Transport-level Protocol Coordination in Cluster-to-Cluster Applications

David E. Ott and Ketan Mayer-Patel
University of North Carolina at Chapel Hill
{ott,kmp}Q@cs.unc.edu

Abstract

Future Internet applications will increasingly use multiple
communications and computing devices in a distributed
fashion. In this paper, we identify an emerging and im-
portant application class comprised of a set of processes on
a cluster of devices communicating to a remote set of pro-
cesses on another cluster of devices across a common inter-
mediary Internet path. We call applications of this type
cluster-to-cluster (C-to-C) applications. The networking re-
quirements of C-to-C applications present unique challenges
that current transport-level protocols fail to address. In par-
ticular, these applications require aggregate measurement
of network conditions across all associated flows and coor-
dinated transport-level protocol behavior. A Coordination
Protocol (CP) is proposed which allows a C-to-C application
to coordinate flow behavior in the face of changing network
conditions. CP provides cluster endpoints with a consistent
view of network conditions, as well as cluster membership
and bandwidth usage information. An application may use
CP to define and implement a coordination scheme support-
ing particular flow priorities and other objectives.

1 Introduction

Future Internet applications will increasingly make use of
multiple communication and computing devices in a dis-
tributed fashion. Examples of these applications include
distributed sensor arrays, tele-immersion [9], computer-
supported collaborative workspaces (CSCW) [4], ubiquitous
computing environments [13], and complex multi-stream,
multimedia presentations [16]. In many such applications,
no one device or computer produces or manages all of the
data streams transmitted. Instead, the endpoints of com-
munication are collections of devices. We call applications
of this type cluster-to-cluster (C-to-C) applications.

In a C-to-C application, a set of processes distributed on a
cluster of devices or computers communicates with another
set of processes on a remote cluster of devices or comput-
ers. For example, a cluster may be comprised of a collec-
tion of capture devices (e.g., video cameras, microphones,
etc.), each of which produces a stream of data. The other
cluster might be a collection of display devices (e.g., digital
light projectors, speakers, head-mounted displays, etc.) and
computers that archive data in various ways. Processes are
distributed on each device cluster to manage data streams
and control the application.

C-to-C applications share two important properties.
First, communication between endpoints on the same lo-
cal cluster takes place with minimal delay and loss. We
can make this assertion because the local intranet support-
ing the cluster can be provisioned to comfortably support
application traffic loads. In other words, the local network-
ing environment often will be engineered and implemented
with the C-to-C application in mind. Second, while no two
flows within the application share the exact same end-to-
end path, all flows share a common Internet path between
clusters. This shared common path represents the majority
of the traversal path between endpoints on different clus-
ters, and the region in which network congestion will most
likely affect C-to-C application performance. Although the
path between clusters is not guaranteed to be the same for
all flows (or even all packets within a flow), in general we
can expect that network conditions between clusters will be
similar.

Different flows within a C-to-C application may use more
than one transport-level protocol to accomplish their com-
munication objectives. Streamed audio and video data, for
example, may use UDP or a UDP-based protocol like RTP,
while control information is exchanged using TCP to ensure
reliability. Application-specific protocols which handle me-
dia encoding, flow control, reliability, or congestion control
in specialized ways may also be used.

A fundamental problem with current transport-level pro-
tocols within the C-to-C application context, however, is
that they lack coordination. Application streams share a
common intermediary path between clusters, and yet oper-
ate in isolation from one another. As a result, flows may
compete with one another when network resources become
limited, instead of cooperating to use available bandwidth
in application-controlled ways. For example, an applica-
tion may wish to give certain streams priority over others or
stipulate that different proportions of available bandwidth
be used by specific streams. We are interested in C-to-C
applications with rich semantic relationships between flows
that can be exploited to improve application performance.

