postmodern software design...............................

Architecture Decisions:
Demystifying Architecture

You can make
your architecture
more fransparent
and clarify its
rationale for

all stakeholders
by explicitly
documenting
major architecture
decisions.

0740-7459/05/$20.00 © 2005 IEEE

Jeff Tyree and Art Akermanm, Capital One Financial

t’s hard to count the “mystical” software architectures we’ve reviewed

over the years. Their creators seem to want us to take many things on

faith. They require us to assume that the solution is somehow tied to

business drivers, that their architectural choices have rationales and

are implementable, and that they adequately considered competing alterna-

tives. Yet at times, the architecture seems to have no grounding in business

needs, and it’s difficult to see if the architects understand their decisions’

implications for the environment in which the
architecture is to be deployed. We believe that
a key to demystifying architecture products—
to dispel or reduce the “magic”—lies in the ar-
chitecture decisions concept.

Why architecture decisions?

Decisions. We make them every day. Some are
big, some small. So what’s the big deal? In most
architecture development processes, decisions
aren’t documented explicitly but are implicit in
the models the architect builds. Architects make
structuring decisions, such as choosing patterns,
in the component (logical) model, and deploy-
ment decisions, such as choosing runtime pat-
terns, in the physical model. However, stake-
holders such as developers, customers, and
even other architects don’t have the energy to
pore through architectural views to understand
the architecture. Developers want clear, decisive

guidance on how to proceed with a design. Cus-
tomers want a clear understanding of the envi-
ronmental changes that must occur and assur-
ance that the architecture meets their business
needs. Other architects want a clear, salient un-
derstanding of the architecture’s key aspects, in-
cluding the rationale and options the original ar-
chitect considered.

Traditional architectural approaches such
as RM-ODP (Reference Model for Open Dis-
tributed Processing), 4+1, or RUP (Rational
Unified Process) don’t satisfy these wants in a
clear and simple manner.!=3 These approaches
break down in several areas, such as

m Conveying change. In an evolutionary envi-
ronment, it is challenging to document ar-
chitecture changes through conventional
views in a way developers or designers can
understand. Developers don’t want to wade

March/April 2005 1EEE SOFTWARE 19

A simple
document
describing key
architecture
decisions can
go a long way
In demystitving
past and future
system
architectures.

through a lengthy component model just to
find a few key items that have changed. In
addition, in an environment where object
orientation isn’t the norm, many developers
aren’t familiar with component models and
interaction diagrams. They’re just looking
for changes to the architecture’s key aspects
that will influence their design.

m Conveying implications. Traditional ap-
proaches don’t clearly state the architecture’s
implications. What are the organizational
impacts? What are the training needs?

m Conveying rationale and options. Tradi-
tional approaches tend to rely on models
to convey the majority of the architec-
ture’s information. They don’t focus on
the rationale and options the architect
considered. Without these two key ele-
ments, stakeholders begin to ask the same
questions again and again—questions that
have long been answered.

B Ease of traceability. Traceability is chal-
lenging in many respects, regardless of the
development lifecycle phase. The chal-
lenge of mapping the objectives (which we
define as business needs, risks, system is-
sues, change cases, and nonfunctional re-
quirements) to specific architectural ele-
ments is unmanageable. We need a simpler
way to ensure that the architecture meets
its objectives.

B Providing agile documentation. Tradi-
tional approaches tend to rely on architec-
ture expression through a set of views.
We’ve found it necessary to provide alter-
native documentation forms that balance
architectural and agile objectives.

To address these breakdowns, we believe
that architecture decisions are the missing
link. If we elevate architecture decisions to
first-class status and explicitly document and
socialize them, they become an effective tool
to help stakeholders understand the architec-
ture. If an architect doesn’t have time for any-
thing else, these decisions can provide a con-
crete direction for implementation and serve
as an effective tool for communication to cus-
tomers and management.

What exactly are architecture
decisions?

A complex architecture probably reflects
thousands of decisions, big and small. Is it nec-

20 IEEE SOFTWARE www.computer.org/software

essary for an architect to make and explicitly
document all of them? We agree with Ruth
Malan and Dana Bredemeyer,* who argue that
an architect should make as few decisions as
possible, deferring the rest until later in the
lifecycle. This lets the architect maintain a bal-
ance between guiding and constraining the
technical organization. An architect absolutely
should make the decisions that identify the
system’s key structural elements, their exter-
nally visible properties, and their relation-
ships.® To test a decision’s architectural signif-
icance, an architect should ask the following
question: does this decision affect one or more
system qualities (performance, availability,
modifiability, security, and so on)? If so, an ar-
chitect should make this decision and docu-
ment it completely.

Properly documenting these architecture de-
cisions is critical because architects make them
in complex environments and they involve
trade-offs. How many times have we looked at
an architecture and been surprised (or even ter-
rified) by the decisions it was based upon? Our
first reaction is to ask several rhetorical ques-
tions: “What were these people thinking? Had
they never heard of sound principles of good
design? Did they think that the system wouldn’t
live longer than a month?” Well, okay, maybe
a few were inexperienced, short-term thinkers.
But most had good intentions and did what
seemed right in the moment. The decisions
made sense under the circumstances, which
cost and schedule constrained. However, look-
ing back, after the dust has settled and the orig-
inal system designers are long gone, we have
no context around these decisions; we have no
history. All we can do is shake our heads in dis-
belief. In the end, as Gustave Flaubert report-
edly wrote in 1871, “Our ignorance of history
causes us to slander our own times.”

