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Hydrological models are so good, do we still need data?
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Abstract

Our ability to numerically model natural systems has progressed enormously over the last 10e20 years. During the last decade
computational power has increased to the stage where we can now have a super-computer on our desk, and the detail and fine scale

processes that can be included in models are fantastic. The computational tools available for analysis and display have opened doors
beyond the dreams of our forebears. However, as modelling power has increased there has been a concurrent reduction in ‘‘data
power’’, particularly in the collection of hydrological data. While we undoubtedly have access to large datasets of extraordinary

technological finesse such as the remotely sensed data from satellites, our collection of more basic and traditional datasets suffers.
We can read car number plates from outer space, but we still, in the main, measure rainfall by putting a bucket out in a paddock.
This paper discusses the growth in sophistication of hydrological modelling through the last hundred years. The concept of valida-

tion or verification of models is questioned, and the role of data in modelling discussed. It is argued that modelling in the absence of
adequate data is not science, unless it is to develop hypotheses that are to be tested by observation. Several modelling case studies
with and without adequate testing data are discussed. It is also argued that improvement in the management of our environment and
water resources will not come with improved models in the absence of improved data collection because we cannot manage what we

do not measure.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Modelling is now a common tool in many fields of
scientific endeavour. Physical scale models have been
used to study the static and dynamic behaviour by engi-
neers for many years, to ensure their bridges would stay
up, or their breakwaters would not wash away. Children
construct scale models of racing cars and aeroplanes to
explore the effect of high speed crashes and glide angles
of fighters without engine power.

Mathematical modelling is generally not visually im-
pressive but it allows exploration of real behaviour that
would be difficult to observe or measure in nature.

* Fax: C61 8 9333 6211.

E-mail address: richard.silberstein@csiro.au
1364-8152/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.envsoft.2005.04.019
Mathematical models are used in economics, politics
and policy, finance, commerce and the behavioural sci-
ences. Modelling these systems is generally impossible
without simplifying the representation of the real system
simulated. Statistical and behavioural models are used
to predict horse races, stock markets, ecological systems
and social systems. These models are used to try to pre-
dict how the systems will develop over time, usually so
that some return may be maximised for the modeller e
this may be financial, political return, or in order to
improve social harmony.

For scientists, the aim is to construct a model repre-
senting some component of the real world. For some,
the model development is sufficient in its own right, such
as Game Theoreticians or economists, who explore the
impact of various rules on system outcomes. These
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activities may be confused with real world studies be-
cause of the common terminology that has crept into
much economic and political discourse, and the techni-
ques are used to study real world situations, but in the
scientific sense are mainly mathematical games.

Science is founded on observations. Indeed, science is
defined as ‘‘the systematic study of man (and woman) in
their environment based on the deductions and inferen-
ces that can be made from reproducible observations
and measurements of events and parameters within the
universe’’ (The Macquarie Dictionary, 1987). Data are
science, models are a complement to them, but not a re-
placement for them.

A model is, by definition, a simpler representation of
the real thing. It is essentially a toy, albeit a useful one,
as a mathematical mimic of the real, more complicated,
system. It is not a unique opinion that modelling is fine
as long as it is not confused with the real thing.

This paper was stimulated by comments received
when the author was attempting to reinvigorate hydro-
logical monitoring in Australia. While senior bureau-
crats in data collection agencies and their policy clients
generally appreciate the need to collect data on the sys-
tems they are trying to manage, two comments made
were that ‘‘models have reached a level of sophistication
that renders data collection less important’’ and ‘‘data
collection these days is principally to calibrate models’’.
These comments strike the author as presumptuous and
ignorant, and perhaps arrogant, and this paper is an at-
tempt to place the dual activities of modelling and field
data collection in some relative context.

2. Hydrological modelling

While models of the water cycle have been around
since at least the Ancient Greeks, hydrological model-
ling in a mathematical sense probably began when M.
Darcy (1856) published his analysis that water flows
down a pressure gradient, at some rate determined by
a property of the medium (hydraulic conductivity)
through which it is flowing. This was analogous to
Ohm’s Law, and indeed electric circuits have been used
as analogue models of hydraulic systems for much of the
period since.

Saint-Venant (1871) gave a mathematical description
of river hydraulics and Richards (1931) significantly im-
proved Darcy’s ‘‘Law’’ by adding conservation of mass
and unsaturated dispersion. Horton (1933) provided
a landmark in the description of runoff generation,
and it was then theoretically possible to model a catch-
ment with mathematical representations of infiltration,
groundwater flow, surface runoff generation and river
routing. The mathematical description of runoff was sig-
nificantly improved with the addition of kinematic sur-
face flow (Brakensiek, 1967), and thus by the 1970s it
was possible to model the basic water pathways once
rainfall strikes the ground. Hydrological modelling has
since progressed to the stage where virtually any catch-
ment process can be included.

