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BEYOND FIRST ORDER LOGIC: FROM NUMBER OF
STRUCTURES TO STRUCTURE OF NUMBERS PART 1
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ABSTRACT. The paper studies the history and recent developments
in non-elementary model theory focusing in the framework of ab-
stract elementary classes. We discuss the role of syntax and seman-
tics and the motivation to generalize first order model theory to
non-elementary frameworks and illuminate the study with concrete
examples of classes of models.

This first part introduces the main conceps and philosophies and
discusses two research questions, namely categoricity transfer and
the stability classification.

1. INTRODUCTION

Model theory studies classes of structures. These classes are usually a
collection of structures that satisfy an (often complete) set of sentences
of first order logic. Such sentences are created by closing a family of
basic relations under finite conjunction, negation and quantification over
individuals. Non-elementary logic enlarges the collection of sentences by
allowing longer conjunctions and some additional kinds of quantification.
In this paper we first describe for the general mathematician the history,
key questions, and motivations for the study of non-elementary logics
and distinguish it from first order model theory. We give more detailed
examples accessible to model theorists of all sorts. We conclude with
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questions about countable models which require only a basic background
in logic.

For the last 50 years most research in model theory has focused on
first order logic. Motivated both by intrinsic interest and the ability to
better describe certain key mathematical structures (e.g. the complex
numbers with exponentiation), there has recently been a revival of ‘non-
elementary model theory’. We develop contrasts between first order and
non-elementary logic in a more detailed way than just noting ‘failure of
compactness’. We explain the sense in which we use the words syntax
and semantics in Section 2. Many of the results and concepts in this
paper will reflect a tension between these two viewpoints. In part II,
as we move from the study of classes that are defined syntactically to
those that are defined semantically, we will be searching for a replace-
ment for the fundamental notion of first order model theory, i.e. the
notion of a complete theory. Section 2 also defines the basic notions of
non-elementary model theory. Section 3 describes some of the research
streams in more detail and illuminates some of the distinctions between
elementary and non-elementary model theory. Subsection 3.1 describes
the founding result of modern first order model theory, Morley’s cate-
goricity theorem, and sketches Shelah’s generalization of it to L, .. In
part II we study several generalizations of the result to in Abstract Ele-
mentary Classes (AEC). The remainder of Section 3 studies the so called
stability classification and provides specific mathematical examples that
illustrate some key model theoretic notions. We describe concrete ex-
amples explaining the concepts and problems in non-elementary model
theory and a few showing connections with other parts of mathematics.
Two of these illustrate the phrase ‘to structure of numbers’ in the ti-
tle. Example 3.2.4, initiated by Zilber, uses infinitary methods to study
complex exponentiation and covers of Abelian varieties. Example in sec-
tion 2.3 of Part II studies models of Peano Arithmetic and the notion
of elementary end-extension. This is the first study of models of Peano
arithmetic as an AEC. Furthermore, part II contains new results and
explores the proper analogy to complete theory for AECs; it answers a
question asked by David Kueker and includes Kossak’s example of a class
of models of PA interesting from the standpoint of AEC.

Neither of the standard approaches, L, .,-definable class or AECs, has
been successful in studying the countable models of an infinitary sen-
tence. The first approach is too specific. It rapidly reduces to a complete
infinitary sentence which has only one countable model. Results so far in
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studying general AECs give little information about countable models.
We seek to find additional conditions on an AEC that lead to a fruitful
study of the class of countable models. In particular we would like to
find tools for dealing with one famous and one not so famous problem
of model theory. The famous problem is Vaught’s conjecture. Can a
sentence of L, ., have strictly between Ry and 280 countable models?
The second problem is more specific. What if we add the condition that
the class is Nj-categorical; can we provide sufficient conditions for hav-
ing less than 280 countable models; for actually counting the number of
countable models? In Part II we describe two sets of concepts for ad-
dressing this issue; unfortunately so far not very successfully. The first
is the notion of a simple finitary AEC and the second is an attempt to
define a notion of a ‘complete AEC’, which like a complete first order
theory imposes enough uniformity to allow analysis of the models but
without trivializing the problem to one model.

One thesis of this paper is that the importance of non-elementary
model theory lies not only in widening the scope of applications of
model theory but also in shedding light on the essence of the tools,
concepts, methods and conventions developed and found useful in ele-
mentary model theory.

We thank Jouko Vaandnen and Juliette Kennedy from the University
of Helsinki for discussions that lead to better understanding on the his-
tory of non-elementary model theory, the philosophical issues discussed
in section 2, and for helpful references.

2. NON-ELEMENTARY MODEL THEORY

In this section we study the history of non-elementary model theory
during the second half of the twentieth century and compare that to the
development of more ‘mainstream’ first order model theory. We identify
two different trends in the development. In both the ‘elementary’ and
non-elementary cases the focus of research has moved from ‘syntactic’
consideration towards ‘semantic’ ones - we will explain what we mean
by this. We see some of the cyclic nature of science. Non-elementary
classes bloom in the 60’s and 70’s; the bloom fades for some decades,
overshadowed by the success and applications arising from the ‘elemen-
tary’ field. But around the turn of the 21st century, innovative examples
and further internal developments lead to a rebirth.

We will focus on some ‘motivating questions’ that have driven both
the elementary and non-elementary approaches, such as the categoricity
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transfer problem. While counting models seems a rather mundane prob-
lem, new innovations and machinery developed for the solution have led
to the recognition of systems of invariants that are new to mathematics
and in the first order case to significant mathematical advances in e.g.
number theory [13]. It is hoped that the deeper developments of infini-
tary logic will have similar interactions with core mathematics. Boris
Zilber’s webpage contains many beginnings.

