

A R FMT01
A FLD1 10O CCSID(65535)
A FLD2 7O CCSID(65535)
A FLD3 20A

******* ***************** End of data ********************************

DDS for FILEV: This file’s format will be specified on the OPNQRYF command FORMAT parameter. The
only difference from FILEO is that the DBCS-open fields to be converted to graphic fields are defined to be
variable length.

Chapter 4. Copying files 107



******* ************** Beginning of data *****************************
A R FMT01
A FLD1 10O VARLEN CCSID(65535)
A FLD2 7O VARLEN CCSID(65535)
A FLD3 20A

******* ***************** End of data ********************************

DDS for the new file FILEG: The graphic fields are defined as fixed length; however, they could be made
variable length, if desired.
******* ************** Beginning of data ************************

A R FMT01
A FLD1 4G CCSID(65535)
A FLD2 3G CCSID(65535)
A FLD3 20A

******* ***************** End of data ***************************

The following commands are used to copy the data from the DBCS-open fields in FILEO to the graphic
fields in FILEG:
CHGJOB CCSID(65535)
OPNQRYF FILE((MYLIB/FILEO))

FORMAT(MYLIB/FILEV *ONLY)
MAPFLD((FLD1 ’%STRIP(1/FLD1 *TRAIL)’)

(FLD2 ’%STRIP(1/FLD2 *TRAIL)’))
CPYFRMQRYF FROMOPNID(FILEO) TOFILE(MYLIB/FILEG)

MBROPT(*REPLACE) FMTOPT(*MAP)

Converting universal coded character set (UCS-2) graphic fields
Using FMTOPT(*MAP) to copy to a UCS-2 graphic field converts the data in the from-field CSID to the
CCSID of the UCS-2 graphic to-field. If the length after conversion is less than the length of the UCS-2
graphic to-field, the field is padded . If the length after conversion is greater than the length of the UCS-2
graphic to-field, the field is truncated.

Using FMTOPT(*MAP) to copy from a UCS-2 graphic field converts the data from the CCSID of the UCS-2
graphic field to the CCSID of the to-field. If the length after conversion is less than the length of the
to-field, the field is padded. If the length after conversion is greater than the length of the to-field, the field
is truncated. Shift-out and shift-in characters are added around double-byte data except in DBCS-graphic
and UCS-2 graphic fields.

UCS-2 conversion possibilities also include variable length fields. Generally, the result length of a variable
length to-field will be the minimum of the from-field converted length and the maximum length of the
to-field.

The CCSID conversions created when copying from or to a UCS-2 graphic field may cause the byte length
of the data to be different after the conversion. The maximum length of the to-field is used to determine if
all of the converted data will fit in the to-field.

When copying from a UCS-2 graphic field to a character field, or to a DBCS-either field where the first
byte is already converted to a valid SBCS character (not a shift-out X'0E'), any remaining characters that
cannot be converted to SBCS (actual double-byte data in the UCS-2 field) will have a single-byte
substitution character set in its place.

When copying from a UCS-2 graphic field to a DBCS-only, DBCS-graphic field, or to a DBCS-either field
where the first byte is already converted to a DBCS shift-out (X'0E'), any remaining characters that cannot
be converted to DBCS will have a double-byte substitution character set in its place.

In order for success when using FMTOPT(*MAP) to convert from or to UCS-2 data, the resulting converted
data for the to-field must conform to the to-field type. Otherwise, conversion errors will occur and the
to-field will be set to its default value.

108 File Management V5R2



UCS-2 graphic fields restrictions
The CPYF and CPYFRMQRYF commands with FMTOPT(*MAP) specified are not allowed when you copy
from or to a UCS-2 graphic field unless the corresponding field is a UCS-2 or DBCS-graphic field (any
CCSID including 65535), or is a character, DBCS-open, DBCS-either, or DBCS-only field with a CCSID
other than 65535. The only other corresponding type allowed to have a CCSID of 65535 is DBCS-graphic.

The following parameters for the CPYF command do not support UCS-2 graphic fields:

v FROMKEY(*BLDKEY) that refers to a UCS-2 graphic keyfield

v TOKEY(*BLDKEY) that refers to a UCS-2 graphic keyfield

v INCCHAR that specifies a UCS-2 graphic field name

v INCREL that specifies a UCS-2 graphic field name

For more information on copying DBCS or UCS-2 fields, see “Copying DBCS files” on page 196.

Converting System/370 floating point and null fields
To copy floating point fields and null fields that are in a System/370 format to an iSeries format, use
FMTOPT(*CVTFLOAT) and FMTOPT(*NULLFLAGS) respectively. You can use these two values together
in one command: FMTOPT(*CVTFLOAT *NULLFLAGS).

The FMTOPT(*CVTFLOAT) parameter on the CPYF command converts each floating point field from
System/370 hexadecimal format to the IEEE format that is used by the iSeries. The CPYF command
converts those fields that are identified by the external description of the physical to-file.

The FMTOPT(*NULLFLAGS) parameter on the CPYF command takes the byte (or flag) following each
null-capable field and uses it to indicate if the corresponding input field is null. The CPYF command takes
the fields that are identified as null-capable by the external description of the physical to-file. If the byte (or
flag) is blank (X'40') or contains X'00', the data is considered not null. Any other value for the flag causes
the corresponding input field data to be ignored and the output value set to null.

If you use *CVTFLOAT or *NULLFLAGS and the input file is externally described, the input file’s external
description is not used in mapping the copied data.

When you use *CVTFLOAT and *NULLFLAGS (together or independently), make certain that the to-file is
an existing database, externally-described, physical data file.

You cannot specify the *CVTFLOAT and *NULLFLAGS values when any of the following conditions are
true:

v You have specified RCDFMT(*ALL) for a multiple-format logical from-file

v You have specified any value other than the default for CRTFILE, and the to-file does not exist

v You have specified a value other than the default for the FROMKEY, TOKEY, INCCHAR, INCREL,
SRCOPT, or SRCSEQ parameters.

When you specify either *CVTFLOAT or *NULLFLAGS, all other values for the FMTOPT parameter are
ignored. If you use both *CVTFLOAT and *NULLFLAGS on one CPYF command, both values are
recognized.

When you specify the *CVTFLOAT value (and have not specified *NULLFLAGS), the expected from-file
record length is the to-file record length. When you have specified the *NULLFLAGS value, the expected
from-file record length is equal to the sum of the to-file record length and the number of null-capable fields
in the to-file. The from-file’s record length may not be less than the expected length. If the from-file’s
record length is greater than the expected length, an inquiry message is sent to the QSYSOPR message
queue to determine if the user wants to continue. If the user continues, the trailing data (fields) in the
from-file is truncated in the to-file.

Chapter 4. Copying files 109



The to-file must contain the correct result format description. The from-file data must be in the same
corresponding position as the to-file data. Otherwise, output mapping errors or unpredictable results may
occur. Date, time, and timestamp data must be in the external form of the to-file field specification.
Numeric data types in the to-file must be large enough to contain the expected data. For example, decimal
data types in the to-file must be created using the maximum possible precision for the byte length of the
field to avoid the loss of any digits. Because there are no CCSID conversions, the to-file fields should be
created with the expected CCSIDs.

Errors in converting system/370 floating point and null fields
Any conversion errors will cause CPF2958 messages to be issued for up to 10 records with errors. A
CPF2959 message will be issued after the copy operation; this message indicates the number of records
that caused an error if more than 10 records caused conversion errors.

If there are no floating point fields in the to-file and *CVTFLOAT is specified, no error messages are
issued. However, no floating point conversion is done. If you have not specified any null-capable fields in
the to-file and *NULLFLAGS, no error messages are issued. However, the from-file data is assumed to
have no null bytes (or flags). When you use *CVTFLOAT and *NULLFLAGS, the CPYF command expects
the from-file data to be defined by the to-file format.

You should use the *CVTFLOAT and *NULLFLAGS values only for files that require conversion of the
System/370 hexadecimal floating point fields or conversion with null flags. Using these values for other
files may cause unpredictable results including possible data corruption and output errors. System/370
floating point fields must be converted only once. If the fields are converted more than once, multiple
conversions occur, and the data will be damaged.

This CPYF function is compatible with the data that is placed on tape by the DB2 unload function
(DSNTIAUL). You must manually create the result tables or files with SQL or DDS on the iSeries server
before you can run the CPYF function to convert the data; use the formats produced by the DSNTIAUL
function to do this.

Conversion rules for copying files
Table 15 on page 111 shows the field conversions that are allowed between mapped fields in the from-file
and to-file record formats. If fields with the same name have incompatible attributes between the from-file
and to-file formats, you can only use FMTOPT(*NOCHK) to perform the copy. An X indicates that the
conversion is valid, and a blank indicates a field mapping that is not valid.

When mapping character fields, the field being copied is truncated on the right if it is longer than the field
into which the copy is made. For example, a character field of length 10 is copied into a character field of
length 6; ABCDEFGHIJ becomes ABCDEF. If the field that is being copied is shorter than the field into
which it is copied, the field is padded on the right with blanks. For example, a character field of length 10
is copied into a character field of length 12; ABCDEFGHIJ becomes ABCDEFGHIJxx (x = blank).

When you are mapping numeric fields, and the field being copied is longer than the field into which the
copy is made, the field being copied is truncated on the left and right of the decimal point. For example, a
zoned decimal field of length 9 with 4 decimal positions is copied to a zoned decimal field of length 6 with
3 decimal positions; 00115.1109 becomes 115.110.

If significant digits must be truncated to the left of the decimal point, the value is not copied, and the field
is set to its default value (either the parameter value of the DFT keyword, if specified, or zero, if the DFT
keyword is not specified). Also, if significance will be lost because a floating-point numeric value exponent
is too large, the to-file field is set to its default value.

When you are mapping numeric fields for which the field that is being copied is shorter than the field into
which the copy is made, the field being copied is padded with zeros on the left and right of the decimal
point. For example, a packed decimal field of length 7 with 5 decimal positions is copied to a packed
decimal field of length 10 with 6 decimal positions; 99.99998 becomes 0099.999980.

110 File Management V5R2



Table 15. Field Conversions. (This table is not applicable to FMTOPT(*CVTFLOAT) or FMTOPT(*NULLFLAGS), where
the from-file data is defined by the to-file.)

From
Field

To Character
or
Hexadecimal
Field

To Packed
Decimal Field

To Zoned
Decimal Field

To Binary (No
Decimals
Positions)
Field

To Floating
Point Field

To Binary
Field (with
Decimals
Positions)

Character or
Hexadecimal

X

Packed X X X X
Zoned X X X X
Binary (no
decimal
positions)

X X X X

Floating Point X X X X
Binary (with
decimal
positions)

X1

:
1 A binary numeric field with one or more decimal positions can be copied only to a binary field with the same

number of decimal positions.

Adding or changing source file sequence number and date fields
(SRCOPT and SRCSEQ Parameters)
You can perform additions or changes to sequence number fields and date fields sequence number and
date fields when you are:

v “Copying device source files to database source files”

v “Copying database source files to device source files”

v “Copying database source files to database source files” on page 112

Copying device source files to database source files
When you copy from a device source file to a database source file, the server adds sequence number
fields and date fields at the start of the records. The server assigns the first record a sequence number of
1.00, the next 2.00, and so on, increasing in increments of 1.00. If more than 9999 records are copied, the
sequence number wraps back to 1.00 and continues to increment unless you specify the SRCOPT and
SRCSEQ parameters on the copy command.

If several copies to the same file are made with MBROPT(*ADD), you will have duplicate sequence
numbers in the file. You can correct this using the Reorganize Physical File Member (RGZPFM) command.

Date fields are initialized to zeros.

When copying to or from a device, it is more efficient to use a device data file than a device source file.
The copy function automatically adds or removes sequence number fields and date fields source
sequence number and date fields as necessary.

Copying database source files to device source files
When you are copying to a device source file, the server removes the date fields and the sequence
number fields from the start of the records.

Chapter 4. Copying files 111



When copying to or from a device, it is more efficient to use a device data file than a device source file.
The copy function automatically adds or removes source sequence number fields and date fields as
necessary.

Copying database source files to database source files
You can copy between database source files by using the CPYSRCF or CPYF command. The CPYSRCF
command may be easier to use because the parameter defaults are better suited for copying database
source files.

If you specify SRCOPT(*SEQNBR) to update the sequence numbers, the server considers the SRCSEQ
parameter. The SRCSEQ parameter specifies the starting value that is assigned to the first record that is
copied and the increment value. The defaults are 1.00 and 1.00. You can specify a whole number of no
more than 4 digits or a fraction of no more than 2 digits for the starting value and the increment value.
(You must use a decimal point for fractions.)

For example, if you specify SRCSEQ(100.50), then the records copied will have sequence numbers
100.00, 100.50, 101.00, 101.50, and so on.

Suppose that you have a file that contains more than 9999 records. Use a fractional increment value so
that each record has a unique sequence number. If you specify a starting value of .01 and an increment
value of .01, the maximum number of records copied with unique sequence numbers is 999 999. When
the maximum sequence number is exceeded (9999.99), all remaining records on that copy are initialized
to 9999.99. The server does not wrap back to 1.00.

If the database source file that you are copying to has only an arrival sequence access path, the records
are always physically placed at the end of the file. (Because the file does not have a keyed sequence
access path, you cannot insert records into the middle of the file keyed access path.)

Preventing errors when copying files
You can prevent many copy errors when you plan for certain conditions and situations ahead of time. The
topics listed below provide guidance on the more common errors.

v “Limiting recoverable errors during copy”

v “Preventing date, time, and timestamp errors when copying files” on page 114

v “Preventing position errors when copying files” on page 115

v “Preventing allocation errors when copying files” on page 116

v “Preventing copy errors that result from constraint relationships” on page 117

v “Copying files not in check-pending status” on page 117

v “Copying files in check pending status” on page 117

v “Preventing copy errors related to your authority to files” on page 118

Limiting recoverable errors during copy
When you copy to or from a database file or from a tape file, you can limit the number of recoverable
errors that you accept before the copy ends. Use the ERRLVL parameter to specify this limit. This
parameter applies to the following types of errors:

CPF4826
Media error

CPF5026
Duplicate key in the access path of this member. (Note: The copy command does not count
CPF5026 as an ERRLVL error when you specify MBROPT(*UPDADD) on CPYF.)

112 File Management V5R2



CPF5027
Record in use by another job. (Note: The copy command only counts CPF5027 as an ERRLVL
error when you specify MBROPT(*UPDADD) on CPYF.)

CPF5029
Data or key conversion error

CPF502D
Referential integrity constraint violation

CPF502E
Referential integrity constraints could not be validated

CPF5030
Partial damage on member

CPF5034
Duplicate key in the access path of another member

CPF5036
Invalid length tape block read

CPF504B
DataLink error

CPF504C
DataLink preparation error

CPF5097
*NAN (Not a Number) value not allowed in floating-point key field

The ERRLVL parameter specifies the maximum number of recoverable errors allowed for each label pair
or each member copied. The value specified for ERRLVL indicates the total errors that are allowed on both
the from-file and the to-file that are combined for each label pair or each member copied. Each time an
error occurs, the following process runs:

1. The process increases the count for that label pair or that member by 1.

2. A message identifying the last good record that is read or written is printed on all copy lists if
TOFILE(*PRINT), PRINT(*COPIED), or PRINT(*EXCLD) was specified.

3. The error record is printed if you specified PRINT(*ERROR).

4. Copying continues.

5. If the copy command completely copies the from-file member without exceeding the limit, the process
resets the counter to 0, and the copy of the next member starts.

6. If the limit is exceeded during the copy of a member, copying ends and a message is sent, even if
more records or members remain to be copied.

For a database from-file, including the open query file, the recoverable errors are:

v Those that occur when data is converted (mapped) AND

v Those caused by a damaged area on the disk (in auxiliary storage)

For a tape from-file, the recoverable errors are:

v A block length that is not valid AND

v A media-read operation from the tape volume on the device resulting in an error

For a physical to-file, the recoverable errors are:

v Those that occur when data is converted AND

v Those that occur when more than one of the same key is found

Chapter 4. Copying files 113



Any record that causes an error is not copied to the to-file. For a write error, the record is printed on a
PRINT(*COPIED) and PRINT(*EXCLD) printout. A message then follows this printout. This message
indicates that the record was not actually copied. If you specified PRINT(*ERROR), the command prints
the records that caused write errors on the *ERROR listing. A message then indicates that an error
occurred. For a read error, no record is available to be printed on the copy printouts (TOFILE(*PRINT),
PRINT(*COPIED), PRINT(*EXCLD), or PRINT(*ERROR)). However, a message prints on all specified
printouts that indicates that a record could not be read.

When the command cannot read a portion of the file from disk, partial object damage to the contents of a
database file occurs. If a file is damaged in such a way, you can bypass the records that are in error by
copying the good records and manually adding the records that were not copied because of the damage.

Regardless of the value of the ERRLVL parameter, recoverable errors always appear in the job log with a
reply of “C” for “Cancel.”

For files that have constraint relationships, the ERRLVL parameter only affects the to-file. If you set the
ERRLVL parameter to 0, the copy command does not copy into the file any record that causes the to-file
to violate the constraint relationship. The copy operation ends. If ERRLVL is greater than 0, the copy
command does not copy into the file any record that causes the to-file to violate the constraint relationship.
However, the copy operation continues until enough violations (recoverable errors) have occurred so that
the ERRLVL value has been reached. If this value is exceeded, the copy operation ends.

You can use the ERRLVL parameter to bring files with constraint relationships in check pending status
back into non-check pending status. Do this by setting up the dependent to-file with constraints that are
the same as the dependent from-file. Then, use a CPYF command with the ERRLVL(*NOMAX) to copy all
valid records. The to-file should not contain any records. The copy command does not insert into the to-file
any records that it encounters from the from-file that would cause the to-file constraints to go to check
pending status. With ERRLVL set to *NOMAX, the copy command processes all records in the from-file.

Other copy commands (CPYSRCF, CPYFRMTAP, CPYTOTAP, CPYFRMDKT, and CPYTODKT) end
immediately if the systems signals one of the recoverable errors because there is no ERRLVL parameter
for them.

Preventing date, time, and timestamp errors when copying files
For FMTOPT(*MAP), FROMKEY with *BLDKEY, TOKEY with *BLDKEY, and INCREL parameters, 2-digit
year-date fields or values will be assumed to have:

v A century of 19 if the year is in the range from 40 to 99 OR

v A century of 20 if the year is in the range from 00 to 39

For example, 12/31/91 is considered December 31, 1991, while 12/31/38 is considered December 31,
2038.

However, any from-files containing 2-digit year-date fields with actual internal date values outside the
range January 1, 1940 to December 31, 2039 cause input mapping errors, and the copy operation fails.

When FMTOPT(*MAP) is used to convert or copy a from-file field date value in a 4-digit year form to a
2-digit year form, the from-file field value must be within the range of January 1, 1940 to December 31,
2039. Otherwise, a mapping error occurs, and the copy command sets the to-file field with its default
value.

Likewise, when using a 4-digit year date as a record selection input string on FROMKEY with *BLDKEY or
TOKEY with *BLDKEY, the value must be within the same range if the corresponding from-file field is a
date field with a 2-digit year-date. Otherwise, an error occurs. INCREL record selection is the exception to
this rule, as 4-digit year date values outside this range may be used for corresponding 2-digit year-date
fields.

114 File Management V5R2



See “Mapping considerations using Copy” for details about how to handle different field types and formats.

Mapping considerations using Copy
When mapping a character field to a date, time, or timestamp field and a format form is being used in
the character field, leading zeros may be omitted from month, day, and hour parts. Microseconds may be
truncated or omitted entirely in the character field.

For mapping to time fields, the seconds part (and corresponding separator) may be omitted from the
character field.

For *USA form values, the AM or PM with a preceding blank is required. These rules are also true for
date, time, or timestamp values that are entered when using FROMKEY with *BLDKEY, TOKEY with
*BLDKEY, or INCREL parameters on the CPYF command. All other instances of date, time, and timestamp
data require leading zeros when necessary and no truncation.

For both forms of the TOKEY parameter (*BLDKEY or non-*BLDKEY) the from-field data must be in
a particular format for a chronological comparison to be made. For the date field, you must use the
*ISO or *JIS format to make a chronological comparison. For the time fields, you must use the *HMS,
*ISO, *EUR, or *JIS formats to make the chronological comparison. For any other formats of date or time
fields (for date (*MDY, *DMY, *YMD, *JUL, *EUR, or *USA) or for time (*USA)), chronological comparisons
are not possible because the TOKEY parameter performs a straight character string comparison. When
you cannot make chronological comparisons, the system sends an informational message, and the copy
operation continues.

When copying data into a file with date, time, or timestamp fields, and the from-file is a device file
or FMTOPT(*NOCHK) or FMTOPT(*CVTSRC) has been specified, output mapping errors may occur if
the data copied to a date, time, or timestamp field is not valid data for the to-file field format and separator
attributes. You cannot copy the record if this occurs. If you use the CPYF or CPYFRMQRYF command,
you can specify an error level other than zero (ERRLVL parameter) to bypass the record and continue the
copy operation. When copying into date, time, or timestamp fields in these instances, it is important that
the from-file data is valid for the to-file.

Preventing position errors when copying files
A position error occurs when the copy file function cannot locate the first record to copy in the from-file
member. This can happen when using the CPYF, CPYSRCF, CPYTODKT, or CPYTOTAP commands. If
any of the following conditions are true, you may receive a position error for the from-file member:

v You specified the FROMKEY parameter, and all records in the member are less than the FROMKEY
value or the member is empty.

v You specified the FROMRCD parameter beyond the end of the member or the member is empty.

v The value of the from-file member position (the POSITION parameter of the OVRDBF command) is
beyond the end of the member, is not valid for the access path of the from-file, or the member is empty.

If a member position error occurs, the member may not be added to the to-file, and no information about
the member is added to the print lists.

If a member position error occurs during a copy operation that involves multiple members, the copy
operation will continue with the next member.

If a member position error occurs for all members, a print list is not produced, and the to-file may not be
created.

Chapter 4. Copying files 115



Preventing allocation errors when copying files
When a database file is copied, each from-file member is allocated with a shared-for-read (*SHRRD) lock
state. When a device file is copied, the copy command allocates it with a shared-for-read (*SHRRD) lock
state. The copy command allocates the member only while it copies it. A shared-for-read lock state lets
other users read and update the file while you are copying it.

Generally, the member being copied to is allocated with a shared-for-update *SHRUPD) lock state.
However, if you specify MBROPT(*REPLACE), the command allocates the member you are copying to
with an exclusive (*EXCL) lock state, and the records in the to-file are removed

When you are copying one physical file to another, you can place stronger locks on the members to allow
internal system functions to perform the copy.

v The command can allocate the from-file member with an exclusive-allow-read (*EXCLDRD) lock state.

v The command can allocate the to-file member with an exclusive (*EXCL) lock state.

The command requires these stronger locks depending on the type of copy you perform. If you cannot get
these locks, run the copy command and specify a value of 1 (or any valid value other than 0) on the
ERRLVL parameter. These values do not require the stronger locks.

There are many “Reasons for allocation errors when copying files”. For instance, you should not use
functions that touch the to-file during the copy.

Reasons for allocation errors when copying files
If another job allocates a member with too strong a lock state, the copy operation may end with an error
message. This is also true if the library containing the file is renamed during the copy operation.

When a copy command runs, the to-file may be locked (similar to an *EXCL lock with no time-out) so that
no access is possible. Any attempt to use a function that must touch the to-file locks up the work station
until the copy command completes. For instance, you should not use the following functions on a to-file
that you are copying:

WRKACTJOB
Option 11 (Work with Locks)
Option 5 (Work with Job Member Locks)
Option 8 (Work with Object Locks)

DSPDBR
DSPFD
DSPFFD
WRKJOB

Option 12 (Work with Locks, if active)
Option 5 (Work with Job Member Locks)
F10 (Display Open Files, if active)

WRKLIB
The library containing the to-file

DSPLIB
The library containing the to-file

WRKOBJLCK
WRKRCDLCK

If you want to display any information about a to-file, you must anticipate the requirement and force the
copy command to use block record-at-a-time operations by specifying ERRLVL(1).

If you anticipate that problems may arise because of this, you can preallocate the files and members using
the Allocate Object (ALCOBJ) command. (See the CL Programming book for information about
preallocating objects.)

116 File Management V5R2



Preventing copy errors that result from constraint relationships
A constraint relationship is a mechanism to ensure data integrity between a dependent file and a parent
file. A constraint relationship exists between a dependent file and a parent file when every non-null foreign
key value in the foreign key access path of the dependent file matches a parent key value in the parent
key access path of the parent file. A physical data file may be a parent or dependent file. However, a
source physical file may not be a parent or a dependent file.

The copy commands listed below allow the following relationships:

v CPYF - from-file or to-file could be a parent or dependent file

v CPYFRMQRYF - to-file could be a parent or dependent file

v CPYFRMTAP - to-file could be a parent or dependent file

v CPYTOTAP - from-file could be a parent or dependent file

v CPYFRMDKT - to-file could be a parent or dependent file

v CPYTODKT - from-file could be a parent or dependent file

See the following topics for more information about constraint relationships and copying files:

v “Copying files not in check-pending status”

v “Copying files in check pending status”

Copying files not in check-pending status
If the parent or dependent file has an established constraint relationship that is not in check-pending
status, the following rules apply:

v If the from-file has an established constraint relationship, then you can copy all of the records from it
whether it is a parent or dependent file.

v If the to-file has an established or enabled constraint relationship, then the following rules apply to keep
the constraint relationship from entering check-pending status:

– A parent file cannot have its member cleared of records.

– A parent file cannot have more than one parent key value in the parent key access path of the same
value (key must remain unique). That is, if the to-file is a parent file in a constraint relationship, then
the copy does not allow duplicate key records to be copied into it.

– A dependent file’s foreign key values that are not null must always have a corresponding parent key
value. That is, if the to-file is a dependent file in a constraint relationship, the copy operation does
not allow non-null foreign key records that do not have a corresponding parent key record to be
copied into the dependent file.

The copy operation ensures that the data in the parent or dependent to-file is not damaged. Records
may be copied to the to-file provided they do not cause the constraint relationship to go into
check-pending status. If a user attempts to copy a record that does not meet the constraint relationship
rules, the copy operation will end unless the ERRLVL parameter has been specified (CPYF and
CPYFRMQRYF commands only) with a value greater than zero.

To circumvent the above rules, you can disable the involved constraints before the copy operation, perform
the copy, and then re-enable the constraints. However, the file is in check-pending status if constraint rules
are still not met.

Copying files in check pending status
If the parent or dependent file has an established constraint relationship that is in check-pending status,
the following rules apply:

Chapter 4. Copying files 117



v If the from-file has an established constraint relationship in check pending, data access is restricted. If
the from-file is a parent file, the command can read and copy data to the to-file. If the from-file is a
dependent file, the command cannot read data to the to-file, and therefore cannot copy the data to the
to-file.

v If the to-file has an established constraint relationship in check pending status, data access is restricted.
If the to-file is a parent file, you can add new records (you can specify MBROPT(*ADD)). If the to-file is
a parent file, you cannot clear the file (you cannot specify MBROPT(*REPLACE)). If the to-file is a
dependent file, you cannot perform the copy regardless of which MBROPT parameter keyword you use.

To circumvent the above rules, you can disable the involved constraints before the copy operation, perform
the copy, and then re-enable the constraints. However the file will be in check pending status if constraint
rules are still not met.

Preventing copy errors related to your authority to files
The following table summarizes the authority that is required for the from-file and the to-file.

Table 16. Authority Required to Perform Copy Operation

From-File To-File

DDM file *OBJOPR *READ *OBJOPR1 *ADD
Device file2 *OBJOPR *READ *OBJOPR *READ
Logical file *OBJOPR3 *READ Not allowed
Physical file *OBJOPR *READ *OBJOPR1 *ADD
:
1 This is the authority required for MBROPT(*ADD). If MBROPT(*REPLACE) is specified, *OBJMGT and *DLT

authority are also required. If MBROPT(*UPDADD) is specified, *UPD authority is also required.
2 *OBJOPR and *READ authority is also required for any devices used for the file.
3 Also requires *READ authority to the based-on physical file members for the logical file members copied.

If the to-file does not exist and CRTFILE(*YES) is specified so that the copy command creates the to-file,
then you must have operational authority to the CRTPF command.

Improving copy performance
You can improve the performance of your copy operations by following these guidelines:

v “Avoiding keyed sequence access paths”

v “Specifying fewer parameters” on page 119

v “Checking record format level identifiers” on page 119

In addition, when you copy distributed files, you should be familiar with the various factors that affect the
performance of the copy command. The DB2 Multisystem feature provides support for distributed files, or
files that are spread across multiple iSeries servers. When you copy distributed files, you should be
familiar with the various factors that affect the performance of the copy command. You should be aware of
restrictions that apply when you copy to and from distributed files.For information about copying distributed
files, see the DB2 Multisystem for AS/400 book.

Avoiding keyed sequence access paths
A copy that requires maintenance of a keyed sequence access path is slower than a copy from or to an
arrival sequence access path. You can improve copy performance if you reorganize the from-file so that its
arrival sequence is the same as its keyed sequence access path. You can also improve copy performance
if you select records by using the FROMRCD or TORCD parameter so that the keyed sequence access
path is not used.

118 File Management V5R2

|



Create fewer logical access paths over the to-file. This improves copy performance because the copy
process does not need to update as many access paths.

The smaller the length of the records within the file, the faster the copy.

Specifying fewer parameters
In general, you can improve copy performance if you specify fewer optional copy parameters. The
following parameters affect the performance of the copy operation:
v INCCHAR
v INCREL
v ERRLVL
v FMTOPT
v SRCOPT
v PRINT

Using the COMPRESS function does not significantly affect performance. You should request
COMPRESS(*NO) if you want deleted records in the to-file, for example, when the relative record numbers
need to be identical.

Checking record format level identifiers
You can also improve copy performance by correctly setting the record format level identifiers in the CPYF
command. If you are using CPYF to move data between two supposedly identical files, the record format
level identifiers should be identical to optimize copy performance. If the record format level identifiers are
not identical, CPYF goes through a longer code path that checks each field and column in every record.
This could impact the time CPYF requires to complete the function if extensive checking is not required.

Record format level identifiers of the two files should be different if the files have different attributes. If they
are not different, field and column-level checking does not perform, resulting in improper data conversions
or none at all. Note that FMTOPT (*NOCHK) can be specified to avoid field and column-level checking,
regardless of the value of the record format level identifiers, although certain attributes of the data (such
as null values) will be lost when FMTOPT (*NOCHK) is specified.

Year 2000 support: date, time, and timestamp considerations
The CPYF and CPYFRMQRYF commands support the PACKED (P), ZONED (S), and CHARACTER (A)
datatypes that have a DATFMT keyword specified in a logical file.

The copy converts data from or to a format implied by the length of a ZONED or PACKED field and the
current job’s DATFMT specification. Copy already supports ZONED fields with length 5,0 or 6,0
(depending on the current job DATFMT) from/to DATE fields.

FMTOPT(*MAP) allows copying between DATE field types and PACKED, ZONED, and CHARACTER field
types in a logical or physical file provided the lengths, formats, and values can be converted.
FMTOPT(*MAP) is required in these cases for conversion to the to-field type (and format and separator if
it applies). There are rules as to what form and length these field types must be in (dependent on the
current job’s DATFMT) for successful conversions.

New conversion possibilities exist for when you are:

v “Copying FROM logical file ZONED, CHARACTER, or PACKED field (with a DATFMT) TO a DATE field
in a physical to-file” on page 120.

v “Copying FROM or TO a ZONED or PACKED field (that has no DATFMT) TO or FROM a DATE type
field” on page 121.

You also should know the server’s restrictions on the conversions for Year 2000 support. See “Restrictions
for Year 2000 support” on page 123 for more information.

Chapter 4. Copying files 119

|

|
|
|
|
|

|
|
|
|
|



The conversions involving CHARACTER fields from/to DATE fields do not change from existing
support except that the logical file CHARACTER fields having a DATFMT specified are copied to a DATE
field in a physical to-file. The server correctly converts the data.

Copying FROM logical file ZONED, CHARACTER, or PACKED field
(with a DATFMT) TO a DATE field in a physical to-file
For these mappings, the format of the from-field is specified and is explicitly converted to the to-file DATE
fields. These copies are single directional only: FROM the logical file ZONED, PACKED, or CHARACTER
field TO a physical file DATE field.

The server allows century digit (C) in some of the forms. When the (C) value is 0, the server assumes the
year is in the 1900s. When the (C) value is 1, the server assumes the year to be in the 2000s.

FLD TYPE DATFMT SPECIFIED
FIELD LENGTH

COPY DATA TYPE FORMAT

ZONED (*MY) 4,0 —> DATE (any)

ZONED (*YM) 4,0 —> DATE (any)

ZONED (*MYY) 6,0 —> DATE (any)

ZONED (*YYM) 6,0 —> DATE (any)

ZONED 1 (*JUL) 5,0 —> DATE (any)

ZONED 1 (*MDY) 6,0 —> DATE (any)

ZONED 1 (*DMY) 6,0 —> DATE (any)

ZONED 1 (*YMD) 8,0 —> DATE (any)

ZONED 1 (*ISO) 8,0 —> DATE (any)

ZONED 1 (*EUR) 8,0 —> DATE (any)

ZONED 1 (*JIS) 8,0 —> DATE (any)

ZONED 1 (*USA) 8,0 —> DATE (any)

ZONED (*LONGJUL) 7,0 —> DATE (any)

ZONED (*CMDY) 7,0 —> DATE (any)

ZONED (*CDMY) 7,0 —> DATE (any)

ZONED (*CYMD) 7,0 —> DATE (any)

ZONED (*MDYY) 8,0 —> DATE (any)

ZONED (*DMYY) 8,0 —> DATE (any)

ZONED (*YYMD) 8,0 —> DATE (any)

CHAR (*MY) 4 —> DATE (any)

CHAR (*YM) 4 —> DATE (any)

CHAR (*MYY) 6 —> DATE (any)

CHAR (*YYM) 6 —> DATE (any)

CHAR 1 (*JUL) 5 —> DATE (any)

CHAR 1 (*MDY) 6 —> DATE (any)

CHAR 1 (*DMY) 6 —> DATE (any)

CHAR 1 (*YMD) 6 —> DATE (any)

CHAR 1 (*ISO) 8 —> DATE (any)

CHAR (*EUR) 8 —> DATE (any)

CHAR (*JIS) 8 —> DATE (any)

120 File Management V5R2



FLD TYPE DATFMT SPECIFIED
FIELD LENGTH

COPY DATA TYPE FORMAT

CHAR 1 (*USA) 8 —> DATE (any)

CHAR (*LONGJUL) 7 —> DATE (any)

CHAR (*CMDY) 7 —> DATE (any)

CHAR (*CDMY) 7 —> DATE (any)

CHAR (*CYMD) 7 —> DATE (any)

CHAR (*MDYY) 8 —> DATE (any)

CHAR (*DMYY) 8 —> DATE (any)

CHAR (*YYMD) 8 —> DATE (any)

PACKED (*MY) 4,0 5,0 —> DATE (any)

PACKED (*YM) 4,0 5,0 —> DATE (any)

PACKED (*YYM) 6,0 7,0 —> DATE (any)

PACKED (*MYY) 6,0 7,0 —> DATE (any)

PACKED 1 (*JUL) 5,0 —> DATE (any)

PACKED 1 (*MDY) 6,0 7,0 —> DATE (any)

PACKED 1 (*DMY) 6,0 7,0 —> DATE (any)

PACKED 1 (*YMD) 6,0 7,0 —> DATE (any)

PACKED 1 (*ISO) 8,0 9,0 —> DATE (any)

PACKED 1 (*EUR) 8,0 9,0 —> DATE (any)

PACKED 1 (*JIS) 8,0 9,0 —> DATE (any)

PACKED 1 (*USA) 8,0 9,0 —> DATE (any)

PACKED (*LONGJUL) 7,0 —> DATE (any)

PACKED (*CMDY) 7,0 —> DATE (any)

PACKED (*CDMY) 7,0 —> DATE (any)

PACKED (*CYMD) 7,0 —> DATE (any)

PACKED (*MDYY) 8,0 9,0 —> DATE (any)

PACKED (*DMYY) 8,0 9,0 —> DATE (any)

PACKED (*YYMD) 8,0 9,0 —> DATE (any)

Notes:
1 The DATFMTs in the logical file for these fields may not have actually been specified. If the DATFMT is not

specified in the logical file, it will become the DATFMT specified on the underlying physical file Date field’s
DATFMT. If the DATFMT specified in the logical file was *JOB, it will become the actual DATFMT of the job.