In this position paper, we postulate that the C-to-C ap-
plication architecture can significantly benefit from network
mechanisms that allow transport-level protocol coordination
of separate, but semantically related, flows of data. In the
following sections of this paper we will:

e Motivate the C-to-C application architecture with a
specific example.

e Identify a number of networking challenges posed by

o e? @~

Figure 1: The Office of the Future.

such an application.

e Provide a specific proposal for a transport-level coordi-
nation mechanism.

e Defend the design decisions made in our proposed mech-
anism, and discuss related work.

2 A Motivating Example

This section describes a specific application which motivates
the need for transport-level protocol coordination and illus-
trates the networking challenges faced by C-to-C applica-
tions. The application is the Office of the Future. The Office
of the Future was conceived by Fuchs et al., and their ex-
perimental prototype of the application is described further
in [9].

In the Office of the Future, tens of digital light projectors
are used to make almost every surface of an office (walls,
desktops, etc.) a display surface. Similarly, tens of video
cameras are used to capture the office environment from a
number of different angles. At real-time rates, the video
streams are used as input to stereo correlation algorithms
to extract 3D geometry information. Audio is also captured
from a set of microphones. The video streams, geometry in-
formation, and audio streams are all transmitted to a remote
Office of the Future environment. At the remote environ-
ment, the video and audio streams are warped using both
local and remote geometry information and stereo views are
mapped to the light projectors. Audio is spatialized and sent
to a set of speakers. Users within each Office of the Future
environment wear shutter glasses that are coordinated with
the light projectors.

The result is an immersive 3D experience in which the
walls of one office environment essentially disappear to re-
veal the remote environment and provide a tele-immersive
collaborative space for the participants. Furthermore, syn-
thetic 3D models may be rendered and incorporated into
both display environments as part of the shared, collabo-
rative experience. Figure 1 is an artistic illustration of the

application.

We see the Office of the Future as a concrete vision of a
C-to-C application that progresses far beyond today’s rela-
tively simple video applications. The Office of the Future
uses scores of media streams which must be manipulated in
complex ways. The computational complexity of the appli-
cation requires the use of several computational resources
(possibly including specialized graphics hardware).

The Office of the Future is a good example of a C-to-
C application because the endpoints of the application are
collections of devices. Two similarly equipped offices must
exchange myriad data streams. Any specific data stream is
transmitted from a specific device in one environment to one
or more specific devices in the remote environment. Within
the strict definition of end-to-end used by current protocols,
few if any of these streams will share a complete path. If we
relax the definition of end-to-end, however, we can see that
all of the data streams will span a common shared commu-
nication path between the local networking environments of
each Office of the Future.

The local network environments are not likely to be the
source of congestion, loss, or other dynamic network condi-
tions because these environments are within the control of
the local user and can be provisioned to support the Office
of the Future application. The shared path between two
Office of the Future environments, however, is not under lo-
cal control and thus will be the source of dynamic network
conditions.

Current transport-level protocols fail to address the com-
plex needs of an application like the Office of the Future.
For example, this application requires dynamic interstream
prioritization. Beyond just video information, the Office of
the Future uses a number of other media types including 3D
models and spatialized audio. Because these media types
are integrated into a single immersive display environment,
user interaction with any given media type may have impli-
cations for how other media types are encoded, transmitted,
and displayed. For example, the orientation and position of
the user’s head indicates a region of interest within the dis-
play. Media streams that are displayed within that region of
interest should receive a larger share of available bandwidth
and be displayed at higher resolutions and frame rates than
media streams that are outside the region of interest. When
congestion occurs, lower priority streams should react more
strongly than higher priority streams. In this way, appro-
priate aggregate behavior is achieved and application-level
tradeoffs are exploited.

3 Networking Challenges

To generalize the networking challenges faced by complex
C-to-C applications like the Office of the Future, we first
develop a generic model for C-to-C applications and subse-
quently characterize the networking requirements associated
with this model.