2.1. Syntax and semantics. The distinction between syntaxr and se-
mantics has been present throughout the history of modern logic start-
ing from the late 19th century: completeness theorems build a bridge
between the two by asserting that a sentence is provable if and only if it
is true in all models. By syntax we refer to the formalism of logic, ob-
jects of language as strings of symbols and deductions as manipulations
of these strings according to certain rules. Semantics, however, has to
do with interpretations, ‘meaning’ and ‘sense’ of the language. By the
semantics for a language we mean a ‘truth definition’ for the sentences
of the language, a description of the conditions when a structure is con-
sidered to be a model for that sentence. ‘Semantic properties’ have to
do with properties of such models.

In fact these two notions can also be seen as methodologies or atti-
tudes toward logic. The extreme (formalist) view of the syntactic method
avoids reference to any ‘actual’ mathematical objects or meaning for the
statements of the language, considering these to be ‘metaphysical ob-
jects’. The semantic attitude is that logic arises from the tradition of
mathematics. The method invokes a trace of Platonism, a search for the
‘truth’ of statements with less regard for formal language. The semantic
method would endorse ‘proof in metamathematics or set theory’ while
the syntactic method seeks a ‘proof in some formal system’. Tradition-
ally model theory is seen as the intersection of these two approaches.
Chang and Keisler|[! 7] write: universal algebra + logic = model theory.
Juliette Kennedy|33| discusses ideas of ‘formalism freeness’, found in the
work of Kurt Godel. Motivated by issues of incompleteness and faith-
fulness and hence the ‘failure’ of first order logic to capture truth and
reasoning, Godel asked if there is some (absolute) concept of proof (or
definability) ‘by all means imaginable’. One interpretation of this ab-
solute notion (almost certainly not Godel’s) is as the kind of semantic
argument described above. We will spell out this contrast in many places
below.
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Model theory by definition works with the semantic aspect of logic,
but the dialectics between the syntactic and semantic attitudes is cen-
tral. This becomes even clearer when discussing questions arising from
non-elementary model theory. Non-elementary model theory studies for-
mal languages other than ‘elementary’ or first order logic; most of them
extend first order. We began by declaring that model theory studies
classes of models. Traditionally, each class is the collection of models
that satisfy some (set of) sentence(s) in a particular logic. Abstract El-
ementary Classes provide new ways of determining classes: a class of
structures in a fixed vocabulary is characterized by semantic properties.
The notion of AEC does not designate the models of a collection of
sentences in some formal language, although many examples arise from
such syntactic descriptions. In first order logic, the most fruitful topic is
classes of models of complete theories. A theory T is a set of sentences
in a given language. We say that T' is complete, if for every sentence ¢
in the language, either T implies ¢, or T implies —¢. In Part II we seek
an analogue to completeness for AEC.

Model-Theoretic Logics, edited by Barwise and Feferman [%], summa-
rizes the early study of non-elementary model theory. In this book,
‘abstract model theory’ is a study comparing different logics with regard
to such properties as interpolation, expansions, relativizations and pro-
jections, notions of compactness, Hanf and Lowenheim-Skolem numbers.

A vocabulary' L consists of constant symbols, relation symbols and
function symbols, which have a prescribed number of arguments (arity).
An L-structure consists of a universe, which is a set, and interpretations
for the symbols in L. When L’ is a subset of a vocabulary L, and M
is an L-structure, we can talk about the reduct of M to L/, written
M | L'. Then M is the expansion of M | L' to L. If M and N are
two L-structures, we say that M is an L-substructure of N if the domain
of M is contained in the domain of N and the interpretations of all the
symbols in L in M agree with the restriction of N to M.

A formal language or logic in the vocabulary L is a collection of for-
mulas that are built by certain rules from the symbols of the vocabulary

LAnother convention specifies the vocabulary by a small Greek letter and the
L with decorations describes the particular logic. What we call a vocabulary is
sometimes called a language. We have written language or logic for the collections
of sentences; more precisely this might be called the language and the logic would
include proof rules and even semantics.
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and from some ‘logical symbols’. In this paper we focus on countable
vocabularies but don’t needlessly restrict definitions to this case.

L-terms are formed recursively from variables and the constant and
function symbols of the vocabulary by composing in the natural manner.
With a given interpretation for the constants and assignment of values
for the variables in a structure, each term designates an element in the
structure.

An atomic formula is an expression R(t1,...,t,) where R is an n-ary
relation symbol (including equality) of the vocabulary and each ¢; is a
term.

Definition 2.1.1 (The language L)). Assume that L is a vocabulary.
The language Ly, consists of formulas ¢(Z), where the free variables of
the formula are contained in the finite sequence T and where the formulas
are built with the following operations:

o L), contains all atomic formulas in the vocabulary L.

o Ifp(x), Y(T) arein Ly, then the negation —~¢(x) and implication
(¢(Z) — P(T)) are in Lyy.

o If ¢;(Z) is in Ly, for every i in the index set I, and |I| < X the
conjunction N\;c; ¢i(T) and disjunction \/;.; ¢i(T) are in L.

o If &(yi,x) is in Ly, for each i in the well-ordered index set I,
and |I| < k, then the quantified formula (Q;y;)ic1d(T) is in Ly,
where each quantifier Q; is either ¥ (‘for all y;’) or 3 (‘there
exists y; ).

First order logic is the language Ly, i.e. only finite operations are
allowed. We define that Lok is the union of all Ly, for all cardinal
numbers \.

