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Abstract

We derive in this paper the expression of the gradient of the travel time cost
function by adjoint state techniques. We show how to get for the numerical schemes
exact adjoint conditions, and in particular adjoint discrete equations. We use an
upwind scheme of first order to integrate the eikonal equation, and demonstrate the
efficency of the preceeding technique on the simple case of a homogeneous medium.
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1 Introduction

Asymptotic expansions like geometric optics or integral expression like Kirchhoff integral
of an acoustic wave field are commonly used in seismology (cf [?]). They are generally less
expensive than the the modeling of the full wave field solution of the full wave equation
by say finite difference technique.

Those expansions or integral representation involve directly the travel time in their ex-
pression. This travel time map depends on the “background” velocity. So in order to
perform inversion by local optimization technique it is necessary to compute the gradient
of the travel time map with respect to the velocity field.

That is what we propose to do in this paper. We use adjoint state technique to do so
(cf [?] [?]). Previous work on tomography inversion used an argument based on Fermat’s
principle of least time to show that the derivative with respect to the slowness in a par-
ticular box is approximately the path length in that box (cf [?], [?]).

Our approach is different in the sense that we do not use Fermat’s principle to compute
the gradient. We tackle this problem in the same way, one would compute the gradient of
the non linear cost function of the acoustic inverse problem (cf [?] or [?]).

2 The Continuous Problem

We consider a domain Q € R? where is given a velocity profile. We are interested in
the map F which associates the travel time between the source and the receivers in the
domain.
We can parametrize this map by the velocity or by their inverse the slowness s. Given
a slowness field s we can find the travel time 7 by solving the eikonal equation. So F is
defined from the slowness space S to the travel time space 7 by :

F : §— T

s—  F(s)=1(z,2)
where 7 is the solution of
|Vr(z,2)|?

I

s¥(z,2) (z,2) € Q

(1)

(z,z) = 7o(s;z,2) (z,2) €Ty
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We want to minimize the cost function associated to the error on the travel time and

defined by :
@) J($)= 3 3 IF (s, B) = #(R)F = 3 T In(s, B) = t4(R)P

ré€R T€ER
where t?(R) are travel time data at the receiver R, and R is the array of receivers.
To compute the gradient of the cost function J, we have to know the derivative of the
application F with respect to s. In effect, we have :
J'(s).6s = S F'(s,R).85.(F(s, R) - t*(R))
reER

(3)

3" 7'(s, R).6s.(7(s, R) — t*(R))

r€ER

To compute the derivative of F with respect to s, we set 67 = F (s).6s = 7(s) .b6s. Tt
is shown in appendix 1 that the perturbation ds in the slowness field, will give rise to a
perturbation 67 in the travel times, which will satisfy to first order the perturbed equation

Vr.Vér(z,z) = s.65(z,2) (z,2) e
(4)
6r(z,2) = mo(s;z,2)0s(z,2) (z,2) €Ty
So the derivative of J with respect to s is
J'(s).6s = 5 67(s,R).(r(s, R) - t*(R))
reR ‘

Now imagine that we can write for a certain Hilbert space the following equality
J'(s).6s = (6s, VJI(s))y

then we have found the gradient with respect to the hilbert space we have chosen of the
cost function J. To obtain this expression of the gradient, it is worth to note that the
dependance of 67 on és is double. It occurs in the “source” term and in the boundary
term of equation (?77).

Since we are going to consider value of §7 on the boundary, that is traces of 67 we are led
to introduce the following Hilbert space H :

(5) H = {ue H(Q)/ur, =0}
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provided with the norm ||.||x :
©) lullsr = [ [Vulds dz

we can write then

J'(s).0s Z §7(s, R).(r(s, R) — t*(R))

reR

/ é7(s;z, 2)r(z, z)dz dz
Q

with 7(z,2) = Z (7(s; z,2z) —t%z, z))6r. We introduce then the adjoint state w solution

re€R
of:

-V (wVT)(z,2) = r(z.2) (z,2) €N
(7)

il
o

(:c,z) € Fl = 1"/1"0

w(z, z)
We can then write

J'(s).6s = /67‘(3;z,z)r(z,z)dzdz
Q

- /Q §7(s;2,2)V (wVT) (, 2)dz dz

or
/nVT.chr(s,a:,z)w(:v,z)dz dz-—/rér(s,z,z)w%(z,z)da

' or
= /Q Vr.Vér(s;z,z)w(z,z)dz dz — /I:o To(s; z, z).6sw%(a:, z)do

i

/Qés. (s(z, 2)w(z,2))dz dz + /Fo 83 (ro(s;z,2))" (—w-g-:;(z, z)) do
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With our choice of norm on H we can write

J'(s).6s = (8s, VJ(s))y

/n V(V.J(s)).Vésdz dz

(8) =
- / A(VI(s)) Ssdz d + / §s aw (s) do
Therefore VJ(s) is solution of the following elliptic problem:
[ ~A(VI(s)) = sw (z,2) € Q
() {0 o (@ (~wi) @)eT
VJ(s) = 0 (z,2) eI

Of course we have VJ(s) € H.

Remark

In the case of an homogeneous medium, assuming the boundary I'o =]Xmin, Xmaz, 20[ We

can write :

(z,z) = Vz?+ 22%s

to(z,2) = yJz*+ 23

Therefore, in this case 7 is linear in s, and so 7y(s).ds = 7(6s) = |/z2 + 226s.

/1:0 85 (to(s; 2, 2))* {—wg%(a:,z)} do

dez aT
= ‘/)‘(m‘" §s(z, 20) (\/232 + 22 {—wa—n(m,zo)}> dz
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3 The Discrete Problem

Let us set u = 67, we know that u is the solution of :

T Uy + Tolz = S.08 (z,2) €

(10)

u = T79.08 (z,2) €Ty

Assuming that 7, # 0 we can write (??) as follows :

Uy + Ty = =.4s (z,2) €
Tz Tz
(11)
v = To.68=1up (z,2) € To

Numerically we are going to treat this equation as an evolution equation in z. To integrate
it we are going to use an upwind scheme given by :

n+1 n

o Y | +\n J-l u} —\n uly —ug o,
A ((1 ) +( ) A.’B - f]
(12)
u? = qu
where a = Z=, at = maz(a,0), a~ = min(a,0) and f = Ti.6s. The “outflow” condition
z

on T translates here into

(at)p=0 (a*)f=0 n=0.N
(13)

(a7)3=0 (a7)j_;=0 n=0.N

We now need to define a discrete equivalent of the space H we defined in the preceeding

section. To do so we introduce some notation.

(9, = {(zjyz) j=1.J-1 n=1.N -1}
Ton = {(zjy20) j=1.J-11}
(14) ]
Iy = {(z1,22) n=1.N-1} U {(zj,2n) j=1..J =1}

U {(zs-1,23) n=1.N -1}

\
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where h = (Az, Az).

Now we consider the discrete L2 spaces and define their scalar products as follows

( J=-1N-1
(u, V)12, = Z z u;.vp Az Az

=1 n=1

J-1
(15) ¢ (w0 = 2 ujel Az

7=1

N-1 N-1

\ n=1 j=1 n=1

We have

J'(s).6s = / ot(s;z, 2)r(z,2)dz dz
Q
At the discrete level we will have

J'(s)-8s = (u,7)12(q,)

J=-1N-1

Z Z u}'r}-‘AzAz

Jj=1 n=1

If we introduce the discrete adjoint state w solution of :

n-1_

(16) wJ J
Az Az Az

w} _ (a*)?w?yy — (at)Pw? + () qwl; — (a”)7w? —

J-1
(%, )2y, = Z ul.vf Az + Z uﬁ-v.vjy Az + Z w05 Az

&.:
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we can write using appendix 2 :