The single biggest advance for modelling the reverse
flux e evaporation e came with Penman (1948) model
based on data collected during World War II, elegantly
added to by Monteith (1965). Vegetationewater interac-
tions have been added: rainfall interception (Rutter et al.,
1971; Gash et al., 1980), transpiration, root-water uptake
(for example, Ritchie, 1972; Ritchie and Otter-Nacke,
1985) and growth (for example, Wu et al., 1994). The
representation of vegetation now includes the dynamic
response to environmental conditions, with carbon as-
similation and partitioning above and below ground in
response to stresses in one dimension (Dawes et al.,
1998) and in full catchment models (Silberstein et al.,
1999b; Vertessy et al., 1996). Thus we have methods to
simulate runoff generation, subsurface unsaturated and
saturated flow, river storage and routing and evapora-
tion and transpiration.

Mathematical modelling has now become a whole
field in itself, with dedicated textbooks, courses, and
conferences (see for example, Fowkes and Mahony,
1994; the series of MODSIM conferences, and this jour-
nal). I suggest that in many cases models take on a life,
especially in the eyes of their creators, that equals or ex-
ceeds their relevance to the real world. Whole conferen-
ces have been devoted to single models (such as the
TOPMODEL workshop in 1995, see Beven, 1997),
and major experiments established investigating, not
the real world but inter-model comparisons, as if they
were different races of a new species (e.g., Project for
the Intercomparison of Land Surface Parameterization
Schemes e PILPS, Henderson-Sellers et al., 1993; Pit-
man and Henderson-Sellers, 1998).

Over the last 30 years, I suggest, hydrological science
has divided with two approaches used independently by
the modellers and the experimentalists, and often the two
groups having little to do with each other. Occasionally,
modellers may stray well out of their territory and seek
data for input, or even more rarely data for validation of
their model, but this is still unusual, although thankfully
becoming less so. It is my view that modellers who focus
on their model without continual reference to real data
are not really scientists but artists. They have their place,
and indeed their ideas may well turn out to be useful,
but their activities are not science if they are not based
on observations.

3. Hydrological model species

Beven (2001) has given an excellent expose on the art
or science behind hydrological modelling, and I will not
attempt to cover his material, however, some
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introduction to modelling approaches is required. Mod-
elling a catchment involves a decision of fundamental
philosophy as to whether the model should be ‘‘lumped’’
or ‘‘distributed’’, and whether it should be ‘‘determinis-
tic’’ or ‘‘stochastic’’ (Beven, 2001). ‘‘Lumped’’ models
represent a catchment as a single entity, or a small group
of entities, such as reservoirs, and simulate state varia-
bles and fluxes into and out of the catchment as a whole.
‘‘Distributed’’ models divide the catchment up into
many entities, each representing small parts of the catch-
ment, and the state variables and fluxes between the
entities are determined across the catchment. There are
also models that fall somewhere between these, in which
variables are not explicitly distributed across the catch-
ment but are represented as a distribution and could
therefore be interpreted anywhere on the catchment
(for example, TOPMODEL in Beven et al., 1995 and
Beven, 1997; MACAQUE in Watson et al., 1999).

Beven (2001) also discusses the choice between ‘‘deter-
ministic’’ and ‘‘stochastic’’ models. Simulations with
‘‘deterministic’’ models will always produce the same an-
swer if they have the same input data, whereas ‘‘stochas-
tic’’ models will result in a distribution of results or
a result with an accompanying variance. There are also
many examples of using deterministic models in a sto-
chastic way, to generate a distribution of results from
many simulations with a distribution of input parameters
(the so-called Monte-Carlo method).

Whether distributed or lumped, hydrological, and
other, models fall into three main types, such that each
component is either ‘‘conceptual’’, ‘‘empirical’’ or ‘‘sta-
tistical’’, or ‘‘physical’’ (Wheater et al., 1993; Grayson
and Chiew, 1994). The vast majority of models in the lit-
erature are ‘‘conceptual’’ or ‘‘stocks and flows’’ models;
in hydrological terms a catchment is represented as a se-
ries of moisture stores, with fluxes between the stores
and out of the catchment represented by parametric
equations. The stores and fluxes are usually identifiable
with real properties and processes, but are not generally
independently measurable; the parameters must be esti-
mated from input and output data (Ye et al., 1997).

Empirical models are generally the simplest models
and are utterly dependent on data as they represent the
relationship between input and output series, generally
as ‘‘transfer functions’’ between these series. Ye et al.
(1997) discussed the performance of conceptual and em-
pirical models in simulating the streamflow of semi-arid
catchments in Australia. This study was one of a number
of inter-model comparisons that are absolutely depen-
dent on data, not only for their tests but the models
themselves could not be developed without calibration
data. Indeed, there is no reason to suppose that things
should be otherwise.