The languages Ly, allowing only finite strings of quantifiers are much
better behaved. We will later introduce abstract elementary classes gen-
eralizing, among other things, classes of structures definable with a sen-
tence in Ly,. The definition of the truth of a formula in a structure is
crucial. For a formula ¢(Z), with the sequence Z containing all the free
variables of ¢, we define what it means that the formula ¢(z) is true in
an L-structure M with the variables Z interpreted in a particular way as
elements a, written M = ¢(a). The definition is done by induction on
the complexity of the formula, following the inductive definition of the
formula in Definition 2.1.1.

Definition 2.1.2 (The language L(Q)). The language L(Q) is formed as
the first order logic Ly, but we allow also formulas of the form Qyo(y, T)
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with the following truth definition: M = Qyd(y,a) if there are uncount-
able many b € M such that M = ¢(b,a).

Definition 2.1.3 (Elementary substructure with respect to a fragment).
A subset F C L is a fragment of some formal language L if it contains
all atomic formulas and is closed under subformulas, substitution of vari-
ables with L-terms, finite conjunction and disjunction, negation and the
quantifiers ¥ and 3, applied finitely many times. For two L-structures
M and N, we say that M is an F-elementary substructure of N, written
M <r N, if M is an L-substructure of N and for all formulas ¢(z) of F
and sequences a of elements in M, M |= ¢(a) if and only if N = ¢(a).

Definition 2.1.4 (Elementary class and PC-class). An elementary class
K of L-structures is the class of all models of a given theory in first order
logic. A pseudoelementary (PC) class K is the class of reducts M | L of
some elementary class in a larger vocabulary L' O L.

We say that a formal language (logic) L is compact if whenever a set
of sentences is inconsistent, that is, has no model, then there is some
finite subset which already is inconsistent. This is a crucial property
that, along with the upwards Lowenheim-Skolem property, fails in most
non-elementary logics.

The Léwenheim-Skolem number and the Hanf number are defined for
a formal logic L (i.e. ‘the Léwenheim-Skolem or Hanf number of L"). In
the following definitions K is a class definable with a sentence of L, 5k is
given as the F-elementary substructure relation in some given fragment
F of L, usually the smallest fragment containing the sentence defining
K, and the collection C is the collection of all classes definable with a
sentence L.

Definition 2.1.5 (Léwenheim-Skolem number). The Léwenheim-Skolem
number LS(K) for a class of structures K and a relation <k between the
structures is the smallest cardinal number X\ with the following property:
For any M € K and a subset A C M there is a structure N € K con-
taining A such that N <x M and |[N| < max{\, |A|}.

Definition 2.1.6 (Hanf Number). The Hanf number H for a collection C
of classes of structures is the smallest cardinal number with the property:
for any K € C, if there is M € K of size at least H, then K contains
arbitrarily large structures.

Modern model theory began in the 1950’s. Major achievements in the
mid 60’s and early 70’s included Morley’s categoricity transfer theorem in
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1965 [13] and Shelah’s development of stability theory [19]. These works
give results on counting the number of isomorphism types of structures
in a given cardinality and establishing invariants in order to classify the
isomorphism types. Such invariants arise naturally in many concrete
classes: the dimension of a vector space or the transcendence degree of
an algebraically closed field are prototypical examples. A crucial inno-
vation of model theory is to see how to describe structures by families of
dimensions. The general theory of dimension appears in e.g. ([19, 15]);
it is further developed and applied to valued fields in [23].

Non-elementary model theory thrived in the mid 60’s and early 70’s.
Results such as Lindstrém theorem in 1969, Barwise’s compactness the-
orem for admissible fragments of L, published in 1969, Mostowski’s
work on generalized quantifiers in 1957 [14] and Keisler’s beautiful ax-
iomatization of L(Q) in [31] gave the impression of a treasury of new
formal languages with amenable properties, a possibility to extend the
scope of definability and maybe get closer to the study of provability
with ‘all means imaginable’. However, the general study turned out
to be very difficult. For example, the study of the languages L), got
entangled with the set-theoretical properties of the cardinals A and k.
Since the real numbers are definable as the unique model of a sentence in
Lo ,, the continuum hypothesis would play a major role. But perhaps
the study was focused too much on the syntax and trying to study the
model theory of languages? Why not study the properties of classes of
structures, defined semantically. One might replace compactness with,
say, closure under unions of chains?

One can argue that a major achievement of non-elementary model
theory has been to isolate properties that are crucial for classifying struc-
tures, properties that might not be visible to a mathematician working
with only a specific application or even restricted to the first order case.
Excellence (see below) is a crucial example. Some examples of appli-
cations of non-elementary model theory to ‘general mathematics’ are
presented in the chapter ‘Applications to algebra’ by Eklof in [3]. In
many of these applications we can see that some class of structures is
definable in L, or in Ly, and then the use the model theory of these
languages to, for example, count the number of certain kind of structures
or classify them in some other way. Barwise writes in Model-theoretic
logics |8]:

Most important in the long run, it seems, is where logic
contributes to mathematics by leading to the formation
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of concepts that allow the right questions to be asked
and answered. A simple example of this sort stems from
‘back-and-forth arguments’ and leads to the concept of
partially isomorphic structures, which plays such an im-
portant role in extended model theory. For example,
there is a classical theorem by Erdos, Gillman and Hen-
riksen; two real-closed fields of order type 7; and cardi-
nality N; are isomorphic. However, this way of stating
the theorem makes it vacuous unless the continuum hy-
pothesis is true, since without this hypothesis there are
no fields which satisfy both hypotheses. But if one looks
at the proof, there is obviously something going on that is
quite independent of the size of the continuum, something
that needs a new concept to express. This concept has
emerged in the study of logic, first in the work of Ehren-
feucht and Fraissé in first-order logic, and then coming
into its own with the study of infinitary logic. And so in
his chapter (in the book [%]), Dickmann shows that the
theorem can be reformulated using partial isomorphisms
as: Any two real-closed fields of order type 11, of any
cardinality whatsoever, are strongly partially isomorphic.
There are similar results on the theory of abelian torsion
groups which place Ulm’s theorem in its natural setting.
... Extended model theory provides a framework within
which to understand existing mathematics and push it
forward with new concepts and tools.