Also note: in the FORMAT column, (any) means that any of the job formats or Systems Application Architecture
(SAA) formats may be specified.

Copying FROM or TO a ZONED or PACKED field (that has no DATFMT)
TO or FROM a DATE type field

FLD TYPE ASSUMED
FORM FOR
DATFMT &
LENGTH 1

CURRENT
JOB DATFMT

NUMERIC
FIELD
LENGTH

COPY DATA TYPE FORMAT

ZONED (MMYY) *MDY, *DMY 4,0 <—> DATE (any)

Chapter 4. Copying files 121



FLD TYPE ASSUMED
FORM FOR
DATFMT &
LENGTH 1

CURRENT
JOB DATFMT

NUMERIC
FIELD
LENGTH

COPY DATA TYPE FORMAT

ZONED (YYMM) *YMD 4,0 <—> DATE (any)

ZONED 2 (YYDDD) *JUL 5,0 <—> DATE (any)

ZONED 2 (MMDDYY) *MDY 6,0 <—> DATE (any)

ZONED 2 (DDMMYY) *DMY 6,0 <—> DATE (any)

ZONED 2 (YYMMDD) *YMD 6,0 <—> DATE (any)

ZONED (CMMDDY) *MDY 7,0 <—> DATE (any)

ZONED 1 (CDDMMYY) *DMY 7,0 <—> DATE (any)

ZONED (CYYMMDD) *YMD 7,0 <—> DATE (any)

ZONED (YYYYDDD) *JUL 7,0 <—> DATE (any)

ZONED (MMDDYYYY) *MDY 8,0 <—> DATE (any)

ZONED (DDMMYYYY) *DMY 8,0 <—> DATE (any)

ZONED (YYYYMMDD) *YMD 8,0 <—> DATE (any)

PACKED (MMYY) *MDY, *DMY 4,0 5,0 <—> DATE (any)

PACKED (YYMM) *YMD 4,0 5,0 <—> DATE (any)

PACKED (YYDDD) *JUL 5,0 <—> DATE (any)

PACKED (MMDDYY) *MDY 6,0 <—> DATE (any)

PACKED (DDMMYY) *DMY 6,0 <—> DATE (any)

PACKED (YYMMDD) *YMD 6,0 <—> DATE (any)

PACKED (CMMDDYY) *MDY 7,0 <—> DATE (any)

PACKED (CDDMMYY *DMY 7,0 <—> DATE (any)

PACKED (CYYMMDD) *YMD 7,0 <—> DATE (any)

PACKED (YYYYDDD) *JUL 7,0 <—> DATE (any)

PACKED (MMDDYYYY) *MDY 8,0 9,0 <—> DATE (any)

PACKED (DDMMYYYY) *DMY 8,0 9,0 <—> DATE (any)

PACKED (YYYYMMDD) *YMD 8,0 9,0 <—> DATE (any)

Notes:
1 When copying from a PACKED or ZONED to a DATE, the assumed form is the form the copy will expect the

data to be in. When copying from DATE to a PACKED or ZONED field the assumed form is the form copy
will attempt to convert the data to.

2 These conversions are already supported.

When converting/copying a ZONED field (with no DATFMT) from/to a DATE field (FMTOPT(*MAP) that is
specified, the corresponding from and to-field names matching the server assumes the ZONED field is to
be in a form determined from the current job DATFMT value and the ZONED field length (see table for
specifics).

Similarly, when converting/copying a PACKED field (with no DATFMT) from/to DATE field (FMTOPT(*MAP)
specified and the corresponding from and to-field names match, the server assumes the PACKED field is
to be in a form determined from the current job DATFMT value and the PACKED field length (again, see
table for specifics).

122 File Management V5R2



For the new DATFMTs that have a ’century guard digit’, the server allows the values 0-9. 0 is for the year
range 1900 through 1999, 1 is for 2000 through 2099, 2 is for 210 through 2199, and so forth, up to 9 for
2800 through 2899. The formats allowing ’century guard digit’ are *CDMY, *CMDY, and *CYMD.

For the new DATFMTs that have no ’day’ portion, *MY, *YM, *MYY, and *YYM, the day is assumed to be
the first day of the month. For conversions to one of these DATFMTs from a DATFMT that has a ’day’
portion, the ’day’ value is removed.

For conversions from the no ’day’ DATFMT to a DATFMT having a day portion, the ’day’ value becomes
the first day of the month. For example, the *YYMD value ’19971231’ becomes ’199712’ when converted
to *YYM. When converted back, ’199712’ becomes ’19971201’.

Restrictions for Year 2000 support
Record selection (FROMKEY, TOKEY, INCCHAR, and INCREL parameters) for CPY is not enhanced for
the PACKED, ZONED, and CHARACTER data types having the DATFMT keyword. They are treated as
their actual field type indicates, and a DATFMT specified on them is ignored for these parameters.

Likewise, when copying a logical file with PACKED, ZONED, or CHARACTER fields having the DATFMT
specified to a like type PACKED, ZONED, or CHARACTER physical file field, the DATFMT on the
from-field is ignored. No DATE conversions take place in these instances.

For ZONED and PACKED fields, if the length is not valid for the current job’s DATFMT and assumed form,
copy file diagnostic messages CPF2960 and CPF2963 is issued followed by a CPF2817 escape message.

If the length of the field is valid for the current job’s DATFMT, the server attempts to convert/copy it from or
to the DATE field. The server sends a CPF2958 message and the to-field is set with its default value:

v If the field value is incorrect (such as 13 for the month portion of *MDY form) or

v If a mapping error occurred because the data is not in the assumed form for the PACKED or ZONED
field

The default value may be NULL, some user-defined value, or the default data-type value.

Copying complex objects
You can copy from and to files that contain user-defined functions (UDFs), user-defined types (UDTs),
DataLinks (DLs), large objects (LOBs), identity columns, or ROWIDs. This topic describes data
management support for these objects.

Copying files that contain user-defined functions
You can specify CRTFILE(*YES) on the CPYF and CPYFRMQRYF commands when you copy files that
contain user-defined functions (UDFs). UDFs do not get created with the new to-file.

You cannot copy DDM files that contain user-defined functions to iSeries servers running at Version 4
Release 3 or earlier.

Copying files that contain user-defined types
You can specify CRTFILE(*YES) on the CPYF and CPYFRMQRYF commands when you copy files that
contain user-defined types (UDTs). If the from-file is an SQL table, view, or index that contains a UDT,
these commands create an SQL table.

You can copy UDTs to other UDTs using FMTOPT(*MAP), provided that you are copying from and to the
same (identical) UDT. You can also copy from a non-UDT to a UDT, provided that the source type is
compatible. Data mapping is not allowed if you are copying between UDTs that are not identical. Also, data
mapping is not allowed if you are copying from a UDT to a non-UDT.

Chapter 4. Copying files 123

|
|
|



You cannot copy DDM files that contain user-defined types to iSeries servers running at Version 4 Release
3 or earlier.

Copying files that contain DataLinks
You can specify CRTFILE(*YES) on the CPYF and CPYFRMQRYF commands when you copy files that
contain DataLinks (DLs). If the from-file is an SQL table, view, or index that contains a DL, these
commands create an SQL table.

You cannot copy DDM files that contain DataLinks to iSeries servers running at Version 4 Release 3 or
earlier.

DLs can be mapped only to other DLs. Therefore, if you specify *NONE, *MAP, or *DROP on the FMTOPT
parameter, the from-file and to-file must have corresponding DLs. Truncation is not allowed. Shorter DLs,
however, can be converted to longer DLs.

A file can be linked only once on a server. Therefore, a copy that will perform mapping or that requires the
formats to be identical (that is, *NONE, *MAP, or *DROP is specified on the FMTOPT parameter) will not
be successful if corresponding from-file and to-file fields are both FILE LINK CONTROL. Copies that are
performed using the *NOCHK parameter option are not restricted, but errors will occur if a DL that
references a linked file is copied to a DL that is FILE LINK CONTROL.

When you specify CRTFILE(*YES) on the CPYF or CPYFRMQRYF command, and the from-file contains a
FILE LINK CONTROL DL field, the following statements are true, depending on how you specify the
FMTOPT parameter:

v If you specify *NONE, *MAP, or *DROP on the FMTOPT parameter, the file is created, but an error
message is issued and no I/O is performed.

v If you specify *NOCHK or *CVTSRC on the FMTOPT parameter, the file is created and I/O is
attempted. The I/O will be unsuccessful for any records that contain a valid LINK.

The following table shows LINK scenarios associated with the CPYF command when different FMTOPT
values are used.

LINK status for from-field to to-field when FMTOPT
parameter is *MAP or *NONE

How linking is performed

FILE LINK CONTROL to FILE LINK CONTROL Not allowed. Files can be linked only once.

NO LINK CONTROL to FILE LINK CONTROL (with no
truncation)

Linking is performed.

FILE LINK CONTROL to NO LINK CONTROL (with no
truncation)

No linking is performed.

NO LINK CONTROL to NO LINK CONTROL (with no
truncation)

No linking is performed.

Copying files that contain large objects
You can specify CRTFILE(*YES) on the CPYF and CPYFRMQRYF commands when you copy files that
contain large objects (LOBs). If the from-file is an SQL table, view, or index that contains a LOB, these
commands create an SQL table.

iSeries supports three large object data types: Binary Large OBjects (BLOBs), single-byte or mixed
Character Large OBjects (CLOBs), and Double-Byte Character Large OBjects (DBCLOBs). When you
copy files that contain these objects using the Copy File (CPYF) command, you should consider the
following restrictions and requirements:

v LOB data is not copied when you copy from and to device files, when you copy to *PRINT, or when you
specify values of *NOCHK or *CVTSRC on the FMTOPT parameter. In these cases, only the default

124 File Management V5R2



buffer value for the LOB field is copied, including ″*POINTER″. This is true even when you copy a file
that contains a LOB field to an identical file. Valid LOB data is copied only when you have specified
*NONE, *MAP, or *DROP on the FMTOPT parameter.

v LOB data is not copied when you copy to a tape or diskette. In these cases, only the buffer value
(including ″*POINTER″) is written to the tape or diskette. In addition, if you copy from the tape or
diskette back to the same file, you may receive errors; this is because the file contains only the
″*POINTER″ value and not a valid pointer to actual LOB data.

v When you specify *UPDADD on the MBROPT parameter of the CPYF command, the to-file can contain
a LOB field. LOB fields are also updated when duplicate keys are encountered.

v When you specify *CVTFLOAT or *NULLFLAGS on the FMTOPT parameter of the CPYF command, the
to-file cannot contain a LOB field.

v If you want to print a file that contains LOB fields, specify *PRINT on the TOFILE parameter of the
CPYF command. ″*POINTER″ will appear in the print listing in place of the LOB field data, and other
non-LOB field data will also appear in the listing. If you have not specified *PRINT on the TOFILE
parameter and you specified *COPIED, *EXCLUDE, or *ERROR on the PRINT parameter, then you
must specify *NOCHK or *CVTSRC on the FMTOPT parameter for the copy to be allowed.

v You cannot specify LOB fields on the INCCHAR and INCREL parameters. You can specify *RCD or
*FLD on the INCCHAR parameter, but only the fixed buffer length is compared, and not any actual LOB
data.

v You cannot copy DDM files that contain LOB fields to iSeries servers running at Version 4 Release 3 or
earlier.

The following tables show how LOBs are mapped to other data types during copy operations. The first
table shows the mapping when both fields contain LOB field types. In the tables, consider the following
guidelines:

v The mapping of LOBs from and to DATE or TIME types is not allowed.

v These mappings are valid only for FMTOPT(*MAP) except where noted.

v There are similar data restrictions for large objects as those for normal character data (single-byte,
mixed, and double-byte).

Table 17. From-file and to-file mapping when both fields are large objects

Field A type Field B type Allowed and
copy direction

Data CCSID or attributes CCSIDs Conversion
translation
performedField A Field B

BLOB BLOB Y* <—> 65535 65535 Same No

CLOB CLOB Y* <—> Character Character Same No

CLOB CLOB Y* <—> Open Open Same No

DBCLOB DBCLOB Y* <—> Graphic Graphic Same No

DBCLOB DBCLOB Y* <—> UCS2 UCS2 Same No

CLOB CLOB Y <—> Character Character Different Yes

CLOB CLOB Y <—> Open Open Different Yes

DBCLOB DBCLOB Y <—> Graphic Graphic Different Yes

DBCLOB DBCLOB Y <—> UCS2 UCS2 Different Yes

CLOB CLOB Y <—> Character Open Different Yes

CLOB DBCLOB N Character Graphic Different —

CLOB DBCLOB Y <—> Open Graphic Different Yes

CLOB DBCLOB Y <—> Character UCS2 Different Yes

CLOB DBCLOB Y <—> Open UCS2 Different Yes

DBCLOB DBCLOB Y <—> Graphic UCS2 Different Yes

Chapter 4. Copying files 125

|
|
|
|

|
|

|
|



Table 17. From-file and to-file mapping when both fields are large objects (continued)

Field A type Field B type Allowed and
copy direction

Data CCSID or attributes CCSIDs Conversion
translation
performedField A Field B

BLOB CLOB Y <—> 65535 Character Different No

BLOB CLOB Y <—> 65535 Open Different No

BLOB DBCLOB N 65535 Graphic Different —

BLOB DBCLOB N 65535 UCS2 Different —

Note: * These mappings are valid for FMTOPT(*MAP), FMTOPT(*NONE), and FMTOPT(*DROP).

The second table shows the mapping between fixed-length data types and large objects.

Table 18. From-file and to-file mapping between fixed-length data types and large objects

Field A type Field B type Allowed and
copy direction

Data CCSID or attributes CCSIDs Conversion
translation
performedField A Field B

Character BLOB Y <—> Character 65535 Different No

Open BLOB Y <—> Open 65535 Different No

Either BLOB Y <—> Either 65535 Different No

Only BLOB Y <—> Only 65535 Different No

Graphic BLOB N Graphic 65535 Different —

UCS2 BLOB N UCS2 65535 Different —

Character CLOB Y <—> Character Character Same/Different No/Yes

Open CLOB Y <—> Open Character Different Yes

Either CLOB Y <—> Either Character Different Yes

Only CLOB Y <—> Only Character Different Yes

Graphic CLOB N Graphic Character Different —

UCS2 CLOB Y <—> UCS2 Character Different Yes

Character CLOB Y <—> Character Open Different Yes

Open CLOB Y <—> Open Open Same/Different No/Yes

Either CLOB Y <—> Either Open Different Yes

Only CLOB Y <—> Only Open Different Yes

Graphic CLOB Y <—> Graphic Open Different Yes

UCS2 CLOB Y <—> UCS2 Open Different Yes

Character DBCLOB N Character Graphic Different –

Open DBCLOB Y <—> Open Graphic Different Yes

Either DBCLOB Y <—> Either Graphic Different Yes

Only DBCLOB Y <—> Only Graphic Different Yes

Graphic DBCLOB Y <—> Graphic Graphic Same/Different No/Yes

UCS2 DBCLOB Y <—> UCS2 Graphic Different Yes

Character DBCLOB Y <—> Not 65535 UCS2 Different Yes

Open DBCLOB Y <—> Not 65535 UCS2 Different Yes

Either DBCLOB Y <—> Not 65535 UCS2 Different Yes

Only DBCLOB Y <—> Not 65535 UCS2 Different Yes

126 File Management V5R2

|



Table 18. From-file and to-file mapping between fixed-length data types and large objects (continued)

Field A type Field B type Allowed and
copy direction

Data CCSID or attributes CCSIDs Conversion
translation
performedField A Field B

Graphic DBCLOB Y <—> Graphic UCS2 Different Yes

UCS2 DBCLOB Y <—> UCS2 UCS2 Same/Different No/Yes

Character DBCLOB N 65535 UCS2 Different –

Open DBCLOB N 65535 UCS2 Different –

Either DBCLOB N 65535 UCS2 Different –

Only DBCLOB N 65535 UCS2 Different –

The second table shows the mapping variable-length data types and large object.

Table 19. From-file and to-file mapping between variable-length data types and large objects

Field A type Field B type Allowed and
copy direction

Data CCSID or attributes CCSIDs Conversion
translation
performedField A Field B

VARLEN
Character

BLOB Y <—> Character 65535 Different No

VARLEN Open BLOB Y <—> Open 65535 Different No

VARLEN Either BLOB Y <—> Either 65535 Different No

VARLEN Only BLOB Y <—> Only 65535 Different No

VARLEN
Graphic

BLOB N Graphic 65535 Different —

VARLEN UCS2 BLOB N UCS2 65535 Different —

VARLEN
Character

CLOB Y <—> Character Character Same/Different No/Yes

VARLEN Open CLOB Y <—> Open Character Different Yes

VARLEN Either CLOB Y <—> Either Character Different Yes

VARLEN Only CLOB Y <—> Only Character Different Yes

VARLEN
Graphic

CLOB N Graphic Character Different —

VARLEN UCS2 CLOB Y <—> UCS2 Character Different Yes

VARLEN
Character

CLOB Y <—> Character Open Different Yes

VARLEN Open CLOB Y <—> Open Open Same/Different No/Yes

VARLEN Either CLOB Y <—> Either Open Different Yes

VARLEN Only CLOB Y <—> Only Open Different Yes

VARLEN
Graphic

CLOB Y <—> Graphic Open Different Yes

VARLEN UCS2 CLOB Y <—> UCS2 Open Different Yes

VARLEN
Character

DBCLOB N Character Graphic Different –

VARLEN Open DBCLOB Y <—> Open Graphic Different Yes

VARLEN Either DBCLOB Y <—> Either Graphic Different Yes

VARLEN Only DBCLOB Y <—> Only Graphic Different Yes

Chapter 4. Copying files 127



Table 19. From-file and to-file mapping between variable-length data types and large objects (continued)

Field A type Field B type Allowed and
copy direction

Data CCSID or attributes CCSIDs Conversion
translation
performedField A Field B

VARLEN
Graphic

DBCLOB Y <—> Graphic Graphic Same/Different No/Yes

VARLEN UCS2 DBCLOB Y <—> UCS2 Graphic Different Yes

VARLEN
Character

DBCLOB Y <—> Not 65535 UCS2 Different Yes

VARLEN Open DBCLOB Y <—> Not 65535 UCS2 Different Yes

VARLEN Either DBCLOB Y <—> Not 65535 UCS2 Different Yes

VARLEN Only DBCLOB Y <—> Not 65535 UCS2 Different Yes

VARLEN
Graphic

DBCLOB Y <—> Graphic UCS2 Different Yes

VARLEN UCS2 DBCLOB Y <—> UCS2 UCS2 Same/Different No/Yes

VARLEN
Character

DBCLOB N 65535 UCS2 Different –

VARLEN Open DBCLOB N 65535 UCS2 Different –

VARLEN Either DBCLOB N 65535 UCS2 Different –

VARLEN Only DBCLOB N 65535 UCS2 Different –

Copying files that contain Identity Columns or ROWID attributes
You can specify CRTFILE (*YES) on the CPYF and CPYFRMQRYF commands when you copy files that
contain identity columns or ROWIDs.

If the from-file is an SQL table, view, or index that contains an identity column or ROWID, these
commands create an SQL table.

When you copy to files that contain an identity column or ROWID, you can either supply a value or have
the server generate a value for the field.

You cannot copy DDM files that contain identity columns or ROWIDs to iSeries servers running at version
5 release 1 or earlier.

Copying between different servers
You can use the following commands to import (load) or export (unload) data to and from iSeries:

v Copy From Import File (CPYFRMIMPF) command See “Using the Copy From Import File
(CPYFRMIMPF) command to copy between different servers” on page 129 for more information.

v Copy To Import File (CPYTOIMPF) command See “Using the Copy To Import File (CPYTOIMPF)
command to copy between different servers” on page 129 for more information.

For more information about copying between different servers, see the following topics:

v Notes on the CPYFRMIMPF command

v Restrictions on the CPYFRMIMPF command

v (CPYFRMIMPF) Importing data to the iSeries when the from-file is a database file or DDM file

v (CPYFRMIMPF) Importing data to iSeries when the import file is a stream file

v Parallel data loader support to use with the CPYFRMIMPF command

v Handling data from the import file

128 File Management V5R2

|

|

|
|

|
|

|
|

|
|

|

|

|

|

|

|

|



v Delimited import file

v Fixed formatted import file

v Notes on the CPYTOIMPF command

v Notes on the delimited import file (CPYTOIMPF command)

v Restrictions for the CPYTOIMPF command

v Copying data to the import file in a fixed format (CPYTOIMPF command)

Using the Copy From Import File (CPYFRMIMPF) command to copy
between different servers
The Copy From Import File (CPYFRMIMPF) command maps or parses the data from (″import″) an
import file to the to-file.

For more information on the CPYFRMIMPF command, see “Notes on the CPYFRMIMPF command” and
“Restrictions on the CPYFRMIMPF command” on page 130. Depending on what type of file the import file
is, there are different steps to use when running CPYFRMIMPF. See the following topics for more
information on the appropriate steps:

v “(CPYFRMIMPF) Importing data to the iSeries when the from-file is a database file or DDM file” on
page 130

v “(CPYFRMIMPF) Importing data to iSeries when the import file is a stream file” on page 131

The CPYFRMIMPF command also supports a parallel data loader to copy information from an import file
to a to-file using multiple jobs during the copy. To use multiple jobs, the server must have the Symmetric
Multiprocessing Product (SMP). See “Parallel data loader support to use with the CPYFRMIMPF
command” on page 131 for more information on Parallel Data Loader support.

Using the Copy To Import File (CPYTOIMPF) command to copy
between different servers
The Copy To Import File (CPYTOIMPF) command copies the data from the from-file (usually a database
file) to an import file. You can then move the import file (or file to be exported) to your platform by any
method you choose, such as TCP/IP file transfer (text transfer), CA/400 support (file transfer, ODBC), or
CPYTOTAP (copy to tape file) command. Your server then handles the data from the import file in one of
two ways. See “Handling data from the import file” on page 132 for more information.

The user can also specify a stream file, and the CPYTOIMPF will copy the data to the stream file. For
more information on the CPYTOIMPF command, see “Notes on the CPYTOIMPF command” on page 135.

Notes on the CPYFRMIMPF command
The authority needed to perform the copy using the CPYFRMIMPF command is similar to the authority
requirements for all other copies.

The from-file can be any of the following:
v A stream file
v A DDM file
v A tape file
v A source physical file
v A distributed physical file
v A program described physical file
v A single format logical file
v An externally described physical file with one field. The one field cannot be a numeric data type.

The to-file can be any of these:
v A source file
v A DDM file

Chapter 4. Copying files 129

|

|

|

|

|

|

|
|
|
|
|



v A distributed physical file
v A program described physical file
v An externally described physical file

The field definition file can be any of these:
v A source physical file
v A DDM file
v A program described physical file
v An externally described physical file with one field

The error file can be any of the following:
v A source physical file
v A DDM file
v A program described physical file
v An externally described physical file with one field

Note: The format of the error file and from-file must be the same.

Restrictions on the CPYFRMIMPF command
The following restrictions apply to the CPYFRMIMPF command:

v The data type of the from-file must be one of two types:

– A source physical file

– A physical file with one field with a data type of CHARACTER, IGC OPEN, IGC EITHER, IGC ONLY,
GRAPHIC, fixed or variable length

v The copied records may have the same relative record numbers in the to-file as in the from-file.

v Create the to-file prior to copying.

v The command restricts the correct usage for delimiters.

v The to-file and from-file cannot be the same file.

– If a record from the from-file cannot be imported, the process continues based on the Errors Allowed
(ERRLVL) parameter. When ERRLVL(*NOMAX) is defaulted or specified, and when the
ERRRCDFILE parameter is used, all error records may not be written to the ERRRCDFILE. By
specifying a numeric value rather than *NOMAX, all the error records will be written to the
ERRRCDFILE until the ERRLVL number is exceeded or end of file is reached.

– If the from-file is a stream file, a temporary database file is created in QRECOVERY. The naming
convention for these types of files is QACPXXXXXX where the server fills in XXXXXX.

– If the from-file is a source file, the server does not copy the first 12 bytes of the record (Sequence
field and Date field). If the to-file is a source file, the server sets the first 12 bytes of the to-file’s data
(Sequence field and Date field) to zeros.

You can use this command on files that contain user-defined types (UDTs), user-defined functions (UDFs),
identity columns, and ROWIDs. You cannot use this command on files that contain large objects (LOBs) or
DataLinks (DLs).

(CPYFRMIMPF) Importing data to the iSeries when the from-file is a
database file or DDM file
The from-file contains the data you want to import to iSeries. To import data for a database file or DDM
file, follow these steps:

1. Create an import file for the data that you are going to copy to a DB2 for iSeries externally described
file. The import file can be a database source file, an externally described database file which has one
field, or a program described physical file. If the file has one field, the data type must be
CHARACTER, IGC OPEN, IGC EITHER, IGC ONLY, GRAPHIC, fixed or variable length. The record
length of the import file should be long enough to contain the longest record of the file being sent to
the server, including any delimeters.

130 File Management V5R2

|

|

|
|

|

|
|
|
|
|

|
|
|

|
|
|
|
|
|



2. Send the data to the import file or from-file. Sending the data into the import file causes the necessary
ASCII to EBCDIC data conversions to occur. There are several ways to import the data such as:
v TCP/IP file transfer (text transfer)
v CA/400 support (file transfer, ODBC)
v CPYFRMTAP command (copy from tape file)

3. Create a DB2 for iSeries externally described database file, or DDM file, which will contain the
resultant data of the import file.

4. Use the CPYFRMIMPF command to copy (translate or parse the records) from the import file to the
to-file. For importing large files, you can choose to have the import file split-up into multiple parts so
that each part can be processed in parallel on an N-way multi-processor server. See “Parallel data
loader support to use with the CPYFRMIMPF command” for more information about using multiple jobs
during the copy.

5. You should also use the following “Tips to improve the performance of the CPYFRMIMPF command”.

Tips to improve the performance of the CPYFRMIMPF command
Follow these steps to improve the performance of the CPYFRMIMPF command:

1. Delete any logical keyed files based on the TOFILE.

2. Remove all constraints and triggers of the TOFILE.

3. Ensure the FROMFILE records will be copied correctly by attempting to copy a few of the records.
Copy a few of the records using the FROMRCD and number of records option.

4. Use the ERRLVL(*NOMAX) parameter after you know you can copy the data correctly.

5. When the ERRLVL(*NOMAX) parameter is used, record blocking increases performance. If an error in
writing a record occurs during record blocking, the number of records listed as being copied in the
completion message, CPC2955, may not be accurate.

(CPYFRMIMPF) Importing data to iSeries when the import file is a
stream file
If the import file is a stream file, use the following steps for importing data to the iSeries:

1. Create a DB2 for iSeries externally described database file, or DDM file, which will contain the
resultant data of the import file.

2. Use the CPYFRMIMPF command to copy (translate or parse the records) from the import file to the
to-file. For importing large files, you can have the import file split-up into multiple parts. The multiple
parts then process in parallel.

3. When the stream file (the import file) has records to copy to the externally described database or DDM
file (the to-file), a temporary file is created to contain the job or jobs from that stream file. The
temporary file, created by the server, acts as an intermediate place for holding records, and then
copying them on to the to-file. The server then deletes the temporary file when the copy function from
the temporary file to the database or DDM files completes.

Parallel data loader support to use with the CPYFRMIMPF command
The Copy From Import File (CPYFRMIMPF) supports copying the data in parallel from an import file to a
to-file using multiple jobs during the copy. This allows you to copy data files from other platforms into a
to-file quickly and easily. This is especially useful for those who use data warehousing. To use multiple
jobs, your server must have the Symmetric Multiprocessing Product (SMP).

The number of jobs you use during the copy is determined by the DEGREE(*NBRTASKS) parameter of
the Change Query Attributes (CHGQRYA) command. If the from-file has less than 50,000 records, only
one job will be used regardless of the *NBRTASKS value.

Chapter 4. Copying files 131



The CPYFRMIMPF command (with the parallel data loader support) essentially breaks the import file into
smaller portions or blocks. Each of these smaller portions is submitted in parallel, so the entire file
processes at the same time. (This eliminates the latency of sequential processing.)

To maintain the same relative record numbers of the from-file in the to-file, use only one job for the copy.
Specify DEGREE(*NONE).

Handling data from the import file
The Copy From Import File (CPYFRMIMPF) reads data from an import file and copies the data to a to-file.
The data of the import file can be formatted by delimiters or in a fixed format.

A “Delimited import file” has a series of characters (delimiters) that define where fields begin and end. The
parameters of the command define which characters are used for delimiters.

A “Fixed formatted import file” on page 134 requires the user to define a Field Definition File that defines
the format of the import file. The Field Definition File defines where fields begin, end, and are null.

Delimited import file
The following characters and data types interpret the import file’s data for a delimited import file:

Blanks
Blanks are treated in the following ways:

v All leading and trailing blanks are discarded for character fields unless enclosed by string
delimiters.

v A field of all blanks is interpreted as a null field for character data.

v You cannot embed blanks within numeric fields.

v You cannot select a blank as a delimiter.

Null Fields
A null field is defined as:

v Two adjacent field delimiters (no data in between).

v A field delimiter followed by a record delimiter (no data in between), an empty string.

v A field of all blanks

If the field is null, the following is true:

v If the record’s output field is not nullable and the import is a null field, the record is not to be
copied, and an error is signaled.

Delimiters

v A delimiter cannot be a blank

v A string delimiter cannot be the same as a field delimiter, record delimiter, date separator, or
time separator.

v A string delimiter can enclose all non-numeric fields (character, date, time, and so forth). The
string delimiter character should not be contained within the character string.

v A field delimiter and a record delimiter can be the same character.

v The defaults for delimiters are as follows:
– String is: ″ Double quote.
– Field is: , Comma.
– Decimal point is: . Period.
– Record is *EOR End of record.

v If the data type of the from is CHARACTER, OPEN, EITHER, or ONLY, all double byte data
must be contained within string delimiters or shift characters (for OPEN, EITHER, ONLY data
type).

132 File Management V5R2



Numeric Field

v Numeric fields can be imported in decimal or exponential form.

v Data to the right of the decimal point may be truncated depending on the output data format.

v Decimal points are either a period or a comma (command option).

v Signed numeric fields are supported, + or -.

Character or Varcharacter Fields

v Fields too large to fit in the output fields are truncated (right). The server sends a diagnostic
message.

v An empty string is defined as two string delimiters with no data between them.

v For the server to recognize a character as a starting string delimiter, it must be the first
non-blank character in the field. For example, ’abc’ with ’ as the delimiter is the same as abc.

v Data after an ending string delimiter and before a field or record delimiter is discarded.

IGC or VarIGC Fields

v The server copies data from the from-file to the to-file. If any of the data is not valid, the server
generates a mapping error.

v Data located between the Shift Out and Shift In characters is treated as double-byte data. This
data is also not parsed for delimiters. The Shift characters in this case become ″string
delimiters″.

Graphic, VarGraphic Fields
The server copies the data from the from-file to the to-file.

CCSIDs

v The data from the from-file is read into a buffer by the CCSID of the from-file. The data in the
buffer is checked and written to the to-file. The CCSID of the open to-file is set to the value of
the from-file, unless a to-file CCSID is used. If a to-file CCSID is used, the data is converted to
that CCSID. If the from-file is a tape file, and the FROMCCSID(*FILE) is specified, the following
limits apply:

– The job CCSID is used or

– The from-file CCSID is requested by the user

v The character data (delimiters) passed on the command are converted to the CCSID of the
from file. This allows the character data of the from-file and command parameters to be
compatible.

Date Field

v All date formats supported by iSeries can be imported (*ISO, *USA, *EUR, *JIS, *MDY, *DMY,
*YMD, *JUL, and *YYMD).

v You can copy a date field to a timestamp field.

Time Field

v All time formats supported by iSeries can be imported (*ISO, *USA, *EUR, *JIS, *HMS).

v You can copy a time field to a timestamp field.

Date and Time Separators
The server supports all valid separators for date and time fields.

Timestamp Field
Timestamp import fields must be 26 bytes. The import ensures that periods exist in the time
portion, and a dash exists between the date and time portions of the timestamp.

Number of Fields Mismatch
If the from-file or to-file do not have the same number of fields, the data is either truncated to the
smaller to-file size, or the extra to-file fields will receive a null value. If the fields cannot contain
null values, the server issues an error message.

Chapter 4. Copying files 133



Multiple Jobs
The number of jobs that are used to copy the data depends on the DEGREE(*NBRTASKS)
parameter of the CHGQRYA command. When multiple jobs are used, the server uses batch jobs
to copy the data. The user can change, hold or end these batch jobs. The copy does not complete
until all the started batch jobs complete.

The relative record numbers can be maintained only if a single job is used and the import file does
not contain any deleted records. If the from-file is a distributed physical file or logical file, the
server performs the copy in a single process.

Files with less than 50,000 records use only one job.

Fixed formatted import file
Below is an example of a Field Definition File that describes the fixed formatted file:

- *********************************************************/
- **** Field Definition File */
- *********************************************************/
- Description: This Field Definition File
- defines the import’s file */
- (FROMFILE) field start and end positions. */
- *********************************************************/
- (FROMFILE) field start and end positions. */
-FILE MYLIB/MYFILE */
field1 1 12 13
field2 14 24 0
field3 25 55 56
field4 78 89 90
field5 100 109 0
field6 110 119 120
field7 121 221 0
*END

The following is a brief explanation of the
Field Definition File format:

- = Comment line
*END = End of definition, this must be included

Field Starting Ending Null
Name Position Position Character Position
_________________________________________________________

field1 1 12 13
field2 14 24 None
field3 25 55 56
field4 78 89 90
field5 100 109 None
field6 110 119 120
field7 121 221 None

Field Name
This name is the name of the to-file field name.

Starting Position
This is the starting position for the field in the import file of each record. This is the byte position.

Ending Position
This is the ending position for the field in the import file of each record. This is the byte position.

Null Character Position
This is the position for the NULL value for the field in the import file of each record. The value zero
specifies that NULL does not have a value. The value in the import file can be ’Y’ or ’N’.

134 File Management V5R2



’Y’ means the field is NULL. ’N’ means the field is not NULL.

Each column must be separated by a blank character.

Notes on the CPYTOIMPF command
The Copy To Import File (CPYTOIMPF) command reads data from a user from-file and copies it into an
import file. The number of jobs used for copy is one. The data of the import file can be formatted by
delimiters or it can be in a fixed format. A “Notes on the delimited import file (CPYTOIMPF command)” has
a series of characters (delimiters) that are used to define where fields begin and end. See “Restrictions for
the CPYTOIMPF command” on page 136 for more information.

The parameters of the command define which characters are used for delimiters. A fixed format import file
uses a fixed format. For more information on this, see “Copying data to the import file in a fixed format
(CPYTOIMPF command)” on page 136.

The data in the from-file is read from the formatted database file and written to the import file with the
parameters from the command.

The from-file can be any of these:
v A source physical file
v A program described physical file
v A distributed physical file
v A single format logical file
v An externally described physical file

The to-file can be any of these:
v a stream file
v a source physical file
v a program described physical file
v a distributed physical file with one non-numeric field
v an externally described physical file with one non-numeric field

Notes on the delimited import file (CPYTOIMPF command)
Null Fields

If a field is null, the field contains two adjacent field delimiters (no data in between).

Delimiters

v A delimiter cannot be a blank.

v A period cannot be a character string delimiter.

v A string delimiter cannot be the same as a field or record delimiter.

v A field and record delimiter can be the same character.

v The defaults for delimiters are as follows:
– String is: ″ Double quote.
– Field is: , Comma.
– Decimal point is: . Period.
– Record is: *EOR End of record.

Numeric Fields
Decimal points are either a period or a comma (command option).

Graphic Fields
The string delimiter is placed around all graphic data. If graphic data is contained in the file and
the string delimiter is the *NONE value, an error is signaled.

Chapter 4. Copying files 135



All Fields
The CAST function in SQL copies the data from the from-file to the to-file. All data is copied and
the relative record numbers of the from-file and to-file are the same, unless the from-file contains
deleted records. Deleted records are not copied.

CCSIDs
The data from the from-file is read into the to-file’s CCSID.

