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Abstract  The problem on linear stability of one–dimensional (1D) states of dynamic equilibrium boundless 
electrically neutral collisionless plasma in electrostatic approximation (the Vlasov–Poisson plasma) is studied. It is 
proved by the direct Lyapunov method that these equilibrium states are absolutely unstable with respect to small 1D 
perturbations in the case when the Vlasov–Poisson plasma contains electrons with stationary distribution function, 
which is constant over the physical space and variable in velocities, and one variety of ions whose distribution 
function is constant over the phase space as a whole. In addition, sufficient conditions for linear practical instability 
are obtained, the a priori exponential lower estimate is constructed, and initial data for perturbations, growing in time, 
are described. Finally, the illustrative analytical example of considered 1D states of dynamic equilibrium and 
superimposed small 1D perturbations, which grow on time in accordance with the obtained estimate, is constructed. 
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1. Introduction 
The model of boundless electrically neutral collisionless 

plasma in electrostatic approximation (the Vlasov–Poisson 
plasma) continues to be one of basic mathematical models 
for modern plasma physics [1-6]. This is due to simplicity 
and clarity of this model as well as its obvious usefulness 
for solving the problem of controlled thermonuclear 
fusion (CTF). 

As is well known, resolution of CTF problem is 
impossible without solving the stability problem of plasma 
equilibria [1]. This implies that development of mathematical 
stability theory occupies central position in studies of 
plasma and its properties. 

A number of fundamental nature results was established 
early in the process of studying the stability of dynamic 
equilibrium states of the Vlasov–Poisson plasma [2,7,8,9]. 

Namely, the sufficient condition for linear stability of 
dynamic equilibrium states of the Vlasov–Poisson plasma 
was obtained in [7,8,9]. Moreover, it is shown in [7], [8] 
that this condition prohibits increasing in time small 
perturbations of dynamic equilibrium states of the 
Vlasov–Poisson plasma in the form of normal waves. 
Finally, the sufficient condition [7,8,9] for linear stability 
of dynamic equilibrium states of the Vlasov–Poisson 
plasma was generalized on finite perturbations in [2]. 

Here, in this paper, the sufficient condition [7,8,9] for 
linear stability of dynamic equilibrium states of the 
Vlasov–Poisson plasma will be converted. In other words, 
it will be demonstrated that the condition is both sufficient 
and necessary by its nature. In addition, it will be given 

rigorous description of the applicability area for this 
condition [10,11]. 

2. Formulation of the Problem 
The simplified, but, nevertheless, quite substantial 1D 

version of the model boundless electrically neutral 
collisionless plasma in electrostatic approximation (the 
Vlasov–Poisson plasma) is considered in the following 
[3,12]: 
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where f  is the distribution function of electrons; t  is the 
time; x  and v  are coordinates and velocities of electrons; 
( ),U x t  is the potential of self–consistent electric field; π  

is the classic constant value (the ratio of a circle's 
circumference to its own diameter); 0f  is initial data for 
the function f . It is assumed that the distribution function 
f  of electrons is periodic in the argument x  or has 

appropriate asymptotic behavior at x →∞ , and it 

vanishes in the argument v  at v →∞ . 
From the physical point of view, the mixed problem (1) 

characterizes the plasma in the framework of such ideas 
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about it as: 1) the plasma includes electrons and one kind 
of ions; 2) since the mass of electrons is extremely small 
compared with the mass of ions, it is believed that the 
latter are at rest and filling all the phase space with 
constant density equal to one; 3) the plasma temperature is 
supposed such that the speed of light is much larger than 
the mean thermal velocity of electrons, and the magnetic 
field cannot be considered; 4) collective interactions of 
electrons prevail over paired ones; therefore, one can 
neglect the collisions integral in the right–hand side of the 
Vlasov equation for the function f  (see the first relation 
from system (1)). 