One of the foundational discoveries of abstract model theory was Per
Lindstrém’s theorem that first order logic is the strongest logic which
has both the compactness property and a countable Léwenheim-Skolem
number. In order to study such concepts as ‘the strongest logic’, one
has to define the notion of an ‘abstract logic’. The book [3]| presents the
syntax as a crucial part: an abstract logic is a class of sentences with
a satisfaction relation between the sentences and the structures, where
this relation satisfies certain properties. However, Barwise comments on
Lindstrém’s formulation of his theorem [35]:

To get around the difficulties of saying just what a logic
is, they dealt entirely with classes of structures and clo-
sure conditions on these classes, thinking of the classes
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definable in some logic. That is, they avoided the prob-
lem of formulating a notion of a logic in terms of syntax,
semantics, and satisfaction, and dealt purely with their
semantic side.

Lindstrém defined a logic to be a non-empty set of objects called sen-
tences, but the role of these is only to name a class of structures as
‘structures modeling one sentence’. Then it is possible to define for
example compactness as the property that if a countable intersection
of such classes is empty, then already some finite intersection must be
empty.

Saharon Shelah built on these insights and introduced Abstract Ele-
mentary Classes in [51]. Semantic properties of a class of structures K
and a relation <k are prescribed, which are sufficient to isolate interest-
ing classes of structures. But more than just the class is described; the
relation < between the structures in K provides additional information
that, as examples in Subsection 3.2 illustrate, may be crucial.

Definition 2.1.7. For any vocabulary T, a class of T-structures (K, <k)
is an abstract elementary class (AEC) if

(1) Both K and the binary relation <k are closed under isomorphism.
) If A<k B, then A is a substructure of B.
) <K s a partial order on K.
) If (A; 10 < 6) is an Sk-increasing chain:
() Ues Ai € K;
(b) for each j <6, Aj sk U;cs Ai
(c) if each A; sk M € K, then ;.5 Ai <k M.
(5) If A,B,C e K, A<k C, B<x C and A C B then A x B.
(6) There is a Lowenheim-Skolem number LS(K) such that if A € K
and B C A a subset, there is A" € K such that B ¢ A" <x A
and |A’| = |B| + LS(K).

When A <g B, we say that B is an K-extension of A and A is an
K-submodel of B. If A,B € K and f : A — B an embedding such that
f(A) <k B, we say that f is a K-embedding. Category-theoretic versions
of the axioms are studied by Kirby [31], Liebermann [37] and Beke and
Rosick [11].

A basic example of an AEC is the class of models defined by some sen-
tence ¢ € Loy, where <k is taken as the elementary substructure rela-
tion in the smallest fragment of Lo, containing ¢. Then the Léwenheim-
Skolem number is the size of the fragment. An even simpler example is
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that of an elementary class, where ¢ is a complete theory in first order
logic.

A class defined with a sentence in Ly, (@) with the quantifier Qz¢(x)
standing for ‘there exists uncountably many z such that ¢(x) holds’ can
be an AEC. The natural syntactic notion of elementary submodel is
inadequate but substitutes are available. Arbitrary psuedoelementary
classes are often not AEC. E.g. If K is the class of all structures A4 in a
language L with a single unary predicate such that |A| < 21U then K
fails to be an AEC with respect to L-elementary submodel as it is not
closed under unions of chains. (See chapter 5 and 4.29 of [1].)

In contemporary first order model theory, the most fundamental con-
cept is the class of models of a complete theory in first order logic.
This can be seen as a form of focusing; instead of studying different
vocabularies, expansions and projections, one fixes one class: the class
of differentially closed fields of fixed characteristic (see [11]) or the class
of models of ‘true’ arithmetic. This focus on classes and of properties
determining ‘similar’ classes has become a crucial tool in applications
to algebra. The difference from the ‘Lindstrom-style’ study of classes of
structures is significant: we do not study many classes of structures each
corresponding to the ‘models of one sentence’, but focus on a fixed class,
‘models of a theory’. Abstract elementary classes, which will be one of
the main notions studied in this paper, takes the ‘semantic view’ to the
extreme by eliminating the syntactic definition.

3. SEVERAL RESEARCH LINES IN NON-ELEMENTARY LOGIC

3.1. Categoricity transfer in L, and L.

Definition 3.1.1 (Categoricity). Let k be a cardinal. We say that a
class of structures K is k-categorical if there is exactly one model of size
k in K, up to isomorphism. A theory T is k-categorical, if Mod(T), the
class of models of T, is k-categorical.

The transition to the focus on classes of models begins with Morley’s
theorem:

Theorem 3.1.2 (Morley’s categoricity transfer theorem). Assume that
T is a complete theory in L., where L is countable. If there exists
an uncountable cardinal k such that T is k-categorical, then T is \-
categorical for all uncountable cardinals .