Date Fields
All date formats supported by iSeries can be exported (*ISO, *USA, *EUR, *JIS, *MDY, *DMY,
*YMD, *JUL, *YYMD).

Time Fields
All time formats supported by iSeries can be exported (*ISO, *USA, *EUR, *JIS, *HMS).

Date and Time Separators
All valid separators are supported for date and time fields.

Timestamp Fields
Timestamp export fields must be 26 bytes.

Restrictions for the CPYTOIMPF command
The following restrictions apply to the CPYTOIMPF command:

v The command restricts the correct usage for delimiters.

v The data type of a database file for the to-file can be any of the following:

– CHARACTER, IGC OPEN, IGC EITHER, IGC ONLY, GRAPHIC, or variable length. Its length must
be capable of containing the data of the from-file, separators, and any data conversions.

– The to-file and from-file cannot be the same file.

– The from-file cannot be a multi-formatted logical file.

v If the to-file’s record length is not long enough, an error is signaled.

v IGCDTA is not supported for the CPYTOIMPF command.

You can use this command on files that contain user-defined types (UDTs) and user-defined functions
(UDFs). You cannot use this command on files that contain large objects (LOBs) or DataLinks (DLs).

Copying data to the import file in a fixed format (CPYTOIMPF
command)
When you copy data to the import file in a fixed format (DTAFMT(*FIXED)), each field of the file is copied.
A null indicator on the command NULLS(*YES) places either a ’Y’ or ’N’ following the field data in the
to-file indicating if the field is null or not.

136 File Management V5R2

|



Chapter 5. Working with spooled files

Spooling functions help server users to manage input and output operations more efficiently. The server
supports two types of spooling:

v “Output spooling” sends job output to disk storage, rather than directly to a printer or diskette output
device. Output spooling allows the job that produces the output to continue processing without
consideration for the speed or availability of output devices.

v “Input spooling” on page 146 accepts job input, stores the input data in disk storage, and allows the
input device to be used independently of when the job is actually processed.

Output spooling may be used for both printer and diskette devices; input spooling applies to diskette and
database file input.

For additional information about working with spooled files, see the following topics:

v Output queues of spooled files

v Spooling writers

v Spooled file security

v Controlling the number of spooled files in your server

v Command examples for additional spooling

v Spooling subsystem

v Spooling library

This chapter discusses both output and input spooling, including advanced output spooling support, such
as using multiple output queues and redirecting files. For more information about spooling support for

printer and diskette devices, see the Printer Device Programming book and the Tape and Diskette

Device Programming book, respectively.

Output spooling
Output spooling allows the server to produce output on multiple output devices, such as printer and
diskette devices, in an efficient manner. It does this by sending the output of a job destined for a printer or
diskette to disk storage. This process breaks a potential job limitation imposed by the availability or speed
of the output devices.

Spooling is especially important in a multiple-user environment where the number of jobs running often
exceeds the number of available output devices. Using output spooling, the output can be easily redirected
from one device to another.

The main elements of output spooling are:

Device description
A description of the printer or diskette device

Spooled file
A file containing spooled output records that are to be processed on an output device

Output queue
An ordered list of spooled files

Writer A program that sends files from an output queue to a device

© Copyright IBM Corp. 1998, 2002 137

|

|

|

|

|

|

|

|



Application program
A high-level language program that creates a spooled file using a device file with the spooling
attribute specified as SPOOL(*YES)

Device file
A description of the format of the output, and a list of attributes that describe how the server
should process the spooled file

Figure 26 shows the relationship of these spooling elements.

Output spooling functions are performed by the server without requiring any special operations by the
program that produces the output. When a device file is opened by a program, the operating system
determines whether the output is to be spooled. When a printer or diskette device file specifying spooling
is opened, the spooled file containing the output of the program is placed on the appropriate output queue
in the server.

Figure 26. Relationship of Output Spooling Elements

138 File Management V5R2



A spooled file can be made available for printing when the printer file is opened, when the printer file is
closed, or at the end of the job. A printer writer is started in the spooling subsystem to send the records to
the printer. The spooled file is selected from an output queue. The same general description applies for
spooled diskette files.

For more information about output spooling, see the following topics:

v Spooling device descriptions

v Summary of spooled file commands

v Locating your spooled files

v File redirection of spooled files

Spooling device descriptions
Device descriptions must be created for each printer and diskette device to define that device to the
server. Printer device descriptions are created using the Create Device Description for Printer
(CRTDEVPRT) command; diskette device descriptions are created using the Create Device Description for
Diskette (CRTDEVDKT) command. See the Local Device Configuration book for more information about
specifying device descriptions.

Summary of spooled file commands
The following commands may be used to work with spooled files. For detailed descriptions of the
commands, see the CL Reference.

CHGSPLFA
Change Spooled File Attributes: Allows you to change some attributes of a spooled file, such as
the output queue name or the number of copies requested, while the spooled file is on an output
queue.

CPYSPLF
Copy Spooled File: Copies a spooled file to a specified database file. The database file may then
be used for other applications, such as those using microfiche or data communications.

DLTSPLF
Delete Spooled File: Deletes a spooled file from an output queue.

DSPSPLF
Display Spooled File: Allows you to display data records of a spooled file.

HLDSPLF
Hold Spooled File: Stops the processing of a spooled file by a spooling writer. The next spooled
file in line will be processed.

RLSSPLF
Release Spooled File: Releases a previously held spooled file for processing by a spooling writer.

SNDNETSPLF
Send Network Spooled File: Sends a spooled file to another server user on the Systems Network
Architecture distribution services (SNADS) network.

SNDTCPSPLF
Send TCP/IP Spooled File: Sends a spooled file to another server user using TCP/IP.

WRKSPLF
Work with Spooled Files: Allows you to display or print a list of spooled files on the server.

WRKSPLFA
Work with Spooled File Attributes: Shows the current attributes of a spooled file.

Chapter 5. Working with spooled files 139

|

|

|

|

|



Locating your spooled files
The Work with Spooled Files (WRKSPLF) command can be used to display or print all the spooled files
that you have created. This is the easiest way to find your spooled files if you do not know the name of
the output queue where they have been placed. To find all spooled files created by your current job, use
the Work with Job (WRKJOB) command and choose Option 4 to work with the spooled files.

File redirection of spooled files
File redirection occurs when a spooled file is sent to an output device other than the one for which it was
originally intended. File redirection may involve devices that process different media (such as printer output
sent to a diskette device) or devices that process the same type of media but are of different device types
(such as 5219 Printer output sent to a 4224 Printer).

Depending on the new output device for the spooled file, the file may be processed just as it would have
been on the originally specified device. However, differences in devices often cause the output to be
formatted differently. In these cases, the server sends an inquiry message to the writer’s message queue
to inform you of the situation and allow you to specify whether you want printing to continue. For more
information about print file redirection, see the Printer Device Programming book.

Output queues of spooled files
Batch and interactive job processing may result in spooled output records that are to be processed on an
output device, such as a printer or diskette drive. These output records are stored in spooled files until
they can be processed. There may be many spooled files for a single job.

When a spooled file is created, the file is placed on an output queue. Each output queue contains an
ordered list of spooled files. A job can have spooled files on one or more output queues. All spooled files
on a particular output queue should have a common set of output attributes, such as device, form type,
and lines per inch. Using common attributes on an output queue reduces the amount of intervention
required and increases the device throughput.

The following lists the parameters on the Create Output Queue (CRTOUTQ) command and what they
specify:

v MAXPAGES: Specifies the maximum spooled file size in pages that is allowed to be printed between a
starting and ending time of day.

v AUTOSTRWTR: Specifies the number of writers that are started automatically to this output queue.

v DSPDTA: Whether users without any special authority but who do have *USE authority to the output
queue can display, copy, or send the contents of spooled files other than their own. By specifying
*OWNER for DSPDTA, only the owner of the file or user with *SPLCTL can display, copy, or send a file.

v JOBSEP: How many, if any, job separator pages are to be printed between the output of each job when
the output is printed.

v DTAQ: The data queue associated with this output queue. If specified, an entry is sent to the data
queue whenever a spooled file goes to Ready Status on the queue.

v OPRCTL: Whether a user having job control authority can control the output queue (for example, if the
user can hold the output queue).

v SEQ: Controls the order in which spooled files will be sorted on the output queue. See “Order of
spooled files on an output queue” on page 142 for more information.

v AUTCHK: Specifies what type of authority to the output queue will enable a user to control the spooled
files on the output queue (for example, enable the user to hold the spooled files on the output queue).

v AUT: Public authority. Specifies what control users have over the output queue itself.

v TEXT: Text description. Up to 50 characters of text that describes the output queue.

For a complete list of parameters for the CRTOUTQ command, see the CL Reference.

140 File Management V5R2



For more information about output queues, see the following topics:

v Summary of output queue commands

v Default printer output queues

v Default server output queues

v Creating your own output queues

v Order of spooled files on an output queue

v Using multiple output queues

v Output queue recovery

Summary of output queue commands
The following commands may be used to create and control output queues. For detailed descriptions of
the commands, see the CL Reference.

CHGOUTQ
Change Output Queue: Allows you to change certain attributes of an output queue, such as the
sequence of the spooled files on the output queue.

CLROUTQ
Clear Output Queue: Removes all spooled files from an output queue.

CRTOUTQ
Create Output Queue: Allows you to create a new output queue.

DLTOUTQ
Delete Output Queue: Deletes an output queue from the server.

HLDOUTQ
Hold Output Queue: Prevents all spooled files on a particular output queue from being processed
by a spooling writer.

RLSOUTQ
Release Output Queue: Releases a previously held output queue for processing by a spooling
writer.

WRKOUTQ
Work with Output Queue: Shows the overall status of all output queues, or the detailed status of a
specific output queue and its spooled files.

WRKOUTQD
Work with Output Queue Description: Shows descriptive information for an output queue.

Default printer output queues
When a printer is configured to the server, the server automatically creates the printer’s default output
queue in library QUSRSYS. The output queue is given a text description of ’Default output queue for
printer xxxxxxxxxx’, where xxxxxxxxxx is the name of the printer.

The AUT parameter for the output queue is assigned the same value as that specified by the AUT
parameter for the printer device description. All other parameters are assigned their default values. Use
the Change Command Default (CHGCMDDFT) command to change the default values used when creating
output queues with the CRTOUTQ command.

The default output queue for a printer is owned by the user who created the printer device description. In
the case of automatic configuration, both the printer and the output queue are owned by the server profile
QPGMR.

Chapter 5. Working with spooled files 141

|

|

|

|

|

|

|

|



Default server output queues
The server is shipped with the defaults on commands to use the default output queue for the server printer
as the default output queue for all spooled output. The server printer is defined by the QPRTDEV server
value.

When a spooled file is created by opening a device file and the output queue specified for the file cannot
be found, the server will attempt to place the spooled file on output queue QPRINT in library QGPL. If for
any reason the spooled file cannot be placed on output queue QPRINT, an error message will be sent and
the output will not be spooled.

The following output queues are supplied with the server:

QDKT Default diskette output queue

QPRINT
Default printer output queue

QPRINTS
Printer output queue for special forms

QPRINT2
Printer output queue for 2-part paper

Creating your own output queues
You can create output queues for each user of the server. For example:
CRTOUTQ OUTQ(QGPL/JONES) +

TEXT(’Output queue for Mike Jones’)

Order of spooled files on an output queue
The order of spooled files on an output queue is mainly determined by the status of the spooled file. A
spooled file that is being processed by a writer may have one of the following statuses:

Status Description

PRT Printing

WTR Writer

PND Pending to be printed

SND Sending to another server

Spooled files with these statuses are placed at the top of the output queue. A spooled file being processed
by the writer may have a held (HLD) status if a user has held the spooled file, but the writer is not yet
finished processing the file. All other files with a status of RDY are listed on the output queue after the file
being processed by a writer, followed by files with statuses other than RDY.

Within each type of spooled file (RDY and non-RDY files) the following information causes a further
ordering of the files. The items are listed in sequence based on the amount of importance they have on
the ordering of spooled files, with the first item having the most importance.

1. The output priority of the spooled file.

2. A date and time field (time stamp).

For output queues with SEQ(*JOBNBR) specified, the date and time that the job which created the
spooled file entered the server are the date and time field. (A sequential job number is also assigned
to the job when it enters the server.)

For output queues with SEQ(*FIFO) specified, the date and time field is set to the current server date
and time when any of the following occur:

v A spooled file is created by opening a device file.

142 File Management V5R2



v The output priority of the job which created the spooled file is changed.

v The status of the spooled file changes from RDY to HLD, SAV, OPN, or CLO; or the status changes
from HLD, SAV, OPN, or CLO to RDY.

v A spooled file is moved to another output queue which has SEQ(*FIFO) specified.

3. The SCHEDULE parameter value of the spooled file.

Files with SCHEDULE(*JOBEND) specified are grouped together and placed after other spooled files
of the same job that have SCHEDULE(*IMMED) or SCHEDULE(*FILEEND) specified.

4. The spool number of the file.

Because of the automatic sorting of spooled files, different results occur when SEQ(*JOBNBR) is specified
for an output queue than when SEQ(*FIFO) is specified. For example, when a spooled file is held and
then immediately released on an output queue with SEQ(*JOBNBR) specified, the file will end up where it
started; but if the same file were held and then immediately released on an output queue with SEQ(*FIFO)
specified, the file would be placed at the end of the spooled files which have the same priority and a
status of RDY.

Using multiple output queues
You may want to create multiple output queues for:

v Special forms printing

v Output to be printed after normal working hours

v Output that is not printed

An output queue can be created to handle spooled files that need only to be displayed or copied to a
database file. Care should be taken to remove unneeded spooled files.

v Special uses

For example, each programmer could be given a separate output queue.

v Output of special IBM files

You may want to consider separate queues for the following IBM-supplied files:

– QPJOBLOG: You may want all job logs sent to a separate queue.

– QPPGMDMP: You may want all program dumps sent to a separate queue so you can review and
print them if needed or clear them daily.

– QPSRVDMP: You may want all service dumps sent to a separate queue so the service
representative can review them if needed.

Output queue recovery
If a job that has produced spooled files is running when the job or server stops abnormally, the files
remain on the output queue. Some number of records written by active programs may still be in main
storage when the job ends and will be lost. You should check these spooled files to ensure that they are
complete before you decide to continue using the files.

You can use the SPLFILE parameter on the End Job (ENDJOB) command to specify if all spooled files
(except QPJOBLOG) created by the job are to be kept for normal processing by the writer, or if these files
are to be deleted.

If an abnormal end occurs, the spooled file QPJOBLOG will be written at the next IPL of the server.

If a writer fails while a spooled file is being printed, the spooled file remains on the output queue intact.

If an output queue becomes damaged such that it cannot be used, you will be notified by a message sent
to the system operator message queue. The message will come from a server function when a writer or a
job tries to put or take spooled files from the damaged queue.

Chapter 5. Working with spooled files 143



A damaged output queue can be deleted using the Delete Output Queue (DLTOUTQ) command, or it will
be deleted by the server during the next IPL. After a damaged output queue is deleted, all spooled files on
the damaged output queue are moved to output queue QSPRCLOUTQ in library QRCL. This is done by
the QSPLMAINT server job, which issues completion message CPC3308 to the QSYSOPR message
queue when all spooled files have been moved to the QSPRCLOUTQ output queue.

After the damaged output queue is deleted, it can be created again by entering the Create Output Queue
(CRTOUTQ) command. Spooled files on output queue QSPRCLOUTQ can be moved back to the newly
created output queue using the Change Spooled File Attributes (CHGSPLFA) command.

Note: If the output queue that was damaged was the default output associated with a printer, the server
will automatically re-create the output queue when it is deleted. This server-created output queue
will have the same public authority as specified for the device and default values for the other
parameters. After the server re-creates the output queue, you should verify its attributes are correct
and change them as needed. The output queue can be changed using the Change Output Queue
(CHGOUTQ) command. When a damaged output queue associated with a printer is deleted and
created again, all spooled files on the damaged queue will be moved to the re-created output
queue. This is done by the QSPLMAINT server job, which issues completion message CPC3308 to
the QSYSOPR message queue when all spooled files have been moved.

Spooling writers
A writer is an OS/400 program that takes spooled files from an output queue and produces them on an
output device. The spooled files that have been placed on a particular output queue will remain stored in
the server until a writer is started to the output queue.

The writer takes spooled files one at a time from the output queue, based on their priority. The writer
processes a spooled file only if its entry on the output queue indicates that it has a ready (RDY) status.
You can display the status of a particular spooled file using the Work with Output Queue (WRKOUTQ)
command.

If the spooled file has a ready status, the writer takes the entry from the output queue and prints the
specified job and/or file separators, followed by the output data in the file. If the spooled file does not have
a ready status, the writer leaves the entry on the output queue and goes on to the next entry. In most
cases the writer will continue to process spooled files (preceded by job and file separators) until all files
with a ready status have been taken from the output queue.

The AUTOEND parameter on the start writer commands determines whether the writer continues to wait
for new spooled files to become available to be written, end after processing one file, or end after all
spooled files with ready status have been taken from the output queue.

See Summary of spooling writer commands for more information.

Summary of spooling writer commands
The following commands may be used to control spooling writers. For detailed descriptions of the
commands, see the CL topic in the iSeries Information Center.

STRDKTWTR
Start Diskette Writer: Starts a spooling writer to a specified diskette device to process spooled files
on that device.

STRPRTWTR
Start Printer Writer: Starts a spooling writer to a specified printer device to process spooled files
on that device.

144 File Management V5R2

|



STRRMTWTR
Start Remote Writer: Starts a spooling writer that sends spooled files from an output queue to a
remote server.

CHGWTR
Change Writer: Allows you to change some writer attributes, such as form type, number of file
separator pages, or output queue attributes.

HLDWTR
Hold Writer: Stops a writer at the end of a record, at the end of a spooled file, or at the end of a
page.

RLSWTR
Release Writer: Releases a previously held writer for additional processing.

ENDWTR
End Writer: Ends a spooling writer and makes the associated output device available to the server.

Spooled file security
Spooled file security is primarily controlled through the output queue which contains the spooled file. In
general, there are four ways that a user can become authorized to control a spooled file (for example, hold
or release the spooled file):

v User is assigned spool control authority (SPCAUT(*SPLCTL)) in the user’s user profile.

v User is assigned job control authority (SPCAUT(*JOBCTL)) in the user’s user profile and the output
queue is operator controllable (OPRCTL(*YES)).

v User has the required object authority for the output queue. The required object authority is specified by
the AUTCHK keyword on the CRTOUTQ command. A value of *OWNER indicates that only the owner
of the output queue is authorized via the object authority for the output queue. A value of *DTAAUT
indicates that users with *CHANGE authority to the output queue are authorized to control the output
queue.

Note: The specific authority required for *DTAAUT are *READ, *ADD, and *DLT data authorities.

v A user is always allowed to control the spooled files created by that user.

For the Copy Spooled File (CPYSPLF), Display Spooled File (DSPSPLF), and Send Network Spooled File
(SNDNETSPLF) commands, in addition to the four ways already listed, there is an additional way a user
can be authorized. If DSPDTA(*YES) was specified when the output queue was created, any user with
*USE authority to the output queue will be allowed to run these commands. The specific authority required
is *READ data authority. Copying, displaying, sending, and moving a file to another output queue by
changing the spooled file can be limited by specifying DSPDTA(*OWNER). Then only the owner of the
spooled file or user with *SPLCTL can perform these operations on the spooled file.

See the CL topic in the iSeries Information Center for details about the authority requirements for
individual commands.

To place a spooled file on an output queue, one of the following authorities is required:

v User is assigned spool control authority (SPCAUT(*SPLCTL)) in the user’s user profile.

v User is assigned job control authority (SPCAUT(*JOBCTL)) in the user’s user profile and the output
queue is operator controllable (OPRCTL(*YES)).

v User has *READ authority to the output queue. This authority can be given to the public by specifying
(AUT(*USE)) on the CRTOUTQ command.

Chapter 5. Working with spooled files 145



Controlling the number of spooled files in your server
The number of spooled files in your server should be limited. When a job is completed, spooled files and
internal job control information are kept until the spooled files are printed or canceled. The number of jobs
on the server and the number of spooled files known to the server increase the amount of time needed to
perform IPL and internal searches, and increases the amount of temporary storage required.

The number of jobs known to the server can be displayed using the Work with System Status
(WRKSYSSTS) command.

You can use the Work with Spooled Files (WRKSPLF) command to identify spooled files that are no longer
needed. By periodically entering the command:
WRKSPLF SELECT(*ALL)

you can determine which spooled files are older than 2 or 3 days, then delete the spooled files or contact
the users who created them.

For detailed information on minimizing the number of job logs (for example, by using LOG(4 0 *NOLIST)),

see the CL Programming book. For information regarding the use of system values to control the
amount of storage associated with jobs and spooled files, refer to the Work Management topic in the
iSeries Information Center. To control the storage used on your server see “Spooling library” on page 154.

Command examples for additional spooling support
You can define some functions to provide additional spooling support. Example source and documentation
for the commands, files, and programs for these functions are part of library QUSRTOOL, which is an
optionally installed part of the OS/400 program.

Input spooling
Input spooling takes the information from the input device, prepares the job for scheduling, and places an
entry in a job queue. Using input spooling, you can usually shorten job run time, increase the number of
jobs that can be run sequentially, and improve device throughput.

The main elements of input spooling are:

Job queue
An ordered list of batch jobs submitted to the server for running and from which batch jobs are
selected to run.

Reader
A function that takes jobs from an input device or a database file and places them on a job queue.

When a batch job is read from an input source by a reader, the commands in the input stream are stored
in the server as requests for the job, the inline data is spooled as inline data files, and an entry for the job
is placed on a job queue. The job information remains stored in the server where it was placed by the
reader until the job entry is selected from the job queue for processing by a subsystem. Figure 27 on
page 147 shows this relationship.

146 File Management V5R2



You can use the reader functions to read an input stream from diskette or database files. Figure 28 on
page 148 shows the typical organization of an input stream:

Figure 27. Relationship of Input Spooling Elements

Chapter 5. Working with spooled files 147



The job queue on which the job is placed is specified on the JOBQ parameter on the BCHJOB command,
on the start reader command, or in the job description. If the JOBQ parameter on the BCHJOB command
is:

v *RDR: The job queue is selected from the JOBQ parameter on the start reader command.

v *JOBD: The job queue is selected from the JOBQ parameter in the job description.

v A specific job queue: The specified queue is used.

For jobs with small input streams, you may improve server performance by not using input spooling. The
submit job commands (SBMDBJOB and SBMDKTJOB) read the input stream and place the job on the job
queue in the appropriate subsystem, bypassing the spooling subsystem and reader operations.

If your job requires a large input stream to be read, you should use input spooling (STRDKTRDR or
STRDBRDR command) to allow the job to be input independent of when the job is actually processed.

For more information about input spooling, see the following topics:

v Summary of job input commands

v Job queues

v Transferring jobs in a queue

v Using an inline data file

Figure 28. Typical Organization of an Input Stream

148 File Management V5R2

|

|

|

|

|



Summary of job input commands
The following commands may be used when submitting jobs to the server. The start reader commands
may be used for spooling job input; the submit job commands do not use spooling. For detailed
descriptions of these commands, see the CL Reference.

BCHJOB
Batch Job: Marks the start of a job in a batch input stream and defines the operating
characteristics of the job.

DATA Data: Marks the start of an inline data file.

ENDBCHJOB
End Batch Job: Marks the end of a job in a batch input stream.

ENDINP
End Input: Marks the end of the batch input stream.

SBMDBJOB
Submit Database Jobs: Reads an input stream from a database file and places the jobs in the
input stream on the appropriate job queues.

SBMDKTJOB
Submit Diskette Jobs: Reads an input stream from diskette and places the jobs in the input stream
on the appropriate job queues.

STRDBRDR
Start Database Reader: Starts a reader to read an input stream from a database file and places
the job in the input stream on the appropriate job queue.

STRDKTRDR
Start Diskette Reader: Starts a reader to read an input stream from diskette and places the job in
the input stream on the appropriate job queue.

Job queues
A job queue is an ordered list of jobs waiting to be processed by a particular subsystem. Jobs will not be
selected from a job queue by a subsystem unless the subsystem is active and the job queue is not held.
You can use job queues to control the order in which jobs are run.

A base set of job queues is provided with your server. In addition, you may create additional job queues
that you need.

IBM-supplied job queues
Several job queues are provided by IBM when your server is shipped. IBM supplies job queues for each
IBM-supplied subsystem.

QCTL Controlling subsystem queue

QBASE
QBASE subsystem job queue

QBATCH
Batch subsystem queue

QINTER
Interactive subsystem queue

QPGMR
Programmer subsystem queue

QSPL Spooling subsystem queue

QSYSSBSD
QSYSSBSD subsystem job queue

Chapter 5. Working with spooled files 149



QS36MRT
QS36MRT job queue

QS36EVOKE
QS36EVOKE job queue

QFNC Finance subsystem job queue

QSNADS
QSNADS subsystem job queue

Using multiple job queues
In many cases, using QBATCH as the only job queue with the default of one active job will be adequate
for your needs. If this is not adequate, you may want to have multiple job queues so that some job queues
are active during normal working hours, some are for special purposes, and some are active after normal
working hours. For example, you could designate different job queues for:

v Long-running jobs so you can control how many jobs are active at the same time.

You may also want these jobs to use a lower priority than the other batch jobs.

v Overnight jobs that are inconvenient to run during normal working hours.

For example, to run a Reorganize Physical File Member (RGZPFM) command on a large database file
requires an exclusive lock on the file. This means that other users cannot access the file while this
operation is taking place. Additionally, this operation could take a long time. It would be more efficient to
place this job on a job queue for jobs which run during off-shift hours.

v High-priority jobs.

You may want to have a job queue to which all high-priority work is sent. You could then ensure that
this work is completed rapidly and is not delayed by lower-priority jobs.

v Jobs that are directed to particular resource requirement such as diskette or tape.

Such a job queue would need a MAXACT parameter of 1 in the job queue entry of the subsystem
description so that only one job at a time uses the resource.

For example, if a tape is used for several jobs, all jobs using tape would be placed on a single job
queue. One job at a time would then be selected from the job queue. This would ensure that no two
jobs compete for the same device at the same time. If this happened, it would cause one of the jobs to
end with an allocation error.

Note: Tape output cannot be spooled.

v Programmer work.

You may want to have a job queue to handle programmer work or types of work that could be held
while production work is being run.

v Sequential running of a series of jobs.

You may have an application in which one job is dependent on the completion of another job. If you
place these jobs on a job queue that selects and runs one job at a time, this would ensure the running
sequence of these jobs.

If a job requires exclusive control of a file, you may want to place it on a job queue when the queue is
the only one active on the server, such as during the night or on a weekend.

If you use multiple job queues, you will find that control of the various job queues is a main consideration.
You will usually want to control:

v How many job queues exist.

v How many job queues are active in a particular subsystem at the same time.

v How many active jobs can be selected from a particular job queue at a particular time.

v How many jobs can be active in a subsystem at a particular time.

150 File Management V5R2



Creating your own job queues
There are numerous reasons why you may decide that you need job queues in addition to the ones
supplied by IBM. Additional job queues can be created by using the Create Job Queue (CRTJOBQ)
command:
CRTJOBQ QGPL/QNIGHT TEXT(’Job queue for +

night-time jobs’)

The following lists the parameters on the Create Job Queue (CRTJOBQ) command and what they specify:

v OPRCTL: Specifies whether a user having job control authority can control the job queue (for example,
if the user can hold the job queue).

v AUTCHK: Specifies what type of authority to the job queue will enable a user to control the jobs on the
job queue (for example, enable the user to hold the jobs on the job queue).

v AUT: Specifies what control users have over the job queue itself.

v TEXT: Up to 50 characters of text that describe the job queue.

Multiple job queues for a subsystem
If the priority and sequence of the next job queue to be used is important, you may want to assign and
control multiple job queues for each subsystem. One use of multiple job queues is to establish a
high-priority and a normal-priority job queue within a subsystem, allowing only one active job on each
queue at any time.

Another example: If your production batch jobs need to be completed before a special after-hours job
queue can be made active, you could have the last job in the normal batch job queue release the
after-hours job queue.

Refer to the SEQNBR parameter in the Add Job Queue Entry (ADDJOBQE) command in the CL topic to
determine how to set priorities for jobs on job queues. For more information, refer to the Work
Management topic in the iSeries Information Center.

Using the WRKJOBQ command
Jobs already on the job queue can be controlled using the Work with Job Queue (WRKJOBQ) command.

The WRKJOBQ command lists either:

v All the job queues on the server

v All the jobs on a specific job queue

The ability to list all the job queues is important when you are not sure what job queue was used for a job.
From the list of all job queues, you can look at each job queue to find the job. The display of a specific job
queue provides a list of all the jobs on the queue in the order in which they will become active.

Transferring jobs in a queue
If a job is on a job queue and is not yet active, you can change the job to a different job queue using the
JOBQ parameter on the Change Job (CHGJOB) command.

If a job becomes active, it is possible to place it back on a job queue. See the Work Management topic in
the iSeries Information Center for a discussion of the Transfer Job (TFRJOB) and Transfer Batch Job
(TFRBCHJOB) commands.

Job queue security
You can maintain a level of security with your job queue by authorizing only certain persons (user profiles)
to that job queue. In general, there are three ways that a user can become authorized to control a job
queue (for example, hold or release the job queue):

v User is assigned spool control authority (SPCAUT(*SPLCTL)) in the user’s user profile.

Chapter 5. Working with spooled files 151



v User is assigned job control authority (SPCAUT(*JOBCTL)) in the user’s user profile and the job queue
can be controlled by the operator (OPRCTL(*YES)).

v User has the required object authority to the job queue. The required object authority is specified by the
AUTCHK parameter on the CRTJOBQ command. A value of *OWNER indicates that only the owner of
the job queue is authorized via the object authority for the job queue. A value of *DTAAUT indicates that
users with *CHANGE authority for the job queue are authorized to control the job queue.

Note: The specific authority required for *DTAAUT are *READ, *ADD, and *DLT data authority.

See the CL topic for more information about authority requirements for individual commands.

These three methods of authorization apply only to the job queue, not to the jobs on the job queue. The
normal authority rules for controlling jobs apply whether the job is on a job queue or whether it is currently
running. See the Work Management topic for details on the authority rules for jobs.

Job queue recovery
If a command fails or the server stops abnormally while a reader or a submit jobs command is running and
a partial job (not all the input stream has been read) is placed on the queue, the entire job must be
resubmitted to the job queue.

If a job is on a job queue when the server stops abnormally without damaging that job queue, the job
remains intact on the job queue and is ready to run when the server becomes active again.

If the server stops abnormally while a job is running, the job is lost and must be resubmitted to the job
queue.

If a job queue becomes damaged such that it cannot be used, you will be notified by a message sent to
the system operator message queue. The message will come from a server function when a reader,
Submit Jobs command, or a job tries to put or take jobs from the damaged queue.

A damaged job queue can be deleted using the Delete Job Queue (DLTJOBQ) command, or it will be
deleted by the server during the next IPL. After a damaged job queue is deleted, all job files on the
damaged job queue will be moved to output queue QSPRCLJOBQ in library QRCL. This is done by the
QSPLMAINT server job, which issues completion message CPC3308 to the QSYSOPR message queue
when all jobs have been moved to the QSPRCLJOBQ output queue.

After the damaged job queue is deleted, it can be created again by entering the Create Job Queue
(CRTJOBQ) command. Jobs on the job queue QSPRCLOUTQ can be moved back to the newly created
output queue using the Change Job (CHGJOB) command.

Using an inline data file
An inline data file is a data file that is included as part of a batch job when the job is read by a reader or a
submit jobs command. An inline data file is delimited in the job by a //DATA command at the start of the
file and by an end-of-data delimiter at the end of the file. The end-of-data delimiter can be a user-defined
character string or the default of //.

The // must appear in positions 1 and 2. If your data contains a // in positions 1 and 2, you should use a
unique set of characters such as:
// *** END OF DATA

To specify this as a unique end-of-data delimiter, the ENDCHAR parameter on the //DATA command
should be coded as:
ENDCHAR(’// *** END OF DATA’)

152 File Management V5R2



Note: Inline data files can be accessed only during the first routing step of a batch job. If a batch job
contains a Transfer Job (TFRJOB), a Reroute Job (RRTJOB), or a Transfer Batch Job
(TFRBCHJOB) command, the inline data files cannot be accessed in the new routing step.

An inline data file can be either named or unnamed. For an unnamed inline data file, either QINLINE is
specified as the file name in the //DATA command or no name is specified. For a named inline data file, a
file name is specified.

A named inline data file has the following characteristics:

v It has a unique name in a job; no other inline data file can have the same name.

v It can be used more than once in a job.

v Each time it is opened, it is positioned to the first record.

To use a named inline data file, you must either specify the file name in the program or use an override
command to change the file name specified in the program to the name of the inline data file. The file
must be opened for input only.

An unnamed inline data file has the following characteristics:

v Its name is QINLINE. (In a batch job, all unnamed inline data files are given the same name.)

v It can only be used once in a job.

v When more than one unnamed inline data file is included in a job, the files must be in the input stream
in the same order as when the files are opened.

To use an unnamed inline data file, do one of the following:

v Specify QINLINE in the program.

v Use an override file command to change the file name specified in the program to QINLINE.

If your high-level language requires unique file names within one program, you can use QINLINE as a file
name only once. If you need to use more than one unnamed inline data file, you can use an override file
command in the program to specify QINLINE for additional unnamed inline data files.

Note: If you run commands conditionally and process more than one unnamed inline data file, the results
cannot be predicted if the wrong unnamed inline data file is used.

Open considerations for inline data files
The following considerations apply to opening inline data files:

v Record length specifies the length of the input records. (Record length is optional.) When the record
length exceeds the length of the data, a message is sent to your program. The data is padded with
blanks. When the record length is less than the data length, the records are truncated.

v When a file is specified in a program, the server searches for the file as a named inline data file before
it searches for the file in a library. Therefore, if a named inline data file has the same name as a file that
is not an inline data file, the inline data file is always used, even if the file name is qualified by a library
name.

v Named inline data files can be shared between programs in the same job by specifying SHARE(*YES)
on a create file or override file command.

For example, if an override file command specifying a file named INPUT and SHARE(*YES) is in a
batch job with an inline data file named INPUT, any programs running in the job that specify the file
name INPUT will share the same named inline data file.

Unnamed inline data files cannot be shared between programs in the same job.

v When you use inline data files, you should make sure the correct file type is specified on the //DATA
command. For example, if the file is to be used as a source file, the file type on the //DATA command
must be source.

Chapter 5. Working with spooled files 153



v Inline data files must be opened for input only.

Spooling subsystem
The spooling subsystem, QSPL, is used for processing the spooling readers and writers. The subsystem
needs to be active when readers or writers are active. The spooling subsystem and the individual readers
and writers can be controlled from jobs that run in other subsystems.

The start reader and start writer commands submit jobs to the job queue of the spooling subsystem.

Requests for reader or writer jobs are placed on the QSPL job queue, and the next entry on the QSPL job
queue is selected to run if:

v The number of active jobs is less than the QSPL subsystem attribute of MAXJOBS.

v The number of active jobs from the QSPL job queue is less than the MAXACT attribute for the job
queue.

Work management associated with the QSPL subsystem is similar to that for other subsystems as
described in the Work Management topic. To control the storage used on your server see “Spooling
library”.

Spooling library
The spooling library (QSPL) contains database files that are used to store data for inline data files and
spooled files. Each file in library QSPL can have several members. Each member contains all the data for
an inline data file or spooled file.

When the spooled file is printed or deleted, its associated database member in the spooling library is
cleared of records, but not removed, so that it can be used for another inline data file or spooled file. If no
database members are available in library QSPL, then a member is automatically created.

Printing a spooled file or clearing an output queue does not reduce the number of associated database
members. If an excessive number of associated database members were created on your server (for
example, if a program went into a loop and created thousands of spooled files), the spool database
members use storage on the server even if you clear the output queue.

Because the server keeps the date and time whenever a database member becomes available (for
example, clearing of records after the spooled file has been printed or deleted), you can remove these
spooled database members in the following ways:

v QRCLSPLSTG system value

When this system value is set, the server removes spool database members that have been available
for more than the number of days specified by the system value. The default value is 8 days. Values
that can be set for this system value are:

– 1-366: Valid range of day values that can be set. When an available member is older than the set
number of days, it is removed by the server.