J-1N-1
J(s)bs=> Z u;ri AzAz
7=1 n=1
J-1N-1 wn—l w?  (a*)? w? —(a*)tw?  (a7)P w? - (a~)*w?
_ J J+175+1 3 j=1";-1 J 3
= u - Az + Az ) AzAz

ety "’?H - uj + Ul .1 Ui
= L I S— '"_—___ - '"'____
"EE"’J( (a™); Az + (a7)j Az >A2:Az

N-1 -1 N-1
+ Z (a7 )gwgul Az + Z woulAz - Z wf"luﬁ-vAz - E (a*)Jwlu}_Az

7=1 i=1 n=1

J-1N-1

= Z E wi flAzAz

j=1 n=1

N-1 J-1 N-1
+ Z(a“)gw}}u{‘Az + E w?u}Az - Z wN -1 NAa: - z(a"')JwJuJ 1Az

n=1 1=1 =1 n=1

Choosing w such that :

we have

J-1
] S
J'(8).6s = (63 , —w) + 5 wlulAz
(s) =) ; Fu5

Using (??) for n = 0 we have

u® 0

0



Gradient Calculation of the Travel Time

Therefore
J-1 Jo1 40 0
> viuds = Z wulAz + AzY w O(a+)O_JIA_A“’
Jj=1 j=1 =1 x
J-1
- Azz'wo(a )0 .7+1 JA(L"‘I‘AZZ'wofjA:L‘
Jj=1 i=1
J-1 1 (g0 0 "
= () +Azf])ujAs +Azz (@)1 s (a*)jw? o %A
J=1 =
121 ()0 w? g = (a7)0w?
- =131 33,0
AZ; Az uJAa:
— 0 0
= (¢ )Iﬂ(ro,.)

(a+)Q w? —(a+)Q (a )_ ,wO- _(a )
where G9 = w? + Az(fP + j+1 lez j j-1 JAlz ; ])
Finally we can write :

'] ‘ § s
J bs = (6 , — > 0 , G°
(s).6s S Tzw Lﬁ(n,,)+ (u )Lz(FOh)

— el ! 0
- (68 ' T, w)Lz(Qh) * (TO(S).JS » @ )Lz(rm.)

= (63, iw

- )Lz(ﬂ,.) + (63 y (T(;(S))* Go)

L2(Ton)
Now we can approximate the expression

J'(s)-6s = (85, VI(s))y

= /Q V(V.J(s)).Vésdz dz
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by the following discrete expression

J- - n n n n 1 n+l1
I El Nzl Vi = VI 88741 = 887 VI - VI b7 - bsh
Az Az Az Az

7=1 n=1

with
Vg =VJ;=0 n=0.N

VJJN=O =1.J-1
By discrete integration by parts, we have that VJ}' is the solution of the following discrete
problem : .
( ___Ah(VJJn) = <Tiw> ‘
z /3
vJ! -vJ? , n
. | ST - (o)

VIF=VJ} = 0 n=0.N

vJN =0 j=11J-1

\ J
4 Numerical results

We consider on homogeneous background slowness gp = 1 given in the following (x,z)
rectangle domain Q =] — 1,1[x]1,3[. We add to this slowness field a small slowness
pertubation éo. This perturbation local in space, is concentrated in a disk below the
interface z = 1 centered on (0,1.43) (cf Figure 1).

We assume the source to be (0,0) and that the medium is unperturbed above z = 1. It is
therefore easy to compute the travel time on this interface.

So we know the travel times on interface z = 1, and the total slowness field o given by the
sum of the reference and perturbed fields ¢ = g¢ + §o. In our example the perturbation
is restricted to the interior of the domain Q. Therefore §7 will not depend on 6o on the
boundary z = 1.

The receivers are located on the portion of the interface z = 3, ranging from z = —-0.75
to z = —0.25.
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We show hereafter the adjoint (backpropagation of the residues) and the gradient fields.
It is clear on the backpropagation of the residues (cf Figure 2) that we “illuminated” the
part cf the model where the perturbation is located. From the gradient (cf Figure 3), we
see that we have found the correct location of the slowness perturbation.