Endpoint Ay Endpoint B,

Al Al

A} 1
App. ‘... S J) - App.
@ ,,,, Aggregation Aggregation [@
: Point e Point -
Endpoint A, : * Endpoint B,
. : - .
L4 Cluster-to—Cluster b4
b Data Path b
rocess Process
Endpoint Ay Endpoint By
Cluster A Cluster B

Figure 2: C-to-C application model.

3.1 C-To-C Application Model

We model a generic C-to-C application as two sets of pro-
cesses executing on two sets of communication or computing
devices. Figure 2 illustrates this model.

A cluster is comprised of any number of endpoints and a
single aggregation point, or AP. Each endpoint represents a
process on some endpoint host (typically a networked com-
puter) that sends and/or receives data from another end-
point belonging to a remote cluster. The AP functions as a
gateway node connecting cluster endpoints to the Internet.
The common traversal path between aggregation points is
known as the cluster-to-cluster data path.

Endpoints within the same cluster are connected by an
intranet provisioned with enough bandwidth to comfortably
support the communication needs of the cluster. In gen-
eral, latency between endpoints on the same cluster is small
compared to latency between endpoints on different clusters.
Our overall objective is to coordinate endpoint flows across
the cluster-to-cluster data path where available bandwidth
is uncertain and constantly changing.

3.2 Networking Requirements

A useful metaphor for visualizing the networking require-
ments of C-to-C applications is to view the communication
between clusters as a rope with frayed ends. The rope repre-
sents the aggregate data flows between clusters. Each strand
represents one particular transport-level stream. At the ends
of the rope, the strands may not share the same path. In the
middle of the rope, however, the strands come together to
form a single aggregate object. While each strand is a sep-
arate entity, they share a common fate and purpose when
braided together as a rope.

With this metaphor in mind, we identify several important
networking requirements of C-to-C applications:

e Global measurements of congestion, delay, and
loss. Although each stream of a C-to-C application is
an independent transport-level flow of data, it is also
semantically related to other streams in the same dis-
tributed application. As such, network events such as
congestion, delay, and loss should be measured and re-
ported for the flows as an aggregate.

e Preserved end-to-end semantics. The specific

transport-level protocol (i.e., TCP, UDP, RTP, RAP,

etc.) that is used by each flow will be specific to the
communication requirements of the data within the flow
and the role it plays within the larger application. Thus,
each transport-level protocol used should still maintain
the appropriate end-to-end semantics and mechanisms.
For example, if a data flow contains control informa-
tion that requires in-order, reliable delivery, then the
transport-level protocol used to deliver this specific flow
(e.g., TCP) should provide these services on an end-to-
end basis. Thus, although the flow is part of an ag-
gregate set of flows, it should still maintain end-to-end
mechanisms as appropriate.

e A coordinated view of current network condi-
tions. Even though each flow maintains its own end-
to-end semantics, the flows should receive a coordi-
nated view of current network conditions like available
bandwidth and global measures of aggregate delay, loss,
and congestion. We need to separate the adaptive dy-
namic behavior of each transport-level protocol, which
depends on end-to-end semantics of individual streams,
from the mechanisms used to measure current network
conditions, which are global across all streams of the
application.

e Interstream relative bandwidth measurements.
Individual streams within the C-to-C application may
require knowledge about their bandwidth usage rel-
ative to the other streams of the same application.
This knowledge can be used to determine the appro-
priate bandwidth level of a particular stream given
application-level knowledge about interstream relation-
ships. For example, an application may want to estab-
lish a relationship between two separate flows of data
such that one flow consumes twice as much bandwidth
as the other.

e Deployability Finally, the mechanisms used to pro-
vide C-to-C applications with transport-level protocol
coordination need to be reasonably deployable.

In the following section, we outline a design for a mecha-
nism that meets these requirements.

4 The Coordination Protocol

Our approach to this problem is to propose a new proto-
col layer between the network layer (IP) and transport layer
(TCP, UDP, etc.) that addresses the need for coordina-
tion in C-to-C application contexts. We call this protocol
the Coordination Protocol (CP). The coordination function
provided by CP is transport protocol independent. At the
same time, CP is distinct from network-layer protocols like
IP that play a more fundamental role in routing a packet to
its destination.