At the lowest level of physical complexity are the sim-
ple ‘‘bucket’’ conceptual models, such as those presented
by Boughton (1995). In these models, the whole
catchment is represented by a single or a small number
of buckets. The underlying principle is that a catchment
has two major properties that control most of its re-
sponse to drivers e the ability to store water and the rate
of release of that water. Depending on the storage size,
relative to the timescale and intensity of forcing, stream-
flow is generated. This idea was explored in some detail
by Farmer et al. (2003) who showed that most catch-
ments could be well represented with a small number
of buckets, and the exact number depended on relatively
few characteristics.

In the last five years or so personal computers have de-
veloped enough power that very sophisticated distributed
models can be run on moderately sized catchments. In
fact, there is a reasonable argument that we would not
have developed these sophisticated models without the
power to exploit it. At the same time as these advances,
we have seen the development of much simpler models.
For example, TOPMODEL (Beven and Kirkby, 1979)
uses a relatively simple terrain based attribute (the
‘‘topographic wetness index’’) to drive catchment flow
and water storage processes. In doing so it retains some
of the internal complexity of catchments but is much sim-
pler than the more complete physical representations.

At a similar level of complexity, but using a different
approach, LASCAM (Sivapalan et al., 1996a,b) repre-
sents a large catchment as a manageable number of
sub-catchments, each represented as a single lumped en-
tity. Most of the model parameters are assumed to be
the same for each of the sub-catchments, and are deter-
mined by calibration on streamflow response to rainfall
and potential evaporation drivers.

Hybrid models (such as Silberstein et al., 2003b),
combine relatively simple conceptual catchment models
(like LASCAM) to more complicated energy balance
models to determine evaporation and surface tempera-
tures. The surface temperatures can then be linked to
satellite data, either for model testing (Silberstein
et al., 1999a) or as inputs (McVicar and Jupp, 1999).

At the most complicated end of the model spectrum,
physically based hydrological models may, in principle,
be operated without streamflow data for calibration,
as they purport to represent the important physical pro-
cesses with parameters that can be measured indepen-
dently, and assigned a priori to the relevant model
characteristics (e.g. SHE, Abbott et al., 1986; IHDM,
Beven et al., 1987; TOPOG, Vertessy et al., 1996). In
the quest for truth and beauty these models have be-
come so sophisticated that their successors would seek
to include moisture, solute and suspension fluxes at min-
ute levels of detail. In practice, however, this approach is
defeated by the lack of sufficient data to adequately
characterise the model, by the fact that no model repre-
sents all the internal heterogeneity, and that they do
not have means of including processes internal to the
catchment unit (Grayson et al., 1992). Thus, the most



1343R.P. Silberstein / Environmental Modelling & Software 21 (2006) 1340e1352
sophisticated of catchment models still rely on input and
output data for some level of calibration because there is
never enough characterisation to avoid it.

These sophisticated models give tremendous tools for
investigation, but of what? If they are used as engineer-
ing tools, the boundary conditions and the domain must
be clearly defined and valid. If they are used for policy
development it is essential to represent their uncertain-
ties, and as scientific tools they should be used to test
hypotheses.

The ultimate in model computational sophistication
is probably represented by the global climate models,
which are run continuously on the world’s most power-
ful computers, and are linked to ‘‘meso-scale’’ meteoro-
logical forecasting models. We now have the capacity to
simulate the climate over the last hundreds of years, and
the next, and produce streamflow for water resource
managers for decades, or centuries, to come. These ca-
pabilities are truly awesome, and genuinely raise the
question: Given we can now simulate how the world
works so well, can we cut down the cost of collecting data
that are perhaps no longer needed?

All models have spatial and temporal limits to their
discretisation and description, which is another way of
saying that the ‘‘scale problem’’ remains unsolved.
While the physically based models cannot be run seri-
ously without data, the empirical and conceptual models
cannot really be run at all without data.

4. Model uncertainty

Uncertainty inmodelling can arise from errors inmodel
structure and in parameter estimation. Assuming the
right structure, models may be improved by adding pro-
cesses, and hence complexity, requiringmore parameters.
Thus structural uncertainty tends to decrease (in a good
model), but parameter uncertainty may increase. Fig. 1
illustrates this (following Passioura, 1996; Reynolds
and Acock, 1985), with the left image illustrating a well
structured model that fits reality, with cumulative errors
growing as the number of parameters grows, but the
structural errors diminishing with this extra complexity.
If the structure is flawed (image on the right), no amount
of increasing parameters will reduce this error, and the
model can only reach its structural accuracy, not its para-
metric accuracy. In this case, there is an opportunity for
scientific progress because the onlyway of reducing the er-
rors is by improving the model; thus we may learn when
models fail to reproduce reality, but this is only possible
because we have real data with which to compare our
model. Passioura (1996) cites a number of examples in
which flawed models resulted in fundamental changes in
understanding the way plants grow. Perhaps the most
dangerous thing in hydrology may be a model that fits
with expectations (Dooge, 1988), because then, if we ac-
cept that our encapsulated understanding is adequate,
we are not progressing.