The initial–boundary value problem (1) has exact 
stationary solutions in the form 

 0 0 0( ), : 1f f v U U f dv
+∞

−∞

= = =∫  (2) 

Here 0f  is arbitrary non–negative function of the 

independent variable v , and 0U  is a constant. 
It is shown in [7,8,9] that the inequality 

 
0

0dfv
dv

≤  (3) 

is the sufficient condition for linear stability of dynamic 
equilibrium states (2) of the Vlasov–Poisson plasma. The 
meaning of condition (3) is that it highlights 
monotonically decreasing in velocities stationary 
distribution functions 0f  of electrons as stable ones. 

It is proved in [7,8] that the inequality (3) ensures no 
growing on time small perturbations of dynamic 
equilibrium states (2) of the Vlasov–Poisson plasma in the 
form of normal waves. 

However, in fairness, it should be noted that the 
condition (3) is derived using the total energy functional 
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and the integral of motion 

 ( )C f dxdv
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≡ Φ∫ ∫  (5) 

where Φ  is arbitrary function of its argument, conserving 
in time along solutions to the mixed problem (1) due to 
the same evolutionary equation, namely the Vlasov 
equation for the distribution function f  of electrons (see 
the first relation of system (1) again). 

This circumstance is the cause for presence of some 
hidden relationship between the functional E  (4) and the 
integral C  (5). In turn, this relationship, as such, means 
that the inequality (3) is the sufficient condition for linear 
stability of dynamic equilibrium states (2) of the Vlasov–
Poisson plasma with respect not to all of studied 
perturbations, but only to some of their subclass. 

Further, in order to describe rigorously the applicability 
area for inequality (3) as the sufficient condition for linear 
stability of dynamic equilibrium states (2) of the  
Vlasov–Poisson plasma, non–singular change [3], [12], 
[13] of variables in the form [14] 
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is carried out. 

3. Reformulation of the Problem 
In the end, the initial–boundary value problem (1) can 

be rewritten as follows: 
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Here λ  is the Lagrangian coordinates of electrons; u  is 
the velocity field; ρ  is the density field of electrons; 0u  
and 0ρ  are initial data for fields u  and ρ , 
correspondingly. It is assumed that fields of the velocity 
u  and the density ρ  disappear in the argument λ  at 
λ →∞ , and they are periodical in the argument x  or 

have desired asymptotic behavior at x →∞ . 
The mixed problem (6) has exact stationary solutions of 

the form 

 0 0 0( ), ( ),u u U Uλ ρ ρ λ= = =   (7) 

 0 1dρ λ
+∞

−∞

=∫  

where 0u  is arbitrary increasing, 0ρ  is some non–

negative functions of the independent variable λ ; 0U  is 
certain constant value as before. 

Subsequent consideration aims to find out whether 
exact stationary solutions (7) are stable with respect to 
small 1D perturbations ( , , )u x tλ′ , ( , , )x tρ λ′ , and 

( , )U x t′ . 
To achieve this goal, it is realized linearization of the 

initial–boundary value problem (6) in the vicinity of its 
exact stationary solutions (7), allowing to obtain mixed 
problem in the form 

 0u u Uu
t x x
′ ′ ′∂ ∂ ∂
+ = −

∂ ∂ ∂
  (8) 
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Here 0u′  and 0ρ′  are initial data for small 1D 

perturbations u′  and ρ′  of steady–state velocity 0u  and 

density 0ρ  fields of electrons. 
Theorem 1. There is no the sufficient condition for 

linear stability of exact stationary solutions (7) to problem 
(6) with respect to 1D perturbations ( , , )u x tλ′ , 

( , , )x tρ λ′ , and ( , )U x t′  (8). 
Proof. The functional 
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(linear analogue of the total energy integral) is conserved 
on solutions to the mixed problem (8). 

Exact stationary solutions (7) to the initial–boundary 
value problem (6) are stable with respect to small 1D 
perturbations (8) if and only if the functional 1E  (9) is the 
definite one in sign. Unfortunately, by virtue of the 
Sylvester criterion [15], the integral 1E  does not possess 
distinctness in sign. 

As a result, the sufficient condition for linear stability 
of exact stationary solutions (7) to the mixed problem (6) 
with respect to 1D perturbations ( , , )u x tλ′ , ( , , )x tρ λ′ , 
and ( , )U x t′  (8) is really absent [10], [11]. This completes 
the proof of Theorem 1. 