CP works by attaching probe information to packets
transmitted from one cluster to another. As the informa-
tion is acknowledged and returned by packets of the remote
cluster, a picture of current network conditions is formed

) | Aggregation Aggregation !)
Endpoint ! Point ! Point . Endpoint
Application Layer y 1 1 i y
C-RTP| | 1 1 C-RTP
Transport Layer ' ' '

c-TcP|c-UDP| | o | ! s | ' |c-Tcp|c-ubpP

Coordination Layer [‘ [[| ‘ [cP | ‘ cP

Network Layer P 1 l P* ‘ 1 l P* ‘ i 1P

Packet Path

Figure 3: CP network architecture.

and shared among endpoints within the local cluster. A
consistent view of network conditions across flows follows
from the fact that the same information is shared among all
endpoints.

Figure 3 shows our proposed network architecture. CP
will be implemented between the network layer (IP) and
the transport layer (TCP/UDP). We call this layer the co-
ordination layer. The coordination layer will exist on each
device participating in the C-to-C application, as well as on
the two aggregation points on either end of the cluster-to-
cluster data path.

At the endpoints, CP can be implemented on top of IP
in a straightforward manner, much as TCP and UDP are
implemented on top of IP. At the aggregation points, CP
must be part of the forwarding path. As such, forwarding
behavior must be modified to include a CP handling rou-
tine before IP forwarding can subsequently take place. We
acknowledge this departure from standard IP behavior by
labeling the IP layer at the AP’s in Figure 3 as IP*.

Transport-level protocols will be built on top of CP in the
same manner that TCP is built on top of IP. CP will provide
these transport-level protocols with a consistent view of net-
work conditions. These transport-level protocols will in turn
use this information, along with various configuration pa-
rameters, to determine a data transmission rate and related
send characteristics. In Figure 3, we show several possi-
ble transport-level protocols (C-TCP, C-UDP, and C-RTP)
which are meant to represent coordinated counterparts to
existing protocols.

4.1 Basic Operation

Figure 4 shows a CP data packet. CP encapsulates
transport-level packets by prepending a small header. In
turn IP will encapsulate CP packets and the protocol header
will indicate that CP is being used. Each CP header will con-
tain an identifier associating the packet with a particular C-
to-C application. The remaining contents vary according to
the changing role played by the CP header as it traverses the
network path from source endpoint to destination endpoint.

e As packets originate from source endpoints.
The CP header may be used to communicate requests
to the local AP. For instance, an endpoint may request
to join or leave a cluster, have a membership or band-
width usage report issued, or post a message to all end-
points within the local cluster. If no request is made,
then cluster, flow, and protocol information are simply

Header Element Stage of Communication

IP Header »
Protocol Iden_t!fler % Always present.
Cluster Identifier

CP Header Sequence Number Used between

aggregation points.
Used from endpoint to
aggregation point.
Used from aggregation
point to endpoint.

Echo Seq. Number

Flow Identifier

Transport-level Flow Priority Weight
Header Delay Report

Congestion Report
[Packet Data r

Figure 4: CP packet structure.

included in the CP header for identification.

e As packets arrive at the local AP.
CP header and packet information is processed. Part
of the CP header will then be overwritten, allowing the
AP to communicate congestion probe information with
the remote AP.

e As packets arrive at the remote AP.
The CP header is processed and used to detect network
conditions. Again, part of the CP header is overwritten
to communicate network condition information with the
remote endpoint.

e As packets arrive at the destination endpoint.
Network condition information is obtained from the CP
header and passed on to the transport-level protocol
and the application.

4.2 Detecting Network Conditions

A primary function of CP is to measure congestion and de-
lay along the cluster-to-cluster data path. To accomplish
this objective, each packet passing from one AP to another
will have two numbers inserted into its CP header. The first
number will be a sequence number that increases monoton-
ically for every packet sent. The second number will be an
echo of the last sequence number received from the other
AP.