Classic model structural errors were demonstrated
when Michelson and Morley failed to measure the speed
of Earth’s travel through the interstellar ‘‘ether’’ and
ended up determining that the speed of light was the
same in all directions. Einstein examined the differences
between Newton’s Law of Gravity and observations
of planetary movements and ended up developing
relativity e both ‘‘special’’ and ‘‘general’’. Both of these
results appeared esoteric, but have huge implications on
our understanding of the universe and our place in it,
and both were data driven resulting in fundamental
changes to our model of the Universe. They also have fun-
damental repercussions on several aspects of modern life;
nuclear energy released in bombs and power stations was
first calculated by Einstein as part of Special Relativity,
and gravitational corrections are required for the now
ubiquitous geographical positioning system (GPS) used
for navigation. In contrast, Einstein won his Nobel Prize
in Physics for a model developed in the absence of data,
the theoretical prediction of the photoelectric effect, sev-
eral years before there were any observations to support
it. Thus, there clearly is a role for pure thought, theory,
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Fig. 1. Notional components of model prediction error. (A) Structurally sound model, with a tendency to a global minimum in prediction error aris-
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and mathematical games, but they only become useful if
and when they are tested with measurements.

Part of the problem of determining structural errors
is demonstrated when a model does reproduce observa-
tions. The problem then is that it is not known whether
this is because the model is right, or the errors cancel
out, and it is certainly not known whether the errors
are structural or observational. This is part of the prob-
lem of non-uniqueness of models (Beven, 2000). Two
models may be empirically equivalent if there is no
way to distinguish between them without invoking some
external subjective factor, such as simplicity, symmetry,
elegance or simply personal preference (Oreskes et al.,
1994). For example, the notions of a flat or spherical
Earth were indistinguishable until new evidence was ob-
tained by Magellan and others.

5. The use of models

Models serve three main purposes. Firstly, they give
us a framework to assemble our process understanding
and to explore the implied system behaviours that come
from that understanding. We can examine the model re-
sults, and consider whether they concur with our overall
system analysis or not. If not, we have a structured
framework to analyse whether it is our model or our
overall understanding, or both, that is in error.

The second main use of a model is as a mechanism for
testing data, to check for inconsistencies and errors, and
to fill in missing information. It also gives us a method to
explore the implications of our measurements. In fact,
this may be the most useful function of models, because
they help structure scientific enquiry that can elucidate
further details behind observations. These first two uses
of models fall into the categories of scientific and
engineering discussed by Passioura (1996). If we intend
using models as scientific tools, we need to ensure that
we actually use them to test hypotheses, and not just play
computer games that reinforce our understanding and
the conjectures built into the models.

The engineer will take a model to solve some day to
day problem within well defined boundary conditions
for which the responses are well understood, and the
model essentially provides a decision support system
for them and their client. It gives a semblance of author-
ity and a legally defendable recommendation. However,
if the engineer strays outside the well defined parameter
boundaries into ‘‘extrapolation space’’, they are entering
the gaming domain which may well be dangerous.

The third use of models, and probably the most widely
publicised and ‘‘commercial’’ use, is to explore scenario
options. These may be options for management of a sys-
tem or exploring possible outcomes under a range of dif-
ferent input conditions, perhaps depending on future
climate, political or economic scenarios. However, unless
these scenarios are well constrained within known data
boundaries, it is my contention that these activities
should be confined largely to stimulate discussion,
should always be tempered by some healthy scepticism,
and retain due regard for our understanding of the whole
system being considered. At their worst, in a scientific
sense, these activities are simply computer games, that
Passioura (1996) likened to snake oil, and those that re-
port their results as the salesmen of the American wild
west. Passioura argued that the highly sophisticated
models ‘‘at best, give structural insights to their develop-
ers, and at worst are merely time-wasting ceremony’’.
Modelling scenarios definitely have a place in planning
and management decisions, but there needs to be
a healthy reality check on the processes. Models are used
because they are much cheaper and faster than doing real
experiments. They also have the ability to predict things
that we may not be able to do in the real world, or per-
haps that would not really happen.