– *NOMAX: Available spool database members are never automatically removed. The user must use
the Reclaim Spool Storage (RCLSPLSTG) command to remove these members.

– *NONE: The database member is removed as soon as the spooled file is printed or deleted.

Note: If *NONE is specified, you will never have available database members in QSPL. If there are
no available members when subsequent inline data files or spooled files are created, the
server creates members and allocates storage to be used. This slows down the jobs that are
creating inline data files or spooled files. It is highly recommended that the system value
never be set to *NONE.

v RCLSPLSTG command

154 File Management V5R2



Removes available database members that have been cleared of records for more than the number of
days specified on the command. The command will run until it completes in the user’s process.

The procedures previously described are the only allowable ways to remove spooled files from the QSPL
library. Any other way can cause severe problems. It is best to keep the QSPL library small by periodically
deleting old spooled files with the DLTSPLF or CLROUTQ commands. This procedure allows database
members to be used again, rather than having to increase the size of the spooling library to accommodate
new database members.

Displaying the data in the QSPL library may also prevent the data from being cleared, wasting storage
space. Any command or program used to look at a database file in the QSPL library must allocate the
database file and member; if a writer tries to remove an allocated member after printing is completed, it
will not be able to clear the member. Because the member is not cleared, it cannot be used for another
inline data file or spooled file and it will not be removed by setting the QRCLSPLSTG system value or
running the RCLSPLSTG command.

Saving a database file in the QSPL library can cause more problems than displaying the data in one
member of the file because all members will be allocated a much longer time when a database file is
saved. Because restoring these files destroys present and future spooled file data, there is no reason to
save one of these files.

The QSPL library type and authority should not be changed. The authority to the files within QSPL should
also not be changed. The QSPL library and the files in it are created in a particular way so that server
spooling functions can access them. Changing the library or files could cause some server spooling
functions to work incorrectly.

Chapter 5. Working with spooled files 155



156 File Management V5R2



Appendix A. Feedback area layouts

Tables in this section describe the Open feedback area and the I/O feedback area associated with any
opened file. The following information is presented for each item in these feedback areas:

v Offset, which is the number of bytes from the start of the feedback area to the location of each item.

v Data Type.

v Length, which is given in number of bytes.

v Contents, which is the description of the item and the valid values for it.

v File type, which is an indication of what file types each item is valid for.

The support provided by the high-level language you are using determines how to access this information
and how the data types are represented. See your high-level language information for more information.

Open feedback area
The open feedback area is the part of the open data path (ODP) that contains general information about
the file after it has been opened. It also contains file-specific information, depending on the file type, plus
information about each device or communications session defined for the file. This information is set
during open processing and may be updated as other operations are performed.

Table 20. Open Feedback Area
Offset Data Type Length Contents File Type

0 Character 2 Open data path (ODP) type:

DS Display, tape, ICF, save, printer file not being spooled, or diskette file not
being spooled.

DB Database member.

SP Printer or diskette file being spooled or inline data file.

All

2 Character 10 Name of the file being opened. If the ODP type is DS, this is the name of the
device file or save file. If the ODP type is SP, this is the name of the device file or
the inline data file. If the ODP type is DB, this is the name of the database file that
the member belongs to.

All

12 Character 10 Name of the library containing the file. For an inline data file, the value is *N. All

22 Character 10 Name of the spooled file. The name of a database file containing the spooled input
or output records.

Printer or
diskette being
spooled or
inline data

32 Character 10 Name of the library in which the spooled file is located. Printer or
diskette being
spooled or
inline data

42 Binary 2 Spooled file number. Printer or
diskette being
spooled

44 Binary 2 Maximum record length. All

46 Binary 2 Maximum key length. Database

48 Character 10 Member name:

v If ODP type DB, the member name in the file named at offset 2. If file is
overridden to MBR(*ALL), the member name that supplied the last record.

v If ODP type SP, the member name in the file named at offset 22.

Database,
printer,
diskette, and
inline data

58 Binary 4 Reserved.

62 Binary 4 Reserved.

© Copyright IBM Corp. 1998, 2002 157



Table 20. Open Feedback Area (continued)
Offset Data Type Length Contents File Type

66 Binary 2 File type:

1 Display

2 Printer

4 Diskette

5 Tape

9 Save

10 DDM

11 ICF

20 Inline data

21 Database

All

68 Character 3 Reserved.

71 Binary 2 Number of lines on a display screen or number of lines on a printed page. Display,
printer

Length of the null field byte map. Database

73 Binary 2 Number of positions on a display screen or number of characters on a printed line. Display,
printer

Length of the null key field byte map. Database

75 Binary 4 Number of records in the member at open time. For a join logical file, the number of
records in the primary. Supplied only if the file is being opened for input.

Database,
inline data

79 Character 2 Access type:

AR Arrival sequence.

KC Keyed with duplicate keys allowed. Duplicate keys are accessed in
first-changed-first-out (FCFO) order.

KF Keyed with duplicate keys allowed. Duplicate keys are accessed in
first-in-first-out (FIFO) order.

KL Keyed with duplicate keys allowed. Duplicate keys are accessed in
last-in-first-out (LIFO) order.

KN Keyed with duplicate keys allowed. The order in which duplicate keys
are accessed can be one of the following:

v First-in-first-out (FIFO)

v Last-in-first-out (LIFO)

v First-changed-first-out (FCFO)

KU Keyed, unique.

Database

81 Character 1 Duplicate key indication. Set only if the access path is KC, KF, KL, KN, or KU:

D Duplicate keys allowed if the access path is KF or KL.

U Duplicate keys are not allowed; all keys are unique and the access path
is KU.

Database

82 Character 1 Source file indication.

Y File is a source file.

N File is not a source file.

Database,
tape, diskette,
and inline
data

83 Character 10 Reserved.

93 Character 10 Reserved.

103 Binary 2 Offset to volume label fields of open feedback area. Diskette, tape

105 Binary 2 Maximum number of records that can be read or written in a block when using
blocked record I/O.

All

107 Binary 2 Overflow line number. Printer

109 Binary 2 Blocked record I/O record increment. Number of bytes that must be added to the
start of each record in a block to address the next record in the block.

All

111 Binary 4 Reserved.

115 Character 1 Miscellaneous flags.

Bit 1: Reserved.

158 File Management V5R2



Table 20. Open Feedback Area (continued)
Offset Data Type Length Contents File Type

Bit 2: File shareable

0 File was not opened shareable.

1 File was opened shareable (SHARE(*YES)).

All

Bit 3: Commitment control

0 File is not under commitment control.

1 File is under commitment control.

Database

Bit 4: Commitment lock level

0 Only changed records are locked (LCKLVL (*CHG)).

If this bit is zero and bit 8 of the character at offset 132 is
one, then all records accessed are locked, but the locks are
released when the current position in the file changes
(LCKLVL (*CS)).

1 All records accessed are locked (LCKLVL (*ALL)).

Database

Bit 5: Member type

0 Member is a physical file member.

1 Member is a logical file member.

Database

Bit 6: Field-level descriptions

0 File does not contain field-level descriptions.

1 File contains field-level descriptions.

All, except
database

Bit 7: DBCS or graphic-capable file

0 File does not contain DBCS or graphic-capable fields.

1 File does contain DBCS or graphic-capable fields.

Database,
display,
printer, tape,
diskette, and
ICF

Bit 8: End-of-file delay

0 End-of-file delay processing is not being done.

1 End-of-file delay processing is being done.

Database

116 Character 10 Name of the requester device. For display files, this is the name of the display
device description that is the requester device. For ICF files, this is the program
device name associated with the remote location of *REQUESTER.

This field is supplied only when either a device or remote location name of
*REQUESTER is being attached to the file by an open or acquire operation.
Otherwise, this field contains *N.

Display, ICF

126 Binary 2 File open count. If the file has not been opened shareable, this field contains a 1. If
the file has been opened shareable, this field contains the number of programs
currently attached to this file.

All

128 Binary 2 Reserved.

Appendix A. Feedback area layouts 159



Table 20. Open Feedback Area (continued)
Offset Data Type Length Contents File Type

130 Binary 2 Number of based-on physical members opened. For logical members, this is the
number of physical members over which the logical member was opened. For
physical members, this field is always set to 1.

Database

132 Character 1 Miscellaneous flags.

Bit 1: Multiple member processing

0 Only the member specified will be processed.

1 All members will be processed.

Database

Bit 2: Join logical file

0 File is not a join logical file.

1 File is a join logical file.

Database

Bit 3: Local or remote data (DDM files)

0 Data is stored on local server.

1 Data is stored on remote server.

Database

Bit 4: Remote System/38 or iSeries data (DDM files). Applicable only if the
value of Bit 3 is 1.

0 Data is on a remote System/38 or iSeries server.

1 Data is not on a remote System/38 or iSeries server.

Database

Bit 5: Separate indicator area

0 Indicators are in the I/O buffer of the program.

1 Indicators are not in the I/O buffer of the program. The DDS
keyword, INDARA, was used when the file was created.

Printer,
display, and
ICF

Bit 6: User buffers

0 Server creates I/O buffers for the program.

1 User program supplies I/O buffers.

All

Bit 7: Reserved.

Bit 8: Additional commitment lock level indicator. This is only valid if bit 3 of
the character at offset 115 is one.

If bit 4 of the character at offset 115 is zero:

0 Only changed records are locked (LCKLVL(*CHG)).

1 All records accessed are locked, but the locks are released
when the current position in the file changes (LCKLVL(*CS)).

If bit 4 of the character at offset 115 is one:

0 All records accessed are locked (LCKLVL(*ALL)).

1 Reserved.

Database

160 File Management V5R2



Table 20. Open Feedback Area (continued)
Offset Data Type Length Contents File Type

133 Character 2 Open identifier. This value is unique for a full open operation (SHARE(*NO)) or the
first open of a file that is opened with SHARE(*YES). This is used for display and
ICF files, but is set up for all file types. It allows you to match this file to an entry on
the associated data queue.

All

135 Binary 2 The field value is the maximum record format length, including both data and
file-specific information such as: first-character forms control, option indicators,
response indicators, source sequence numbers, and program-to-server data. If the
value is zero, then use the field at offset 44.

Printer,
diskette, tape,
and ICF

137 Binary 2 Coded character set identifier (CCSID) of the character data in the buffer. Database

139 Character 1 Miscellaneous flags.

Bit 1: Null-capable field file.

0 File does not contain null-capable fields.

1 File contains null-capable fields.

Database

Bit 2: Variable length fields file.

0 File does not contain any variable length fields.

1 File contains variable length fields.

Database

Bit 3: Variable length record processing

0 Variable length record processing will not be done.

1 Variable length record processing will be done.

Database

Bit 4: CCSID character substitution

0 No substitution characters will be used during CCSID data
conversion.

1 Substitution characters may be used during CCSID data
conversion.

Database,
Display

Bit 5: Job Level Open Indicator

0 This ODP is not scoped to the job level.

1 This ODP is scoped to the job level.

All

Bits 6-8: Reserved.

140 Character 6 Reserved.

146 Binary 2 Number of devices defined for this ODP. For displays, this is determined by the
number of devices defined on the DEV parameter of the Create Display File
(CRTDSPF) command. For ICF, this is determined by the number of program
devices defined or acquired with the Add ICF Device Entry (ADDICFDEVE) or the
Override ICF Device Entry (OVRICFDEVE) command. For all other files, it has the
value of 1.

All

148 Character Device name definition list. See “Device definition list” on page 162 for a description
of this array.

All

For more information about the open feedback area, see the following topics:

v Device definition list

v Volume label fields

Appendix A. Feedback area layouts 161

|

|

|



Device definition list
The device definition list part of the open feedback area is an array structure. Each entry in the array
contains information about each device or communications session attached to the file. The number of
entries in this array is determined by the number at offset 146 of the open feedback area. The device
definition list begins at offset 148 of the open feedback area. The offsets shown for it are from the start of
the device definition list rather than the start of the open feedback area.

Table 21. Device Definition List

Offset Data Type Length Contents File Type

0 Character 10 Program device name. For database files, the value is
DATABASE. For printer or diskette files being spooled, the
value is *N. For save files, the value is *NONE. For ICF files,
the value is the name of the program device from the
ADDICFDEVE or OVRICFDEVE command. For all other
files, the value is the name of the device description.

All, except inline
data

10 Character 50 Reserved.

60 Character 10 Device description name. For printer or diskette files being
spooled, the value is *N. For save files, the value is *NONE.
For all other files, the value is the name of the device
description.

All, except
database and inline
data

70 Character 1 Device class.

hex 01 Display

hex 02 Printer

hex 04 Diskette

hex 05 Tape

hex 09 Save

hex 0B ICF

All, except
database and inline
data

71 Character 1 Device type.

hex 02 5256 Printer

hex 07 5251 Display Station

hex 08 Spooled

hex 0A BSCEL

hex 0B 5291 Display Station

hex 0C 5224/5225 printers

hex 0D 5292 Display Station

hex 0E APPC

hex 0F 5219 Printer

hex 10 5583 Printer (DBCS)

hex 11 5553 Printer

hex 12 5555-B01 Display Station

162 File Management V5R2



Table 21. Device Definition List (continued)

Offset Data Type Length Contents File Type

hex 13 3270 Display Station

hex 14 3270 Printer

hex 15 Graphic-capable device

hex 16 Financial Display Station

hex 17 3180 Display Station

hex 18 Save file

hex 19 3277 DHCF Device

hex 1A 9347 Tape Unit

hex 1B 9348 Tape Unit

hex 1C 9331-1 Diskette Unit

hex 1D 9331-2 Diskette Unit

hex 1E Intrasystem communications support

hex 1F Asynchronous communications support

hex 20 SNUF

hex 21 4234 (SCS) Printer

hex 22 3812 (SCS) Printer

hex 23 4214 Printer

hex 24 4224 (IPDS) Printer

hex 25 4245 Printer

hex 26 3179-2 Display Station

hex 27 3196-A Display Station

hex 28 3196-B Display Station

hex 29 5262 Printer

hex 2A 6346 Tape Unit

hex 2B 2440 Tape Unit

hex 2C 9346 Tape Unit

hex 2D 6331 Diskette Unit

hex 2E 6332 Diskette Unit

Appendix A. Feedback area layouts 163



Table 21. Device Definition List (continued)

Offset Data Type Length Contents File Type

hex 30 3812 (IPDS) Printer

hex 31 4234 (IPDS) Printer

hex 32 IPDS printer, model unknown

hex 33 3197-C1 Display Station

hex 34 3197-C2 Display Station

hex 35 3197-D1 Display Station

hex 36 3197-D2 Display Station

hex 37 3197-W1 Display Station

hex 38 3197-W2 Display Station

hex 39 5555-E01 Display Station

hex 3A 3430 Tape Unit

hex 3B 3422 Tape Unit

hex 3C 3480 Tape Unit

hex 3D 3490 Tape Unit

hex 3E 3476-EA Display Station

hex 3F 3477-FG Display Station

hex 40 3278 DHCF device

hex 41 3279 DHCF device

hex 42 ICF finance device

hex 43 Retail communications device

hex 44 3477-FA Display Station

hex 45 3477-FC Display Station

hex 46 3477-FD Display Station

hex 47 3477-FW Display Station

hex 48 3477-FE Display Station

hex 49 6367 Tape Unit

hex 4A 6347 Tape Unit

hex 4D Network Virtual Terminal Display Station

hex 4E 6341 Tape Unit

hex 4F 6342 Tape Unit

164 File Management V5R2



Table 21. Device Definition List (continued)

Offset Data Type Length Contents File Type

hex 50 6133 Diskette Unit

hex 51 5555-C01 Display Station

hex 52 5555-F01 Display Station

hex 53 6366 Tape Unit

hex 54 7208 Tape Unit

hex 55 6252 (SCS) Printer

hex 56 3476-EC Display Station

hex 57 4230 (IPDS) Printer

hex 58 5555-G01 Display Station

hex 59 5555-G02 Display Station

hex 5A 6343 Tape Unit

hex 5B 6348 Tape Unit

hex 5C 6368 Tape Unit

hex 5D 3486-BA Display Station

hex 5F 3487-HA Display Station

hex 60 3487-HG Display Station

hex 61 3487-HW Display Station

hex 62 3487-HC Display Station

hex 63 3935 (IPDS) Printer

hex 64 6344 Tape Unit

hex 65 6349 Tape Unit

hex 66 6369 Tape Unit

hex 67 6380 Tape Unit

hex 68 6378 Tape Unit

hex 69 6390 Tape Unit

hex 70 6379 Tape Unit

hex 71 9331-11 Diskette Unit

hex 72 9331-12 Diskette Unit

hex 73 3570 Tape Unit

hex 74 3590 Tape Unit

hex 75 6335 Tape Unit
72 Binary 2 Number of lines on the display screen. Display
74 Binary 2 Number of positions in each line of the display screen. Display
76 Character 2 Bit flags.

Bit 1: Blinking capability.

0 Display is not capable of blinking.

1 Display is capable of blinking.

Display

Appendix A. Feedback area layouts 165



Table 21. Device Definition List (continued)

Offset Data Type Length Contents File Type

Bit 2: Device location.

0 Local device.

1 Remote device.

Display

Bit 3: Acquire status. This bit is set even if the device is
implicitly acquired at open time.

0 Device is not acquired.

1 Device is acquired.

Display, ICF

Bit 4: Invite status.

0 Device is not invited.

1 Device is invited.

Display, ICF

Bit 5: Data available status (only if device is invited).

0 Data is not available.

1 Data is available.

Display, ICF

Bit 6: Transaction status.

0 Transaction is not started. An evoke
request has not been sent, a detach
request has been sent or received, or the
transaction has completed.

1 Transaction is started. The transaction is
active. An evoke request has been sent
or received and the transaction has not
ended.

ICF

Bit 7: Requester device.

0 Not a requester device.

1 A requester device.

Display, ICF

Bit 8: DBCS device.

0 Device is not capable of processing
double-byte data.

1 Device is capable of processing
double-byte data.

Display

Bits 9-10:
Reserved.

166 File Management V5R2



Table 21. Device Definition List (continued)

Offset Data Type Length Contents File Type

Bit 11: DBCS keyboard.

0 Keyboard is not capable of entering
double-byte data.

1 Keyboard is capable of entering
double-byte data.

Display

Bits 12-16:
Reserved.

78 Character 1 Synchronization level.

hex 00 The transaction was built with SYNLVL(*NONE).
Confirm processing is not allowed.

hex 01 The transaction was built with
SYNLVL(*CONFIRM). Confirm processing is
allowed.

hex 02 The transaction was built with SYNLVL(*COMMIT).

ICF

79 Character 1 Conversation type.

hex D0 Basic conversation (CNVTYPE(*USER)).

hex D1 Mapped conversation (CNVTYPE(*SYS)).

ICF

80 Character 50 Reserved.

Volume label fields
Table 22. Volume Label Fields

Offset Data Type Length Contents File Type

0 Character 128 Volume label of current volume. Diskette, tape
128 Character 128 Header label 1 of the opened file. Diskette, tape
256 Character 128 Header label 2 of the opened file. Tape

I/O feedback area
iSeries uses OS/400 messages and I/O feedback information to communicate the results of I/O operations
to the program. The server updates the I/O feedback area for every successful I/O operation unless your
program uses blocked record I/O. In that case, the server updates the feedback area only when it reads or
writes a block of records. Some of the information reflects the last record in the block. Other information,
such as the count of I/O operations, reflects the number of operations on blocks of records and not the
number of records. See your high-level language information to determine if your program uses blocked
record I/O.

The I/O feedback area consists of two parts: a common area and a file-dependent area. The
file-dependent area varies by the file type:

v I/O feedback area for ICF and display files

v I/O feedback area for printer files

v I/O feedback area for database files

v Get attributes feedback area

Appendix A. Feedback area layouts 167

|

|

|

|



Common I/O feedback area
Table 23. Common I/O Feedback Area

Offset Data Type Length Contents

0 Binary 2 Offset to file-dependent feedback area.
2 Binary 4 Write operation count. Updated only when a write operation

completes successfully. For blocked record I/O operations,
this count is the number of blocks, not the number of
records.

6 Binary 4 Read operation count. Updated only when a read operation
completes successfully. For blocked record I/O operations,
this count is the number of blocks, not the number of
records.

10 Binary 4 Write-read operation count. Updated only when a write-read
operation completes successfully.

14 Binary 4 Other operation count. Number of successful operations
other than write, read, or write-read. Updated only when
the operation completes successfully. This count includes
update, delete, force-end-of-data, force-end-of-volume,
change-end-of-data, release record lock, and
acquire/release device operations.

18 Character 1 Reserved.
19 Character 1 Current operation.

hex 01 Read or read block or read from invited devices

hex 02 Read direct

hex 03 Read by key

hex 05 Write or write block

hex 06 Write-read

hex 07 Update

hex 08 Delete

hex 09 Force-end-of-data

hex 0A Force-end-of-volume

hex 0D Release record lock

hex 0E Change end-of-data

hex 0F Put deleted record

hex 11 Release device

hex 12 Acquire device
20 Character 10 Name of the record format just processed, which is either:

v Specified on the I/O request, or

v Determined by default or format selection processing

For display files, the default name is either the name of the
only record format in the file or the previous record format
name for the record written to the display that contains
input-capable fields. Because a display file may have
multiple formats on the display at the same time, this
format may not represent the format where the last cursor
position was typed.

For ICF files, the format name is determined by the server,
based on the format selection option used. Refer to the ICF

Programming book for more information.

168 File Management V5R2



Table 23. Common I/O Feedback Area (continued)

Offset Data Type Length Contents

30 Character 2 Device class:

Byte 1:

hex 00 Database

hex 01 Display

hex 02 Printer

hex 04 Diskette

hex 05 Tape

hex 09 Save

hex 0B ICF

Byte 2 (if byte 1 contains hex 00):

hex 00 Nonkeyed file

hex 01 Keyed file

Byte 2 (if byte 1 does not contain hex 00):

hex 02 5256 Printer

hex 07 5251 Display Station

hex 08 Spooled

hex 0A BSCEL

hex 0B 5291 Display Station

hex 0C 5224/5225 printers

hex 0D 5292 Display Station

hex 0E APPC

hex 0F 5219 Printer

hex 10 5583 Printer (DBCS)

hex 11 5553 Printer

hex 12 5555-B01 Display Station

hex 13 3270 Display Station

hex 14 3270 Printer

hex 15 Graphic-capable device

hex 16 Financial Display Station

hex 17 3180 Display Station

hex 18 Save file

hex 19 3277 DHCF device

hex 1A 9347 Tape Unit

hex 1B 9348 Tape Unit

hex 1C 9331-1 Diskette Unit

hex 1D 9331-2 Diskette Unit

hex 1E Intrasystem communications support

hex 1F Asynchronous communications support

Appendix A. Feedback area layouts 169



Table 23. Common I/O Feedback Area (continued)

Offset Data Type Length Contents

hex 20 SNUF

hex 21 4234 (SCS) Printer

hex 22 3812 (SCS) Printer

hex 23 4214 Printer

hex 24 4224 (IPDS) Printer

hex 25 4245 Printer

hex 26 3179-2 Display Station

hex 27 3196-A Display Station

hex 28 3196-B Display Station

hex 29 5262 Printer

hex 2A 6346 Tape Unit

hex 2B 2440 Tape Unit

hex 2C 9346 Tape Unit

hex 2D 6331 Diskette Unit

hex 2E 6332 Diskette Unit

hex 30 3812 (IPDS) Printer

hex 31 4234 (IPDS) Printer

hex 32 IPDS printer, model unknown

hex 33 3197-C1 Display Station

hex 34 3197-C2 Display Station

hex 35 3197-D1 Display Station

hex 36 3197-D2 Display Station

hex 37 3197-W1 Display Station

hex 38 3197-W2 Display Station

hex 39 5555-E01 Display Station

hex 3A 3430 Tape Unit

hex 3B 3422 Tape Unit

hex 3C 3480 Tape Unit

hex 3D 3490 Tape Unit

hex 3E 3476-EA Display Station

hex 3F 3477-FG Display Station

170 File Management V5R2



Table 23. Common I/O Feedback Area (continued)

Offset Data Type Length Contents

hex 40 3278 DHCF device

hex 41 3279 DHCF device

hex 42 ICF finance device

hex 43 Retail communications device

hex 44 3477-FA Display Station

hex 45 3477-FC Display Station

hex 46 3477-FD Display Station

hex 47 3477-FW Display Station

hex 48 3477-FE Display Station

hex 49 6367 Tape Unit

hex 4A 6347 Tape Unit

hex 4D Network Virtual Terminal Display Station

hex 4E 6341 Tape Unit

hex 4F 6342 Tape Unit

hex 50 6133 Diskette Unit

hex 51 5555-C01 Display Station

hex 52 5555-F01 Display Station

hex 53 6366 Tape Unit

hex 54 7208 Tape Unit

hex 55 6252 (SCS) Printer

hex 56 3476-EC Display Station

hex 57 4230 (IPDS) Printer

hex 58 5555-G01 Display Station

hex 59 5555-G02 Display Station

hex 5A 6343 Tape Unit

hex 5B 6348 Tape Unit

hex 5C 6368 Tape Unit

hex 5D 3486-BA Display Station

hex 5F 3487-HA Display Station

hex 60 3487-HG Display Station

hex 61 3487-HW Display Station

hex 62 3487-HC Display Station

hex 63 3935 (IPDS) Printer

hex 64 6344 Tape Unit

hex 65 6349 Tape Unit

hex 66 6369 Tape Unit

hex 67 6380 Tape Unit

hex 68 6378 Tape Unit

hex 69 6390 Tape Unit

Appendix A. Feedback area layouts 171



Table 23. Common I/O Feedback Area (continued)

Offset Data Type Length Contents

hex 70 6379 Tape Unit

hex 71 9331-11 Diskette Unit

hex 72 9331-12 Diskette Unit

hex 73 3570 Tape Unit

hex 74 3590 Tape Unit

hex 75 6335 Tape Unit
32 Character 10 Device name. The name of the device for which the

operation just completed. Supplied only for display, printer,
tape, diskette, and ICF files. For printer or diskette files
being spooled, the value is *N. For ICF files, the value is
the program device name. For other files, the value is the
device description name.

42 Binary 4 Length of the record processed by the last I/O operation
(supplied only for an ICF, display, tape, or database file).
On ICF write operations, this is the record length of the
data. On ICF read operations, it is the record length of the
record associated with the last read operation.

46 Character 80 Reserved.
126 Binary 2 Number of records retrieved on a read request for blocked

records or sent on a write or force-end-of-data or
force-end-of-volume request for blocked records. Supplied
only for database, diskette, and tape files.

128 Binary 2 For output, the field value is the record format length,
including first-character forms control, option indicators,
source sequence numbers, and program-to-server data. If
the value is zero, use the field at offset 42.

For input, the field value is the record format length,
including response indicators and source sequence
numbers. If the value is zero, use the field at offset 42.

130 Character 2 Reserved.
132 Binary 4 Current block count. The number of blocks of the tape data

file already written or read. For tape files only.
136 Character 8 Reserved.

172 File Management V5R2



I/O feedback area for ICF and display files
Table 24. I/O Feedback Area for ICF and Display Files

Offset Data Type Length Contents File Type

0 Character 2 Flag bits.

Bit 1: Cancel-read indicator.

0 The cancel-read operation did
not cancel the read request.

1 The cancel-read operation
canceled the read request.

Bit 2: Data-returned indicator.

0 The cancel-read operation did
not change the contents of the
input buffer.

1 The cancel-read operation
placed the data from the
read-with-no-wait operation into
the input buffer.

Bit 3: Command key indicator.

0 Conditions for setting this
indicator did not occur.

1 The Print, Help, Home, Roll
Up, Roll Down, or Clear key
was pressed. The key is
enabled with a DDS keyword,
but without a response
indicator specified.

Bits 4-16:
Reserved.

Display

Appendix A. Feedback area layouts 173



Table 24. I/O Feedback Area for ICF and Display Files (continued)

Offset Data Type Length Contents File Type

2 Character 1 Attention indicator byte (AID). This field
identifies which function key was pressed.

For ICF files, this field will always contain the value
hex F1 to imitate the Enter key being pressed on a
display device.

For display files, this field will contain the 1-byte
hexadecimal value returned from the device.

Hex Codes
Function Keys

hex 31 1

hex 32 2

hex 33 3

hex 34 4

hex 35 5

hex 36 6

hex 37 7

hex 38 8

hex 39 9

hex 3A 10

hex 3B 11

hex 3C 12

hex B1 13

hex B2 14

hex B3 15

hex B4 16

hex B5 17

hex B6 18

hex B7 19

hex B8 20

hex B9 21

hex BA 22

hex BB 23

hex BC 24

hex BD Clear

hex F1 Enter/Rec Adv

hex F3 Help (not in operator-error mode)

hex F4 Roll Down

hex F5 Roll Up

hex F6 Print

hex F8 Record Backspace

hex 3F Auto Enter (for Selector Light Pen)

Display, ICF

174 File Management V5R2



Table 24. I/O Feedback Area for ICF and Display Files (continued)

Offset Data Type Length Contents File Type

3 Character 2 Cursor location (line and position). Updated on
input operations that are not subfile operations that
return data to the program. For example, hex 0102
means line 1, position 2. Line 10, position 33 would
be hex 0A21.

Display

5 Binary 4 Actual data length. For an ICF file, see the ICF

Programming book for additional
information. For a display file, this is the length of
the record format processed by the I/O operation.

Display, ICF

9 Binary 2 Relative record number of a subfile record.
Updated for a subfile record operation. For input
operations, updated only if data is returned to the
program. If multiple subfiles are on the display, this
offset will contain the relative record number for the
last subfile updated.

Display

11 Binary 2 Lowest subfile. ndicates the lowest subfile relative
record number currently displayed in the
uppermost subfile display area if the last write
operation was done to the subfile control record
with SFLDSP specified. Updated for roll up and roll
down operations. Reset to 0 on a write operation to
another record. Not set for message subfiles.

Display

13 Binary 2 Total number of records in a subfile. Updated on
a put-relative operation to any subfile record. The
number is set to zero on a write or write-read
operation to any subfile control record with the
SFLINZ keyword optioned on. If records are put to
multiple subfiles on the display, this offset will
contain the total number of records for all subfiles
assuming that no write or write-read operations
were performed to any subfile control record with
the SFLINZ keyword optioned on.

Display

15 Character 2 Cursor location (line and position) within active
window. Updated on input operations that are not
subfile operations that return data to the program.
For example, hex 0203 means line 2, position 3
relative to the upper-left corner of the active
window.

Display

17 Character 17 Reserved.

34 Character 2 Major return code.

00 Operation completed successfully.

02 Input operation completed successfully,
but job is being canceled (controlled).

03 Input operation completed successfully,
but no data received.

04 Output exception.

08 Device already acquired.

11 Read from invited devices was not
successful.

34 Input exception.

80 Permanent server or file error.

81 Permanent session or device error.

82 Acquire or open operation failed.

83 Recoverable session or device error.

Display, ICF

Appendix A. Feedback area layouts 175



Table 24. I/O Feedback Area for ICF and Display Files (continued)

Offset Data Type Length Contents File Type

36 Character 2 Minor return code. For the values for a display
file, see the Application Display Programming

book. For the values for an ICF file, see the

ICF Programming book and the appropriate
communications-type programmer’s guide.

Display, ICF

38 Character 8 Systems Network Architecture (SNA) sense
return code. For some return codes, this field may
contain more detailed information about the reason
for the error. For a description of the SNA sense
codes, see the appropriate SNA book.

ICF

46 Character 1 Safe indicator:

0 An end-of-text (ETX) control character
has not been received.

1 An ETX control character has been
received.

ICF

47 Character 1 Reserved.

48 Character 1 Request Write (RQSWRT) command from
remote system/application.

0 RQSWRT not received

1 RQSWRT received

ICF

49 Character 10 Record format name received from the remote
server.

ICF

59 Character 4 Reserved.

63 Character 8 Mode name. ICF
71 Character 9 Reserved.

I/O feedback area for printer files
Table 25. I/O Feedback Area for Printer Files

Offset Data Type Length Contents

0 Binary 2 Current line number in a page.
2 Binary 4 Current page count.
6 Character 1 Bit 1: Spooled file has been deleted:

1 The spooled file has been deleted.

0 The spooled file has not been deleted.

Bits 2 - 8: Reserved.
7 Character 27 Reserved.
34 Character 2 Major return code.

00 Operation completed successfully.

80 Permanent server or file error.

81 Permanent device error.

82 Open operation failed.

83 Recoverable device error occurred.
36 Character 2 Minor return code. For the values for a printer

file, refer to the Printer Device Programming

book..

176 File Management V5R2



I/O feedback area for database files
Table 26. I/O Feedback Area for Database Files

Offset Data Type Length Contents

0 Binary 4 Size of the database feedback area, including the
key and the null key field byte map.

4 Character 4
Bits 1-32:

Each bit represents a join logical file in
JFILE keyword.

0 JDFTVAL not supplied for file

1 JDFTVAL supplied for file

8 Binary 2 Offset from the beginning of the I/O feedback
area for database files to the null key field byte
map which follows the key value (which begins at
offset 34 in this area).

10 Binary 2 Number of locked records.
12 Binary 2 Maximum number of fields.
14 Binary 4 Offset to the field-mapping error-bit map.
18 Character 1 Current file position indication.

Bit 1: Current file position is valid for
get-next-key equal operation.

0 File position is not valid.

1 File position is valid.

Bits 2-8:
Reserved.

19 Character 1 Current record deleted indication:

Bits 1-2:
Reserved.

Bit 3: Next message indicator.

0 Next message not end of file.

1 Next message may be end of
file.

Bit 4: Deleted record indicator.

0 Current file position is at an
active record.

1 Current file position is at a
deleted record.

Bit 5: Write operation key feedback indicator.

0 Key feedback is not provided
by last write operation.

1 Key feedback is provided by
last write operation.

Appendix A. Feedback area layouts 177



Table 26. I/O Feedback Area for Database Files (continued)

Offset Data Type Length Contents

Bit 6: File position changed indicator. Set only
for read and positioning I/O operations.
Not set for write, update, and delete I/O
operations.

0 File position did not change.

1 File position did change.

Bit 7: Pending exception indicator. Valid for
files open for input only and
SEQONLY(*YES N) where N is greater
than 1.

0 Pending retrieval error does
not exist.

1 Pending retrieval error does
exist.

Bit 8: Duplicate key indicator.

0 The key of the last read or
write operation was not a
duplicate key.

1 The key of the last read or
write operation was a
duplicate key.

20 Binary 2 Number of key fields. Use this offset for binary
operations. Use the next offset (offset 21) for
character operations. These offsets overlap and
provide the same value (there can be no more
than 32 key fields, and only the low-order byte of
offset 20 is used).

21 Character 1 Number of key fields.
22 Character 4 Reserved.
26 Binary 2 Key length.
28 Binary 2 Data member number.
30 Binary 4 Relative record number in data member.
34 Character * Key value.
* Character * Null key field byte map.

Get attributes feedback area
Performing the get attributes operation allows you to obtain certain information about a specific display
device or ICF session.

Table 27. Get Attributes

Offset Data Type Length Contents File Type

0 Character 10 Program device name. Display, ICF
10 Character 10 Device description name. Name of the device description

associated with this entry.
Display, ICF

20 Character 10 User ID. Display, ICF
30 Character 1 Device class:

D Display

I ICF

U Unknown

Display, ICF

178 File Management V5R2



Table 27. Get Attributes (continued)

Offset Data Type Length Contents File Type

31 Character 6 Device type:

3179 3179 Display Station

317902 3179-2 Display Station

3180 3180 Display Station

3196A 3196-A1/A2 Display Station

3196B 3196-B1/B2 Display Station

3197C1 3197-C1 Display Station

3197C2 3197-C2 Display Station

3197D1 3197-D1 Display Station

3197D2 3197-D2 Display Station

3197W1 3197-W1 Display Station

3197W2 3197-W2 Display Station

3270 3270 Display Station

3476EA 3476-EA Display Station

3476EC 3476-EC Display Station

3477FA 3477-FA Display Station

3477FC 3477-FC Display Station

3477FD 3477-FD Display Station

3477FE 3477-FE Display Station

3477FG 3477-FG Display Station

3477FW 3477-FW Display Station

525111 5251 Display Station

5291 5291 Display Station

5292 5292 Display Station

529202 5292-2 Display Station

5555B1 5555-B01 Display Station

5555C1 5555-C01 Display Station

5555E1 5555-E01 Display Station

5555F1 5555-F01 Display Station

5555G1 5555-G01 Display Station

5555G2 5555-G02 Display Station

DHCF77
3277 DHCF device

DHCF78
3278 DHCF device

DHCF79
3279 DHCF device

Display, ICF

Appendix A. Feedback area layouts 179



Table 27. Get Attributes (continued)

Offset Data Type Length Contents File Type

3486BA 3486-BA Display Station

3487HA 3487-HA Display Station

3487HC 3487-HC Display Station

3487HG 3487-HG Display Station

3487HW
3487-HW Display Station

APPC Advance program-to-program communications
device

ASYNC Asynchronous communications device

BSC Bisynchronous communications device

BSCEL BSCEL communications device

FINANC ICF Finance communications device

INTRA Intrasystem communications device

LU1 LU1 communications device

RETAIL RETAIL communications device

SNUF SNA upline facility communications device

Display, ICF

37 Character 1 Requester device. This flag indicates whether this entry is
defining a *REQUESTER device.

N Not a *REQUESTER device (communications
source device).