By recording the time when a new sequence number is
sent and the time when its echo is received, the AP can
approximate the round trip time and infer network delay.
Similarly, missing sequence numbers can be used to detect
packet loss and infer congestion.

Because sequence numbers in the CP header do not have
any transport-level function, CP can use whatever packet
is being transmitted next to carry this information as long
as the packet is part of a flow associated with the C-to-C
application. Since the packets of multiple flows are available
for this purpose, this mechanism can be used for fine-grained
detection of network conditions along the cluster-to-cluster
data path.

4.3 Transport-level Interface

An important aspect of CP is the design of its interface with
transport-level protocols. CP provides transport-level pro-

tocols with information about network conditions, includ-
ing congestion and delay measurements. These measure-
ments are delivered whenever packets pass from CP to the
transport-level protocol through this interface.

Variants of existing transport-level protocols will be de-
veloped on top of this interface. For example, a coordinated
version of TCP (C-TCP) will consider acknowledgements
only as an indicator of successful transfer. Congestion de-
tection will be relegated entirely to CP.

Because an application will need to provide CP-related
information to the transport-level protocol, some aspects of
the transport-level interface will be exposed to the network-
ing API (i.e., the socket layer). For instance, an application
will need to supply a cluster identifier that associates the
flow with a given C-to-C application. In the reverse direc-
tion, some transport-level protocols will make delay, jitter,
loss, or other CP-derived information available to the appli-
cation layer.

4.4 Cluster Membership Services

An AP maintains a cluster membership table for each C-
to-C application. This table is created when a CP packet
for a C-to-C application with no current table is received
and is maintained as soft state. Endpoints are dynamically
added and deleted from this table. Storing the table as soft
state avoids explicit configuration and makes the mechanism
lightweight and robust

A cluster membership table performs two important func-
tions. First, it maintains a list of known cluster endpoints.
This allows the AP to broadcast network condition infor-
mation to all C-to-C application participants. Endpoints
may also request a membership report from the AP to re-
ceive a current listing of other endpoints. This list may be
used in application-specific ways, for example to commu-
nicate point-to-point with cluster participants or to track
cluster size.

The second function is that of bandwidth monitoring.
An AP will monitor bandwidth usage for each cluster end-
point and use the cluster membership table to store resulting
statistics. An endpoint may request a bandwidth report to
obtain information on bandwidth usage among other end-
points, as well as aggregate statistics on the cluster as a
whole. This information can be used in application-specific
ways to configure and manage flow coordination dynami-
cally.

5 Design Rationale
5.1 Benefits of CP

We believe the benefits of our approach to be substantial
and include:

e Locally deployable.
CP requires changes to protocol stacks within appli-
cation clusters only. No changes are required of for-
warding nodes along the Internet path between clus-

ters. Furthermore, cluster endpoints can coexist with
non-CP communication and computing devices.

e Available to all transport protocols.
A consistent view of network conditions is accessible
by all flow endpoints, regardless of the transport-level
protocol used by a given flow.

e Flexible.
Our approach does not dictate how an application han-
dles flow coordination. Nor does it enforce coordina-
tion schemes through external traffic shaping or packet
scheduling at switching points. Instead, flow end-
points are informed of network conditions and adjust
in application-defined ways.

e Dynamic membership and configuration.
The number of endpoints within a cluster may change
dynamically, along with the traffic characteristics of any
given flow endpoint.

e Sensitive to router performance issues.

While the CP architecture does require per-flow and
per-cluster state to be maintained at the aggregation
points, the work involved is limited to simple account-
ing operations and does not involve packet scheduling,
queue management, or other complex processing. Fur-
thermore, the performance of routers along the Internet
path between clusters remains entirely unaffected.