Categoricity transfer will be our first example of a motivating ques-
tion in the history of model theory. Its proof gave many new tools and
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concepts that are nowadays contained in every basic course in model
theory. Furthermore, both the tools and the theorem itself have been
generalized to different frameworks. A categoricity transfer theorem for
elementary classes in an uncountable vocabulary was proved by Shelah
in [17] (announced in 1970): if the language has cardinality x and a the-
ory is categorical in some uncountable cardinal greater than s then it
is categorical in all cardinalities greater than k. This widening of scope
led to many tools, such as weakly minimal sets and a greater focus on
the properties of individual formulas, that proved fruitful for countable
vocabularies. We will look more closely at some of the many extensions
of categoricity results to non-elementary classes.

We consider a syntactical type in some logic £ as a collection of L£-
formulas in some finite sequence of variables Z with parameters from
a given subset A of a structure M such that an element b in an £-
elementary extension N of M realizes (simultaneously satisfies) p. If no
such sequence exists in a model N, we say that the type is omitted in
N. In elementary classes, the compactness theorem implies all finitely
consistent such collections p of formulas really are realized. If there is a
structure N and a finite sequence b € N such that M < N and

p={¢(z,a):ac AC M,N |= ¢(b,a)}.

then p is called a complete type over A for two reasons. Semantically:
it gives a complete description of the relation of b and A. Syntactically;
every formula ¢(Z,a) over A or its negation is in p.

An essential concept in Morley’s argument is a saturated structure
M: M is saturated if all consistent types over parameter sets of size
strictly less than |M| are realized in M. Two saturated models of T' of
size k are always isomorphic. Morley shows that if T' is categorical in
some uncountable power, saturated models exist in each infinite cardinal-
ity. Then he concludes that if T is not categorical in some uncountable
power A, there is a model of power A which is not saturated or even
Ni-saturated; some type over a countable subset is omitted. But then
he shows that if some model of uncountable power A omits a type over a
countable set, then in any other uncountable power s some model omits
the type. Hence, T' cannot be categorical in  either. This method, sat-
uration transfer, generalizes to many other frameworks. While proving
saturation transfer for elementary classes he introduced many new con-
cepts such as a totally transcendental theory (No-stable theory), prime
models over sets and Morley sequences.
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Keisler generalized many of the ideas from Morley’s proof to the logic
Ly, w; see [32]. He studies a class of structures (K, <r), where K is
definable with a sentence in L, and F is some countable fragment of
L, containing the sentence. He uses a concept of homogeneity, which
is closely related to saturation.

Definition 3.1.3. For L-structures M and N and a fragment F of L, .,
A C M a subset and f: A— N a function, write (M, A) =x (N, f(4))
if for every formula ¢(x) € F and every a € A,

M = 6(a) if and only if N = 6(£(a)).
A model is (k, F)-homogeneous, if for every set A C M of cardinality

strictly less than k and every f: A — M, if (M, A) =r (M, f(A)), then
for all b € M there exists ¢ € M such that

Keisler proved the following theorem (Theorem 35 of [32]):

Theorem 3.1.4. (Keisler 1971, announced in 1969) Let F be a count-
able fragment of Ly, T C F a set of sentences and k,\ > w. Assume
that:
(1) T is k-categorical.
(2) For every countable model M of T', there are models N of T' of
arbitrarily large power such that M <x N.
(3) Ewvery model M of power k is (w1, F)-homogeneous.

Then T is A-categorical. Moreover, every model of T of power A is (A, F)-
homogeneous.

One stage in the transition from strictly syntactic to semantic means
of defining classes is Shelah’s version of Theorem 3.1.4. To understand it,
we need the following fact, which stems from Chang, Scott and Lopez-
Escobar (see for example [16] from 1968); the current formulation is
Theorem 6.1.8 in the book [1].

Theorem 3.1.5. (Chang-Scott-Lopez-Escobar) Let ¢ be a sentence in
Ly w in a countable vocabulary L. Then there is a countable vocabulary
L' extending L, a first-order L' theory T and a countable collection ¥ of
L'-types such that reduct is a 1-1 map from the models of T which omit
> onto the models of ¢.

A crucial point is that the infinitary aspects are translated to a first
order context, at the cost of expanding the vocabulary. If ¢ is a complete
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sentence, the pair (T,X) can be chosen so that the associated class of
models is the class of atomic models of T' (every tuple realizes a prin-
cipal type). Saharon Shelah generalized this idea to develop a more
general context, finite diagrams [10]. A finite diagram D is a set of
types over the empty set and the class of structures consists of the mod-
els which only realize types from D. Shelah defined a structure M to be
(D, M)-homogeneous if it realizes only types from D and is (|M|, Lyw)-
homogenous (in the sense of Definition 3.1.3). He (independently) gen-
eralized Theorem 3.1.4 to finite diagrams. His argument, like Keisler’s,
required the assumption of homogeneity. Thus, [10] is the founding paper
of homogeneous model theory, which was further developed in for example
[21], [15], [30], [29]. The compact case (‘Kind II” in [18]) was transformed
into the study of continuous logics and abstract metric spaces [12] and
finally generalized to metric abstract elementary classes [24|. These last
developments have deep connections with Banach space theory.

Baldwin and Lachlan in 1971|7] give another method for first order
categoricity transfer. They develop some geometric tools to study struc-
tures of a theory categorical in some uncountable cardinal: any model of
such a theory is prime over a strongly minimal set and the isomorphism
type is determined by a certain dimension of the strongly minimal set.
This gives a new proof for the Morley theorem for elementary classes but
also the Baldwin-Lachlan Theorem: if an elementary class is categorical
in some uncountable cardinal, it has either just one or Xg-many countable
models. The geometric analysis of uncountably categorical elementary
classes was developed even further by Zilber (see [77], earlier Russian
version [50]), giving rise to geometric stability theory. We discuss the
number of countable models of an R;-categorical non-elementary class in
Part II.