12 Alain Sei

0.2

0.154

0.14

0.05+
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Back Propagation of the Residues (Adjoint Calculation)

Plame 1
Trace
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H1 Gradient of the Travel Time Cost Function
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Fic 3 : Gradient Field
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Appendix 1

We want to compute the derivative with respect to S of the map F. To do so we consider
a slowness perturbation §s and by definition its associated travel time satisfies :

Vr(s+6s;z,2)? = (s+ 6s)¥(z,z2) (z,2z) € Q

r(s+6s;z,2) = To(s+8s;z,2) (z,2) € To
Our goal is to find what is the equation verified by 67 = 7'(s).6s. Since we have

(Vr(s+65))2 = (V(r(s)+ 7' (s).65+ 0(85%)))?

= (V7(5))? + 2.V7(s).7'(s).05 + 0o(6s?))
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and

To(s+685) = To(s) + To(s).8s + o(8s?))
we can write

2.V7(s).7'(s).6s + o(8s2)) = (Vr(s+685))? —(Vr(s))?=2s.8s+ CER)

ot 7o(8).68 + 0(65%)

Dropping the term of order higher or equal to two (because we are looking for the deriva-
tive) we find that 67 is the solution of the following problem :

Vr.Vér(z,z) = s.65(z,2) (z,2) €

ér(z, z) 7o(8; z, 2)65(z, 2) (z,2) €Ty

Appendix 2

We are looking for the adjoint equation of equation (??) for the scalar product defined
on Q. Let us note P* the adjoint operator of P where P is the defined by the discrete

equation (??). We have

(P*w, 'U)Lz(ﬂh) = (Pu, TD)Lz(nh)

- wr (2 (Y (g -)"—-—) AzAz
1=1 n=1 ’ Az Az
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Let us treat the first integral

u; -
L = wtI—— 3 AzAz
J-1 1 N-1 N-1
— _ n,n+l _ n,n
- T (St - X ) avae
1=1 n= n=
J-1 1 N N-1
= — n=l,n _ n
= Az (Z Wy Y Z Wj "1) AzAz
j=1 n=2 n=
J=1N=1,,n-1 n J-1 J-1
= ZZ JA "AmAz—Zw Az-{-EwN'l NAz
j=1 n=1 1=1 i=1

The second integral can be written as

J=1N-1
I, = - Z Z w}(at)}LI——-=~ J‘l u AzAz

=1 n=1

= - ~ Z(a"')“ Tul E(a*‘)” Tl | AzAz
n= J=1 j=1
N-1 | [I=2

= - Z s E(a"')}‘_,_lw;-‘Hu Z(a"')"w“u" AzAz
n=1 7=0 Jj=1

J-1N-1 (a+)7w7p N-1

(G
= - E Z Az

j=1 n=1

J u}AzAz + Z (at)3whul_ Az

n=1

17
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Let us treat the last integral

Alain Sei

; _‘J—lNln_nH_l u?
s = E Z ( AzAz
7=1 n=1
N-1 J-1
- B L (S - Sepee ) s
Az J+1 a TAZ
n=1 Jj=1 =1
N-1
1 Pl
= ) — Az (Z(a )i-1wio1uj = Z(a w )AzAz
n=1 7=2 J=1
J-1N-1 (a ) wh (a )n n
7—-1 J— u®
=3 PAzAz - ) (a7 )gwgurA
i=1 n=1 ngl
Finally we can write
J-1N= -1 _ n » - 5 )jwy
Z:l 21 (w" ! Wi (@)} Wiy = (at)jw} + (a7)fwioa = (@7 )w] ) uw?AzAz
j=1 n=1 Az A J
J-1N-1

1
—
3

1

.

n+l un
,w (____ (a+)n J—l uJ +(a )n__J__

+1

Az ) AzAz

N-1

N—-
+ Z (a7 )gwgur Az + 2 wlulAz - Z wN'1 NAa: - E(a'*’)JwJUJ 1Az

n=1 j=1 j=1

n=1