It is important to note that CP is only one possible im-
plementation of a mechanism to satisfy the networking re-
quirements of C-to-C applications outlined in Section 3. The
need for a transport-level coordination mechanism is moti-
vated by the needs of C-to-C applications like tele-immersion
distributed sensor arrays, and CSCW, which represent an
important class of future Internet applications. The specific
design of CP is our attempt to satisfy those needs.

5.2 Design Justification

We anticipate several questions about why we designed CP
in the manner that we have and justify its design below.

5.3 Why do this below the transport-level?

The primary reason for implementing CP below the
transport-level is to preserve end-to-end semantics of the
transport-level. Another possible approach would be to de-
ploy CP at the application level by having all streams of
a cluster sent to a multiplexing agent which then incorpo-
rated the data into a single stream sent to a demultiplexing
agent on the remote cluster. This approach, however, has
several drawbacks. By breaking the communication path
into three stages, end-to-end semantics of the individual
transport-level protocols have been severed. This approach
also mandates that application-level control is centralized
and integrated into the multiplexing agent.

A secondary reason for implementing CP below the
transport-level is because that is where the CP mechanisms

logically belong. The transport-level is associated with the
end-to-end semantics of individual streams. The network-
level protocol (i.e., IP) is associated with the next-hop for-
warding path of individual packets. CP deals with streams
that are associated together and share a significant num-
ber of hops along their forwarding paths, but do not share
exact end-to-end paths. This relaxed notion of a stream
bundle logically falls between the strict end-to-end notion
of the transport-level and the independent packet notion of
the network-level.

5.4 Why do this at packet granularity?

By using every packet from every flow of data associated
with a C-to-C application we can achieve fine-grained sam-
pling of current network conditions. Fine-grained sampling
is important because Internet network conditions are highly
dynamic at almost all time scales. Sampling across the
flows as an aggregate allows each transport-level protocol
to have a more complete picture of current network condi-
tions. Also, since each packet payload needs to be delivered
to its intended endpoint destination, each CP packet pro-
vides a convenient and existing vehicle for probing network
conditions and communicating resulting information to ap-
plication endpoints. Endpoints are given the opportunity to
react to changing conditions in a fine-grained manner.

5.5 Why not have the endpoints exchange
information?

Another possible architecture for a transport-level protocol
coordination mechanism would be to exchange delay, loss,
and bandwidth information among endpoints. This presup-
poses, however, that the endpoints are aware of each other.
Our CP design, on the other hand, allows for loosely-coupled
C-to-C applications in which this may not be the case. End-
points of a C-to-C application are only required to use the
same cluster identifier which can be distributed through a
naming service like DNS or some other application-specific
mechanism. The aggregation points are a natural place for
cluster-wide accounting of loss, delay, and bandwidth since
all packets of the cluster will pass through them. The de-
sign of CP is cognizant of the additional processing load
this places on the aggregation point which is reflected in its
relatively simple accounting mechanism.

5.6 Related Work

The ideas behind CP were primarily inspired by the Con-
gestion Manager (CM) architecture developed by Balakrish-
nan [2]. CM provides a framework for different protocols to
share information concerning network conditions. The CM
is an excellent example of a coordination mechanism, but
operates only when the transport-level flows share the en-
tire end-to-end path.

In [6], Kung and Wang propose a scheme for aggregating
traffic between two points within the backbone network and
applying the TCP congestion control algorithm to the whole

bundle. The mechanism is transparent to applications and
does not provide a way for a particular application to make
interstream tradeoffs.

Pradhan et al. propose a way of aggregating TCP connec-
tions sharing the same traversal path in order to share con-
gestion control information [8]. Their scheme takes a TCP
connection and divides it into two separate (“implicit”) TCP
connections: a “local subconnection” and a “remote sub-
connection.” This scheme, however, breaks the end-to-end
semantics of the transport protocol (i.e., TCP).