However, the sufficient condition for linear stability of 
exact stationary solutions (7) to the initial–boundary value 
problem (6) with respect to 1D perturbations (8) can be 
obtained yet if to subject the latter to additional demand. 
Specifically, 

 ( ) ( )0 0 2 0 0 2 0u u u u dx
λ λ
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In fact, the asymptotic form (10) imposes upper limit on 
allowable values of the kinetic energy for individual 
electrons. 

Theorem 2. The inequality 
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is the sufficient condition for linear stability of exact 
stationary solutions (7) to problem (6) with respect to 
small 1D perturbations (8), (10). 

Proof. In this case, the functional 1E  (9) will appear in 
such a way: 
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This implies that the integral 1E  (12) is the definite one 
in sign if the ratio (11) is fulfilled. 

In the end, the relation (11) is indeed the sufficient 
condition for stability of exact stationary solutions (7) to 
the mixed problem (6) with respect to small 1D 
perturbations ( , , )u x tλ′ , ( , , )x tρ λ′ , and ( , )U x t′  (8) that 
meet the additional requirement (10). This completes the 
proof of Theorem 2. 

Incidentally, the ratio (11) is equivalent to the 
inequality (3) because this ratio can be written in the form 
similar to this inequality, namely 

 
0

0
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κ
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Unfortunately, the asymptotic form (10) is not 
conserved in time along solutions to the initial–boundary 
value problem (8). In other words, small 1D perturbations 
(8), (10) are not complete closed partial class of solutions 
to the mixed problem (8). 

This fact provides the reason to hypothesize about 
absolute instability of exact stationary solutions (7) to the 
initial–boundary value problem (6) with respect to small 
1D perturbations ( , , )u x tλ′ , ( , , )x tρ λ′ , and ( , )U x t′  (8). 
In this connection, the study will be aimed further at 
testing of this hypothesis truth. 

4. The a Priori Exponential Lower 
Estimate of Growth on Time for Small 1D 
Perturbations 

Next, linear instability of exact stationary solutions (7) 
to the mixed problem (6) with respect to 1D perturbations 
(8) will be set by the direct Lyapunov method [16]–[18] 
regardless on whether the inequality (11) holds or not. 
Concerning the relation (11), it will be shown that this 
relation is the necessary and sufficient condition for 
stability of exact stationary solutions (7) to the initial–
boundary value problem (6) with respect to small 1D 
perturbations ( , , )u x tλ′ , ( , , )x tρ λ′ , and ( , )U x t′  (8) of 
incomplete unclosed subclass (10). Moreover, sufficient 
conditions for linear practical instability [18]–[20] of 
exact stationary solutions (7) to the mixed problem (6) 
with respect to 1D perturbations (8) will be obtained. 
Finally, when these conditions for practical instability are 
correct, the a priori lower estimate, indicating that 
considered small perturbations grow over time, not slower 
than exponentially, will be constructed. 

To show instability of any exact stationary solution (7) 
to the initial–boundary value problem (6) with respect to 
small 1D perturbations ( , , )u x tλ′ , ( , , )x tρ λ′ , and 

( , )U x t′  (8), one needs to be able to distinguish among 
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them only one perturbation, but growing in time, at least, 
exponentially fast. 

To that end, the partial class of solutions to the mixed 
problem (8), which is characterized by the property that its 
small 1D perturbations are deviations of electrons flight 
trajectories from current lines, corresponding to exact 
stationary solutions (7) to the initial–boundary value 
problem (6), is further investigated. 

It is not complicated to describe these perturbations by 
means of the Lagrangian displacements field 

( , , )x tξ ξ λ=  [21] which is determined by the equation 

 0u u
t x
ξ ξ∂ ∂′= −
∂ ∂

 (13) 

With the help of relation (13), the mixed problem (8) 
can be reformulated as 
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The functional 1E  (9) will conserve on solutions to the 
initial–boundary value problem (14) too. Admittedly, it 
will take now the form 
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In accordance with the Sylvester criterion [15], it 
implies from the expression (15) that the integral 1E  is 
not the definite one in sign for small 1D perturbations 

( , , )x tξ λ  (13), (14) in principle. This fact confirms only 
once more that choice the subclass (13) of small 1D 
perturbations (8) to demonstrate absolute instability of 
exact stationary solutions (7) to the mixed problem (6) is 
correct. 