5.1. Scenario modelling examples

The models are also used because they often provide
a well organised set of output that can be used to gener-
ate graphs and images representing the possible out-
comes. The results of these modelling exercises are
used to inform political and environmental decision
making. Models like the Integrated Quantity and Qual-
ity Model (IQQM), developed by the New South Wales
Department of Land and Water Conservation (DLWC,
1995), can simulate water quality at any point along the
3000 km long Murray River. Viney et al. (2003) studied
a small section. With simple tools graphical representa-
tions of different vegetation and salinity scenarios across
the whole basin can be generated by using large GIS
based models. These images can be a powerful means
for exploring the water quality outcomes of various land
use options.

In another exercise, based on IQQM, Herron et al.
(2002) explored the impact of a moderate level of reaf-
forestation in the Macquarie catchment, New South
Wales, Australia. The reafforestation has been proposed
as a solution to a range of environmental health issues as
well as an alternative commercial enterprise for farmers
along the river system. The aim was to explore the impli-
cations of the likely reduction in streamflow following
the planting, to facilitate policy development and gov-
ernment planning on the issue. Because of the size of
the catchment and nature of the problem, Herron
et al. had to build an assembly of models to undertake
the exercise. A lumped parameter catchment model
(the ‘‘Sacramento Model’’, Burnash et al., 1984), was
coupled to IQQM, a flow routing model (DLWC,
1995). Tree planting scenarios were developed by using
a simulated forest growth surface produced by a 1-di-
mensional forest stand model (3-PG, Landsberg and
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Waring, 1997) across the domain, with several future cli-
mate scenarios generated by a climate model for the
Australian environment (OzClim) (CSIRO, 1996; Page
and Jones, 2001). An empirical model (Zhang et al.,
2001) was used to predict the outflow from each sub-
catchment according to its proportion of forest cover.
Thus a composite of hydrological, forest growth, and
climate models was used, taking input from three other
models; one giving the forcing climate data, and two ef-
fectively giving the parameter sets for the hydrological
data, at least one of which is unsuited to the role. The
authors found that, at an annual time scale, the hydro-
logical model combination gave little difference between
the streamflow from grassed and treed catchments so the
results were ‘‘adjusted’’.

Herron et al. (2002) found that simulations with their
complex combination of models led to the conclusion
that tree planting is likely to reduce the streamflow over-
all; a conclusion with which many would agree. The au-
thors of the paper (Herron et al.) are all good scientists,
and they are careful to state their conclusions as simula-
tion results, not truth. Indeed, they also take some trou-
ble to clarify that the choice of models was governed by
the clients’ familiarity which ‘‘increased the acceptability
of the results’’! (my exclamation). It would be better that
the reputation and expertise of the scientists guide the
choice, but then that is, perhaps, the world we work
in. The paper is an example of a very complicated appli-
cation of a collection of ‘‘rules of thumb’’. The only data
used were the precipitation and streamflow used to cal-
ibrate the hydrological model combination, and their
projections went beyond the calibrated conditions with
synthetic parameter distributions (albeit reasonable
ones). The result was a report that probably precipitated
some sombre discussions on the fate of the river depen-
dent ecosystems along the course of the river. Presenting
the results of this exercise to policy makers may well
have raised awareness, focused concern, and perhaps
modified policy and resource allocation. This would be
a good outcome.

Another example of the use of models as a substitute
for data was the application of a sophisticated biophys-
ical catchment model to simulate the growth of agrofor-
estry plots in different arrangements on different
hillslopes, with different soils, salinity and climates
(Silberstein et al., 2001). The model TOPOG (Vertessy
et al., 1993, 1996), couples catchment hydrology to
vegetation growth which depends on soil, water, salt
and climatic conditions. Silberstein et al. (2002) devel-
oped design guidelines for agroforestry on hillslopes in
Australia partly based on analysis of 9000 simulations
of trials (Silberstein et al., 2001) to distil out the over-
riding principles. There is no way resources would sup-
port such a set of trials in a real catchment, and decision
makers would not wait the 10e20 years required to
make the measurements and study the outcomes. These
simulations relied on a sophisticated biophysical hydro-
logical model and intensive analysis to extract the emer-
gent properties from the results. This proved a huge
task, but nothing compared to the job of carrying out
real experiments. For this study, data were available
from only two experiments that could be used to repli-
cate two of the 9000 simulations. These, and other field
measurement exercises not directly related, were used to
constrain the model, but clearly many of the simulations
would have been outside observed bounds, even if the
parameters defining the simulations themselves were
not. Indeed, the simulations run produced very interest-
ing results, but what was lacking was adequate data to
determine whether some of the results would really oc-
cur. Fig. 2 shows the results of a set of simulations in
which tree belts were simulated to be various widths
and centred at different places on the hillside. The results
shown are the wood growth at different places within the
belts, and what is immediately apparent is the degree of
variability between the simulations and at different pla-
ces within belts in the same simulations. The results are
discussed by Silberstein et al. (2001), and can be reason-
ably explained, however, the response of trees in these
simulations is dependent on the combination of soil, cli-
mate (especially periodicity of storm events and seasonal
distribution of rainfall), and slope, and, significantly, the
representation of root activity and distribution within
the soil. In most cases we have little way of knowing
how real these results are. The authors presumed that
the results were reasonable, but a significant input of real
data is required to test many of the simulations for real-
ity. There are a few experiments under way but it
will take quite a while for results to be useful (Dr Kelvin
Montague, NSW State Forests, and Dr Richard
Harper, Forest Products Commission, WA, personal
communications).