Y A *REQUESTER device (communications target
device).

Display, ICF

38 Character 1 Acquire status. Set even if device is implicitly acquired at open
time.

N Device is not acquired.

Y Device is acquired.

Display, ICF

39 Character 1 Invite status.

Y Device is invited.

N Device is not invited.

Display, ICF

40 Character 1 Data available.

Y Invited data is available.

N Invited data is not available.

Display, ICF

41 Binary 2 Number of rows on display. Display
43 Binary 2 Number of columns on display. Display
45 Character 1 Display allow blink.

Y Display is capable of blinking.

N Display is not capable of blinking.

Display

46 Character 1 Online/offline status.

O Display is online.

F Display is offline.

Display

47 Character 1 Display location.

L Local display.

R Remote display.

Display

180 File Management V5R2



Table 27. Get Attributes (continued)

Offset Data Type Length Contents File Type

48 Character 1 Display type.

A Alphanumeric or Katakana.

I DBCS.

G Graphic DBCS.

Display

49 Character 1 Keyboard type of display.

A Alphanumeric or Katakana keyboard.

I DBCS keyboard.

Display

50 Character 1 Transaction status. All communication types.

N Transaction is not started. An evoke request has not
been sent, a detach request has been sent or
received, or the transaction has completed.

Y Transaction is started. The transaction is active. An
evoke request has been sent or received and the
transaction has not ended.

ICF

51 Character 1 Synchronization level. APPC and INTRA.

0 Synchronization level 0 (SYNLVL(*NONE)).

1 Synchronization level 1 (SYNLVL(*CONFIRM)).

2 Synchronization level 2 (SYNLVL(*COMMIT)).

ICF

52 Character 1 Conversation being used. APPC only.

M Mapped conversation.

B Basic conversation.

ICF

53 Character 8 Remote location name. All communication types. ICF
61 Character 8 Local LU name. APPC only. ICF
69 Character 8 Local network ID. APPC only. ICF
77 Character 8 Remote LU name. APPC only. ICF
85 Character 8 Remote network ID. APPC only. ICF
93 Character 8 Mode. APPC only. ICF
101 Character 1 Controller information.

N Display is not attached to a controller that supports
an enhanced interface for nonprogrammable work
stations.

1 Display is attached to a controller (type 1) that
supports an enhanced interface for
nonprogrammable work stations. See note.

2 Display is attached to a controller (type 2) that
supports an enhanced interface for
nonprogrammable work stations. See note.

3 Display is attached to a controller (type 3) that
supports an enhanced interface for
nonprogrammable work stations. See note.

Display

102 Character 1 Color capability of display.

Y Color display

N Monochrome display

Display

103 Character 1 Grid line support by display.

Y Display supports grid lines

N Display does not support grid lines

Display

Appendix A. Feedback area layouts 181



Table 27. Get Attributes (continued)

Offset Data Type Length Contents File Type

104 Character 1
hex 00 Reset state

hex 01 Send state

hex 02 Defer received state

hex 03 Defer deallocate state

hex 04 Receive state

hex 05 Confirm state

hex 06 Confirm send state

hex 07 Confirm deallocate state

hex 08 Commit state

hex 09 Commit send state

hex 0A Commit deallocate state

hex 0B Deallocate state

hex 0C Rollback required state

ICF

105 Character 8 LU.6 Conversation Correlator ICF
113 Character 31 Reserved Display, ICF
Note: The following information is provided only for an Integrated Service Digital Network (ISDN) used in the ICF or remote display
session. Also, not all of the information will be available if the area to receive it is too small.
144 Binary 2 ISDN remote number length in bytes. Consists of the total of

the lengths of the next three fields: ISDN remote numbering
type, ISDN remote numbering plan, and the ISDN remote
number. If the ISDN remote number has been padded on the
right with blanks, the length of that padding is not included in
this total. :p If ISDN is not used, this field contains 0.

Display, ICF

146 Character 2 ISDN remote numbering type (decimal).

00 Unknown.

01 International.

02 National.

03 Network-specific.

04 Subscriber.

06 Abbreviated.

Display, ICF

148 Character 2 ISDN remote numbering plan (decimal).

00 Unknown.

01 ISDN/Telephony.

03 Data.

04 Telex**.

08 National Standard.

09 Private.

Display, ICF

150 Character 40 The ISDN remote number in EBCDIC, padded on the right
with blanks if necessary to fill the field.

Display, ICF

190 Character 4 Reserved. Display, ICF
194 Binary 2 ISDN remote subaddress length in bytes. Consists of the total

of the lengths of the next two fields: ISDN remote subaddress
type and the ISDN remote subaddress. If the ISDN remote
subaddress has been padded on the right with blanks, the
length of that padding is not included in this total. If ISDN is
not used, this field contains 0.

Display, ICF

182 File Management V5R2



Table 27. Get Attributes (continued)

Offset Data Type Length Contents File Type

196 Character 2 ISDN remote subaddress type (decimal).

00 NSAP.

01 User-specified.

Display, ICF

198 Character 40 ISDN remote subaddress (EBCDIC representation of the
original hexadecimal value, padded on the right with zeros).

Display, ICF

238 Character 1 Reserved. Display, ICF
239 Character 1 ISDN connection (decimal).

0 Incoming ISDN call.

1 Outgoing ISDN call.

Other Non-ISDN connection.

Display, ICF

240 Binary 2 ISDN remote network address length in bytes. If the ISDN
remote network address has been padded on the right with
blanks, the length of that padding is not included.

If ISDN is not used, this field contains 0.

Display, ICF

242 Character 32 The ISDN remote network address in EBCDIC, padded on the
right with blanks, if necessary, to fill the field.

Display, ICF

274 Character 4 Reserved. Display, ICF
278 Character 2 ISDN remote address extension length in bytes. Consists of

the total of the lengths of the next two fields: ISDN remote
address extension type and the ISDN remote address
extension. If the ISDN remote address extension has been
padded on the right with zeros, the length of that padding is
not included.

If ISDN is not used or there is no ISDN remote address
extension, this field contains 0.

Display, ICF

280 Character 1 ISDN remote address extension type (decimal).

0 Address assigned according to ISO 8348/AD2

2 Address not assigned according to ISO 8348/AD2

Other Reserved.

Display, ICF

281 Character 40 ISDN remote address extension (EBCDIC representation of
the original hexadecimal value, padded on the right with
zeros).

Display, ICF

321 Character 4 Reserved. Display, ICF
325 Character 1 X.25 call type (decimal).

0 Incoming Switched Virtual Circuit (SVC)

1 Outgoing SVC

2 Not X.25 SVC

Other Reserved.

Display, ICF

Note: The following information is available only for when your program was started as a result of a received program start request.
Also, not all of the information will be available if the area to receive it is too small.

326 Character 64 Transaction program name. Name of the program specified to
be started as a result of the received program start request,
even if a routing list caused a different program to be started.

ICF

390 Binary 1 Length of the protected LUWID field. The valid values are 0
through 26.

ICF

391 Binary 1 Length of the qualified LU-NAME. The valid values are 0
through 17.

ICF

392 Character 17 Network qualified protected LU-NAME in the form:
netid.luname. This field is blank if there is no network qualified
protected LU-NAME.

ICF

409 Character 6 Protected LUWID instance number. ICF
415 Binary 2 Protected LUWID sequence number. ICF

Appendix A. Feedback area layouts 183



Table 27. Get Attributes (continued)

Offset Data Type Length Contents File Type

Note: The following information is available only when a protected conversation is started on the remote server. That is, when a
conversation is started with a SYNCLVL of *COMMIT. Also, not all of the information will be available if the area to receive it is too
small.

417 Binary 1 Length of the unprotected LUWID field. The valid values are 0
through 26.

ICF

418 Binary 1 Length of the qualified LU-NAME. The valid values are 0
through 17.

ICF

419 Character 17 Network qualified unprotected LU-NAME in the form:
netid.luname. This field is blank if there is no network qualified
unprotected LU-NAME.

ICF

436 Character 6 Unprotected LUWID instance number. ICF
442 Binary 2 Unprotected LUWID sequence number. ICF
Note:

Type 1 Controllers available at V2R2 which support such things as windows and continued cursor progression.

Type 2 Controllers available at V2R3. These support all of the V2R2 functions as well as menu bars, continued-entry fields, edit
masks, and simple hotspots.

Type 3 Controllers available at V3R1. These support all of the V2R2 and V2R3 functions. They also support text in the bottom
border of windows.

184 File Management V5R2



Appendix B. Double-byte character set support

This appendix contains information that you need if you use double-byte characters. This includes the
following topics:

v Double-byte character set (DBCS) fundamentals

v Processing double-byte characters

v DBCS device file support

v DBCS Display support

v Copying files that contain double-byte characters

v Writing application programs that process double-byte characters

v DBCS font tables

v DBCS font files

v DBCS sort tables

v DBCS conversion dictionaries

v DBCS conversion (for Japanese use only)

DBCS printer and spooling support information can be found in the Printer Device Programming
book.

Double-byte character set fundamentals
Some languages, such as Chinese, Japanese, and Korean, have a writing scheme that uses many
different characters that cannot be represented with single-byte codes. To create coded character sets for
such languages, the server uses two bytes to represent each character. Characters that are encoded in
two-byte code are called double-byte characters.

Figure 29 on page 186 shows alphanumeric characters coded in a single-byte code scheme and
double-byte characters coded in a double-byte code scheme.

You can use double-byte characters as well as single-byte characters in one application. For instance, you
may want to store double-byte data and single-byte data in your database, create your display screens
with double-byte text and fields, or print reports with double-byte characters.

© Copyright IBM Corp. 1998, 2002 185

|
|

|

|

|

|

|

|

|

|

|

|

|



For more information about double-byte characters, see the following topics:

v DBCS code scheme

v Shift-control double-byte characters

v Invalid double-byte code and undefined double-byte code

v Using double-byte data

v Double-byte character size

DBCS code scheme
IBM supports two DBCS code schemes: one for the host servers, the other for personal computers. The
IBM-host code scheme has the following code-range characteristics:

First byte
hex 41 to hex FE

Second byte
hex 41 to hex FE

Double-byte blank
hex 4040

Figure 29. Single-byte and Double-byte Code Schemes

186 File Management V5R2

|

|

|

|

|

|



In the following figure, using the first byte as the vertical axis and the second byte as the horizontal axis,
256 x 256 intersections or code points are expressed. The lower-right code area is designated as the
valid double-byte code area and x is assigned to the double-byte blank.

By assigning the values hex 41 to hex FE in the first and second bytes as the DBCS codes, the codes can
be grouped in wards with 192 code points in each ward. For example, the code group with the first byte
starting with hex 42 is called ward 42. Ward 42 has the same alphanumeric characters as those in a
corresponding single-byte EBCDIC code page, but with double-byte codes. For example, the character A
is represented in single-byte EBCDIC code as hex C1 and in IBM-host code as hex 42C1.

The iSeries server supports the following double-byte character sets:

v IBM Japanese Character Set

v IBM Korean Character Set

v IBM Simplified Chinese Character Set

v IBM Traditional Chinese Character Set

The following tables show the code ranges for each character set and the number of characters supported
in each character set.

Table 28. IBM Japanese Character Set

Wards Content Number of Characters

40 Space in 4040 1

Figure 30. IBM-Host Code Scheme

Appendix B. Double-byte character set support 187



Table 28. IBM Japanese Character Set (continued)

Wards Content Number of Characters

41 to 44 Non-Kanji characters

v Greek, Russian, Roman numeric (Ward 41)

v Alphanumeric and related symbols (Ward 42)

v Katakana, Hiragana, and special symbols (Ward
43-44)

549

45 to 55 Basic Kanji characters 3226

56 to 68 Extended Kanji characters 3487

69 to 7F User-defined characters Up to 4370

80 to FE Reserved

: Total number of IBM-defined characters: 7263

Table 29. IBM Korean Character Set

Wards Content Number of Characters

40 Space in 4040 1

41 to 46 Non-Hangeul/Hanja characters (Latin alphabet, Greek, Roman,
Japanese Kana, numeric, special symbols)

939

47 to 4F Reserved

50 to 6C Hanja characters 5265

6D to 83 Reserved

84 to D3 Hangeul characters (Jamo included) 2672

D4 to DD User-defined characters Up to 1880

DE to FE Reserved

: Total number of IBM-defined characters: 8877

Table 30. IBM Simplified Chinese Character Set

Wards Content Number of Characters

40 Space in 4040 1

41 to 47 Non-Chinese characters (Latin alphabet, Greek,
Russian, Japanese Kana, numeric, special
symbols)

712

48 to 6F Chinese characters: Level 1 and Level 2 3755 and 3008

70 to 75 Reserved

188 File Management V5R2



Table 30. IBM Simplified Chinese Character Set (continued)

Wards Content Number of Characters

76 to 7F User-defined characters Up to 1880

80 to FE Reserved

: Total number of IBM-defined characters: 7476

Table 31. IBM Traditional Chinese Character Set

Wards Content Number of Characters

40 Space in 4040 1

41 to 49 Non-Chinese characters (Latin alphabet, Greek, Roman,
Japanese Kana, numeric, special symbols)

1003

4A to 4B Reserved

4C to 68 Primary Chinese characters 5402

69 to 91 Secondary Chinese characters 7654

92 to C1 Reserved

C2 to E2 User-defined characters Up to 6204

E3 to FE Reserved

: Total number of IBM-defined characters: 14060

This code scheme applies to the iSeries server, System/36, System/38, as well as the System/370 server.
A different DBCS code scheme, called the IBM Personal Computer DBCS code scheme, is used on the
Personal System/55. For details of the IBM Personal Computer DBCS code scheme, refer to IBM PS/55
publications.

Shift-control double-byte characters
When the IBM-host code scheme is used, the server uses shift-control characters to identify the beginning
and end of a string of double-byte characters. The shift-out (SO) character, hex 0E, indicates the
beginning of a double-byte character string. The shift-in (SI) character, hex 0F, indicates the end of a
double-byte character string.

Appendix B. Double-byte character set support 189



Each shift-control character occupies the same amount of space as one alphanumeric character. By
contrast, double-byte characters occupy the same amount of space as two alphanumeric characters.

When double-byte characters are stored in a graphic field or a variable of graphic data type, there is no
need to use shift control characters to surround the double-byte characters.

Invalid double-byte code and undefined double-byte code
Invalid double-byte code has a double-byte code value that is not in the valid double-byte code range.
Figure 30 on page 187 shows valid double-byte code ranges. This is in contrast to undefined double-byte
code where the double-byte code is valid, but no graphic symbol has been defined for the code.

Using double-byte data
This section tells you where you can use double-byte data and discusses the limitations to its use.

Where you can use double-byte data
You can use double-byte data in the following ways:

v As data in files:

– Data in database files.

– Data entered in input-capable and data displayed in output-capable fields of display files.

– Data printed in output-capable fields in printer files.

– Data used as literals in display files and printer files.

v As the text of messages.

v As the text of object descriptions.

v As literals and constants, and as data to be processed by high-level language programs.

Double-byte data can be displayed only at DBCS display stations and printed only on DBCS printers.
Double-byte data can be written onto diskette, tape, disk, and optical storage.

Where you cannot use double-byte data
You cannot use double-byte data in the following ways:

v As iSeries object names.

v As command names or variable names in control language (CL) and other high-level languages.

v As displayed or printed output on alphanumeric work stations.

190 File Management V5R2



Double-byte character size
When displayed or printed, double-byte characters usually are twice as wide as single-byte characters.

Consider the width of double-byte characters when you calculate the length of a double-byte data field
because field lengths are usually identified as the number of single-byte character positions used. For
more information on calculating the length of fields containing double-byte data, refer to the DDS
Reference.

Processing double-byte characters
Due to the large number of double-byte characters, the server needs more information to identify each
double-byte character than is needed to identify each alphanumeric character.

There are two types of double-byte characters: Basic double-byte characters and Extended double-byte
characters. These characters are usually processed by the device on which the characters are displayed
or printed. For more information about extended double-byte characters, see What happens when
extended double-byte characters are not processed.

Basic double-byte characters
Basic characters are frequently used double-byte characters that reside in the hardware of a
DBCS-capable device. The number of double-byte characters stored in the device varies with the
language supported and the storage size of the device. A DBCS-capable device can display or print basic
characters without using the extended character processing function of the operating system.

Extended double-byte characters
When processing extended characters, the device requires the assistance of the server. The server must
tell the device what the character looks like before the device can display or print the character. Extended
characters are stored in a DBCS font table, not in the DBCS-capable device. When displaying or printing
extended characters, the device receives them from the DBCS font table under control of the operating
system.

Extended character processing is a function of the operating system that is required to make characters
stored in a DBCS font table available to a DBCS-capable device.

To request extended character processing, specify the double-byte extended character parameter,
IGCEXNCHR(*YES), on the file creation command when you create a display (CRTDSPF command) or
printer file (CRTPRTF command) that processes double-byte data. Because IGCEXNCHR(*YES) is the
default value, the server automatically processes extended characters unless you instruct it otherwise. You
can change this file attribute by using a change file (CHGDSPF or CHGPRTF) or override file (OVRDSPF
or OVRPRTF) command. For example, to override the display file DBCSDSPF so that extended
characters are processed, enter:
OVRDSPF DSPF(DBCSDSPF) IGCEXNCHR(*YES)

Notes:

1. The server ignores the IGCEXNCHR parameter when processing alphanumeric files.

2. When you use the Japanese 5583 Printer to print extended characters, you must use the Kanji print
function of the Advanced DBCS Printer Support for iSeries licensed program. Refer to the Kanji Print
Function User’s Guide and Reference for how to use this utility.

What happens when extended double-byte characters are not
processed
When extended characters are not processed, the following happens:

v Basic double-byte characters are displayed and printed.

Appendix B. Double-byte character set support 191

|
|
|
|



v On displays, the server displays the undefined character where it would otherwise display extended
characters.

v On printed output, the server prints the undefined character where it would otherwise print extended
characters.

v The extended characters, though not displayed or printed, are stored correctly in the server.

DBCS device file support
The following sections describe DBCS-capable device files and special considerations for working with
DBCS-capable device files. Data description specifications (DDS), a language used to describe files, can
be used with DBCS-capable device files.

For more information about DBCS device file support, see the following topics:

v What a DBCS file is

v When to indicate a DBCS file

v How to indicate a DBCS file

v Improperly indicated DBCS files

For information about using DDS, refer to the DDS Reference.

What a DBCS file is
A DBCS file is a file that contains double-byte data or is used to process double-byte data. Other files are
called alphanumeric files.

The following types of device files can be DBCS files:

v Display

v Printer

v Tape

v Diskette

v ICF

When to indicate a DBCS file
You should indicate that a file is DBCS in one or more of the following situations:

v The file receives input, or displays or prints output, which has double-byte characters.

v The file contains double-byte literals.

v The file has double-byte literals in the DDS that are used in the file at processing time (such as
constant fields and error messages).

v The DDS of the file includes DBCS keywords. See the DDS Reference for information on these
keywords.

v The file stores double-byte data (database files).

How to indicate a DBCS file
You must indicate that a device file is a DBCS file in order for the server to process double-byte data
properly. You can do this in one of the following ways:

v Through DDS

– DDS provides fields of the following data types.

- DBCS-only fields: display and accept only double-byte characters. Double-byte characters in a
DBCS-only field are enclosed in shift-out and shift-in characters that have to be paired.

192 File Management V5R2

|

|

|

|

|



- DBCS-open fields: display and accept both single-byte and double-byte characters. Double-byte
characters are enclosed in shift-out and shift-in characters that have to be paired.

- DBCS-either fields: display and accept either single-byte or double-byte characters, but not both.
Double-byte characters are enclosed in shift-out and shift-in character pairs.

- DBCS-graphic fields: display and accept only double-byte characters. Characters in a
DBCS-graphic field do not have shift-out and shift-in characters. The iSeries DBCS-graphic field is
equivalent to a System/370 DBCS field.

– In ICF files, by defining fields with DBCS-open data type (type O).

– In printer files, by defining fields with DBCS-open data type (type O) and DBCS-graphic data type
(type G).

– In display files, by defining fields with DBCS-only data type (type J), DBCS-either data type (type E),
DBCS-open data type (type O), or DBCS-graphic data type (type G).

– By using a double-byte literal that is used with the file at processing time, such as literals specified
with the Default (DFT) and Error Message (ERRMSG) DDS keywords.

Note: You may also use double-byte literals as text and comments in a file, such as with the DDS
keyword TEXT. However, the server does not consider a file, whose only DBCS usage is that
it has double-byte comments, to be a DBCS file.

– By specifying the Alternative Data Type (IGCALTTYP) DDS keyword in display and printer files. This
keyword lets you use display and printer files with both alphanumeric and double-byte applications.
When you put the IGCALTTYP keyword into effect, you can use double-byte data with the file.

Put the IGCALTTYP keyword into effect by creating, changing, or overriding display and printer files
with the IGCDTA(*YES) value. You can put the IGCALTTYP keyword into effect for display and
printer files by specifying IGCDTA(*YES) on the following device file commands:

- Create Display File (CRTDSPF)

- Create Printer File (CRTPRTF)

- Change Display File (CHGDSPF)

- Change Printer File (CHGPRTF)

- Override with Display File (OVRDSPF)

- Override with Printer File (OVRPRTF)

When you specify IGCDTA(*NO), the IGCALTTYP keyword is not in effect and you can use only
alphanumeric data with the file. Changing or overriding the file to put the IGCALTTYP keyword into
effect does not change the DDS of the file.

Except when using the IGCALTTYP function, you do not need to specify IGCDTA(*YES) on the file
creation command if you have already specified DBCS functions in the DDS. Instead, specify
IGCDTA(*YES) when the file has DBCS functions that are not indicated in the DDS. For example,
specify IGCDTA(*YES) on the file creation command if the file is intended to contain double-byte
data.

v By specifying IGCDTA(*YES) on the following device file creation commands:

– Create Diskette File (CRTDKTF)

– Create Display File (CRTDSPF)

– Create Printer File (CRTPRTF)

– Create Tape File (CRTTAPF)

v By specifying IGCDTA(*YES) on the following database file creation commands:

– Create Physical File (CRTPF)

– Create Source Physical File (CRTSRCPF)

Appendix B. Double-byte character set support 193



Improperly indicated DBCS files
If you do not properly indicate that a file is a DBCS file, one of the following happens:

v For printer files, printer data management assumes the output data to the printer does not contain
double-byte data. The end result depends on the type of printer the data is printed on and the status of
the replace unprintable character parameter for the printer file you are using.

If the replace-unprintable-character option is selected, printer data management interprets shift-control
characters as unprintable characters and replaces them with blanks. The double-byte data itself is
interpreted as alphanumeric data, and the printer attempts to print it as such. The printed double-byte
data does not make sense.

If the replace-unprintable-character option is not selected and the printer is an alphanumeric printer, the
double-byte data, including the control characters, is sent as is to the printer. On most alphanumeric
printers, the shift-control characters are not supported, and an error will occur at the printer.

If the replace-unprintable-character option is not selected and the printer is a DBCS printer, the
double-byte data is printed with the exception of extended characters. Because the file was not
indicated as a DBCS file, the server will not perform extended character processing. The extended
characters are printed with the symbol for undefined double-byte characters.

v For display files, display data management assumes that the output data to the display does not contain
double-byte data. The end result depends on whether the display is an alphanumeric or DBCS display.

If the display is an alphanumeric display, the double-byte data is interpreted as alphanumeric data. The
shift-control characters appear as anks. The displayed double-byte data does not make sense.

If the display is a DBCS display, the double-byte data is displayed with the exception of extended
characters. The server does not perform extended character processing on the data. Therefore,
extended characters are displayed with the symbol for undefined double-byte characters.

v The server does not recognize literals with DBCS text as double-byte literals if the source file is not
specified as a DBCS file.

Making printer files capable of DBCS
In many cases, printer files are used by the server to produce data that will eventually be printed or
displayed. In these cases, the data is first placed into a spooled file using one of the IBM-supplied printer
files. The data is then taken from the spooled file and is displayed or printed based on the request of the
user.

When the data involved contains double-byte characters, the printer file that is used to place the data into
the spooled file must be capable of processing double-byte data. A printer file is capable of processing
double-byte data when *YES is specified on the IGCDTA parameter for the file. In most cases, the server
recognizes the occurrence of double-byte data and takes appropriate measures to ensure the printer file
that is used is capable of processing double-byte data.

In some cases, however, the server cannot recognize the occurrence of double-byte data and may attempt
to use a printer file that is not capable of processing double-byte data. If this occurs, the output at the
display or printer may not be readable. This can happen when object descriptions containing double-byte
characters are to be displayed or printed on an alphanumeric device.

To ensure that you receive correct results when you display or print double-byte characters, some
recommendations should be followed. Action is required on your part if you have a single-byte national
language installed as a secondary language. Printer files that are received as part of the DBCS version of
a product are always capable of processing DBCS data.

The following recommended actions should be performed after the product or feature has been installed:

1. If all printers and display devices attached to your server are DBCS-capable, you can enable all printer
files for double-byte data. For IBM-supplied printer files that are received as part of a single-byte
secondary language feature, you can enable all printer files by issuing the following command:
CHGPRTF FILE(*ALL/*ALL) IGCDTA(*YES)

194 File Management V5R2



After this command has been completed, all printer files in all libraries will be enabled for double-byte
data. The change will be a permanent change.

2. If all printer and display devices attached to your server are not DBCS-capable, it is recommended that
you do not enable all IBM-supplied printer files.

Instead, use the library search capabilities of the server to control which printer files will be used for
any particular job. When the potential exists that double-byte data will be encountered, the library list
for the job should be such that the printer files that are DBCS-enabled will be found first in the library
list. Conversely, if only single-byte data is expected to be encountered, the library list should be set up
so the printer files that are not enabled for DBCS will be found first. In this way, the printer file
capabilities will match the type of data that will be processed. The decision as to what type of printer
file to use is made on the basis of what type of data will be processed. The device that will be used to
actually display or print the data may also influence this decision.

In some cases it may be desirable to make the printer file only temporarily DBCS-capable instead of
making a permanent change. For a specific job, you can make this temporary change by using the
OVRPRTF command.

To temporarily enable a specific printer file, you can use the following command:
OVRPRTF FILE(filename) IGCDTA(*YES)

Where filename is the name of the printer file you want to enable.

DBCS display support
The following sections describe information on displaying double-byte characters.

“Inserting shift-control double-byte characters”

“Number of displayed extended double-byte characters” on page 196

“Number of DBCS input fields on a display” on page 196

“Effects of displaying double-byte data at alphanumeric work stations” on page 196

Inserting shift-control double-byte characters
The server inserts shift-control characters into DBCS-only fields automatically.

To insert shift-control characters into open fields or either fields, do the following:

1. Position the cursor in the field in which you want to insert double-byte data.

2. Press the Insert Shift Control Character key (according to your DBCS display station user’s guide).

The server inserts a pair of shift-control characters at the same time, as follows (where 0E represents the
shift-out character and 0F represents the shift-in character):
0E0F

The server leaves the cursor under the shift-in character and puts the keyboard in insert mode. Insert
double-byte characters between the shift-control characters. To insert double-byte characters, start keying
in double-byte characters at the cursor position. For example, enter the double-byte character string
D1D2D3, as follows (where 0E represents the shift-out character, 0F represents the shift-in character, and
D1, D2, and D3 represent three double-byte characters):

0ED1D2D30F

To find out if a field already has the shift-control characters, press the Display Shift Control Character key.

Appendix B. Double-byte character set support 195



DBCS-graphic fields store double-byte characters without requiring the use of shift control characters. Shift
control characters should not be inserted in graphic fields.

Number of displayed extended double-byte characters
The server can display up to 512 different extended characters on a Japanese display at one time.
Additional extended characters are displayed as undefined characters. However, the additional extended
characters are stored correctly in the server.

Number of DBCS input fields on a display
The use of DBCS input fields affects the total number of input fields allowed on a display. For a local 5250
display station, you can specify as many as 256 input fields. However, each three instances of a DBCS
field reduces the maximum number of fields by one. For example, if there are 9 DBCS fields on a display,
then the maximum is 256 − (9/3) = 253 input fields.

Effects of displaying double-byte data at alphanumeric work stations

Alphanumeric display stations cannot display double-byte data correctly. If you try to display double-byte
data at an alphanumeric display station, the following happens:

v The server sends an inquiry message to that display station, asking whether you want to continue using
the program with double-byte data or to cancel it.

v If you continue using the program, the server ignores the shift-control characters and interprets the
double-byte characters as though they were single-byte characters. Displayed double-byte data does
not make sense.

Copying DBCS files
You can copy both spooled and nonspooled DBCS files.

“Copying spooled DBCS files”

“Copying nonspooled DBCS files”

Copying spooled DBCS files
Copy spooled files that have double-byte data by using the Copy Spooled File (CPYSPLF) command.
However, the database file to which the file is being copied must have been created with the
IGCDTA(*YES) value specified.

When copying spooled files to a database file that contains double-byte data, an extra column is reserved
for the shift-out character. This shift-out character is placed between the control information for the record
and the user data. The following table shows the shift-out character column number, based on the value
specified for the Control Character (CTLCHAR) keyword:

CTLCHAR Value Column for Shift-Out Character

*NONE 1
*FCFC 2
*PRTCTL 5
*S36FMT 10

Copying nonspooled DBCS files
You can use the Copy File (CPYF) command to copy double-byte data from one file to another.

196 File Management V5R2



When copying data from a double-byte database file to an alphanumeric database file, specify one of the
following on the CPYF command:

v If both files are source files or if both files are database files, you can specify either the FMTOPT(*MAP)
parameter or the FMTOPT(*NOCHK) parameter.

v If one file is a source file and the other file is a database file, specify the FMT(*CVTSRC) parameter.

When you copy DBCS files to alphanumeric files, the server sends you an informational message
describing the difference in file types.

Either the FMTOPT(*MAP) or FMTOPT(*NOCHK) option of the copy file function must be specified for
copies from a physical or logical file to a physical file when there are fields with the same name in the
from-file and to-file, but the data type for fields is as shown in the following table.

From-File Field Data Type To-File Field Data Type

A (character) J (DBCS-only)
O (DBCS-open) J (DBCS-only)
O (DBCS-open) E (DBCS-either)
E (DBCS-either) J (DBCS-only)
J (DBCS-only) G (DBCS-graphic)
O (DBCS-open) G (DBCS-graphic)
E (DBCS-either) G (DBCS-graphic)
G (DBCS-graphic) J (DBCS-only)
G (DBCS-graphic) O (DBCS-open)
G (DBCS-graphic) E (DBCS-either)
G (UCS-2 graphic) A (Character (CCSID non-65535))
G (UCS-2 graphic) J (DBCS-open (CCSID non-65535))
G (UCS-2 graphic) E (DBCS-either (CCSID non-65535))
G (UCS-2 graphic) J (DBCS-only (CCSID non-65535))
G (UCS-2 graphic) G (DBCS-graphic)
A (Character (CCSID non-65535)) G (UCS-2 graphic)
O (DBCS-open (CCSID non-65535)) G (UCS-2 graphic)
E (DBCS-either (CCSID non-65535)) G (UCS-2 graphic)
J (DBCS-only (CCSID non-65535)) G (UCS-2 graphic)
G (DBCS-graphic) G (UCS-2 graphic)

When you use FMTOPT(*MAP) on the CPYF command to copy data to a DBCS-only field or
DBCS-graphic field, the corresponding field in the from-file must not be:

v Less than a 2-byte character field

v An odd-byte-length character field

v An odd-byte-length DBCS-open field

Note: DBCS-graphic is the only type allowed to be CCSID 65535 when using FMTOPT(*MAP) copying
from or to a UCS-2 graphic field. UCS-2 graphic cannot be CCSID 65535.

If you attempt to copy with one of these specified in the from-field, an error message is sent.

When you copy double-byte data from one database file to another with the FMTOPT(*MAP) parameter
specified, double-byte data will be copied correctly. The server will perform correct padding and truncation
of double-byte data to ensure data integrity.

When using the CPYF command with FMTOPT(*MAP) to copy a DBCS-open field to a graphic field, a
conversion error occurs if the DBCS-open field contains any SBCS data (including blanks).

Appendix B. Double-byte character set support 197



Application program considerations for DBCS
The following sections describe considerations for writing applications that process double-byte data.

“Designing application programs that process double-byte data”

“Changing alphanumeric application programs to DBCS application programs”

Designing application programs that process double-byte data
Design your application programs for processing double-byte data in the same way you design application
programs for processing alphanumeric data, with the following additional considerations:

v Identify double-byte data used in the database files.

v Design display and printer formats that can be used with double-byte data.

v If needed, provide DBCS conversion as a means of entering double-byte data for interactive
applications. Use the DDS keyword for DBCS conversion (IGCCNV) to specify DBCS conversion in
display files. Because DBCS work stations provide a variety of double-byte data entry methods, you are
not required to use the iSeries DBCS conversion function to enter double-byte data.

v Create double-byte messages to be used by the program.

v Specify extended character processing so that the server prints and displays all double-byte data. See
“Extended double-byte characters” on page 191 for instructions.

v Determine whether additional double-byte characters need to be defined. User-defined characters can
be defined and maintained using the character generator utility (CGU). Information on CGU can be
found in the ADTS/400: Character Generator Utility book.

When you write application programs to process double-byte data, make sure that the double-byte data is
always processed in a double-byte unit and do not split a double-byte character.

Changing alphanumeric application programs to DBCS application
programs
If an alphanumeric application program uses externally described files, you can change that application
program to a DBCS application program by changing the externally described files. To convert an
application program, do the following:

1. Create a duplicate copy of the source statements for the alphanumeric file that you want to change.

2. Change alphanumeric constants and literals to double-byte constants and literals.

3. Change fields in the file to the open (O) data type or specify the Alternative Data Type (IGCALTTYP)
DDS keyword so that you can enter both double-byte and alphanumeric data in these fields. You may
want to change the length of the fields as the double-byte data takes more space.

4. Store the converted file in a separate library. Give the file the same name as its alphanumeric version.

5. When you want to use the changed file in a job, change the library list, using the Change Library List
(CHGLIBL) command, for the job in which the file will be used. The library in which the DBCS display
file is stored is then checked before the library in which the alphanumeric version of the file is stored.

DBCS font tables
DBCS font tables contain the images of the double-byte extended characters used on the server. The
server uses these images to display and print extended characters.

The following DBCS font tables are objects that you can save or restore. These font tables are distributed
with the DBCS national language versions of the OS/400 licensed program:

QIGC2424
A Japanese DBCS font table used to display and print extended characters in a 24-by-24 dot

198 File Management V5R2



matrix image. The server uses the table with Japanese display stations, printers attached to
display stations, 5227 Model 1 Printer, and the 5327 Model 1 Printer.

QIGC2424C
A Traditional Chinese DBCS font table used to print extended characters in a 24-by-24 dot matrix
image. The server uses the table with the 5227 Model 3 Printer and the 5327 Model 3 Printer.

QIGC2424K
A Korean DBCS font table used to print extended characters in a 24-by-24 dot matrix image. The
server uses the table with the 5227 Model 2 Printer and the 5327 Model 2 Printer.

QIGC2424S
A Simplified Chinese DBCS font table used to print extended characters in a 24-by-24 dot matrix
image. The server uses the table with the 5227 Model 5 Printer.

QIGC3232
A Japanese DBCS font table used to print characters in a 32-by-32 dot matrix image. The server
uses the table with the 5583 Printer and the 5337 Model 1 Printer.