Theorem 3. Exact stationary solutions (7) to problem 
(6) are absolutely unstable with respect to small 1D 
perturbations (13), (14). 

Proof. In the interests of subsequent statement, it is 
convenient to introduce into the study such additional 
functional: 

 0 2M d dxρ ξ λ
+∞ +∞

−∞ −∞

≡ ∫ ∫  (16) 

Using relations (13), (14), the original differential 
inequality [18,22,23,24,25] 

 ( )
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2
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dtdt
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can be constructed for the integral M  (16), where ν  is an 
arbitrary positive constant. 

Since the procedure of relation (17) integration is 
described minutely in [18,22,23], only its results are 
reported further. Namely, if one supplement the inequality 
(17) by countable set of terms in the form 
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(here 0, 1, 2, ...n = ), it will provide just an opportunity to 
set the desired a priori exponential lower estimate 

 1( ) expM t C tν≥  (19) 

for small 1D perturbations ( , , )x tξ λ  (13), (14) growing 
over time, where 1C  is the known positive constant value. 

Before one continue the started above consideration, it 
is appropriate to highlight connection between the studied 
initial–boundary value problem (14) and countable set of 
relations (18) added to the original differential inequality 
(17). 

Particularly, since the mixed problem (14) is linear, it is 
solvable thereby for small 1D perturbations in the form of 
normal waves [26]. Further, inasmuch as the functional 

1E  (15) has no the property of definiteness in sign, the 
initial–boundary value problem (14) is solvable with 
respect to growing in time small 1D perturbations in the 
form of normal waves also. In addition, if the mixed 
problem (14) has, at least, one growing on time solution 
that meets small 1D perturbation in the form of normal 
wave, it will satisfy the inequality (17), terms (18), and the 
estimate (19) identically and automatically due to 
arbitrariness of a positive constant ν . 

Thus, relations (18) do not preclude nowise from 
existence of growing over time solutions, which 
correspond small 1D perturbations in the form of normal 
waves, among solutions to the initial–boundary value 
problem (14) with additional demands 

 4(0) 0, (0) 2 (0)dMM M
dt

πν
ν

 > ≥ + 
 

 (20) 

to initial data 0 ( , )xξ λ  and ( )0 ( , )t xξ λ∂ ∂ . 
So, the subclass (20) of solutions to the mixed problem 

(14), increasing in time according to the a priori 
exponential lower estimate (19), is not empty. This 
conclusion will be supported further by the illustrative 
analytical example. 

Hence, it is shown that the a priori exponential lower 
estimate (19) for growing over time small 1D 
perturbations (13), (14), (20) is obtained without any 
restrictions on exact stationary solutions (7) to the mixed 
problem (6). It follows from this that exact stationary 
solutions (7) to the initial–boundary value problem (6) are 
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really absolutely unstable with respect to small 1D 
perturbations ( , , )x tξ λ  (13), (14), (20), and the inequality 
(11) represents actually the desired necessary and 
sufficient condition for linear stability of exact stationary 
solutions (7) to the mixed problem (6) with respect to 1D 
perturbations ( , , )u x tλ′ , ( , , )x tρ λ′ , and ( , )U x t′  (8) 
from the partial class (10). 

Moreover, it is demonstrated that the first pair of ratios 
from the system of relations (18) is indeed desired 
sufficient conditions for practical instability of exact 
stationary solutions (7) to the initial–boundary value 
problem (6) with respect to small 1D perturbations (13), 
(14), (20). With regard to 1D perturbations ( , , )x tξ λ  (13), 
(14), (20) in the form of normal waves, inequalities of the 
relations system (18) are sufficient and necessary 
conditions for linear practical instability of exact 
stationary solutions (7) to the mixed problem (6). 