A further semantic notion closely tied to categoricity is Shelah’s ‘excel-
lence’. Excellence is a kind of generalized amalgamation; (details in [1]).
The rough idea is to posit a type of unique prime models over certain
independent diagrams of models. ‘Excellence’ was discovered indepen-
dently by Boris Zilber while studying the model theory of an algebraically
closed field with pseudoexponentiation, (a homomorphism from (F, +) to
(F*,-). He defines the notion of a quasiminimal excellent (qme) class
by ‘semantic conditions’; Kirby [35] proved they can be axiomatized in
Ly,,(Q). Zilber showed any qme class is categorical in all uncount-
able powers and finds such a class of pseudo-exponential fields. Natural
algebraic characterizations of excellence have been found in context of
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algebraic groups by Zilber and Bays [60], [10], [9]. Excellence implies
that the class of structures has models in all cardinalities, has the amal-
gamation property (see Part II), and admits full categoricity transfer.
Zilber’s notion of ‘excellence’ specializes Shelah’s notion of excellence for
sentences in Ly, invented while proving the following general theorem
for transferring categoricity for sentences in Li,,,[70]?. The theorem uses
a minor assumption on cardinal arithmetic.

Theorem 3.1.6. (Shelah 1983) Assume that 28 < 2%+1 for all n < w.
Let ¢ € L., be a sentence which has an uncountable model, but strictly
less than the maximal number of models in each cardinality X, for 0 <
n < w. Then the sentence is excellent.

(ZFC:) Assume that a sentence ¢ in Ly, is excellent and categorical
i some uncountable cardinality. Then ¢ is categorical in every uncount-
able cardinality.

The excellence property is defined only for complete sentences in Ly, ,,,
more precisely for the associated classes of atomic models (each model
omits all non-isolated types) of a first order theory 7" in an extended
vocabulary. Excellent classes have been further studied in [36], [27] [20].
Theorem 3.1.6, expounded in [1], extends easily to incomplete sentences:

Corollary 3.1.7. Assume that 2% < 2841 for alln < w. Let ¢ € Ly,
be a sentence which is categorical in X, for each n < w. Then ¢ is
categorical in every cardinality.

Shelah and Hart [22], made more precise in [6], show the necessity of
considering categoricity up to R,; there are examples of L, ,-sentences
¢ which are categorical in each W, for k& < n but have the maximal num-
ber of models in N, 1. However, it is not known whether the assumption
on cardinal arithmetic can be removed from the theorem.

In the discussion above we isolated properties such as homogeneity
and excellence, which enable one to prove categoricity transfer theorems.
More important, they support the required tools for classifying and an-
alyzing structures with model-theoretic methods; both generated sub-
fields: homogeneous model theory and model theory for excellent classes.
These properties have applications to ‘general mathematics’: Lqo,-free
algebras |12] for homogeneous model theory or Zilber’s pseudoexponen-
tiation and the work on covers of Abelian varieties [59] for excellence.

2The important first order notion of the OTOP discussed in Subsection 3.2 was
derived from the earlier concept of excellence for L, .
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We argue that finding such fundamental properties for organizing math-
ematics is one of the crucial tasks of model theory.

The investigation of L, ., surveyed in this section makes no assump-
tion that the class studied has large models; the existence of large models
is deduced from sufficient categoricity in small cardinals. Shelah pursues
a quite different line in [52]. He abandons the syntactic hypothesis of de-
finability in a specific logic. In attempting to prove eventual categoricity,
he chooses smaller AEC’s in successive cardinalities. Thus he attempts
to construct a smaller class which is categorical in all powers. Crucially,
this work does not assume the existence of arbitarily large models.

We discuss more on categoricity transfer in AECs in Part II. There we
will concentrate on certain type of AECs, namely Jonsson classes, where
some categoricity transfer results are known and some stability theory
along with a natural notion of type can be constructed. These classes
are generalizations of homogeneous and excellent classes and they have
arbitrarily large models and for example the amalgamation property by
assumption.

3.2. The stability classification: First order vs. non-elementary.
One of the major themes of contemporary model theory is the notion of
classification theory. Classification is used in two senses. On the one
hand models in a particular class can be classified by some assignment
of structural invariants. On the other hand, the classes of models® are
split into different groups according to common properties, which may
be semantic or syntactic; many examples are given below. Shelah (e.g.
[52]) has stressed the importance of certain properties of theories, those
which are dividing lines: both the property and its negation has strong
consequences. In the following we discuss various important classes of
theories and emphasize those properties which are dividing lines.

Saharon Shelah originated stability theory for elementary classes [19]
and produced much of the early work. Now however, the field embraces
much of model theory and the tools are pervasive in modern applications
of model theory. Among the many texts are: [11],[2],[15].

We can define stability in X\, as the property that there are no more
than A many distinct complete types over any subset of size \. How-
ever, stability has many equivalent definitions in elementary classes. A

3The word class is vastly overloaded in this context. In first order logic, a complete
theory is a natural unit. In studying infinitary logic, the natural unit often becomes
an AEC (in the first order case this would be the class of models of the theory.)
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remarkable consequence of the analysis is that counting the number of
types is related to the geometry of the structures in the class. For exam-
ple, if the class of structures is stable in any cardinal at all, one can define
a notion of independence between arbitrary subsets of any model, which
is a useful tool to analyze the properties of the structures in the class.
The importance of such a notion of independence is well established and
such independence calculus has been generalized to some unstable el-
ementary classes such as classes given by simple |51] or NIP theories
[1]. Stability theory has evolved to such fields as geometric stability the-
ory[15], which is the major source for applications of model theory to
‘general mathematics’.