These examples have been chosen simply to illustrate
the point that scenario modelling is undertaken with
good intentions, but data are needed to constrain the
discussion and improve the understanding and limita-
tions of the results. In the case of simulations under fu-
ture climate scenarios, these data are not, and will not,
be available within the timeframe of the model’s use,
and errors in prediction are unlikely to be detected until
long after the modellers have moved on from current
positions. I suggest that applying the results in other
than a precautionary planning manner is dangerous.

6. Models need data

As models gain complexity, or expand the processes
represented, the demand for data to calibrate and vali-
date them increases. At the same time, as our technology
improves and we have the ability to measure more at-
tributes with greater precision, models expand to make
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Fig. 2. Total growth of agroforestry plantations under the climatic conditions in Geraldton, Western Australia. Results from 150 simulations, with

each point representing growth of trees at that location on the hillslope are shown. Each panel is for a different soil profile, with the top row showing

soil with no salt and the bottom row depicting high levels of soil salinity. The lines of common type indicate the width and spread of the tree belts for

that simulation. The horizontal axis shows position on the hillside, with 0 being at the top and 600 being at the bottom of the hill (units are m).
use of these opportunities. For example, the host of
models being driven by remotely sensed data, especially
surface temperature and vegetation cover data. Data
availability now is truly impressive. In southern Western
Australia a true 2 m digital elevation model (DEM) is
available to generate catchment networks, and is being
used to develop a catchment flow network for the
120,000 km2 Avon Drainage basin (Riasat Ali, personal
communication). Over the whole of Australia the SILO
data resource (Bureau of Meteorology and Queensland
Department of Natural Resources and Mining http://
www1.ho.bom.gov.au/silo/) has over 100 years of daily
rainfall and 45 years of daily climate data from thou-
sands of stations across the country, and anywhere in
between. However, these examples are of data used to
drive hydrological models, not to test them.

The scientific literature is full of modelling and data
studies, and while there are many studies exploring data
without models, there are far fewer exploring models
without data e at least in the natural sciences. Studies
comparing models to data (Moore and Mein, 1976;
Wheater et al., 1993; Grayson and Chiew, 1994; Ye
et al., 1997; and so on) seek to assess model performance
by comparing model output to data. While there is no
known ‘‘Universal Law of Hydrology’’ to guide the de-
velopment of models (McCuen, 1997; Beven, 2001),
surely the aim of our science is to find such a model that
will work in any catchment, with any climate, and any
vegetation; this requires continual observation and anal-
ysis to develop and refine our understanding (our
model).

The hydrological community has divided into ‘‘mod-
ellers’’ and ‘‘experimentalists’’, and despite the obvious
benefits to both groups, calls to combine forces (Dunne,
1983; Klemes, 1986) are rarely observed. Data-model
comparisons invariably result in differences, and these
differences are the source of insight into how natural
systems work. Seibert and McDonnell (2002) explore
a mechanism for getting the understanding of the exper-
imentalist into the mathematics of the modeller, through
the use of ‘‘soft data’’, or experimentalists’ understand-
ing of ‘‘how the catchment works’’, in addition to the
‘‘hard data’’ of streamflow, climate and soil parameters
modellers are used to. They conclude that it is better to
be ‘‘less right for the right reason’’ than ‘‘right for the
wrong reason’’.