QIGC3232S
A Simplified Chinese DBCS font table used to print characters in a 32-by-32 dot matrix image. The
server uses the table with the 5337 Model R05 Printer.

All DBCS font tables have an object type of *ICGTBL. You can find instructions for adding user-defined
characters to DBCS font tables in the ATDS/400: Character Generator Utility book.

For more information about DBCS font tables, see the following topics:

v Commands for DBCS font tables

v Finding out if a DBCS font table exists

v Copying a DBCS font table onto tape or diskette

v Copying a DBCS font table from tape or diskette

v Deleting a DBCS font table

v Starting the character generator utility for DBCS font tables

v Copying user-defined double-byte characters

Commands for DBCS font tables
The following commands allow you to manage and use DBCS font tables:

v Check DBCS Font Table (CHKIGCTBL)

v Copy DBCS Font Table (CPYIGCTBL)

v Delete DBCS Font Table (DLTIGCTBL)

v Start Character Generator Utility (STRCGU)

v Start Font Management Aid (STRFMA)

Finding out if a DBCS font table exists
Use the Check DBCS Font Table (CHKIGCTBL) command to find out if a DBCS font table exists in your
server.

For example, to find out if the table QIGC2424 exists, enter:
CHKIGCTBL IGCTBL(QIGC2424)

If the table does not exist, the server responds with a message. If the table does exist, the server simply
returns without a message.

Appendix B. Double-byte character set support 199

|

|

|

|

|

|

|

|



Check for the existence of a table when adding a new type of DBCS work station to make sure that the
table used by the device exists in the server.

Copying a DBCS font table onto tape or diskette
Use the Copy DBCS Font Table (CPYIGCTBL) command to copy a DBCS font table onto tape or diskette.

The DBCS font tables are saved when you use the Save System (SAVSYS) command so you do not have
to use the CPYIGCTBL command when performing normal server backup.

When to copy a DBCS table onto tape or diskette
Copy a DBCS font table onto tape or diskette in the following instances:

v Before deleting that table.

v After new user-defined characters are added to the tables.

v When planning to use the tables on another server.

How to copy a DBCS table onto tape or diskette
To copy a DBCS font table onto a tape or diskettes, do the following:

1. Make sure that you have a tape or diskettes initialized to the *DATA format. If necessary, initialize the
tape or diskettes by specifying the FMT(*DATA) parameter on the Initialize Diskette (INZDKT)

command. See the Tape and Diskette Device Programming book for complete instructions on
initializing tapes and diskettes.

2. Load the initialized tape or diskette onto the server.

3. Enter the CPYIGCTBL command as follows:

a. Choose the value OPTION(*OUT).

b. Use the DEV parameter to select the device to which you want to copy the table.

c. Use the SELECT and RANGE parameters to specify which portion of the table you want copied
from the server. See the description of the CPYIGCTBL command in the CL topic for instructions
on choosing SELECT and RANGE parameter values.

The following are two examples of the CPYIGCTBL command used to copy a DBCS font table to
removable media.

v To copy the DBCS font table QIGC2424 onto diskettes, enter:
CPYIGCTBL IGCTBL(QIGC2424) OPTION(*OUT) +

DEV(QDKT)

v To copy just the user-defined characters from DBCS font table QIGC2424 onto tape, enter:
CPYIGCTBL IGCTBL(QIGC2424) OPTION(*OUT) +

DEV(QTAP01) SELECT(*USER)

4. Press the Enter key. The server copies the DBCS font table onto the specified media.

5. Remove the tape or diskette after the server finishes copying the table.

Copying a DBCS font table from tape or diskette
Use the Copy DBCS Font Table (CPYIGCTBL) command to copy a DBCS font table from a tape or a
diskette onto the server. The server automatically creates the DBCS font table again when copying its
contents if the following are true:

v The specified table does not already exist in the server.

v The media from which you are copying the table contains all of the IBM-defined double-byte characters.

v SELECT(*ALL) or SELECT(*SYS) is specified on the CPYIGCTBL command.

How to copy a DBCS table from a tape or diskette
To copy a DBCS font table from tape or diskette onto the server:

1. Load the removable media from which the table will be copied onto the server.

200 File Management V5R2



2. Enter the CPYIGCTBL command as follows:

a. Choose the OPTION(*IN) value.

b. Use the DEV parameter to select the device from which to copy the DBCS font table.

c. Use the SELECT and RANGE parameters to specify which portion of the table will be copied from
the tape or diskette. See the CL topic for a description of the CPYIGCTBL command and for
instructions on choosing SELECT and RANGE parameter values.

The following are two examples of commands used to copy a DBCS font table to the server.

v To copy the DBCS font table QIGC2424 from diskette, enter:
CPYIGCTBL IGCTBL(QIGC2424) OPTION(*IN) +

DEV(QDKT)

v To copy just the user-defined characters from DBCS font table QIGC2424 from tape and to replace
the user-defined characters in the table with the ones from the tape, enter:
CPYIGCTBL IGCTBL(QIGC2424) OPTION(*IN) +

DEV(QTAP01) SELECT(*USER) RPLIMG(*YES)

3. Press the Enter key. The server copies the DBCS font table from the tape or diskette onto the server.

4. Remove the tape or diskette after the server finishes copying the table.

Deleting a DBCS font table
Use the Delete DBCS Font Table (DLTIGCTBL) command to delete a DBCS font table from the server.

When to delete a DBCS font table
Delete an unused DBCS font table to free storage space. For example, if you do not plan to use Japanese
printer 5583 or 5337 with your server, font table QIGC3232 is not needed and can be deleted.

How to delete a DBCS font table
When deleting a table, do the following:

1. If desired, copy the table onto tape or diskettes. See “Copying a DBCS font table onto tape or diskette”
on page 200 for instructions. If you do not copy the table to removable media before deleting it, you
will not have a copy of the table for future use.

2. Vary off all devices using that table.

3. Enter the DLTIGCTBL command.

For example, to delete the DBCS font table QIGC3232, enter:
DLTIGCTBL IGCTBL(QIGC3232)

4. Press the Enter key. The server sends inquiry message CPA8424 to the system operator message
queue for you to confirm your intention to delete a DBCS table.

5. Respond to the inquiry message. The server sends you a message when it has deleted the table.

Note: Do not delete a DBCS font table if any device using that table is currently varied on. Also, make
sure that the affected controller is not varied on. If you try to delete the table while the device and
controller are varied on, the server reports any devices attached to the same controller(s) as those
devices, and the controller(s) as damaged the next time you try to print or display extended
characters on an affected device. If such damage is reported, do the following:

1. Vary off the affected devices, using the Vary Configuration (VRYCFG) command.

2. Vary off the affected controller.

3. Vary on the affected controller.

4. Vary on the affected devices.

5. Continue normal work.

Appendix B. Double-byte character set support 201



Starting the character generator utility for DBCS font tables
Use the STRCGU command to start the character generator utility. You may call the CGU main menu or
specify a specific CGU function, depending on the parameter used. Refer to the ADTS/400: Character
Generator Utility book for more information.

Copying user-defined double-byte characters
Use the STRFMA command to copy user-defined double-byte characters between an iSeries DBCS font
table and a user font file at a Personal System/55, a 5295 Display Station, or an InfoWindow 3477 Display
Station.

DBCS font files
In addition to the server-supplied DBCS font tables, the server also provides DBCS font files. These DBCS
font files are physical files which contain frequently used double-byte characters. When using the character
generator utility, you can use the characters in these files as the base for a new user-defined character.
These files are supplied with read-only authority as they are not to be changed. If you do not use
character generator utility or theAdvanced DBCS Printer Support for iSeries licensed program, you may
delete these files to save space. They all exist in the QSYS library.

The following DBCS font files are distributed with the DBCS national language versions of the OS/400
licensed program. They are used as a reference for the CGU and the AS/400 Advanced DBCS Printer
Support for iSeries licensed program.

QCGF2424
A Japanese DBCS font file used to store a copy of the Japanese DBCS basic character images.

QCGF2424K
A Korean DBCS font file used to store a copy of the Korean DBCS basic character images.

QCGF2424C
A Traditional Chinese DBCS font file used to store a copy of the Traditional Chinese DBCS basic
character images.

QCGF2424S
A Simplified Chinese DBCS font file used to store a copy of the Simplified Chinese DBCS basic
character images.

DBCS sort tables
DBCS sort tables contain the sort information and collating sequences of all the double-byte characters
used on the server. The server uses these tables to sort double-byte characters using the sort utility.

DBCS sort tables are objects that you can save, restore and delete. Using the character generator utility
you can also add, delete and change entries in these tables corresponding to the image entries in the
DBCS font tables. For Japanese use only, you can also copy the DBCS master sort table to and from a
data file.

The following DBCS sort tables are distributed with the DBCS national language versions of OS/400
licensed program:

QCGMSTR
A Japanese DBCS master sort table used to store the sort information for the Japanese
double-byte character set.

QCGACTV
A Japanese DBCS active sort table used to store the sort collating sequences for the Japanese
double-byte character set.

202 File Management V5R2



QCGMSTRC
A Traditional Chinese DBCS master sort table used to store the sort information for the Traditional
Chinese double-byte character set.

QCGACTVC
A Traditional Chinese DBCS active sort table used to store the sort collating sequences for the
Traditional Chinese double-byte character set.

QCGACTVK
A Korean DBCS active sort table used to map Hanja characters to Hangeul characters with
equivalent pronunciation.

QCGMSTRS
A Simplified Chinese DBCS master sort table used to store the sort information for the Simplified
Chinese double-byte character set.

QCGACTVS
A Simplified Chinese DBCS active sort table used to store the sort collating sequences for the
Simplified Chinese double-byte character set.

You may sort Japanese, Korean, Simplified Chinese, and Traditional Chinese double-byte characters.
Each of these languages have two DBCS sort tables, a DBCS master sort table and a DBCS active sort
table, except for Korean which has only a DBCS active sort table. The DBCS master sort table contains
sort information for all defined DBCS characters. The DBCS active sort table for Japanese, Simplified
Chinese, and Traditional Chinese is created from the master sort table information and contains the
collating sequences for the double-byte characters of that given language. These collating sequences have
a purpose similar to the EBCDIC and ASCII collating sequences for the single-byte alphanumeric character
set. For Korean characters, the Hangeul characters are assigned both their collating sequence as well as
their DBCS codes according to their pronunciation. Hence, a separate collating sequence is not required,
and each of the Hanja characters is mapped to a Hangeul character of the same pronunciation using the
DBCS active sort table QCGACTVK.

All DBCS sort tables have an object type of *IGCSRT.

For more information about sort tables, see the following topics:

v Commands for DBCS sort tables

v Using DBCS sort tables on the server

v Finding out if a DBCS sort table exists

v Saving a DBCS sort table onto tape or diskette

v Restoring a DBCS sort table from tape or diskette

v Copying a Japanese DBCS master sort table to a data file

v Copying a Japanese DBCS master sort table from a data file

v Deleting a DBCS sort table

Commands for DBCS sort tables
The following commands allow you to manage and use DBCS sort tables.

v Check Object (CHKOBJ)

v Save Object (SAVOBJ)

v Restore Object (RSTOBJ)

v Copy DBCS Sort Table (CPYIGCSRT) (for Japanese table only)

v Delete DBCS Sort Table (DLTIGCSRT)

v Start Character Generator Utility (STRCGU) (information on CGU can be found in the ADTS/400
Character Generator Utility book.)

Appendix B. Double-byte character set support 203

|

|

|

|

|

|

|

|

|



Using DBCS sort tables on the server
You can save the tables to tape or diskette, delete them from the server, and restore them to the server.
The Japanese DBCS master sort table can also be copied to a data file and copied from a data file so that
it can be shared with a System/36 or Application System/Entry (AS/Entry) system. You can also add sort
information for each user-defined character, and add that character to the DBCS collating sequence, as
you create it using the character generator utility.

Finding out if a DBCS sort table exists
Use the Check Object (CHKOBJ) command to find out if a DBCS sort table exists in your server.

For example, to find out if the table QCGMSTR exists, enter:
CHKOBJ OBJ(QSYS/QCGMSTR) OBJTYPE(*IGCSRT)

If the table does not exist, the server responds with a message. If the table does exist, the server simply
returns without a message.

Check for the existence of a DBCS active sort table when you want to sort double-byte characters for the
first time. The DBCS active table for the DBCS language must exist to sort the characters.

Saving a DBCS sort table onto tape or diskette
Use the Save Object (SAVOBJ) command to save a DBCS sort table onto tape or diskette. Specify
*IGCSRT for the object type.

The DBCS sort tables are saved when you use the SAVSYS command so you do not have to use the
SAVOBJ command when performing normal server backup.

When to save a DBCS sort table onto tape or diskette
Save a DBCS sort table onto tape or diskette in the following instances:

v Before deleting that table

v After information is added, updated, or changed in the tables using the character generator utility

v When planning to use the tables on another iSeries sever

Restoring a DBCS sort table from tape or diskette
Use the RSTOBJ command to restore a DBCS sort table from a tape or a diskette onto the server. The
tables on the tape or diskette must previously have been saved using the SAVOBJ command. Specify
*IGCSRT for the object type. The server automatically re-creates the DBCS sort table when the specified
table does not already exist in the server.

These tables must be restored to the QSYS library for the server to know they exist. For that reason,
RSTOBJ restores *IGCSRT objects only to the QSYS library and only if the objects do not already exist
there.

Copying a Japanese DBCS master sort table to a data file
Through the character generator utility, use the CPYIGCSRT command to copy the Japanese DBCS
master sort table (QCGMSTR) to a data file. This data file can then be moved to a System/36 server or
AS/Entry system to replace the Japanese master sort table there.

When to copy the Japanese DBCS master sort table to a data file
Copy the Japanese DBCS master sort table to a data file in the following instances:

v When planning to move the table to the System/36 or AS/Entry for use there. You should always
transport the Japanese DBCS master sort table together with the Japanese DBCS font tables.

v Before deleting that table, as an alternative to the SAVOBJ command. You can then keep the file or
save it on diskette or tape.

204 File Management V5R2



How to copy the Japanese DBCS master sort table to a data file

Note: In this section, the AS/Entry system also applies to every instance of System/36.

To copy the Japanese DBCS master sort table to a data file, do the following.

1. Decide what data file you want to copy it to. The file need not exist, it will be automatically created.

2. Enter the CPYIGCSRT command as follows:

a. Choose the value OPTION(*OUT).

b. Use the FILE parameter to specify the name of the data file to which you want to copy the master
table. If you are transporting the master table to the System/36 for use there, you should specify a
file name of #KAMAST, or you will have to rename the file when you get it to the System/36. Use
the iSeries CPYF command for copying the file onto diskette, and the System/36 TRANSFER
command for copying the file from diskette to the System/36.

c. Use the MBR parameter to specify the name of the data file member to which you want to copy the
master table. If you are transporting the master table to the System/36 for use there, you should
specify *FILE for the MBR parameter.

3. Press the Enter key. The server creates the file and member if they do not exist, and overwrites the
existing member if they do exist.

4. If you now transport this file to your System/36 to replace the #KAMAST file there, you should also use
the SRTXBLD procedure to update the active table to reflect the new master table.

Copying a Japanese DBCS master sort table from a data file
Use the CPYIGCSRT command to copy the Japanese DBCS master sort table (QCGMSTR) from a data
file.

When to copy the Japanese DBCS master sort table from a data file

You may use the System/36 Migration Planning book to migrate the System/36 or AS/Entry master
sort file (#KAMAST) to the iSeries server. When you migrate the #KAMAST file using the System/36

Migration Planning book, you do not have to use the CPYIGCSRT command.

Copy the Japanese DBCS master sort table from a data file in the following instances:

v When you do not use the System/36 Migration Planning book, you may copy the #KAMAST file
from the System/36 or AS/Entry to the iSeries server. Then use the CPYIGCSRT command to copy sort
information from the #KAMAST file to the iSeries master sort table (QCGMSTR). Delete the #KAMAST
file from the iSeries server after you complete the copy operation.

v When you have copied a version of the master table to a data file and you now want to restore that
version.

You should always migrate or copy the Japanese DBCS master sort table together with the
Japanese DBCS font tables.

How to copy the Japanese DBCS master sort table from a data file
To copy the Japanese DBCS master sort table from a data file, do the following:

1. Enter the CPYIGCSRT command as follows:

a. Choose the value OPTION(*IN).

b. Use the FILE parameter to specify the name of the data file that contains a migrated System/36 or
AS/Entry master file or an iSeries master table previously copied to the file using OPTION(*OUT)
with the CPYIGCSRT command. To migrate your System/36 or AS/Entry master file without using

the System/36 Migration Planning book, use the TRANSFER command with the IFORMAT
parameter on the System/36 or AS/Entry to save the #KAMAST master file on diskette. Use the

Appendix B. Double-byte character set support 205



iSeries Copy File (CPYF) command to copy the master file #KAMAST from diskette. Use the
CPYIGCSRT command as described here to copy data from the file to the iSeries Japanese DBCS
master sort table.

c. Use the MBR parameter to specify the name of the data file member from which you want to copy
the master table data.

2. Press the Enter key. Even though the information in the existing Japanese DBCS master sort table is
overridden, that table must exist before you can use this command.

3. To update the Japanese DBCS active table to reflect the new copied information, use the SRTXBLD
procedure in the System/36 or AS/Entry environment, or the STRCGU command specifying
OPTION(5). This must be done before you can use the sort utility to sort Japanese double-byte
characters.

Deleting a DBCS sort table
Use the DLTIGCSRT command to delete a DBCS sort table from the server.

When to delete a DBCS sort table
Delete an unused DBCS sort table to free disk space, but you should always first save a copy of the table
using the SAVOBJ command. You should delete the DBCS master sort table for a DBCS language if any
of the following are true:

1. You will not be creating any new characters for that language using the character generator utility.

2. You will not be using the sort utility to sort characters for that language.

You should delete the DBCS active sort table for a DBCS language if you will not be using the sort utility
to sort characters for that language. The DBCS active sort table must be on the server to use the sort
utility for this language.

How to delete a DBCS sort table
When deleting a table, do the following:

1. If desired, save the table onto tape or diskettes. See “Saving a DBCS sort table onto tape or diskette”
on page 204 for instructions. If you do not save the table onto removable media before deleting it, you
will not have a copy of the table for future use.

2. Enter the DLTIGCSRT command.

For example, to delete the DBCS sort table QCGACTV, enter:
DLTIGCSRT IGCSRT(QCGACTV)

3. Press the Enter key. The server sends you a message when it has deleted the table.

DBCS conversion dictionaries
The DBCS conversion dictionary is a collection of alphanumeric entries and their related DBCS words. The
server refers to the dictionary when performing DBCS conversion. See “How DBCS Conversion works” on
page 215 for information on how the server uses the DBCS conversion dictionary during DBCS
conversion.

All DBCS conversion dictionaries have an object type of *IGCDCT. A server-supplied and a user-created
dictionary are used with DBCS conversion.

For more information about DBCS conversion dictionaries, see the following topics:

v Server-supplied dictionary (for Japanese use only) for DBCS

v User-created dictionary for DBCS

v Commands for DBCS conversion dictionaries

v Displaying and printing the DBCS conversion dictionary

v Deleting a DBCS conversion dictionary

206 File Management V5R2



Server-supplied dictionary (for Japanese use only) for DBCS
QSYSIGCDCT, the server-supplied dictionary that is stored in the library, QSYS, is a collection of entries
with a Japanese pronunciation expressed in alphanumeric characters and the DBCS words related to
those entries. The server checks this dictionary second when performing DBCS conversion.

QSYSIGCDCT contains these entries:

v Personal names

– Family names

– First names

v Organization names

– Private enterprises registered in the security market

– Public corporations

– Typical organizations in the central and

– Local governments

– Most universities and colleges

v Addresses

– Public administration units within the prefectures

– Towns and streets in 11 major cities

v Business terms, such as department names and position titles commonly used in enterprises

v Individual double-byte characters, including basic double-byte characters, as defined by IBM

You cannot add or delete entries from this dictionary. However, you may rearrange the related DBCS
words so that the words used most frequently are displayed first during DBCS conversion. See “Editing a
DBCS conversion dictionary” on page 208 for instructions on rearranging terms.

User-created dictionary for DBCS
A user-created dictionary contains any alphanumeric entries and related DBCS words that you choose to
include. You might create a user dictionary to contain words unique to your business or words that you use
regularly but that are not included in the server-supplied dictionary.

You can create one or more DBCS conversion dictionaries with any name and store them in any library.
When performing DBCS conversion, however, the server only refers to the first user dictionary named
QUSRIGCDCT in the user’s library list, no matter how many dictionaries you have or what they are
named. Make sure that the library list is properly specified so that the server checks the correct dictionary.

During DBCS conversion, the server checks QUSRIGCDCT before checking QSYSIGCDCT.

Commands for DBCS conversion dictionaries
You can use the following commands to perform object management functions with the DBCS conversion
dictionary. Specify the OBJTYPE(*IGCDCT) parameter when entering these commands:

v CHGOBJOWN: Change the owner of a DBCS conversion dictionary

v CHKOBJ: Check a DBCS conversion dictionary

v CRTDUPOBJ: Create a duplicate object of the dictionary

v DMPOBJ: Dump a DBCS conversion dictionary

v DMPSYSOBJ: Dump the server-supplied dictionary

v DSPOBJAUT: Display a user’s authority to the dictionary

v GRTOBJAUT: Grant authority to use the dictionary

v MOVOBJ: Move the dictionary to another library

v RNMOBJ: Rename the dictionary

Appendix B. Double-byte character set support 207



v RSTOBJ: Restore the dictionary

v RVKOBJAUT: Revoke authority to use the dictionary

v SAVOBJ: Save the dictionary

v SAVCHGOBJ: Save a changed dictionary

The server saves or restores DBCS conversion dictionaries when you use these commands:

v RSTLIB: Restore a library in which the dictionary is stored

v SAVLIB: Save a library in which the dictionary is stored

v SAVSYS: Save QSYSIGCDCT, the server DBCS conversion dictionary, when saving the server

You can use the following commands to create, edit, display, and delete a dictionary:

v CRTIGCDCT: Create DBCS Conversion Dictionary

v EDTIGCDCT: Edit DBCS Conversion Dictionary

v DSPIGCDCT: Display DBCS Conversion Dictionary

v DLTIGCDCT: Delete DBCS Conversion Dictionary

Creating a DBCS conversion dictionary
To create a DBCS conversion dictionary, do the following:

1. Use the Create DBCS Conversion Dictionary (CRTIGCDCT) command.

2. Name the dictionary, QUSRIGCDCT, so it can be used during DBCS conversion. The server uses the
dictionary if it is the first user-created dictionary found when searching a user’s library list.

You might call the dictionary by another name while it is being created to prevent application programs
from using it for conversion. Later, change the dictionary name using the Rename Object (RNMOBJ)
command.

For example, to create a user DBCS conversion dictionary to be stored in the library DBCSLIB, enter:
CRTIGCDCT IGCDCT(DBCSLIB/QUSRIGCDCT)

3. Use the EDTIGCDCT command to put entries and related words into the dictionary after creating it.
See “Editing a DBCS conversion dictionary” for instructions on putting entries in the dictionary.

Editing a DBCS conversion dictionary
Use the Edit DBCS Conversion Dictionary (EDTIGCDCT) command to edit the DBCS conversion
dictionary. Use editing to add user-defined characters to the dictionary, so that users can enter characters
using DBCS conversion, and rearrange terms in a DBCS conversion dictionary to suit individual needs.

Requirements for a DBCS conversion dictionary: The display station needed for use while editing the
DBCS conversion dictionary depends on the value that you entered for the ENTRY parameter on the
EDTIGCDCT command:

v If you specified a specific string with the ENTRY parameter or if you want to display double-byte
characters, you must use a DBCS display station.

v If you did not specify a specific string with the ENTRY parameter, or if you do not want to display
double-byte characters, use either a DBCS display station, or a 24-row by 80-column alphanumeric
display station.

DBCS conversion dictionary operations: You may perform the following editing operations on a
user-created DBCS conversion dictionary:

v Add entries to the dictionary (including adding the first entries to the dictionary after it is created). The
dictionary can contain as many as 99,999 entries.

v Delete entries from the dictionary.

v Change entries in the dictionary, such as replacing the DBCS words related to an alphanumeric entry.

208 File Management V5R2



v Move the DBCS words related to an alphanumeric entry to rearrange the order in which they appear
during DBCS conversion.

The only editing function that you can perform with QSYSIGCDCT, the server-supplied dictionary, is to
move DBCS words related to an alphanumeric entry. Move words in order to rearrange the order in which
they appear during DBCS conversion.

Displays used for editing a DBCS conversion dictionary: After you enter the EDTIGCDCT command,
the server presents either the Work With DBCS Conversion Dictionary display or the Edit Related Words
display, depending on the value entered for the ENTRY parameter on the command.

Work with DBCS conversion dictionary display: Use the display in Figure 31 to work with alphanumeric
entries, such as choosing an entry to edit or deleting an entry. The server displays the Work with DBCS
Conversion Dictionary display if you enter *ALL or a generic string for the ENTRY parameter of the
EDTIGCDCT command.

See the discussion of the EDTIGCDCT command in the CL Reference for a complete description of the
Work with DBCS Conversion Dictionary display.

Edit related words display for a DBCS conversion dictionary: Use this display to work with the DBCS
words related to an alphanumeric entry. The server displays the Edit Related Words display if you enter a
specific string for the ENTRY parameter. The server also displays the Edit Related Words display if you
choose an entry to edit from the Work with DBCS Conversion Dictionary display. Figure 32 on page 211 is
an example of the Edit Related Words display.

Figure 31. Display for Work with DBCS Conversion Dictionary

Appendix B. Double-byte character set support 209



See the discussion of the EDTIGCDCT command in the CL Reference for a complete description of the
Edit Related Words display.

Examples of editing operations for a DBCS conversion dictionary: The following sections give
examples of the editing operations that you can perform using the EDTIGCDCT displays:

v Beginning to edit a dictionary

v Adding the first entries in a dictionary

v Deleting an entry

v Moving a related word

v Ending editing the dictionary

Beginning to edit a DBCS conversion dictionary: Enter the EDTIGCDCT command to start editing the
dictionary for any type of editing operation. For example, to put the first entry in the dictionary, enter:
EDTIGCDCT IGCDCT(DBCSLIB/QUSRIGCDCT) +

ENTRY(*ALL)

Or, to edit the entries beginning with the string ABC enter:
EDTIGCDCT IGCDCT(DBCSLIB/QUSRIGCDCT) +

ENTRY(’ABC*’)

Adding the first entries in a DBCS conversion dictionary: To add the first entries into a dictionary, do
the following:

1. Specify ENTRY(*ALL) when entering the EDTIGCDCT command. For example, to edit the dictionary
QUSRIGCDCT stored in the library DBCSLIB, enter:
EDTIGCDCT IGCDCT(DBCSLIB/QUSRIGCDCT) +

ENTRY(*ALL)

The server displays the Work with DBCS Conversion Dictionary display.

2. Enter a 1 in the first option field in the list and enter an alphanumeric entry to be added to the
dictionary in the entry field.

The server then displays the Edit Related Words display showing only two lines of data: BEGINNING OF
DATA and END OF DATA.

3. Enter an I in the NBR field beside the BEGINNING OF DATA line to insert a line.

4. Press the Enter key. The server displays a blank line.

210 File Management V5R2



5. On the blank line, enter a DBCS word to be related to the new alphanumeric entry.

If you enter data on the inserted line and leave the cursor on that line, another new line appears below
when you press the Enter key. You can enter another DBCS word on this line, or delete it by leaving it
blank, and pressing the Enter key.

6. When you finish adding this first entry, press F12 to get the Exit Dictionary Entry display. Enter the Y
option to save the entry and then return to the Work With DBCS Conversion Dictionary display. Enter
option 1 again and enter another alphanumeric entry in the entry field to continue adding entries to the
dictionary, or press F3 to end editing the dictionary.

Moving a related word in a DBCS conversion dictionary: Moving the words related to an
alphanumeric entry changes the order in which the words appear during DBCS conversion. To move a
word, do the following:

1. Display the Edit Related Words display for the entry in which you want to move DBCS words, either by
entering a specific entry with the EDTIGCDCT command, or by choosing an entry to edit from the
Work with DBCS Conversion Dictionary display.

2. When the display appears, enter an M in the NBR field beside the DBCS word to be moved.

3. Enter an A in the NBR field of the line after which the word will be moved.

4. Press the Enter key. The server moves the word on the line marked M to a position immediately
following the line marked with an A.

Deleting an entry in a DBCS conversion dictionary: Enter a 4 in the input field beside the entry to be
deleted as shown in Figure 33 on page 212.

Figure 32. Display for Edit Related Words

Appendix B. Double-byte character set support 211



Ending the editing process in a DBCS conversion dictionary: To end the editing operation, press F3.
The Exit Dictionary Entry display is displayed, and you can choose to save the entry or not. The server
then returns you to your basic working display, such as the Command Entry display.

Suggestions for editing a DBCS conversion dictionary: When editing the DBCS conversion
dictionary, consider the following:

v You can use DBCS conversion with the Edit Related Words display to enter related words into a
user-created dictionary. See “DBCS conversion (for Japanese use only)” on page 214 for information on
this procedure.

v Place the most commonly used DBCS words at the beginning of the list of related words on the Edit
Related Words display. This simplifies DBCS conversion because the server displays the related words
in the same order in which those words are listed in the dictionary.

Displaying and printing the DBCS conversion dictionary
Use the Display DBCS Conversion Dictionary (DSPIGCDCT) command to display and print the DBCS
conversion dictionary. You can display or print the entire dictionary or just a certain part of it, depending on
the value you specify for the ENTRY parameter.

For example, to print the entry ABC from the dictionary QUSRIGCDCT and its related words, enter:
DSPIGCDCT IGCDCT(DBCSLIB/QUSRIGCDCT) +

ENTRY(ABC) OUTPUT(*PRINT)

Figure 33. Display for Deleting a Conversion Dictionary Entry

212 File Management V5R2



To display all of the entries from the server-supplied dictionary QSYSIGCDCT and their related words,
enter:
DSPIGCDCT IGCDCT(QSYS/QSYSIGCDCT)

Figure 34 on page 214 provides an example of the display produced by the DSPIGCDCT command. It
shows alphanumeric entries and their related words.

See the discussion of the DSPIGCDCT command in the CL Reference for a complete description of the
command and the display it produces.

Deleting a DBCS conversion dictionary
Use the Delete DBCS Conversion Dictionary (DLTIGCDCT) command to delete a DBCS conversion
dictionary from the server.

In order to delete the dictionary, you must have object existence authority to the dictionary and object
operational authorities to the library in which the dictionary is stored.

When you delete a dictionary, make sure that you specify the correct library name. It is possible that many
users have their own dictionaries, each named QUSRIGCDCT, stored in their libraries. If you do not
specify any library name, the server deletes the first DBCS conversion dictionary in your library list.

For example, to delete the DBCS conversion dictionary QUSRIGCDCT in the library DBCSLIB, enter:
DLTIGCDCT IGCDCT(DBCSLIB/QUSRIGCDCT)

Appendix B. Double-byte character set support 213



DBCS conversion (for Japanese use only)
When you use DBCS display stations to enter double-byte data, you may use the various data entry
methods supported on the display station, or you may choose to use the iSeries DBCS conversion
support. DBCS conversion lets you enter an alphanumeric entry or DBCS code and convert the entry or
code to its related DBCS word. DBCS conversion is intended for Japanese character sets and its use is
limited for application to other double-byte character sets.

Specifically, DBCS conversion lets you convert the following:

v A string of alphanumeric characters to a DBCS word

v English alphanumeric characters to double-byte alphanumeric characters

v Alphanumeric Katakana to double-byte Hiragana and Katakana letters

v A DBCS code to its corresponding double-byte character

v A DBCS number to its corresponding double-byte character

For more information about DBCS conversion for Japanese characters, see the following topics:

v Where you can use DBCS Conversion

v How DBCS Conversion works

v Using DBCS Conversion

v Performing DBCS Conversion

Figure 34. Display Produced by the DSPIGCDCT Command

214 File Management V5R2

|

|

|

|

|



Where you can use DBCS Conversion
You can use DBCS conversion in the following instances:

v When entering data into input fields of certain SEU displays. For information about which fields you can
use with DBCS conversion, refer to the ADTS for iSeries: Source Entry Utility book.

v When prompting for double-byte data using QCMDEXEC. For instructions on this procedure, see the CL
Reference.

v When entering data into input fields of DBCS display files in user-written applications. Specify DBCS
conversion with the DDS keyword IGCCNV. See the DDS Reference for information on this keyword.

v When editing the related words on the Edit Related Words display, which is displayed when editing the
DBCS conversion dictionary (EDTIGCDCT command). See “Editing a DBCS conversion dictionary” on
page 208 for information on the Edit Related Words display.

How DBCS Conversion works
DBCS conversion is an interactive function between you and the server in which you enter an
alphanumeric entry. The server displays related DBCS words, and you choose which word to use.

The server determines which words are related to an alphanumeric entry by checking DBCS conversion
dictionaries. The server checks two DBCS conversion dictionaries when performing DBCS conversion. It
checks the first user-created dictionary named QUSRIGCDCT found when searching a user’s library list.
Then, it checks the server-supplied dictionary, QSYSIGCDCT, stored in the library QSYS. (QSYSIGCDCT
contains only Japanese double-byte characters.) You can create other user dictionaries, and you can give
them names other than QUSRIGCDCT, but the server only refers to the first user-created dictionary
named QUSRIGCDCT found in your library list when performing DBCS conversion.

After checking the dictionaries, the server displays words related to the alphanumeric entry. You then
position the cursor under the word of your choice, and press the Enter key. The server enters that word
where the cursor was positioned when you began DBCS conversion.

Using DBCS Conversion
You can change the user-defined dictionary used during DBCS conversion. Before you change the
user-defined dictionary, end your application program or end the command that the server is performing.
Then change the dictionary that is used by changing the library list (using the CHGLIBL command).

You can create your own DBCS conversion dictionary for DBCS conversion. The server-supplied dictionary
is a collection of entries with a Japanese pronunciation expressed in alphanumeric characters and
Japanese DBCS words related to the entry. See “Creating a DBCS conversion dictionary” on page 208 for
instructions on this procedure.

If no user-created dictionary is found, the server refers only to QSYSIGCDCT. See “DBCS conversion
dictionaries” on page 206 for more information on creating and using DBCS conversion dictionaries.

Performing DBCS Conversion
The following procedure describes how to convert one alphanumeric entry to its related DBCS word using
DBCS conversion. You must start DBCS conversion separately for each field in which you want to enter
double-byte data.

Note: DBCS conversion is intended for Japanese data entry. Its use with other languages is limited.

While performing DBCS conversion, you can display information about the function by pressing the Help
key. Help is available until you end DBCS conversion.

1. Position the cursor in the field in which you want to enter double-byte characters. Insert shift-control
characters into the field if they have not yet been inserted. To find out how to insert shift characters,
see “Inserting shift-control double-byte characters” on page 195.

Appendix B. Double-byte character set support 215



2. Position the cursor under the shift-in character, in a blank area between the shift-control characters, or
under a double-byte character.

3. Press the function key used to start DBCS conversion.

In SEU, as well as from the Edit Related Words display (displayed when using the EDTIGCDCT
command), press F18. The server displays the following prompt line:
_ ____________ _
A B C

4. Enter the following values:

a. In the field marked A, enter one of the following:

I Inserts the converted word before the character under which you positioned the cursor in
step 2.

R Replaces the character under which you positioned the cursor in step 2 with the converted
word.

b. In the field marked B, enter one of the following:

1) A string of alphanumeric characters to be converted. The string can have as many as 12
characters.

2) The 4-character DBCS code of a double-byte character.

3) The 2- to 5-digit DBCS number of a double-byte character.

c. In the field marked C enter one of the following conversion codes:

No entry
Converts the entry in field B from alphanumeric to double-byte by referring to the DBCS
conversion dictionaries.

G Converts the 2- to 5-digit DBCS number in field B to the character it represents.

H Converts the entry in field B to double-byte Hiragana, uppercase alphabetic, numeric, or
special characters.

K Converts the entry in field B to double-byte Hiragana, lowercase alphabetic, numeric, or
special characters.

X Converts the 4-character DBCS code to the character it represents.