Stability theory divides classes into four basic categories. This division
is called the stability hierarchy:

(1) Np-stable classes;

(2) superstable classes, that is, classes stable from some cardinal
onwards;

(3) stable classes, that is, stable in at least one cardinal;

(4) unstable classes.

In elementary classes Ng-stable classes are stable in all cardinalities and
hence we get a hierarchy of implications 1. = 2. = 3. Uncountably
categorical theories are always Ng-stable whereas non-superstable classes
have the maximal number of models in each uncountable cardinal. An
Ng-stable or superstable class can also have the maximal number of mod-
els, e.g, if it has one of the properties DOP or OTOP, discussed in Ex-
amples 3.2.2 and 3.2.3.

Developing stability theory for non-elementary classes is important
not only because it widens the scope of applications but also because it
forces further analysis of the tools and concepts developed for elemen-
tary classes. Which of the tools are there only because first order logic
‘happens’ to be compact and which could be cultivated to extend to non-
elementary classes? KEspecially, can we distinguish some core properties
enabling the process? What are the problems met in, say, categoricity
transfer or developing independence calculus? Why does the number of
types realized in the structure seem to affect the geometric properties
of structures and can we analyze the possible geometries arising from
different frameworks? For example, Hrushovski [25] proved a famous
theorem in geometric stability theory: under assumptions of a logical
nature the geometry given by the notion of independence on the real-
izations of a regular type, must fall into one of three natural categories
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involving group actions. In the available non-elementary versions of the
same theorem ([28],[26]), we cannot rule out a fourth possibility: exis-
tence of a so-called non-classical group, a non-abelian group admitting
an w-homogeneous pre-geometry. We can identify some quite peculiar
properties of such groups. Even their existence is open.

The established notion of type for abstract elementary classes is a so
called Galois type, which we will define more carefully in Part II. Then
k-stability is defined with respect to these types: A class of structures
is stable in a cardinal x if no structure in the class realizes more than
x many Galois types over an <k-elementary substructure of size < k.
For the remainder of this section the reader can think of the following
descriptive notion on a Galois type: Let A <x B and a,b be elements
in B. We say that a and b have the same Galois type over the structure
A if there is C such that B 5k C and an automorphism of C fixing A
pointwise and mapping a to b.

We present here some examples of AECs where the choice of the rela-
tion <k affects the placement of the class in the stability hierarchy. How
‘coincidental’ is the division of elementary classes according to the sta-
bility hierarchy? The placement of a class of structures in the hierarchy
has been shown to affect a huge number of properties that at first sight
do not seem to have much to do with the number of types. Which of
these connections are ‘deep’ or ‘semantic’, or especially, which extend to
non-elementary frameworks? Can an appropriate hierarchy be found?

The moral of these examples is that properties of the ‘same’ class of
structures might look different if definitions in logics with more expressive
power are allowed or a different notion <k for an abstract elementary
class is chosen.

Example 3.2.1 (Abelian groups). Let K be the class of all abelian
groups. (K, =xxk) is an Ny-stable AEC with the notion < as the sub-
structure relation.

However, the same class of structures is strictly stable (stable but
not superstable) if we take as <k the following notion: M =<x N
if and only if M is a subgroup and foreacha € M andn € N\
{0}, n divides a in M if and only if n divides a in N.

The model theory of abelian groups is studied in Eklof and Fischer
[18], where the latter notion of <k is in the focus of study. AECs in-
duced by tilting and co-tilting modules are studied in Baldwin, Eklof,
and Trlifaj [5],[53] provides a more semantic notion of <k and the classes
of Abelian groups are strictly stable except in one degenerate case.
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A number of properties in first order classification theory induce ‘bad
behavior’ for an elementary class of structures, signaled by the existence
of the maximal number of models in a given cardinality. The most basic
of these are instability and unsuperstability. Others include OTOP, ‘the
omitting types order property’ and DOP ‘the dimensional order prop-
erty’, with a version ENI-DOP, which gives many countable models.
Especially, these play a role in classifying countable complete first order
theories; their negations NOTOP, NDOP and ENI-NDOP have ‘good’
implications, from the viewpoint of classification theory; they aid in the
assigning of invariants.

One equivalent definition for unstability is that there is a formula
which in the models of a first order theory defines an infinite order-
ing. Then by compactness, the elementary class must contain models
interpreting various different orderings, which (nontrivially) forces the
number of models to the maximum. Similarly the properties DOP and
OTOP cause certain kind of orderings to appear in the structures; but,
the orderings are not defined by a single first order formula. Just as
in Example 3.2.1, the unsuperstability of the class of abelian groups
is not visible to quantifier-free formulas, the only ones ‘seen’ by the
substructure-relation, OTOP and DOP are a form of instability not vis-
ible to first order formulas.

The following two examples illustrate the properties OTOP and DOP.
In each case we ‘define’ an arbitrary graph (e.g. an ordering) on P x P by
describing a column above each point of the plane. The two methods of
description, by a type or a single formula, distinguish OTOP and DOP.

Example 3.2.2 (An example with OTOP). Let the vocabulary L consist
of two predicates P and () and ternary relations R,, for each n < w.