Active networking, first proposed by [11] allows custom
programs to be installed within the network. Since their
original conception, a variety of active networking systems
have been built [14, 1, 3, 12, 15, 5, 7, 10]. They are often
thought of as a way to implement new and customized net-
work services. In fact, CP could be implemented within an
active networking framework. Active networking, however,
mandates changes to routers along the entire network path.
This severely hinders deployment. CP requires changes only
at the endpoints and at the aggregation points.

6 Summary

In this position paper, we motivated the need for transport-
level protocol coordination for a particular class of dis-
tributed applications that we described as cluster-to-cluster
applications. In particular, C-to-C applications are char-
acterized by many independent, but semantically related,
flows of data between clusters of computation and commu-
nication devices. This application architecture requires that
end-to-end transport-level semantics be preserved, while at
the same time, providing each stream with a consistent view
of current networking conditions. To achieve this, each
transport-level protocol needs measures of congestion, de-
lay, and loss for the aggregate bundle of data flows.

We described the design of the Coordination Protocol
(CP) which provides for the unique networking requirements
of C-to-C applications. The main features of CP are:

e Transport-level protocol independent.

Locally deployable.
e Fine grained sampling of network conditions.

Flexible.

Supports dynamic membership and configuration.

CP provides cluster endpoints with a consistent view of net-
work conditions, as well as cluster membership and band-
width usage information. With this information, a C-to-C
application can make coordination decisions according to
specific objectives and a privileged understanding of appli-
cation state. CP will facilitate the development of next gen-
eration Internet applications.

References [16] T.-P. Yu, D. Wu, K. Mayer-Patel, and L.A. Rowe. dc:
A live webcast control system. To appear in Proc. of
[1] D.S. Alexander et al. Active bridging. Proceedings of SPIE Multimedia Computing and Networking, 2001.
SIGCOMM’97, pages 101-111, September 1997.

[2] Hari Balakrishnan, Hariharan S. Rahul, and Srinivasan
Seshan. An integrated congestion management archi-
tecture for internet hosts. Proceeding of ACM SIG-
COMM, September 1999.

[3] D. Decasper et al. Router plugins: A software architec-
ture for next generation routers. Proceedings of SIG-
COMM’98, pages 229-240, September 1998.

[4] J. Grudin. Computer-supported cooperative work:
its history and participation. Computer, 27(4):19-26,
1994.

[5] M. Hicks et al. Plannet: An active internetwork.
Proceedings of INFOCOM’99, pages 1124-1133, March
1999.

[6] H.T. Kung and S.Y. Wang. Tcp trunking: Design,
implementation and performance. Proc. of ICNP ’99,
November 1999.

[7] E. Nygren et al. Pan: A high-performance active net-
work node supporting multiple code systems. Proceed-
ings of OPENARCH’99, 1999.

[8] P. Pradhan, T. Chiueh, and A. Neogi. Aggregate
tcp congestion control using multiple network probing.
Proc. of IEEE ICDCS 2000, 2000.

[9] Ramesh Raskar, Greg Welch, Matt Cutts, Adam Lake,
Lev Stesin, and Henry Fuchs. The office of the future: A
unified approach to image-based modeling and spatially
immersive displays. Proceedings of ACM SIGRAPH 98,
1998.

[10] B. Schwarts et al. Smart packets for active networks.
Proceedings of OPENARCH’99, 1999.

[11] D. L. Tennenhouse and D. Wetherall. Towards an ac-
tive network architecture. Multimedia Computing and
Networking, January 1996.

[12] J. van der Merwe et al. The tempest - a practical
framework for network programmability. IEEE Net-
work Magazine, 12(3), May/June 1998.

[13] M. Weiser. Some computer science problems in ubiq-
uitous computing. Communications of the ACM,
36(7):75-84, July 1993.

[14] David Wetherall. Active network vision and reality:
lessons from a capsule-based system. Operating Systems
Review, 34(5):64-79, December 1999.

[15] Y. Yemini and S. da Silva. Towards programmable net-
works. International Workshop on Distributed Systems
Operations and Management, October 1996.