5. Press the Enter key. The server displays the following prompt line:
_ ____________ _ _____________________________+
A B C D

6. In the field marked D, the server displays words related to the entry in field B.

If you see a plus (+) sign following the last displayed word, the server has additional words to display.
Press the Roll Up key to see these entries. Then, to return to a word displayed earlier, press the Roll
Down key.

If a word is shown in a reverse image, the word contains an embedded blank.

7. Choose the DBCS word from field D that best suits your needs by positioning the cursor under that
DBCS word.

8. Press the Enter key. The server enters the word where the cursor was positioned in step 2, either by
inserting the word or by replacing another word, depending on what you entered in field A.

9. Do one of the following:

a. Continue using DBCS conversion. Repeat 4 through 8 until you finish entering data into the field.

b. End DBCS conversion by pressing the same function key used to start conversion. The server
automatically ends conversion when you reach the end of the field.

In SEU, as well as from the Edit Related Words display (displayed when using the EDTIGCDCT
command), press F18.

216 File Management V5R2



Note: Until DBCS conversion is ended, you cannot perform any other server function. For
example, the F3 key cannot be used to exit an SEU display.

Examples of DBCS Conversion

Converting one alphanumeric entry to a double-byte entry: The following example shows how to
convert one entry and enter it into a field.

1. Position the cursor in the field in which you want to enter double-byte data (see Figure 35 on
page 218).

2. Insert shift-control characters into the field. See “Inserting shift-control double-byte characters” on
page 195 for instructions on inserting shift-control characters.

3. Press the function key used to start DBCS conversion. For the display just shown, the function key is
F18. The server displays a prompt line as shown in Figure 36 on page 219.

Because the cursor was placed under a shift-in character when conversion was started, conversion
automatically is set to I (inserting the converted word).

4. Enter an alphanumeric entry to be converted in the second field.

Leave the third field blank. See the example screen in Figure 37 on page 220.

5. Press the Enter key. The server displays related DBCS words.

6. Position the cursor under the DBCS word that you want to enter, if that word is not the first DBCS
word shown. In the example screen shown in Figure 38 on page 221, the first word is the one to be
entered.

7. Press the Enter key. The DBCS word is entered into the field as shown in Figure 39 on page 222.

Appendix B. Double-byte character set support 217



Figure 35. Example Screen 1

218 File Management V5R2



Figure 36. Example Screen 2

Appendix B. Double-byte character set support 219



Figure 37. Example Screen 3

220 File Management V5R2



Figure 38. Example Screen 4

Appendix B. Double-byte character set support 221



Converting many alphanumeric entries at one time to DBCS: You do not have to continually start
DBCS conversion for each alphanumeric entry. Instead, you can do the following:

1. Enter as many alphanumeric entries as will fit into field B. Separate each entry by a blank. Field B
contains space for 12 alphanumeric characters:
These are the entries to be converted.

| | |
I XXX_YYY_ZZZ_ _
A B C D

The server converts the entries one at a time, in the order entered. When the server converts an entry,
the server displays the DBCS words related to that entry in field D.

2. Position the cursor under the DBCS word that you want to use.

3. Press the Enter key. Then, the server adjusts field B; the next entry is moved to the position farthest
left of the field. The DBCS words related to that entry are displayed in field D.

At this time, you can enter additional alphanumeric entries to be converted at the end of field B.

Converting alphanumeric blanks to DBCS blanks: You can convert alphanumeric blanks (one position
wide) to DBCS blanks (two positions wide, the same width as double-byte characters) using DBCS
conversion.

To convert blanks, do the following:

1. Enter one or more blanks in field B.

Figure 39. Example Screen 5

222 File Management V5R2



_ ____________ _
A B C D

2. Press the Enter key. The server displays in field D the same number of DBCS blanks as the
alphanumeric blanks that you entered in field B. The DBCS blanks are displayed in reverse image.

3. Press the Enter key again. The server enters the DBCS blanks into the field where you started DBCS
conversion.

Changing alphanumeric entries or conversion code to DBCS: If none of the related words shown
during conversion are suitable candidates for the alphanumeric entry, and you would like to try a
conversion again (by using a different type of conversion or a different alphanumeric entry), do the
following:

1. Move the cursor to field B. For example:
Move the cursor here.

|
XXXXXX

_ ____________ _ _________________________
A B C D

2. Do one of the following:

a. Position the cursor under the first position of the field in which you want to enter alphanumeric
entries.

b. Enter a different alphanumeric entry.

c. Change the conversion code in field C, such as from H to K.

3. Press the Enter key.

4. Continue DBCS conversion.

Using DBCS conversion to enter words in the DBCS conversion dictionary: You can use DBCS
conversion when entering DBCS words on the Edit Related Words display.

To start DBCS conversion, do the following:

1. Position the cursor at the position where the DBCS word is to be entered.

2. Press F18. The server displays the conversion prompt line at the bottom of the display.

Perform DBCS conversion according to the instructions described in “Performing DBCS Conversion” on
page 215.

Note: You must start and end DBCS conversion separately for each line of data.

Considerations for using DBCS Conversion
Consider the following when performing DBCS conversion:

v You can only perform DBCS conversion at a DBCS display station, using the 5556 keyboard.

v You may use DBCS conversion to insert or replace characters only if the line in which double-byte
characters are to be inserted has sufficient space.

– The space available for inserting characters is equal to the number of characters from the last
character on the line that is not blank to the right edge of the display.

– The space available for replacing characters is equal to the number of characters from the cursor
position (including the character marked by the cursor) to the end of the DBCS portion of the field.

The following happens when you do not have enough space:

– If you try to insert or replace a string of characters where there is no space available, the server
sends a message.

– If you ignore the message and press the Enter key again, the server truncates the characters in
excess of the limit from the right side of the string to be inserted or replaced.

Appendix B. Double-byte character set support 223



224 File Management V5R2



Bibliography

The following iSeries books and topics contain
information you may need.

Planning, installation, and migration

v The OS/400 globalization topic in the iSeries
Information Center provides the data processing
manager, system operator and manager,
application programmer, end user, IBM
marketing representative, and system engineer
with informaiton required to understand and use
the national language support function on the
iSeries server. This topic prepares the iSeries
user for planning, installing, configuring, and
using iSeries national language support (NLS)
and multilingual support of the iSeries server. It
also provides an explanation of the database
management of multilingual data and
application considerations for a multilingual
system.

v Local Device Configuration provides the system
operator or system administrator with
information on how to do an initial local
hardware configuration and how to change that
configuration. It also contains conceptual
information for device configuration, and
planning information for device configuration on
the 9406, 9404, and 9402 System Units.

Application development

v ADTS/400: Character Generator Utility
provides the application programmer or system
programmer with information about using the
Application Development Tools character
generator utility (CGU) to create and maintain a
double-byte character set (DBCS) on the
server.

v ADTS for iSeries: Source Entry Utility
provides the application programmer or system
programmer with information about using the
Application Development Tools source entry
utility (SEU) to create and edit source
members.

System management

v Backup and Recovery provides the
system programmer with information to plan a
backup and recovery strategy. Also included are
procedures to implement your backup and
recovery strategy, how to recover from disk unit
failures, and how to recover from a site loss.

v The Work Management topic in the iSeries
Information Center, provides information about
how to create and change a work management
environment.

v iSeries Security Reference provides the
system programmer with information about
planning, designing, and auditing security.
Includes information about security system
values, user profiles, and resource security.

v The Basic system security and planning topic in
the iSeries Information Center provides basic
information about planning and setting up
security on the iSeries server.

Communications and connectivity

v ICF Programming provides the application
programmer with the information needed to
write application programs that use iSeries
communications and ICF files. It also contains
information on data description specifications
(DDS) keywords, system-supplied formats,
return codes, file transfer support, and
programming examples.

Program enablers

v DDS Reference provides the application
programmer with detailed descriptions of the
entries and keywords needed to describe
database files (both logical and physical) and
certain device files (for displays, printers, and
ICF) external to the user’s programs.

v Database Programming provides the application
programmer or system programmer with a
detailed discussion of the iSeries database
organization, including information on how to
create, describe, and manipulate database files
on the system.

v Application Display Programming provides
information about creating and maintaining
screens for applications, creating online help
information, and working with display files on
the iSeries server.

v Printer Device Programming provides
information on how to understand and control
printing: printing elements and concepts, printer
file support, print spooling support, printer
connectivity, advanced function printing, and
printing with personal computers.

© Copyright IBM Corp. 1998, 2002 225



v Tape and Diskette Device Programming
provides information about creating and
maintaining tape device files and diskette
device files.

v CL Programming provides a wide-ranging
discussion of programming topics, including a
general discussion of objects and libraries,
control language (CL) programming, controlling
flow and communicating between programs,
working with objects in CL programs, and
creating CL programs. Other topics include
predefined and immediate messages and
message handling, defining and creating
user-defined commands and menus, and
application testing, including debug mode,
breakpoints, traces, and display functions.

v The CL topic in the iSeries Information Center
provides a description of the control language
(CL) and its commands. Each command is
defined including its syntax diagram,
parameters, default values, and keywords.

System Management

v Distributed Data Management provides the
application programmer or system programmer
with information about remote file processing. It
describes how to define a remote file to OS/400
distributed data management (DDM), how to
create a DDM file, which file utilities are
supported through DDM, and the requirements
of OS/400 DDM as related to other systems.

226 File Management V5R2



Index

A
access path 72
acquire operation

allocating resources 14
description 3
file types 3
high-level language 3

activation group
definition 12
named 36
user default 36

add authority 10
ALCOBJ (Allocate Object) command 14
alert message 22
Allocate Object (ALCOBJ) command 14
allocating

file resources 14
object 14

alphanumeric applications, converting to DBCS 198
alphanumeric devices 196
alternative data type (IGCALTTYP) keyword 192
Analyze Problem (ANZPRB) command 27
analyzing

problem 27
ANZPRB (Analyze Problem) command 27
application program

DBCS considerations 198
error handling 22
permanent errors 22

applying override
at same call level 44
when compiling program 49
when using high-level language application

programs 34
arrival sequence access path 72
attribute

building 34
merging 34
open data path (ODP) 34
overriding 34

AUT (authority) parameter
public authority 11

authority
add 10
change-file-description 10
close 10
compile-program 9, 10
data 10
delete 10
display-file-description 10
file data 10
file object 9
grant 9, 10
move file 10
object 9, 10
public 11
read 10

authority (continued)
revoke 9, 10
transfer-ownership 9, 10
update 10

authorization
list name value 11
to job queues 151

automatic configuration output queue 141

B
basic character 191
BASIC operation 3
batch job

ending 149
ending command 149
inline data file 152

Batch Job (BCHJOB) command 149
BCHJOB (Batch Job) command 149
benefits

override 30
binary field conversion 110
blank

converting alphanumeric to DBCS 222

C
CALL command 36
call level

applying overrides at 44
description 36
effect on override processing 43
in ILE

in named activation group 36
in user default activation group 36

number used for file 45
override command 36
relationship with call stack 36
scoping override 36
several overrides to single file 43

call stack of active job 36
CGU (character generator utility)

copy Japanese DBCS master sort table
copy from a data file 199
copy to a data file 199

DBCS sort table
copying from a data file 199
copying to a data file 199

use 199
change

detecting file description 20
Change Command Default (CHGCMDDFT)

command 141
Change Display File (CHGDSPF) command 192
Change Library List (CHGLIBL) command 198
Change Output Queue (CHGOUTQ) command 141
Change Printer File (CHGPRTF) command 192

© Copyright IBM Corp. 1998, 2002 227



Change Printer File (CHGPRTF) command (continued)
indicating DBCS files 192

Change Spooled File Attributes (CHGSPLFA)
command 139

Change Writer (CHGWTR) command 144
change-file-description authority 10
changed object

saving 207
changing

command default 141
description 139
display file 192
library list 198
output queue 141
printer file

indicating DBCS files 192
spooled file attributes 139
writer 144

character
basic 191
double-byte

how the server processes 191
size 191

extended 191
character field

conversions 110
mapping 110

character generator utility (CGU)
copy Japanese DBCS master sort table

copy from a data file 205
copy to a data file 204

DBCS sort table
copying from a data file 205
copying to a data file 199, 204

starting 199
use 198, 199

character, shift-control
description of 189
inserting 196

Check DBCS Font Table (CHKIGCTBL) command 199
Check Object (CHKOBJ) command 203
checking

DBCS font table 199
object 203

CHGCMDDFT (Change Command Default)
command 141

CHGDSPF (Change Display File) command 192
CHGLIBL (Change Library List) command 198
CHGOUTQ (Change Output Queue) command 141
CHGPRTF (Change Printer File) command 192
CHGSPLFA (Change Spooled File Attributes)

command 139
CHGWTR (Change Writer) command 144
CHKIGCTBL (Check DBCS Font Table) command 199
CHKOBJ (Check Object) command 203
CL (control language)

program overrides 46
Clear Output Queue (CLROUTQ) command 141
clearing

database members 141
output queue 141

close authority 10
close considerations

shared file 14
close operation

description 3
file types 3
high-level language 3, 12
sharing file 12

CLROUTQ (Clear Output Queue) command 141
code

See also return code
file status 22

code point 186
command default

changing 141
command, CL 149, 199

ALCOBJ (Allocate Object) 14
Allocate Object (ALCOBJ) 14
Analyze Problem (ANZPRB) 27
ANZPRB (Analyze Problem) 27
Batch Job (BCHJOB) 149
BCHJOB (Batch Job) 149
Change Command Default (CHGCMDDFT) 141
Change Display File (CHGDSPF) 192
Change Library List (CHGLIBL) 198
Change Output Queue (CHGOUTQ) 141
Change Printer File (CHGPRTF) 192
Change Spooled File Attributes (CHGSPLFA) 139
Change Writer (CHGWTR) 144
Check DBCS Font Table (CHKIGCTBL) 199
Check Object (CHKOBJ) 203
CHGCMDDFT (Change Command Default) 141
CHGDSPF (Change Display File) 192
CHGLIBL (Change Library List) 198
CHGOUTQ (Change Output Queue) 141
CHGPRTF (Change Printer File) 192
CHGSPLFA (Change Spooled File Attributes) 139

description 139
CHGWTR (Change Writer) 144
CHKIGCTBL (Check DBCS Font Table) 199
CHKOBJ (Check Object) 203
Clear Output Queue (CLROUTQ) 141
CLROUTQ (Clear Output Queue) 141
Copy DBCS Font Table (CPYIGCTBL) 199
Copy DBCS Sort Table (CPYIGCSRT) 203

copying DBCS master sort table from data
file 205

Copy File (CPYF) 66, 196
Copy from Diskette (CPYFRMDKT) 66
Copy From Query File (CPYFRMQRYF) 66
Copy from Tape (CPYFRMTAP) 66
Copy Source File (CPYSRCF) 66, 72
Copy Spooled File (CPYSPLF)

copying double-byte data 196
description 139, 145

Copy to Diskette (CPYTODKT) 66
Copy to Tape (CPYTOTAP) 66
CPYF (Copy File) 66

double-byte data 196
specific functions 66
what can be copied 66

228 File Management V5R2



command, CL (continued)
CPYFRMDKT (Copy from Diskette) 66
CPYFRMQRYF (Copy from Query File)

closing 74
description 66

CPYFRMQRYF (Copy From Query File) 66
CPYFRMTAP (Copy from Tape) 66
CPYIGCSRT (Copy DBCS Sort Table) 203

copying DBCS master sort table from data
file 205

copying master sort table to data file 204
description 203

CPYIGCTBL (Copy DBCS Font Table) 199, 200
CPYSPLF (Copy Spooled File)

copying double-byte data 196
description 139, 145

CPYSRCF (Copy Source File) 66, 72
description 66
specifying TOFILE(*PRINT) 72

CPYTODKT (Copy to Diskette) 66
CPYTOTAP (Copy to Tape) 66
Create DBCS Conversion Dictionary

(CRTIGCDCT) 208
Create Diskette File (CRTDKTF) 192
Create Display File (CRTDSPF) 192
Create Duplicate Object (CRTDUPOBJ) 207
Create Job Queue (CRTJOBQ) 151
Create Output Queue (CRTOUTQ) 140
Create Physical File (CRTPF) 192
Create Printer File (CRTPRTF) 192
Create Source Physical File (CRTSRCPF) 192
Create Tape File (CRTTAPF) 192
CRTDKTF (Create Diskette file)

indicating DBCS files 192
CRTDKTF (Create Diskette File) 192
CRTDSPF (Create Display File) 192

indicating DBCS files 192
CRTDUPOBJ (Create Duplicate Object) 207
CRTIGCDCT (Create DBCS Conversion

Dictionary) 208
CRTJOBQ (Create Job Queue) 151
CRTOUTQ (Create Output Queue) 140, 141
CRTPF (Create Physical File) 192
CRTPRTF (Create Printer File) 192

indicating DBCS files 192
putting IGCALTTYP keyword into effect 192

CRTSRCPF (Create Source Physical File) 192
CRTTAPF (Create Tape File) 192

indicating DBCS files 192
DATA (Data) 149
Delete DBCS Conversion Dictionary

(DLTIGCDCT) 213
Delete DBCS Font Table (DLTIGCTBL) 199
Delete IGC Sort (DLTIGCSRT) 203, 206
Delete Output Queue (DLTOUTQ) 141
Delete Override (DLTOVR) 30, 50
Delete Spooled File (DLTSPLF) 139
Display DBCS Conversion Dictionary

(DSPIGCDCT) 212
Display File Description (DSPFD) 20
Display File Field Description (DSPFFD) 20

command, CL (continued)
Display Override (DSPOVR)

description 30
example 53
multiple call levels 53

Display Program References (DSPPGMREF) 20
Display Spooled File (DSPSPLF)

authority 145
description 139

DLTIGCDCT (Delete DBCS Conversion
Dictionary) 213

DLTIGCSRT (Delete DBCS Sort Table) 203, 206
DLTIGCSRT (Delete IGC Sort) 206
DLTIGCTBL (Delete DBCS Font Table) 199, 201
DLTOUTQ (Delete Output Queue) 141
DLTOVR (Delete Override) 30, 50
DLTSPLF (Delete Spooled File) 139
double-byte data 196
DSPFD (Display File Description) 20
DSPFFD (Display File Field Description) 20
DSPIGCDCT (Display DBCS Conversion

Dictionary) 212
DSPOVR (Display Override)

description 30
example 53
multiple call levels 53

DSPPGMREF (Display Program References) 20
DSPSPLF (Display Spooled File)

authority 145
description 139

Edit DBCS Conversion Dictionary
(EDTIGCDCT) 208

Edit Object Authority (EDTOBJAUT) 11
EDTIGCDCT (Edit DBCS Conversion

Dictionary) 208
EDTOBJAUT (Edit Object Authority) 11
End Batch Job (ENDBCHJOB) 149
End Input (ENDINP) 149
End Job (ENDJOB) 26
End Writer (ENDWTR) 144
ENDBCHJOB (End Batch Job) 149
ENDINP (End Input) 149
ENDJOB (End Job) 26
ENDWTR (End Writer) 144
Grant Object Authority (GRTOBJAUT) 11, 207
GRTOBJAUT (Grant Object Authority) 11, 207
HLDOUTQ (Hold Output Queue) 141
HLDSPLF (Hold Spooled File) 139
HLDWTR (Hold Writer) 144
Hold Output Queue (HLDOUTQ) 141
Hold Spooled File (HLDSPLF) 139
Hold Writer (HLDWTR) 144
Initialize Diskette (INZDKT)

copying DBCS font table 200
INZDKT (Initialize Diskette)

copying DBCS font table 200
job input 149
Move Object (MOVOBJ) 207
MOVOBJ (Move Object) 207
output queues, creating and controlling 141

Index 229



command, CL (continued)
Override with Database File (OVRDBF)

description 30
example 45
redirecting 59

Override with Diskette File (OVRDKTF)
description 30
example 45

Override with Display File (OVRDSPF)
description 30
indicating DBCS files 192

Override with Intersystem Communications Function
File (OVRICFF) 30

Override with Message File (OVRMSGF) 30
Override with Printer File (OVRPRTF)

basic example 34
description 30
IGCALTTYP keyword 192
same call level example 48

Override with Save File (OVRSAVF) 30
Override with Tape File (OVRTAPF)

description 30
overrides, used for 29
OVRDBF (Override with Database File)

description 30
example 45
redirecting 59

OVRDKTF (Override with Diskette File)
description 30
example 45

OVRDSPF (Override with Display File)
description 30
indicating DBCS files 192

OVRICFF (Override with Intersystem
Communications Function File) 30

OVRMSGF (Override with Message File) 30
OVRPRTF (Override with Printer File)

basic example 34
description 30
IGCALTTYP keyword 192
same call level example 48

OVRSAVF (Override with Save File) 30
OVRTAPF (Override with Tape File)

description 30
RCLSPLSTG (Reclaim Spool Storage) 154
Reclaim Spool Storage (RCLSPLSTG) 154
Release Output Queue (RLSOUTQ) 141
Release Spooled File (RLSSPLF) 139
Release Writer (RLSWTR) 144
Rename Object (RNMOBJ) 207
Restore Library (RSTLIB) 207
Restore Object (RSTOBJ)

DBCS conversion dictionary 207
DBCS sort table 203, 204

RETURN 44
Revoke Object Authority (RVKOBJAUT) 11, 207
RLSOUTQ (Release Output Queue) 141
RLSSPLF (Release Spooled File) 139

description 139
RLSWTR (Release Writer) 144
RNMOBJ (Rename Object) 207

command, CL (continued)
RSTLIB (Restore Library) 207
RSTOBJ (Restore Object)

DBCS conversion dictionary 207
DBCS sort table 203, 204

RVKOBJAUT (Revoke Object Authority) 11, 207
SAVCHGOBJ (Save Changed Object) 207
Save Changed Object (SAVCHGOBJ) 207
Save Library (SAVLIB) 207
Save Object (SAVOBJ)

DBCS conversion dictionaries 207
DBCS sort table 203

Save System (SAVSYS) 204
SAVLIB (Save Library) 207
SAVOBJ (Save Object)

DBCS conversion dictionaries 207
DBCS sort table 203, 204

SAVSYS (Save System) 204, 207
SBMDBJOB (Submit Database Jobs) 149
SBMDKTJOB (Submit Diskette Jobs) 149
Send Network Spooled File (SNDNETSPLF)

authority 145
description 139

Send TCP/IP Spooled File (SNDTCPSPLF)
description 139

SNDNETSPLF (Send Network Spooled File)
authority 145
description 139

SNDTCPSPLF (Send TCP/IP Spooled File)
description 139

spooled files 139
spooling writer 144
Start Character Generator Utility (STRCGU)

and other DBCS font table commands 199, 203
use 202

Start Database Reader (STRDBRDR) 149
Start Diskette Reader (STRDKTRDR) 149
Start Diskette Writer (STRDKTWTR) 144
Start Font Management Aid (STRFMA) 199
Start Printer Writer (STRPRTWTR) 144
Start Remote Writer (STRRMTWTR) 144
STRCGU (Start Character Generator Utility)

and other DBCS font table commands 199, 203
use 202

STRDBRDR (Start Database Reader) 149
STRDKTRDR (Start Diskette Reader) 149
STRDKTWTR (Start Diskette Writer) 144
STRFMA (Start Font Management Aid) 199
STRPRTWTR (Start Printer Writer) 144

description 144
STRRMTWTR (Start Remote Writer) 144

description 144
Submit Database Jobs (SBMDBJOB) 149
Submit Diskette Jobs (SBMDKTJOB) 149
submit job 149
TFRCTL (Transfer Control)

file overrides 44
Transfer Control (TFRCTL)

file overrides 44
VRYCFG (Vary Configuration) 201
Work with Job Queue (WRKJOBQ) 151

230 File Management V5R2



command, CL (continued)
Work with Output Queue (WRKOUTQ)

description 141
displaying status of spooled file 144

Work with Output Queue Description
(WRKOUTQD) 141

Work with Spooled File Attributes (WRKSPLFA) 139
Work with Spooled Files (WRKSPLF) 139
WRKJOBQ (Work with Job Queue) 151
WRKOUTQ (Work with Output Queue)

description 141
displaying status of spooled file 144

WRKOUTQD (Work with Output Queue
Description) 141

WRKSPLF (Work with Spooled Files) 139
WRKSPLFA (Work with Spooled File Attributes) 139

commit operation
description 3
file types 3
high-level language 3

compile-program authority 9, 10
completion message

messages sent 73
resending for Copy File command 73
with exceptions

major return codes 26
configuration, automatic for output queues 141
control character, shift

description of 189
inserting 192

control language (CL)
See command, CL

conversion
alphanumeric applications to DBCS

applications 198
rules for copying files 110
System/370 floating point and null fields 109

conversion, DBCS
alphanumeric blanks to DBCS blanks 222
changing the DBCS conversion dictionaries

used 215
deleting unwanted DBCS words 223
description 214
entering double-byte data 215
how it works 215
many alphanumeric entries at one time 222
one alphanumeric entry to a double-byte entry 217
performing (including example operations) 215
use while editing the DBCS conversion

dictionary 223
where you can use 215

converting
UCS-2 graphic field 108

copy command
copying between different database record

formats 99
errors 74
functions 66
null values 76
resending completion message CL program

example 73

copy command (continued)
specific copy functions 66
zero records 75

Copy DBCS Font Table (CPYIGCTBL) command
for DBCS font tables 199
from tape or diskette 200
onto tape or diskette 200

Copy DBCS Sort Table (CPYIGCSRT) command
copying DBCS master sort table from data file 205
copying master sort table to data file 204
sort table 203

copy error 74
Copy File (CPYF) command 66, 196

copying between different database record
formats 99

double-byte data 196
errors 74
files that can be copied 66
functions 66
monitoring for zero records 75
resending completion message CL program

example 73
specific copy functions 66

Copy from Diskette (CPYFRMDKT) command 66
Copy from Query File (CPYFRMQRYF) command

closing 74
description 66

Copy From Query File (CPYFRMQRYF) command 66
Copy from Tape (CPYFRMTAP) command 66
copy function

copy command support for null values 77
CPYFRMQRYF support for CCSIDs 76
CPYSRCF support for CCSIDs 77

copy operation
database to database

FMTOPT parameter values 99
device and database files combinations 66

Copy Source File (CPYSRCF) command 66, 72
description 66
specifying TOFILE(*PRINT) 72

Copy Spooled File (CPYSPLF) command 139, 145,
196

authority 145
copying double-byte data 196
description 139

Copy to Diskette (CPYTODKT) command 66
Copy to Tape (CPYTOTAP) command 66
copying

DBCS
font tables 200
from a file (move from System/36) 205
from tape or diskette (restoring) 200
onto diskette (saving) 200
sort tables 204, 205
to a file (move to System/36 or AS/Entry) 204

DBCS font table 199
DLTIGCTBL (Delete DBCS Font Table) 199
file 66, 196
from diskette 66
from query file 66
from tape 66

Index 231



copying (continued)
IGC sort 203
records

functions 66
specific functions 66

source file 66, 72
spooled file

authority 145, 196
description 139

System/370 floating point and null fields 109
to diskette 66
to tape 66
UCS-2 graphic field 108

copying file
See also copy command
commands used 66, 196
containing double-byte data 196
conversion rules 110, 196
creating

duplicate to-file member example 76
database file record formats 99
DBCS

from tape or diskette 200
nonspooled 196
onto tape or diskette 200
spooled 196

device and database files combinations 66
double-byte data 196
dropping fields 99
from-file and to-file different types (source and

data) 72
from-file member, empty

example 75
MBROPT(*REPLACE) specified 75

mapping
character fields 110
DBCS fields 196
fields 99
numeric fields 110

messages sent as tests 74
monitoring

errors 74
zero records 75

record sequence for 72
resending completion message CL program

example 73
selecting records

compressing deleted records 99
sequence of copied records 72
System/370 floating point and null fields 109
to-file member example, creating duplicate 76
trigger program 83
what can be copied 66

CPDxxxx message 74
CPFxxxx message 74
CPYF (Copy File) command

copying between different database record
formats 99

double-byte data 196
errors 74
files that can be copied 66

CPYF (Copy File) command (continued)
functions 66
monitoring for zero records 75
resending completion message CL program

example 73
specific copy functions 66

CPYFRMDKT (Copy from Diskette) command 66
CPYFRMQRYF (Copy from Query File) command

CCSID support 76
CPYFRMQRYF (Copy From Query File) command

CCSID support 66
CPYFRMQRYF support for CCSIDs 76
CPYFRMTAP (Copy from Tape) command 66
CPYIGCSRT (Copy DBCS Sort Table) command

copying DBCS master sort table from data file 205
copying master sort table to data file 204
sort table 203

CPYIGCTBL (Copy DBCS Font Table) command
for DBCS font tables 199
from tape or diskette 200
onto tape or diskette 200

CPYSPLF (Copy Spooled File) command
authority 145
copying double-byte data 196
description 139

CPYSRCF (Copy from Source File) command
CCSID support 77

CPYSRCF (Copy Source File) command 66, 72
CPYSRCF support for CCSIDs 76
CPYTODKT (Copy to Diskette) command 66
CPYTOTAP (Copy to Tape) command 66
Create DBCS Conversion Dictionary (CRTIGCDCT)

command 208
Create Diskette File (CRTDKTF) command 192

indicating DBCS files 192
Create Display File (CRTDSPF) command 192

indicating DBCS files 192
Create Duplicate Object (CRTDUPOBJ) command 207
Create Job Queue (CRTJOBQ) command 151
Create Output Queue (CRTOUTQ) command 140, 141
Create Physical File (CRTPF) command 192
Create Printer File (CRTPRTF) command 192

indicating DBCS files 192
putting IGCALTTYP keyword into effect 192

Create Source Physical File (CRTSRCPF)
command 192

Create Tape File (CRTTAPF) command 192
indicating DBCS files 192

creating
DBCS conversion dictionaries 208
DBCS conversion dictionary 208
DBCS font tables 200
DBCS sort table 204
diskette file 192
display file 192
duplicate object 207
job queue 151
job queues 151
output queue 140
physical file 192
printer file 192

232 File Management V5R2



creating (continued)
source physical file 192
tape file 192

CRTDKTF (Create Diskette File) command 192
CRTDSPF (Create Display File) command 192
CRTDUPOBJ (Create Duplicate Object) command 207
CRTIGCDCT (Create DBCS Conversion Dictionary)

command 208
CRTJOBQ (Create Job Queue) command 151
CRTOUTQ (Create Output Queue) command 140
CRTPF (Create Physical File) command 192
CRTPRTF (Create Printer File) command 192
CRTSRCPF (Create Source Physical File)

command 192
CRTTAPF (Create Tape File) command 192

D
damaged

DBCS-capable devices 201
job queues 152
output queues 143

Data (DATA) command 149
DATA (Data) command 149
data authority 10
data description specifications (DDS)

DBCS capabilities 192
data file, inline

batch job 152
description 152
file type, specifying 153
named 152
open considerations 153
opening 153
searching 153
sharing between programs 153
unnamed 152

data management
definition 1
message number ranges 23
operations 3

database
I/O feedback area 177

database file
definition 1
overriding with 30
redirecting input 61
redirecting output 61

database job
submitting 149

database reader
starting 149

DBCS (double-byte character set)
definition 185

DBCS CL command
See command, CL

DBCS code scheme 186
DBCS conversion

alphanumeric blanks to DBCS blanks 222
changing the DBCS conversion dictionaries

used 215

DBCS conversion (continued)
deleting unwanted DBCS words 223
description 214
entering double-byte data 215
how it works 215
many alphanumeric entries at one time 222
one alphanumeric entry to a double-byte entry 217
perform (including example operations) 215
use while editing the DBCS conversion

dictionary 223
where you can use 215

DBCS conversion dictionary
adding the first entries to 210
beginning editing 210
commands 207
creating 208
deleting 213
deleting an entry 211
description 206
displaying 212
displaying and printing 212
editing 208, 212
editing (add and change terms) 208
ending editing 212
moving entries 211
server-supplied 207
user-created 207

DBCS display station
number of input fields 196

DBCS field
determining the length 191

DBCS file
copying 196
Create Diskette File (CRTDKTF) command 192
description 192
restrictions 194
specifying 192

DBCS font table
check for the existence of 199
checking 199
commands used with 199
copying 199
copying from tape (restore) 200
copying from tape or diskette 200
copying onto diskette (save) 200
deleting 199, 201
description of 198
saving onto diskette 200
server-supplied 198

DBCS sort table
checking for the existence of 204
commands used with 203
copying 205
copying from data file (move from System/36) 205
copying to data file (move to System/36 or

AS/Entry) 204
deleting 206
description of 202
restoring from tape or diskette 204
saving onto diskette 204

Index 233



DBCS-capable device
damaged 201
display stations 195
display stations, number of characters displayed

at 196
DDM files 1

open considerations 19
default (DFT) keyword

for physical files 99
mapping fields 110

default output queue 141
default value

changing 141
delete

authority 10
DBCS conversion dictionaries 213
DBCS font table 201
DBCS sort table 206
DBCS words 223
operation

description 3
file types 3
high-level language 3

output queue 143
overrides 50

Delete DBCS Conversion Dictionary (DLTIGCDCT)
command 213

Delete DBCS Font Table (DLTIGCTBL) command 199,
201

Delete DBCS Sort Table (DLTIGCSRT) command 203,
206

Delete IGC Sort (DLTIGCSRT) command 206
Delete Output Queue (DLTOUTQ) command 141
Delete Override (DLTOVR) command 50

description 30
example 51
use 50

Delete Spooled File (DLTSPLF) command 139
delete-file authority 10
deleted record

compressing 99
in the from-file 66

deleting
DBCS conversion dictionary 213
DBCS font table 199, 201
DBCS sort table 206
DBCS words 223
IGC sort 203, 206
output queue

command 141
damaged 143

override 30, 50
spooled file 139

designing application programs that process
double-byte data 198

device
support for DBCS display 195

device definition list 162
device description 137
device file

definition 1

diskette
copying 66
initializing 200

diskette file
copying 66
creating 192
DBCS 192
overriding with 30
redirecting input 61
redirecting output 61

diskette jobs
submitting 149

diskette reader
starting 149

diskette writer
starting 144

display
DBCS conversion dictionary 212
Edit Related Words 209
open file 21
Work with DBCS Conversion Dictionary 209

Display DBCS Conversion Dictionary (DSPIGCDCT)
command 212

display device support
DBCS 195

display file
changing 192
creating 192
DBCS 192
overriding with 30, 192
redirecting

input 61
input/output 61
output 61

Display File Description (DSPFD) command 20
format level identifier 20

Display File Field Description (DSPFFD) command 20
display I/O feedback area 173
Display Override (DSPOVR) command

description 30
example 53
functions example 54
multiple call levels 53

Display Program References (DSPPGMREF)
command 20

Display Spooled File (DSPSPLF) command
authority 145
description 139

display-file-description authority 10
displayed message 23
displaying

DBCS conversion dictionary 212
file description 20
file field description 20
file-description authority 9
override

in original environment 30, 53
program references 20
source files

SEU (source entry utility) 20
spooled file 139, 140

234 File Management V5R2



distributed file
definition 1

DLTIGCDCT (Delete DBCS Conversion Dictionary)
command 213

DLTIGCSRT (Delete IGC Sort) command 203, 206
DLTIGCTBL (Delete DBCS Font Table) command 199
DLTOUTQ (Delete Output Queue) command 141
DLTOVR (Delete Override) command 30, 50
DLTSPLF (Delete Spooled File) command 139
double-byte character

basic 191
code scheme 186
extended 191
how the server processes 191
identifying a string of 189, 195
maximum number (extended) that can be

displayed 196
maximum number input fields displayed 196
process extended characters 191
size 191

double-byte character set (DBCS)
applications, converted from alphanumeric

applications 198
codes, invalid 190
words, how to delete during DBCS conversion 223

double-byte code
effects of printing invalid 190

double-byte data
basic information 185
considerations for using 190
designing application programs that process 198
identifying 190
length of fields 191
restrictions 190
where you can use 190

dropping fields, copying files 99
DSPFD (Display File Description) command 20
DSPFFD (Display File Field Description) command 20
DSPIGCDCT (Display DBCS Conversion Dictionary)

command 212
DSPOVR (Display Override) command

description 30
example 53
functions example 54
multiple call levels 53

DSPPGMREF (Display Program References)
command 20

DSPSPLF (Display Spooled File) command
authority 145
description 139

duplicate object
creating 207

E
Edit DBCS Conversion Dictionary (EDTIGCDCT)

command 208
Edit Object Authority (EDTOBJAUT) command 11
Edit Related Words display 209
editing