Finally, in agreement with previously published 
monographs by other authors [19,20], if there is 
theoretical instability (on semi–infinite time intervals), 
practical instability may or may not be at the same time. 
However, it is established in this article that sufficient 
conditions (see inequalities from the system of relations 
(18)) for linear practical instability can be obtained when 
and only when there is no conditions for linear theoretical 
stability. By the way, found here sufficient conditions (see 
inequalities of the relations system (18) again) for linear 
practical instability are of constructive nature, since they 
can act as mechanism for testing and monitoring during 
implementation of physical experiments, execution of 
numerical calculations, realization of technological 
processes, etc. 

As for the physical meaning of absolute linear 
theoretical instability of exact stationary solutions (7) to 
the initial–boundary value problem (6) with respect to 1D 
perturbations (13), (14), (20), established in the present 
paper, it consists in that the potential 0U  of steady–state 
self–consistent electric field is constant over the physical 
space so forces, which would be able both to protect 
stationary distribution function 0 ( ),u λ  0 ( )ρ λ  of 
electrons from ``smearing'' over the phase space and to 
block development of growing in time small 1D 
perturbations ( , , )x tξ λ  (13), (14), (20), are absent in the 
studied Vlasov–Poisson plasma. 

The physical meaning of obtained sufficient conditions 
(see inequalities from the system of relations (18)) for 
linear practical instability of exact stationary solutions (7) 
to the mixed problem (6) with respect to 1D perturbations 
(13), (14), (20) is that, gathered the information about 
temporal evolution of electron component of the 
considered Vlasov–Poisson plasma by recording 
equipment, with the help of these conditions for practical 
instability, one can answer the question whether small 1D 
perturbations ( , , )x tξ λ  (13), (14), (20) have tendency to 
unlimited, at least, exponential growth on time, and, 
therefore, to destructive effect on dynamic equilibrium 
states (7). 

In conclusion, it is logical to mention the fact that the 
integral M  (16) represents in the given article the 
Lyapunov functional increasing over time in accordance 
with equations of the initial–boundary value problem (14), 

(20). The distinctive feature of this growth is tremendous 
freedom which remains at positive constant value ν  in the 
exponent from the right–hand side of inequality (19). 
Among other things, it allows us to interpret any solution 
to the mixed problem (14), (20), increasing with time 
according to the found a priori exponential lower estimate 
(19), as analogue of incorrectness example by Hadamard 
[27]. 

The illustrative analytical example of exact stationary 
solutions (7) to the initial–boundary value problem (6) and 
superimposed small 1D perturbations (13), (14), (20), 
which grow in time under sufficient conditions (see 
inequalities of the relations system (18) again) for 
practical instability, established in the present paper, in 
agreement with the obtained a priori exponential lower 
estimate (19), is constructed further. 

5. The Example 
Before proceeding to actual construction of the 

announced above illustrative analytical example, it is 
reasonable to show that results of articles [7,8], referring 
to prohibition on origin and development of growing over 
time perturbations in the form of normal waves by the 
sufficient condition (3) for linear theoretical stability of 
dynamic equilibrium states (2) of the Vlasov–Poisson 
plasma, cannot be used in relation to the necessary and 
sufficient condition (11) for linear theoretical stability of 
exact stationary solutions (7) to the mixed problem (6) as 
well as to 1D perturbations ( , , )x tξ λ  (13), (14), (20) in 
the form of normal waves. 

In fact, let small 1D perturbations (13), (14) have the 
form of normal waves. Specifically, 

 ( )1( , , ) ( ) expx t t xξ λ ξ λ α β= +  (21) 

where 1ξ  is some function of its argument; 1α α≡ +  

2iα+  is a certain complex, 1iβ β≡  is an arbitrary purely 
imaginary constants; 1α , 2α , and 1β  are some real 
constant values; i  is the imaginary unit. 