By ternary predicates Ry (z,y, z) we define a decreasing chain of sets
R, (a,b,z) of subsets of @ over each pair (a,b) in P x P. The sets
Ro(a,b, z) are disjoint as the pairs (a,b) vary. And there is exactly
one element ¢%° in R, (a,b,z) but not in R,4+1(a,b,z). Thus the types
pav(z) = {Rn(a,b, ),z # ¢’ :n < w} can be independently omitted or
realized.

The resulting elementary class is Ng-stable but it has the maximal
number of models in each infinite cardinality. Any directed graph (espe-
cially any ordering) can be coded by a structure the following way:

there exists an edge from x to y < dz /\ R, (z,y, z).

n<w
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We can study the same class K of structures but replace first order
elementary substructure by <k, elementary submodel in a fragment of
L, containing all first order formulas and the formula

¢('1"7y) = EIZ /\ Rn(l',y,Z).
nw
The relation <k ‘sees’ the complexity caused by the formula, and the
class (K, xk) is unstable in the sense of the fragment. But this means
it is also unstable as an abstract elementary class. Galois types always
refine syntactic types if the submodel notion has a syntactic definition.
This example also has ENI-DOP and thus DOP. From ENI-DOP, we
can define another notion <k for that class so that the new AEC is
unstable but still has Léwenheim-Skolem number Rg. Namely, let M <k
N if M is an elementary substructure of N and whenever there are only
finitely many z such that M = A, _, Ru(z,y,2), then the number of
such elements z is not increased in N.

Example 3.2.3 (An example with DOP). Let the vocabulary L consist
of predicates X1, X5 and P and two binary relation symbols 7 and ms.
We define a theory in first order logic, with definable projections from P
to each X; and study the dimensions of pre-images of pairs in X7 x Xs.
We require that

e The universe of a structure consists of three disjoint infinite pred-
icates X1, X5 and P,
e the relations m; determine surjective functions m; : P — X; for
1=1,2 and
e for each z € X; and y € X there are infinitely many z € P such
that m1(z) = z and ma(2) = v.
Again we get an Ny-stable elementary class, which is Ng-categorical but
has the maximal number of models in each uncountable cardinality. Now
we can code an ordering (I, <) on the pairs (z;,y;)ics in an uncount-
able model so that (z;,y;) < (zj,y;) if and only if {z € P : m(z) =
x; and ma(z) = y;} is uncountable.

Furthermore, we get an unstable abstract elementary class for the
same class of structures K as follows: strengthen <k so that M g N
implies that for all pairs (x,y) in the set X7 x Xy of the structure M, if
there are only countably many z in the set P of M such that m1(z) =z
and 7o(z) = y, then no such z is added to the set P of the structure N.
Since automorphisms must preserve the cardinalities of sets described
on the right hand side of the above displayed equivalence, the class is
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unstable for Galois types. This notion <k does not have finite character
(See Part II) and the new (K, <) has Lowenheim-Skolem number 8.

Similar phenomena appear in differentially closed fields of characteris-
tic zero, whose elementary theory is Rp-stable with ENI-DOP, and thus
DOP. They have the maximal number of models in each infinite cardi-
nality. See the survey articles by Marker [39],[10].

The following examples exhibit the difference between a traditional
first order approach and a non-elementary approach.

Example 3.2.4 (Exponential maps of abelian varietes). Martin Bays,
Misha Gavrilovich, Anand Pillay, and Boris Zilber |10, 9, 19] study ‘ex-
ponential maps’ or ‘universal group covers’ m : (CY9,4) — A(C), where
(C9,+) is the additive group of the complex numbers to power g and
A(C) is an abelian variety. The kernel A of 7 is a free abelian subgroup
of (C9,+). Two approaches appear in the work: the structures model-
ing the first order theory of such a map and the structures modeling the
Ly, ,-theory. The L, -sentence describing the map is quasi-minimal ex-
cellent and so categorical in each uncountable cardinality. All the models
of the sentence share the same A and are determined up to the transcen-
dence degree of the field interpreted in A(C). However, the first order
theory is also ‘classifiable’, it is superstable with NDOP and NOTOP
and is ‘shallow’, although not categorical. Each model of the first-order
theory is described by choosing a lattice A and a transcendence degree
for the field in A(C).

In this case, the non-elementary framework was understood first; the
elementary class gives a little more information. Both depend on rather
deep algebraic number theory. This topic is an offshoot of trying to un-
derstand the model theory of the complex exponentiation exp : (C, +, x)
— (C,+, x), which has a very ill-behaved theory in first order logic; see
[3, 58] for more discussion on the subject.

Example 3.2.5 (Valued fields). The recent book by Haskell, Hrushovski
and Macpherson [23] greatly develops the first order model theory of
algebraically closed valued fields. The elementary class is unstable and
not even simple, and hence the structure theory has involved developing
new extensions of the stability-theoretic machinery investigating the class
of theories without the independence property.

A valued field consists of a field K together with a homomorphism
from its multiplicative group to an ordered abelian group I', which sat-
isfies the ultrametric inequality. The problems in the elementary theory
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of valued fields reduce to that of the value group I' and the so called
residue field.

However, we can study valued fields as an AEC fixing the value group
as (R,+, <) and taking all substructures as elementary substructures,
requiring also that the value group stays fixed. This class is stable and
contains those valued fields that are of most interest. The cases where
(T, +, <) is not embeddable to (R, +, <) are often called Krull valuations.
They are forced to be in the scope of study in the first order approach
since first order logic cannot separate them from the usual ones. The non-
elementary class fixing the value group can be seen as ‘almost compact’;
see the work of Itai Ben Yaacov [55].
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