DBCS conversion dictionary 208

editing (continued)
object authority 11

EDTIGCDCT (Edit DBCS Conversion Dictionary)
command 208

EDTOBJAUT (Edit Object Authority) command 11
End Batch Job (ENDBCHJOB) command 149
End Input (ENDINP) command 149
End Job (ENDJOB) command 26
End Writer (ENDWTR) command 144
ENDBCHJOB (End Batch Job) command 149
ending

batch job 149
input 149
job 26
writer 144

ENDINP (End Input) command 149
ENDJOB (End Job) command 26
ENDWTR (End Writer) command 144
error

application program 22
copying files 74
device or session, open or acquire operation 28
permanent

device 27
session 27

permanent server 27
recoverable device or session 28

error message
application program 22

error recovery
actions 26
handling 22

escape message
copy errors 74

example
creating a job queue 151
creating duplicate to-file member 76
creating output queues 142
delete override 50
display override 53
externally described file

overrides 49
from-file member, empty 75
job level override 44
merged file 53
monitoring for from-file not found 74
monitoring for zero records on CPYF command 75
organization of input stream 146
Override with Diskette File (OVRDKTF)

command 45
overriding

attributes of printer file 34
file names or types and attributes of new file 36
open scope 36
printer file used in program 34
using OPNSCOPE parameter 36
using OVRSCOPE(*JOB) 44

resending CPYF command completion message 73
RETURN command and override 44
securing file 47
two overrides for same file 45

Index 235



execute authority 10
extended character processing 191
externally described file

high-level language compiler 20
overrides 49

F
feedback area

get attributes 178
I/O

common 22, 168
database 177
display 173
file-dependent 22
general description 22
ICF 173
printer 176

open
device definition list 162
general description 22
individual descriptions 157
volume label fields 167

FEOD operation
description 3
file types 3
high-level language 3

field
binary, no decimal positions

conversion 110
binary, with decimal positions

conversion 110
character

conversions 110
mapping 110
numeric

mapping 110
file

See also copying
See also file redirection
attribute

changing 29
changing versus overrides 29
copying 66, 196
data authorities 10
DBCS

copying 196
device file support 192
diskette 192
display 192
ICF 192
printer 192, 194
tape 192

externally described
overrides 49

inline data 152
opening 16
overrides versus changing 29
permanently changing 17
public authority 11

file (continued)
redirecting

combinations to avoid 60
valid combinations 60

resources, allocating 14
securing overrides 47
shared feedback areas 22
sharing

close considerations 14
inline data 153
open considerations 12

source overrides 49
source, displaying 20
storage authority 9
temporarily changing 17

file authority
moving 9
renaming 9

file description
change authority 9
changes to 20
displaying 20
opening files 17
temporary changes 17

file field description
displaying 20

file function authority 10
file object authority 9
file processing authority 9
file redirection

database input 61
database output 61
defaults 61
diskette input 61
diskette output 61
display input 61
display input/output 61
display output 61
ICF input 61
ICF input/output 61
ICF output 61
printer input 61
spooled files 140
tape input 61
tape output 61
valid 60

file resource
allocating 14

file status code 22
file type

main operations allowed 3
overriding 59

floating-point
field conversions 110

FMTOPT (record format field mapping) parameter 99
font management aid

starting 199
font table, DBCS

commands 199
description of 198
finding out if one exists 199

236 File Management V5R2



font table, DBCS (continued)
restoring from tape or diskette 200
saving onto diskette 200

from-file
monitoring for zero records 75

G
get-attributes feedback area 178
grant authority 9, 10
Grant Object Authority (GRTOBJAUT) command 11,

207
granting

object authority 11, 207
group

activation 36
GRTOBJAUT (Grant Object Authority) command 11,

207

H
handling application program error 22
high-level language (HLL)

compiler 20
operations 3
programs

allocating resources 14
performing override 46

temporary changes 17
HLDOUTQ (Hold Output Queue) command 141
HLDSPLF (Hold Spooled File) command 139
HLDWTR (Hold Writer) command 144
HLL (high-level language)

compiler 17
operations 3
programs 3

allocating resources 14
performing override 47

temporary changes 17
Hold Output Queue (HLDOUTQ) command 141
Hold Spooled File (HLDSPLF) command 139
Hold Writer (HLDWTR) command 144
holding

output queue 141
spooled file 139
writer 144

I
I/O considerations

shared files 14
I/O feedback area

common 168
database 177
display 173
ICF 173
printer 176

IBM-supplied
job queues 149
output queues 142

ICF (intersystem communications function) file
DBCS 192
I/O feedback area 173
overriding with 30
redirecting input 61
redirecting input/output 61
redirecting output 61

ICF I/O feedback area 173
IGC sort

copying 203
deleting 203, 206

ILE (Integrated Language Environment) model
sharing files 12

Initialize Diskette (INZDKT) command 200
initializing

diskette 200
inline data file

batch job 152
description 152
file type, specifying 153
named 152
open considerations 153
opening 153
searching 153
sharing between programs 153
spooling library (QSPL) 154
unnamed 152

input
ending 149

input fields on DBCS display
displayed characters 196

input spooling
description 137, 146
elements of 146
relationship of elements 146

input stream 146
input/output

authority 10
feedback area 22
operation

description 3
Integrated Language Environment (ILE) model

sharing files 12
interactive job

definition 36
intersystem communications function (ICF) file

DBCS 192
I/O feedback area 173
overriding with 30
redirecting input 61
redirecting input/output 61
redirecting output 61

invalid double-byte code
effects of printing 190

INZDKT (Initialize Diskette) command 200

J
job

batching 149
definition 36

Index 237



job (continued)
ending 26
ending command 26
input commands 149
interactive 36
log error messages 22
shared files in

input/output considerations 14
open considerations 13

transferring 151
job level

override command 36
scoping override 36

job queue
authorization 151
changing to different

job active 151
job not active 151

creating 151
damaged 152
description 149
errors, recovering 152
IBM-supplied 149
multiple 150
multiple within a subsystem 151
recovering 152
security 151
working with 151

K
keyed sequence access path 72

L
label

volume 167
level check (LVLCHK) parameter

*NO value
externally described data 59
overrides 49

*YES value 20
file description changes 20

level checking 20
level identifier 20
library

QGPL 142
QSPL 154
QUSRSYS 141
restoring 207
saving 207

library list
changing 198
sharing files 13

LVLCHK (level check) parameter
*NO value

externally described data 59
overrides 49

*YES value 20
file description changes 20

M
major/minor return code

See return code
mapping

character fields 110
fields 99
numeric fields 110

maximum number of displayed characters 196
merging attributes 34
message

alert 22
completion with exceptions 26
CPDxxxx 74
CPFxxxx 74
device or session error

open or acquire operation 28
diagnostic 23
displayed 23
error 22
file error ranges 23

message file
overriding with 30

modifying DBCS conversion dictionary
See editing

monitoring
for copy errors 74
messages for zero records on copy commands 75

Move Object (MOVOBJ) command 207
move-file authority 10
moving

object 207
MOVOBJ (Move Object) command 207
multiple job queue

controlling 150
reasons for designating 150
using within a subsystem 151

multiple output queue
using 143

N
named activation group 36
named inline data file 152
nested call

file example 48
network spooled file

sending 139
normal completion return code 26
null value support

copy commands 77
number of

displayed double-byte characters, maximum 196
input fields, maximum DBCS 196
spooled file

controlling 146
number-of-seconds value (WAITFILE) 16
numeric field

mapping 110

238 File Management V5R2



O
object

allocating 14
authority 9, 10
checking 203
enhancements to object management 207
moving 207
renaming 207
restoring 203
saving 203

object authority
editing 11
granting 11, 207
revoking 11, 207

ODP (open data path)
description 12
overrides 34

open authority 10
open considerations

inline data files 153
sharing files in same job 12
using *LIBL with DDM files 19

open data path (ODP)
description 12
overrides 34

open feedback area
description 22
device definition list 162
individual descriptions 157
volume label fields 167

open file
displaying 21

open operation
allocating resources 14
description 3
file types 3
high-level language 3, 12
scoping 36
sharing files 12

open scope (OPNSCOPE) parameter 36
opening file 16
operation

acquire
allocating resources 14
description 3
file types 3
high-level language 3

BASIC 3
close

description 3
file types 3
high-level language 3

commit
description 3
file types 3
high-level language 3

data management overview 3
delete

description 3
file types 3
high-level language 3

operation (continued)
FEOD

description 3
file types 3
high-level language 3

file types 3
high-level language 3
input/output 3
open

allocating resources 14
description 3
file types 3
high-level language 3
scoping 36

read
description 3
file types 3
high-level language 3

release
description 3
file types 3
high-level language 3

requiring resource allocation 14
rollback

description 3
file types 3
high-level language 3

starting program on remote server
allocating resources 16

update
description 3
file types 3
high-level language 3

write
description 3
file types 3
high-level language 3

write-read
description 3
file types 3
high-level language 3

OPNSCOPE (open scope) parameter 36
order of spooled files on output queue 142
original program model 12
output queue

automatic configuration 141
cannot find 142
changing 141
clearing 141
creating 140, 142
damaged 143
default for printer 141
default for server printer 142
deleting 141
description 137
holding 141
IBM-supplied 142
maximum spooled file size 140
multiple 143
number of writers started automatically 140
order of spooled files on 142

Index 239



output queue (continued)
processing 140
recovering 143
releasing 141
working with 141

output queue description
working with 141

output spooling
description 137
elements of 137

override
application

order 43
benefits 30
command

temporary changes 17
commands used 29
deleting 30, 50
description 29
displaying 30
end-of-routing step or end-of-job processing 31
examples, general 30
external data definitions 49
file

commands used for 29
deleting 50
displaying example 54
open data path (ODP) 34

merged 53
merged file

displaying example 53
message files 29
multiple call levels

display file example 53
printer file example 48

OPNSCOPE (open scope) parameter 36
order of application 43
OVRSCOPE (override scope) parameter 36
processing 43
processing priority 39
scope

call level 36
job level 36

source files 49
SRCFILE parameter 31
SRCMBR parameter 31
when specified 43

Override with Database File (OVRDBF) command
description 30
example

at same call level 44
with name change 45

redirecting 59
Override with Diskette File (OVRDKTF) command

description 30
example 45

Override with Display File (OVRDSPF) command 30,
192

Override with Intersystem Communications Function File
(OVRICFF) command 30

Override with Message File (OVRMSGF) command 30

Override with Printer File (OVRPRTF) command
basic example 34
description 30
IGCALTTYP keyword 192
multiple call level example 48
same call level example 48

Override with Save File (OVRSAVF) command 30
Override with Tape File (OVRTAPF) command

description 30
overriding file

See also file redirection
applying

at same call level 44
from high-level language program 46
using high-level language programs 34
using override commands 34
when compiling program 49

attribute 34
call level 36
CL program 46
commands that ignore 31
commands used for 29
database

applying 44
deleting 50

deleting 50
description 29
device

applying 34
deleting 50

difference from changing 29
different names or types and attributes of new

file 36
different types 59
displaying 53
displaying example 54
effect on server commands 31
names 35
open data path (ODP) 34
preventing 47
printer 48

overriding with
database file 30
diskette file 30
display file 30, 192
intersystem communications function file 30
message file 30
printer file 30
save file 30
tape file 30

OVRDBF (Override with Database File) command
description 30
example

at same call level 44
with name change 45

redirecting 59
OVRDKTF (Override with Diskette File) command

description 30
example 45

OVRDSPF (Override with Display File) command 30,
192

240 File Management V5R2



OVRICFF (Override with Intersystem Communications
Function File) command 30

OVRMSGF (Override with Message File) command 30
OVRPRTF (Override with Printer File) command

basic example 34
description 30
IGCALTTYP keyword 192
multiple call level example 48
same call level example 48

OVRSAVF (Override with Save File) command 30
OVRSCOPE (override scope) parameter

*CALLLVL value 36
*JOB value 36

OVRTAPF (Override with Tape File) command
description 30

P
packed decimal field conversions 110
parameter

AUT 11
copying files 66
LVLCHK(*NO) 20
LVLCHK(*NO) with externally described data 59
LVLCHK(*NO) with overrides 49
LVLCHK(*YES) 20
OVRSCOPE 36
run-time, shared files in same job 12
SECURE 59
SECURE(*YES) 47
share

open processing 13
SHARE 12, 59
SPOOL 59
SRCFILE (source file) parameter 31
SRCMBR (source member) parameter 31
TOFILE 59
WAITFILE 16

PASCAL operation 3
performance considerations 154

controlling the number of spooled files 146
displaying data in spooling library 154
saving a database file in spooling library 154

physical file
copying, sequence 72
creating 192
default (DFT) keyword 99

PL/I operation 3
printer

default output queues 141
I/O feedback area 176

printer file
changing 192
creating 192
DBCS 192
overriding with 30
redirecting 61
using generic override for 48

printer writer
starting 144

printing
DBCS conversion dictionary 212
spooled files 140

priority
override 39

problem
analyzing 27
ANZPRB command 27

problem analysis, damaged DBCS-capable
devices 201

processing
close, shared files 14
extended characters 191
files 3
overrides, call level effects 43
spooled files 140

program
See application program

program override 46
program reference

displaying 20
program stack

See call stack of active job
programming language

operations 3
programs that process double-byte data, how to write

considerations 198
converting alphanumeric applications to DBCS

applications 198
protecting override 43
public authority

AUT parameter 11
commands used 11

Q
QCMDEXC program 43
QIGC system value

DBCS conversion dictionaries
create 208
delete 213
display 212
edit (change, add terms) 208
edit, examples of 210
perform object management functions with 207
print 212

QINLINE data file 152
QPGMR server profile

automatic configuration 141
QPRINT output queue 142
QPRTDEV server value

defining server printer 142
QRCLSPLSTG system value 154
QSPL

spooling library 154
spooling subsystem 154

QSYSIGCDCT (server-supplied DBCS conversion
dictionary)

contents 207
definition 207

Index 241



query file
copying 66

queue
job

authorization 151
changing to different 151
creating 151
damaged 152
description 149
errors, recovering 152
IBM-supplied 149
multiple 150
multiple within a subsystem 151
recovering 152
security 151
working with 151

multiple output 143
output

automatic configuration 141
cannot find 142
creating 142
damaged 143
default for printer 141
default for server printer 142
description 137
IBM-supplied 142
multiple 143
order of spooled files on 142
processing 140
recovering 143

QUSRIGCDCT (user-created dictionary) 207
QUSRSYS library 141

R
RCLSPLSTG (Reclaim Spool Storage) command 154
read authority 10
read operation

description 3
file types 3
high-level language 3

Reclaim Spool Storage (RCLSPLSTG) command 154
reclaiming

spool storage 154
record

copying
functions 66
specific functions 66

deleted
compressing 99
from-file 66

record format
See also database file
copying between 99
field mapping (FMTOPT) parameter 99
level checking 20

record length
inline data files 153

recovering job queue 152
recovery action, error handling 26

redirecting file
combinations to avoid 60
database input 61
database output 61
diskette input 61
diskette output 61
display input 61
display input/output 61
display output 61
ICF input 61
ICF input/output 61
ICF output 61
output, different file types 59
printer input 61
tape input 61
tape output 61
valid combinations 60

release operation
description 3
file types 3
high-level language 3

Release Output Queue (RLSOUTQ) command 141
Release Spooled File (RLSSPLF) command 139

description 139
Release Writer (RLSWTR) command 144
releasing

output queue 141
spooled file 139
writer 144

remote writer
starting 144

remove
See deleting

Rename Object (RNMOBJ) command 207
rename-file authority 10
renaming

object 207
resource

allocating 14
restore authority 10
Restore Library (RSTLIB) command 207
Restore Object (RSTOBJ) command

DBCS conversion dictionaries 207
DBCS sort table 203, 204

restoring
library 207
object 203

restoring DBCS font tables
See copying DBCS font tables

restoring DBCS sort tables
See copying DBCS sort tables

restriction
DBCS files 194
deleting a DBCS font table 201
deleting a DBCS sort table 206
displaying extended characters 196
naming a user-created dictionary 207
printing invalid double-byte codes 190
sharing files in same job 13

return code
definition 24

242 File Management V5R2



return code (continued)
description

major 00 26
major 02 26
major 03 26
major 04 26
major 08 and 11 26
major 80 27
major 81 27
major 82 28
major 83 28

normal completion 26
use 24

RETURN command 36
revoke authority 9, 10, 207
Revoke Object Authority (RVKOBJAUT) command 11,

207
revoking

object authority 11, 207
RLSOUTQ (Release Output Queue) command 141
RLSSPLF (Release Spooled File) command 139
RLSWTR (Release Writer) command 144
RNMOBJ (Rename Object) command 207
rollback operation

description 3
file types 3
high-level language 3

RSTLIB (Restore Library) command 207
RSTOBJ (Restore Object) command

DBCS conversion dictionaries 207
DBCS sort table 203, 204

RVKOBJAUT (Revoke Object Authority) command 11,
207

S
SAVCHGOBJ (Save Changed Object) command 207
save authority 9, 10
Save Changed Object (SAVCHGOBJ) command 207
save file

overriding with 30
Save Library (SAVLIB) command 207
Save Object (SAVOBJ) command

DBCS conversion dictionaries 207
DBCS sort table 203, 204

Save System (SAVSYS) command 204, 207
saving

changed object 207
DBCS sort table 203
library 207
object 203
system 204

SAVLIB (Save Library) command 207
SAVOBJ (Save Object) command

DBCS conversion dictionaries 207
DBCS sort table 203

SAVSYS (Save System) command 204, 207
SBMDBJOB (Submit Database Jobs) command 149
SBMDKTJOB (Submit Diskette Jobs) command 149
scope

open operation 16

scope (continued)
OPNSCOPE (open scope) parameter 36
overriding

open operation 36
override command 36

OVRSCOPE (override scope) parameter 36
SECURE parameter

*YES value
override protection 43, 47

override exception 59
securing

file example (overrides) 47
override 43

security
add authority 10
delete authority 10
for spooled files 145
function descriptions 8
job queues 151
object alter authority 9
object existence authority 9
object management authority 9
object operational authority 9
object reference authority 9
public authority 11
read authority 10
update authority 10

Send Network Spooled File (SNDNETSPLF)
command 139

authority 145
description 139

Send TCP/IP Spooled File (SNDTCPSPLF)
command 139

description 139
sending

network spooled file 139
TCP/IP spooled file 139

server error log 22
SEU (source entry utility) 20
SHARE parameter

*NO value 13
description 12
open processing 13
override exception 59

sharing file
close considerations 14
feedback areas 22
I/O considerations 14
in same job

general considerations 12
open considerations 13

inline data 153
library list 13
open processing 13
override command 13
scope in ILE model 12
when not possible 13

shift-control character
description of 189
inserting 195

Index 243



SNDNETSPLF (Send Network Spooled File)
command 139

SNDTCPSPLF (Send TCP/IP Spooled File)
command 139

sort table
copying DBCS master from data file 205
copying DBCS master to data file 204

source entry utility (SEU) 20
source file

copying 66, 72
displaying 20
overrides 49

source physical file
creating 192

SPOOL parameter override exception 59
spool storage

reclaiming 154
spooled file

attribute
changing 137
working with 137

available for printing 137
controlling the number of 146
copying 139, 145, 196
deleting 139
description 137
displaying 139, 140
holding 139
locating, using WRKSPLF command 140
order on output queue 142
ordering

SEQ(*JOBNBR) and SEQ(*FIFO) 142
printing 140
recovering 143
releasing 139
security 145
status on output queue 142
storing data 154
tracking those in use 154
working with 139

spooling
input 137, 146
output 137
performance considerations 154
QSPL spooling library 154
QSPL spooling subsystem 154
readers and writers 154
types supported 137

spooling library 154
displaying data in 154
QSPL, description 154
saving a database file in 154

spooling writer 144
spooling writer command 144
SRCFILE (source file) parameter 31
SRCMBR (source member) parameter 31
Start Character Generator Utility (STRCGU) command

and other DBCS font table commands 199, 203
use 202

Start Database Reader (STRDBRDR) command 149
Start Diskette Reader (STRDKTRDR) command 149

Start Diskette Writer (STRDKTWTR) command 144
Start Font Management Aid (STRFMA) command 199
Start Printer Writer (STRPRTWTR) command 144
Start Remote Writer (STRRMTWTR) command 144
starting

character generator utility 199
database reader 149
diskette reader 149
diskette writer 144
font management aid 199
printer writer 144
remote writer 144

STRCGU (Start Character Generator Utility)
command 199

STRDBRDR (Start Database Reader) command 149
STRDKTRDR (Start Diskette Reader) command 149
STRDKTWTR (Start Diskette Writer) command 144
stream, input 146
STRFMA (Start Font Management Aid) command 199
string of double-byte characters, how to identify 195
STRPRTWTR (Start Printer Writer) command 144
STRRMTWTR (Start Remote Writer) command 144
Submit Database Jobs (SBMDBJOB) command 149
Submit Diskette Jobs (SBMDKTJOB) command 149
submit job command 149
submitting

database jobs 149
diskette jobs 149

support
DBCS character display 195
double-byte character set 185
file 192

system
saving 204

system value, QIGC
use DBCS conversion dictionaries

create 208
delete 213
display 212
edit (change, add terms) 208
edit, examples of 210
perform object management functions with 207
print 212

System/370
converting floating point and null fields 109

T
table, DBCS font

check for the existence of 199
commands used with 199
deleting 201
description 198
restoring from tape or diskette 200
saving onto diskette 200
server-supplied 198

table, DBCS sort
checking for the existence of 204
commands used with 203
copying from a data file (move from

System/36) 205

244 File Management V5R2



table, DBCS sort (continued)
copying to a data file (move to System/36 or

AS/Entry) 204
deleting 206
restoring from tape or diskette 204
saving onto diskette 204

tape file
copying 66
CPYFRMTAP (Copy from Tape) command 66
CPYTOTAP (Copy to Tape) command 66
creating 192
DBCS 192
overriding with 30
redirecting input 61
redirecting output 61

TCP/IP spooled file
sending 139

temporary change
override commands 17

TOFILE parameter, overrides 59
Transfer Control (TFRCTL) command

file override example 44
transfer ownership authority 9, 10
transferring

jobs 151
trigger program 83

U
UCS-2

universal coded character set 108
UCS-2 graphic field

converting 108
copying 108
restrictions 109

universal coded character set
UCS-2 108

unnamed inline data file 152
unwanted DBCS words, deleting 223
update authority 10
update operation

description 3
file types 3
high-level language 3

user default activation group 36
user-created dictionary (QUSRIGCDCT) 207
user-defined output queue 142

V
Vary Configuration (VRYCFG) command 201
volume label

field 167

W
WAITFILE parameter 16
when to consider

copying
DBCS font table 200
Japanese DBCS master sort table from file 205

when to consider (continued)
copying (continued)

Japanese DBCS master sort table to file 204
saving DBCS sort table 204

Work with DBCS Conversion Dictionary display 209
Work with Job Queue (WRKJOBQ) command 151
Work with Output Queue (WRKOUTQ) command

definition 141
displaying status of spooled file 144

Work with Output Queue Description (WRKOUTQD)
command 141

Work with Spooled File Attributes (WRKSPLFA)
command 139

Work with Spooled Files (WRKSPLF) command 139
working with

job queue 151
output queue 141
output queue description 141
spooled file attributes 139
spooled files 139

write operation
description 3
file types 3
high-level language 3

write-read operation
description 3
file types 3
high-level language 3

writer
changing 144
commands, spooling 144
ending 144
holding 144
output spooling 137
releasing 144
spooling 144

writing application programs that process double-byte
data 198

WRKJOBQ (Work with Job Queue) command 151
WRKOUTQ (Work with Output Queue) command

definition 141
displaying status of spooled file 144

WRKOUTQD (Work with Output Queue Description)
command 141

WRKSPLF (Work with Spooled Files) command 139
WRKSPLFA (Work with Spooled File Attributes)

command 139

Z
zoned decimal field conversion 110

Index 245



246 File Management V5R2





����

Printed in U.S.A.


	Contents
	About File Management
	Who should read the File Management book
	What's new in V5R2 File Management

	Chapter 1. Introduction to File Management
	File types

	Chapter 2. File processing
	File management operations overview
	File security considerations
	Object authority
	Object operational authority
	Object existence authority
	Object management authority
	Object reference authority
	Object alter authority

	Data authorities
	Authorities required for file operations
	Limiting access to files and data when creating files

	Sharing files
	Open considerations for files shared in a job
	I/O considerations for files shared in a job
	Close considerations for files shared in a job

	Allocating file resources
	File resource allocation
	File resources that must be allocated
	How the server allocates resources

	Opening files
	Scoping of opened files
	Opening files using temporary file descriptions
	Open considerations when using *LIBL with a DDM file
	Detecting file description changes
	Displaying information about open files
	Monitoring file status with the open and I/O feedback area

	File error detection and handling by the server
	Messages and message monitors in files by the server
	Major and minor return codes in files by the server
	Recovering from file server errors
	Normal completion of errors by the server
	Completion with exceptions of errors by the server
	Permanent server or file error
	Permanent device or session error on I/O operation
	Device or session error on open or acquire operation
	Recoverable device or session errors on I/O operation


	Related information on file types

	Chapter 3. Using overrides
	Overrides: An overview
	Benefits of using overrides
	Summary of the override commands
	Effect of overrides on some commands
	Using overrides in multithreaded jobs

	Applying overrides
	Overriding file attributes
	Overriding file names
	Overriding file names and file attributes
	Overriding the scope of an open file
	How the server processes overrides
	Processing priority of overrides
	How the server processes overrides-scenario 1
	How the server processes overrides-scenario 2
	Processing overrides: General principles

	Effect of exits on overrides: scenario
	Effect of TFRCTL on overrides-Scenario
	Overrides to the same file at the same call level: scenario 1
	Overrides to the same file at the same call level: scenario 2
	CL program overrides
	Securing files against overrides
	Using a generic override for printer files
	Applying OVRPRTF with *PRTF: scenario
	Applying OVRPRTF with *PRTF from multiple call levels: scenario

	Applying overrides when compiling a program

	Deleting overrides
	Deleting overrides: scenario 1
	Deleting overrides: scenario 2

	Displaying overrides
	Displaying all overrides for a specific activation group: scenario
	Displaying merged file overrides for one file: scenario
	Displaying all file overrides for one file: scenario
	Displaying merged file overrides for all files: scenario
	Displaying overrides with WRKJOB: scenario
	Displaying overrides: comprehensive scenario
	Displaying overrides: tips

	Redirecting files
	Planning for redirecting files
	Redirecting files: tips
	Default actions for redirected files


	Chapter 4. Copying files
	Copying physical or logical files
	Copying files: overview
	Copying files: commands
	Copying files: supported functions
	Copying files: basic functions
	File types and copying
	Record sequence and copying
	Resending copy file completion message
	Monitoring for copy errors
	Monitoring for zero records in the from-file
	Creating a duplicate to-file member
	CPYFRMQRYF command support for CCSIDs
	CPYSRCF command support for CCSIDs
	Copy commands support for null values


	Creating the to-file (CRTFILE parameter)
	Specifying CRTFILE(*YES) on either the CPYF or CPYFRMQRYF command
	Authorities, user profiles, and file capabilities of the to-file created by Copy File (CPYF)

	Adding, replacing, and updating records (MBROPT parameter)
	Specifying *REPLACE when copying files
	Specifying *ADD when copying files
	Specifying *UPDADD when copying files
	Copying records into files that use trigger programs

	Selecting members to copy
	Copying file members: overview
	Allowed copy operations and parameters
	Copying all members or labels within a file
	Copying only certain members or labels within a file
	Specifying the label identifier or member name for the copy operation
	Special considerations for the Override Database File (OVRDBF), Override Diskette File (OVRDKTF), and Override Tape File (OVRTAPF) commands
	How the copy function adds members to the to-file

	Selecting the records to copy
	Selecting records using a specified record format name (RCDFMT Parameter)
	Selecting records by relative record numbers (FROMRCD and TORCD Parameters)
	Selecting records by record keys (FROMKEY and TOKEY Parameters)
	Key string comparisons made by the copy operation
	Example: build-key function
	Example: using FROMKEY and TOKEY
	Variable-length fields used by record keys (FROMKEY and TOKEY)
	Date, time, and timestamp fields used by record keys (FROMKEY and TOKEY)
	Null-capable fields used by record keys (FROMKEY and TOKEY)
	Different CCSIDs used by record keys (FROMKEY and TOKEY)
	DBCS-graphic fields used by record keys (FROMKEY and TOKEY)

	Selecting a specified number of records (NBRRCDS Parameter)
	Selecting records based on character content (INCCHAR Parameter)
	Variable-length fields used by the INCHAR parameter
	Null-capable fields used by the INCHAR parameter
	Different CCSIDs used by the INCHAR parameter
	DBCS-graphic fields used by the INCHAR parameter

	Selecting records based on field value (INCREL Parameter)
	Variable-length fields used by the INCREL parameter
	Date, time, and timestamp fields used by the INCREL parameter
	Null-capable fields used by the INCREL parameter
	Different CCSIDs used by the INCREL parameter
	DBCS-graphic fields used by the INCREL parameter

	Copying deleted records (COMPRESS Parameter)
	Requirements of COMPRESS(*NO) parameter and the CPYF command
	Restrictions of COMPRESS(*NO) parameter and the CPYF command
	Details of COMPRESS(*NO) parameter and the CPYF command


	Printing records (PRINT, OUTFMT, and TOFILE(*PRINT) parameters)
	Creating an unformatted print listing

	Copying between different database record formats (FMTOPT parameter)
	Specifying data for different field types and attributes
	Variable-length fields using FMTOPT(*MAP)
	Mapping variable-length fields to variable-length fields
	Mapping variable-length fields to fixed-length fields
	Mapping fixed-length fields to variable-length fields
	Date, time, and timestamp fields using FMTOPT(*MAP) or FMTOPT(*NOCHK)
	Null-capable fields using FMTOPT(*MAP) or FMTOPT(*NOCHK)
	CCSIDs using FMTOPT(*MAP) or FMTOPT(*NOCHK)
	DBCS-graphic fields using FMTOPT(*MAP) or FMTOPT(*NOCHK)

	Converting universal coded character set (UCS-2) graphic fields
	UCS-2 graphic fields restrictions

	Converting System/370 floating point and null fields
	Errors in converting system/370 floating point and null fields

	Conversion rules for copying files

	Adding or changing source file sequence number and date fields (SRCOPT and SRCSEQ Parameters)
	Copying device source files to database source files
	Copying database source files to device source files
	Copying database source files to database source files

	Preventing errors when copying files
	Limiting recoverable errors during copy
	Preventing date, time, and timestamp errors when copying files
	Mapping considerations using Copy

	Preventing position errors when copying files
	Preventing allocation errors when copying files
	Reasons for allocation errors when copying files

	Preventing copy errors that result from constraint relationships
	Copying files not in check-pending status
	Copying files in check pending status
	Preventing copy errors related to your authority to files

	Improving copy performance
	Avoiding keyed sequence access paths
	Specifying fewer parameters
	Checking record format level identifiers

	Year 2000 support: date, time, and timestamp considerations
	Copying FROM logical file ZONED, CHARACTER, or PACKED field (with a DATFMT) TO a DATE field in a physical to-file
	Copying FROM or TO a ZONED or PACKED field (that has no DATFMT) TO or FROM a DATE type field
	Restrictions for Year 2000 support

	Copying complex objects
	Copying files that contain user-defined functions
	Copying files that contain user-defined types
	Copying files that contain DataLinks
	Copying files that contain large objects
	Copying files that contain Identity Columns or ROWID attributes

	Copying between different servers
	Using the Copy From Import File (CPYFRMIMPF) command to copy between different servers
	Using the Copy To Import File (CPYTOIMPF) command to copy between different servers
	Notes on the CPYFRMIMPF command
	Restrictions on the CPYFRMIMPF command
	(CPYFRMIMPF) Importing data to the iSeries when the from-file is a database file or DDM file
	Tips to improve the performance of the CPYFRMIMPF command

	(CPYFRMIMPF) Importing data to iSeries when the import file is a stream file
	Parallel data loader support to use with the CPYFRMIMPF command
	Handling data from the import file
	Delimited import file
	Fixed formatted import file
	Notes on the CPYTOIMPF command
	Notes on the delimited import file (CPYTOIMPF command)
	Restrictions for the CPYTOIMPF command
	Copying data to the import file in a fixed format (CPYTOIMPF command)


	Chapter 5. Working with spooled files
	Output spooling
	Spooling device descriptions
	Summary of spooled file commands
	Locating your spooled files
	File redirection of spooled files

	Output queues of spooled files
	Summary of output queue commands
	Default printer output queues
	Default server output queues
	Creating your own output queues
	Order of spooled files on an output queue
	Using multiple output queues
	Output queue recovery

	Spooling writers
	Summary of spooling writer commands

	Spooled file security
	Controlling the number of spooled files in your server
	Command examples for additional spooling support
	Input spooling
	Summary of job input commands
	Job queues
	IBM-supplied job queues
	Using multiple job queues
	Creating your own job queues
	Multiple job queues for a subsystem
	Using the WRKJOBQ command

	Transferring jobs in a queue
	Job queue security
	Job queue recovery

	Using an inline data file
	Open considerations for inline data files


	Spooling subsystem
	Spooling library

	Appendix A. Feedback area layouts
	Open feedback area
	Device definition list
	Volume label fields

	I/O feedback area
	Common I/O feedback area
	I/O feedback area for ICF and display files
	I/O feedback area for printer files
	I/O feedback area for database files
	Get attributes feedback area


	Appendix B. Double-byte character set support
	Double-byte character set fundamentals
	DBCS code scheme
	Shift-control double-byte characters
	Invalid double-byte code and undefined double-byte code
	Using double-byte data
	Where you can use double-byte data
	Where you cannot use double-byte data

	Double-byte character size

	Processing double-byte characters
	Basic double-byte characters
	Extended double-byte characters
	What happens when extended double-byte characters are not processed

	DBCS device file support
	What a DBCS file is
	When to indicate a DBCS file
	How to indicate a DBCS file
	Improperly indicated DBCS files
	Making printer files capable of DBCS


	DBCS display support
	Inserting shift-control double-byte characters
	Number of displayed extended double-byte characters
	Number of DBCS input fields on a display
	Effects of displaying double-byte data at alphanumeric work stations

	Copying DBCS files
	Copying spooled DBCS files
	Copying nonspooled DBCS files

	Application program considerations for DBCS
	Designing application programs that process double-byte data
	Changing alphanumeric application programs to DBCS application programs

	DBCS font tables
	Commands for DBCS font tables
	Finding out if a DBCS font table exists
	Copying a DBCS font table onto tape or diskette
	When to copy a DBCS table onto tape or diskette
	How to copy a DBCS table onto tape or diskette

	Copying a DBCS font table from tape or diskette
	How to copy a DBCS table from a tape or diskette

	Deleting a DBCS font table
	When to delete a DBCS font table
	How to delete a DBCS font table

	Starting the character generator utility for DBCS font tables
	Copying user-defined double-byte characters

	DBCS font files
	DBCS sort tables
	Commands for DBCS sort tables
	Using DBCS sort tables on the server
	Finding out if a DBCS sort table exists
	Saving a DBCS sort table onto tape or diskette
	When to save a DBCS sort table onto tape or diskette

	Restoring a DBCS sort table from tape or diskette
	Copying a Japanese DBCS master sort table to a data file
	When to copy the Japanese DBCS master sort table to a data file
	How to copy the Japanese DBCS master sort table to a data file

	Copying a Japanese DBCS master sort table from a data file
	When to copy the Japanese DBCS master sort table from a data file
	How to copy the Japanese DBCS master sort table from a data file

	Deleting a DBCS sort table
	When to delete a DBCS sort table
	How to delete a DBCS sort table


	DBCS conversion dictionaries
	Server-supplied dictionary (for Japanese use only) for DBCS
	User-created dictionary for DBCS
	Commands for DBCS conversion dictionaries
	Creating a DBCS conversion dictionary
	Editing a DBCS conversion dictionary

	Displaying and printing the DBCS conversion dictionary
	Deleting a DBCS conversion dictionary

	DBCS conversion (for Japanese use only)
	Where you can use DBCS Conversion
	How DBCS Conversion works
	Using DBCS Conversion
	Performing DBCS Conversion
	Examples of DBCS Conversion
	Considerations for using DBCS Conversion



	Bibliography
	Index