Substituting the expression (21) in the first and the third 
equations from the system of relations (14), it is not hard 
to derive dispersion relation of the form 
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from there. Further, in the spirit of papers [7], [8], the real 
and the imaginary parts of equality (22) are separated 
from each other: 
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Finally, using the second relation of system (23), the 
first equality from it can be reported much more clearly, 
namely: 
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 (24) 

The expression (24) demonstrates convincingly that it is 
internally consistent. In addition, there is no hint in it at 
the criterion (11) for theoretical stability of exact 
stationary solutions (7) to the initial–boundary value 
problem (6) with respect to small 1D perturbations 

( , , )u x tλ′ , ( , , )x tρ λ′ , and ( , )U x t′  (8) from the subclass 
(10). Hence, the relation (24) is by no means the reason to 
deny origin and evolution of growing on time small 1D 
perturbations (13), (14), (20) of exact stationary solutions 
(7) to the mixed problem (6) in the form (21) of normal 
waves. 

Now, after proof of not susceptibility for exact 
stationary solutions (7) to the initial–boundary value 
problem (6) and small 1D perturbations ( , , )x tξ λ  (13), 
(14), (20) in the form (21) of normal waves to influence of 
articles [7,8] results, there is every reason to pass on to 
direct designing of the conceived earlier illustrative 
analytical example. 

Particularly, the representative of exact stationary 
solutions (7) to the mixed problem (6) is taken as 

 0 ( )u u λ λ= =  (25) 

 
2

0 0
2

2 1( ) ,
3 exp

U Uλρ ρ λ
π λ

+
= = =  

The choice of exact stationary solution (7) to the 
initial–boundary value problem (6) in the form (25) is 
explained by the fact that the field of velocity 0u  will 
become the independent variable v , and the field of 
density 0ρ  will turn into the distribution function 0f  of 
electrons in the course of fulfilment inverse non–singular 
change of variables ( , , ) ( , , )x t x v tλ → . Therefore, exact 
stationary solution (7) to the mixed problem (6) in the 
form (25) is simultaneously the dynamic equilibrium state 
(2) of the Vlasov–Poisson plasma. 

It is not difficult to verify that the necessary and 
sufficient condition (11) for linear theoretical stability is 
true for exact stationary solution (7) to the initial–
boundary value problem (6) in the form (25): 

 
0 0 4

0
0 2

4 0
3 exp

d du
ddu

κ ρ λλ
λ π λ

= = − ≤  

Similarly, after inverse non–singular change of 
variables ( , , ) ( , , )x t x v tλ → , the criterion (3) for linear 
theoretical stability is fair for dynamic equilibrium state (2) 
of the Vlasov–Poisson plasma, corresponding with the 
solution (7), too. 

However, contrary to these circumstances, increasing in 
time small 1D perturbations (13), (14), (20) in the normal 
waves form (21) of exact stationary solution (25) to the 
mixed problem (6) exist for all that. 

Indeed, if to take 1 0α ≠ , 2 0α = , and 1 1β =  in the 
expression (21), then the dispersion relation (22) will 

appear for exact stationary solution (25) to the initial–
boundary value problem (6) as 

 
( )

2
1

1 3 2
1 1 1

1 2
( ) 1 8 0

32 1 erf exp
g

α πα
α π α α

 − ≡ + = 
+ − ×  

(26) 

Unfortunately, the author of this paper does not know 
what analytical methods roots of the equation (26) can be 
found. Therefore, it was solved him graphically. The 
results of this solving the dispersion relation (26) is shown 
in Figure 1. 

 
Figure 1. Graphical image solutions to the equation 1( ) 0g α =  (26) 

The graph of function g  (26) demonstrates clearly that 
this relation has entire family of positive roots 1α . In turn, 
these roots of equation (26) just meet growing on time 
small 1D perturbations ( , , )x tξ λ  (13), (14), (20) in the 
normal waves form (21) of exact stationary solution (25) 
to the mixed problem (6). Moreover, taking as a constant 
ν , for example, the smallest positive root 1α  of the 
dispersion relation (26), it is not hard to see that the 
original differential inequality (17), countable set of terms 
(18), and the a priori exponential lower estimate (19) are 
performed for increasing over time small 1D perturbations 
(13), (14), (20) in the normal waves form (21) of exact 
stationary solution (25) to the initial–boundary value 
problem (6). 