6.1. Modelling difficult environments

Much of Australia is arid or semi-arid, conditions typ-
ically much harder to model than humid temperate
catchments like those in most of Europe and North
America. The hydrology of these regions is the subject
of increasing interest (Pilgrim et al., 1988; Karnieli and
Ben-Asher, 1993; Smakhtin, 2001), particularly as much
of the world’s population lives in such regions. Many of
these catchments (and most in Australia) also have
low relief, with for example, the average slope in the
Murray-Darling Basin being around 1:10,000 (and the
Basin having an area 106 km2). These catchments typi-
cally have rainfall to potential evaporation ratios of
much less than 1 and under natural vegetation have av-
erage annual streamflow less than 10% of rainfall. Such
flow statistics are very difficult to get, because the flow
may be zero much of the time. Catchments in south-west

http://www1.ho.bom.gov.au/silo/
http://www1.ho.bom.gov.au/silo/
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Western Australia, at 1200 mm rainfall typically have
streamflow of about 10% rainfall, and at 700 mm have
streamflow of 2% rainfall (for example, Ruprecht and
Schofield, 1989; Silberstein et al., 1999a). Such catch-
ments are difficult to model because the primary drivers
of streamflow are the residual of evaporation losses and
changes in soil moisture storage, and soil characteristics
that control moisture redistribution. With fewer flow sta-
tistics, because of fewer days of flow, parameter estima-
tion is much more difficult. Because of the high
evaporation, the catchment spends a large proportion
of the time with soil moisture either too low for stream-
flow generation or distributed such that discharge does
not occur. Either way, a zero hydrograph gives no infor-
mation about the water storage or the redistributions
that may be taking place. With evaporation being 90%
or more of rainfall, a 10% error in its estimation leads
to 100% error in streamflow.

6.2. Model validation

The traditional scientific method, that is to propose
a hypothesis and then set about testing whether it is un-
true, seems to have been lost in many modelling studies.
Klemes (2000) has discussed this in various ways over
many years. In scientific tradition, a scientist takes
a model, or develops one, and sets about systematically
to try to invalidate it e the ‘‘null hypothesis’’. However,
papers are usually written from the viewpoint of valida-
tion of a model, when in fact this can never happen.
Models can be validated in an engineering sense, that
within accepted boundaries they can be demonstrated
to reproduce observations, and are therefore useful,
but scientifically, like theories, they can never be truly
validated, only invalidated.

A scientist studies how the world works. A model
encapsulates some of that understanding and, for this
author, the real interest comes in understanding where
and why a model fails. While most modellers are con-
cerned about validating their models there is the philo-
sophical question of whether models can be validated
or rather ‘‘verified’’ in the sense that they represent
truth. Oreskes, et al. (1994) concluded that they cannot
be verified because there are too many inherently un-
knowable parameters and processes. They argue that
a model may be valid, in the sense that legal arguments
are valid, in containing no logical or demonstrated flaw,
and in the same sense legal arguments are valid until
some time they fail a test. Konikow and Bredehoeft
(1992) argued that validation is used erroneously in at
least two senses: firstly, that validation Z verification,
and secondly that validation Z truth (as the representa-
tion of reality). The US Department of Energy defines
model validation as ‘‘determination that the model indeed
reflects the behaviours of the real world’’. Thus, validation
really only implies that the empirical observations match
model results; the more observations the more confi-
dence that they represent ‘‘truth’’, but that confidence
is not certainty. In the same way that physical theories
cannot be proven, but only disproved, models can be
‘‘supported’’ by, but not verified, by observations.

For example, Silberstein et al. (1999c) studied water-
logging and its relation to topography and pasture in
a small catchment. They attempted to model the occur-
rence and used reasonably comprehensive measurements
to test their model (TOPOG, described earlier). In this
study, evaporation flux measurements were available
and matched the model simulations well (Fig. 3), as did
soil moisture storage (Fig. 4). However, the aim of the
study was to quantify waterlogging and deep drainage,
which were much harder to simulate (Fig. 5). The conclu-
sion drawn from this work was that the model, that had
been tested extensively in similar work, was incapable of
producing the full complexity of the field processes, be-
cause it did not include a very important one, namely
the changing hydraulic properties of soil through a sea-
sonal cycle. In that study with only part of the dataset,
a model calibration could have reproduced the known re-
sults, but the unmeasured ones would have remained un-
known. This would put those results and any analysis and
conclusions drawn from them in the world of computer
games. The authors could only speculate on the relative
importance of various soil changes taking place, but the
model, in failing, was useful in helping ascertain where
measurements were incomplete, and the magnitude of
the processes that were unmeasured.

7. The Australian need for data

In Australia, as in the rest of the world, the hydrolog-
ical community is beholden to the data collectors. Mod-
els are our attempt to encapsulate our understanding of
the real world. They are not the real world, and without
data they are simply imagination and computer games.
Hydrological modelling, and any other modelling, is
a much simpler, and less interesting, version of the real
water world.

The need to understand our water systems was recog-
nised by the Founding Fathers of Australia:

‘‘On entering our duties we found . that information
available regarding our rivers was meagre and fragmen-
tary, and that in some important points public opinion
was in danger of being misled by statements and theories
which there was ample evidence to refute.

. we beg to recommend that the maintenance of river
gauge records as extended by us should be made still more
complete, and the records kept continuously and in a care-
ful and systematic manner.’’

(Parliament of the Colony of New South Wales, 1887;
taken from NLWRA, 2000).
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calculations from soil water balance, the model is TOPOG, taken from Silberstein et al. (1999c).
It is my contention that our current need to under-
stand our hydrological systems through measurement
is just as urgent as it was then. In many parts of the
world, not the least Australia, hydrological data collec-
tion is being reduced. In 2002 enquiries of officers of
State hydrological agencies in almost every Australian
State reported to me that data collection was being re-
duced. The attitude of those in positions to make these
decisions seems to be that we have enough data, and
that not enough use is made of it. The view is that we
do not need to collect data because ‘‘we can model’’
and, in any case, ‘‘the main use of data is to calibrate
models’’. These statements were made to the author by
senior people charged with collecting hydrological data
in Australia, and both of them indicate a significant lack
of understanding of how science works, and how we
should be using it to improve the management of our en-
vironment. Data are the real world. We do not need
data if we do not care about the real outcome e if we
are happy with computer games.

7.1. Data are needed in a changing environment

Modelling the impacts of land clearing on stream
changes, flows and salinity would be impossible without
data. The change to flow regimes following clearing of
native forest for agriculture, such as those in the Collie
research catchments, in the south-west of Western Aus-
tralia (Mauger et al., 2001; Silberstein et al., 2003a,
2005), that have converted ephemeral streams to peren-
nial streams are completely beyond the data boundaries
prior to these impacts. No model can demand great con-
fidence when it goes beyond the boundaries of its data
and calibration.

Environmental data are the raw materials for
environmental audits. Much like financial audits, con-
tinuous collection would allow a chance of redressing
the problem if the balance sheet goes awry. The Austra-
lian Government has, on behalf of Australian taxpayers,
embarked on a $1400M experiment, that is the National
Action Plan on Salinity and Water Quality
(http://www.napswq.gov.au). This is the second such
experiment after the Natural Heritage Trust
(http://www.nht.gov.au/). It is imperative that data are
collected to confirm whether the new experiment is a suc-
cess, when it is argued that the previous one had minimal
environmental outcomes (http://www.acfonline.org.au),
and there was virtually nomonitoring to confirmwhether
this was the case or not. Large corporations undertaking
financial outlays of this magnitude require checks and
balances to audit the process and to stage the process
to ensure that it is managed wisely. It is only prudent to
learn as the process is undertaken, and there should be
mechanisms in place to improve outcomes as the pro-
gramme proceeds. Australia currently spends only a
few per cent of this amount on water monitoring. I sug-
gest that a small additional investment would ensure
that we could account for how well the rest was spent.
We can use models to explore the possibilities but it is on-
ly data that will tell us which possibility has become
a reality.

The International Association of Hydrological Scien-
ces has declared 2003e2012 a Decade for Prediction in
Ungauged Basins (PUB) (http://cee.uiuc.edu/research/
pub/default.asp). These are overdue activities and it is
to be hoped that the result is a substantial raising of
the profile of the science and the benefits to humanity.
In a sense the aim of the PUB initiative is to develop hy-
drological models that can work in catchments with min-
imal data, but the clearly stated modus operandi in the
Science Plan (IAHS, 2003) is to maximise data collection
and analysis. There is a focus on developing new obser-
vational tools that will enlighten us on the inner work-
ings of catchments; that we may better understand and
predict their responses to forcing, and thereby better
manage for environmental and human outcomes. The
PUB initiative has included clear community service
goals in its aims, and emphasises the role that data will
play in developing hydrological understanding for the
betterment of societies across the globe.

http://www.napswq.gov.au
http://www.nht.gov.au/
http://www.acfonline.org.au
http://cee.uiuc.edu/research/pub/default.asp
http://cee.uiuc.edu/research/pub/default.asp
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8. Concluding remarks

Models are enormously useful as test beds for ideas
and for exploring the implications of our understanding
of natural systems. They are extremely valuable as data
processing and analysis aids, often showing up data
errors and inconsistencies that might otherwise have
gone unnoticed. Models are also useful for exploring sce-
narios that cannot be tested in the real world. However,
while this last use is a rapidly expanding one, it is also
the most dangerous, as high level managers appreciate
the nice graphics and, possibly, simplistic sets of options,
it can be easy to lose sight of the limitations of the process
that generated them. It is in this mode that models are of-
ten run outside their tested bounds, and by definition lit-
tle or no data are available to constrain the scenario
results. If we are to continue to learn about, and improve
our management of, our environment, we must continue
to observe it e that means collect data. Modelling is an
important accompaniment to measurement, but is no
substitute for it; science requires observation, and with-
out that we will cease to progress in understanding our
environment, and therefore in managing it appropriately.
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