Thus, construction of the illustrative analytical example 
of exact stationary solutions (7) to the mixed problem (6) 
and superimposed small 1D perturbations ( , , )x tξ λ  (13), 
(14), (20), growing on time in accordance with the 
obtained a priori exponential lower estimate (19) in 
presence of discovered in this article sufficient conditions 
(see inequalities of the relations system (18)) for practical 
instability, is completed. Concurrently, this completes the 
proof of Theorem 3 as well. 

6. Conclusion 
Finishing the presentation of this paper material, it is 

worth to dwell separately on how specifically sufficient 
conditions (see inequalities from the system of relations 
(18)) for linear practical instability can be applied in 
annex to resolution of CTF problem. 

Let, for example, it is necessary to develop a device for 
plasma confinement, based on the use of dynamic 
equilibrium states (2), (7), as a unit of industrial fusion 
power plant. 
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In order that the device was reliable in operation, it is 
required to ensure practical stability for dynamic 
equilibrium plasma states (2), (7) with respect to all 
admissible perturbations. In particular, these dynamic 
equilibrium states must be stable in practical sense with 
regard to small 1D perturbations (13), (14), (20). 

This can be achieved by constructing numerical and 
physical models, which are consistent with the linearized 
initial–boundary value problem (14), with control at 

reference time points 22 8nt nπ ν π≡ +  ( 0, 1, 2, ...n = ) 
for validity of inequalities in the relations system (18). In 
the process of these models constructing, one needs to 
focus main efforts on that inequalities from the system of 
relations (18) would not have been fair at the expense of 
those or other known external influences on increasing 
over time small 1D perturbations ( , , )x tξ λ  (13), (14), (20) 
(for example, due to violation of initial conditions (20)). 

As a result, practical stability of dynamic equilibrium 
plasma states (2), (7) will guarantee, at least, with respect 
to small 1D perturbations (13), (14), (20) in the form (21) 
of normal waves, and so the desired device for plasma 
confinement, which is managed in real–time mode 
through a kind of feedback in the form of necessary and 
sufficient conditions (see inequalities of the relations 
system (18)) for linear practical instability, will be created. 
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Nomenclature 
f  is the distribution function of electrons; 
t  is the time; 
x  and v  are coordinates and velocities of electrons; 
U  is the potential of self–consistent electric field; 

0f  is initial data for the function f ; 
0f  is arbitrary non–negative function of the independent 

variable v ; 
0U  is a constant; 

E  is the total energy functional; 
C  is the integral of motion; 
Φ  is arbitrary function of its argument f ; 
λ  is the Lagrangian coordinates of electrons; 
u  is the velocity field; 
ρ  is the density field of electrons; 

0u  and 0ρ  are initial data for fields u  and ρ ; 
0u  is arbitrary increasing, and 0ρ  is some non–negative 

functions of the independent variable λ ; 

u′ , ρ′ , and U ′  are small 1D perturbations of 0u , 0ρ , 

and 0U ; 
0u′  and 0ρ′  are initial data for small 1D perturbations u′  

and ρ′ ; 

1E  is the linear analogue of total energy integral; 
κ  is the field of inverse vorticity; 

1Φ  is arbitrary function of its argument κ ; 
0κ  is some non–negative function of the independent 

variable λ ; 
κ ′  is small 1D perturbation of 0κ ; 
ξ  is the Lagrangian displacements field; 

0ξ  and ( )0tξ∂ ∂  are initial data for field ξ ; 
M  is the Lyapunov functional; 
ν  is an arbitrary positive constant; 
n  is non–negative integer; 

1C  is the known positive constant value; 

1ξ  is some function of its argument λ ; 

1 2iα α α≡ +  is a certain complex, and 1iβ β≡  is an 
arbitrary purely imaginary constants; 

1α , 2α , and 1β  are some real constant values; 
g  is short designation for the dispersive relation (26); 

nt  are reference time points. 
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