A simple document describing key architec-
ture decisions can go a long way in demystify-
ing past and future system architectures.
IBM’s e-Business Reference Architecture
Framework, where architecture decisions are a
key deliverable, has helped us learn how to
document these decisions.® Table 1, derived
from the REmapr (Representation and Mainte-
nance of Process Knowledge) and DRL (Deci-
sion Representation Language) metamodels,
lists the essential information for each deci-
sion.” We’ve added two additional fields, re-
lated principles and notes.

Issue Describe the architectural design issue you're addressing, leaving no questions about why you’re addressing this issue now.
Following a minimalist approach, address and document only the issues that need addressing at various points in the life cycle.

Decision Clearly state the architecture’s direction—that is, the position you’ve selected.

Status The decision’s status, such as pending, decided, or approved.

Group You can use a simple grouping—such as integration, presentation, data, and so on—to help organize the set of decisions. You
could also use a more sophisticated architecture ontology, such as John Kyaruzi and Jan van Katwijk’s, which includes more
abstract categories such as event, calendar, and location.® For example, using this ontology, you’d group decisions that deal with
occurrences where the system requires information under event.

Assumptions Clearly describe the underlying assumptions in the environment in which you’re making the decision—cost, schedule, technology,
and so on. Note that environmental constraints (such as accepted technology standards, enterprise architecture, commonly em-
ployed patterns, and so on) might limit the alternatives you consider.

Constraints Capture any additional constraints to the environment that the chosen alternative (the decision) might pose.

Positions List the positions (viable options or alternatives) you considered. These often require long explanations, sometimes even models
and diagrams. This isn’t an exhaustive list. However, you don’t want to hear the question “Did you think about ... ?” during a final
review; this leads to loss of credibility and questioning of other architectural decisions. This section also helps ensure that you
heard others’ opinions; explicitly stating other opinions helps enroll their advocates in your decision.

Argument Outline why you selected a position, including items such as implementation cost, total ownership cost, time to market, and
required development resources’ availability. This is probably as important as the decision itself.

Implications A decision comes with many implications, as the Remap metamodel denotes. For example, a decision might introduce a need to

make other decisions, create new requirements, or modify existing requirements; pose additional constraints to the environment;
require renegotiating scope or schedule with customers; or require additional staff training. Clearly understanding and stating your
decision’s implications can be very effective in gaining buy-in and creating a roadmap for architecture execution.

Related decisions

It's obvious that many decisions are related; you can list them here. However, we’ve found that in practice, a traceability matrix,
decision trees, or metamodels are more useful. Metamodels are useful for showing complex relationships diagrammatically (such
as Rose models).

Related requirements

Decisions should be business driven. To show accountability, explicitly map your decisions to the objectives or requirements.

You can enumerate these related requirements here, but we’ve found it more convenient to reference a traceability matrix. You can
assess each architecture decision’s contribution to meeting each requirement, and then assess how well the requirement is met
across all decisions. If a decision doesn’t contribute to meeting a requirement, don’t make that decision.

Related artifacts

List the related architecture, design, or scope documents that this decision impacts.

Related principles

If the enterprise has an agreed-upon set of principles, make sure the decision is consistent with one or more of them. This helps
ensure alignment along domains or systems.

Notes

Because the decision-making process can take weeks, we've found it useful to capture notes and issues that the team discusses
during the socialization process.

Generally, only two views of the decisions
exist. The architect provides the first, which
the template above describes, to the technical
stakeholders. The grouping (categorization) of
decisions allows for filtering based on the
technical stakeholders’ interests. For example,
data architects reviewing the decisions can fo-
cus only on the decisions grouped as data. We
also find it helpful to use a simple coloring
scheme (red, blue) to point out controversial
or incomplete decisions. The architect pro-
vides the second view to management or busi-
ness stakeholders, generally as a Microsoft
PowerPoint presentation. This view summa-

rizes key decisions and their implications.
Once the team reaches a final architectural
decision, they’ll need to “socialize” the re-
sult—that is, convince the rest of the organi-
zation that they’ve chosen appropriately. The
architecture decision template is useful be-
cause it provides a common language for dis-
cussing decisions. Reviewers can easily see the
decision’s status, rationale, and impacts. In
practice, this has proven to be much more
powerful than reviewing, for example, compo-
nent models. The team should socialize con-
troversial decisions early and often and other
decisions during the normal review process.

March/April 2005

IEEE SOFTWARE

Internet Desktop Internet Desktop
client A client A client B client B
Real-time > 1
interfaces |
API-based I S,
middleware Batcr!\(\FTP) interfaces

.

N
~ N /

/
/

|
I
|
I
|

iV%

System B System A
(commerecial
off-the-shelf) (legacy)
| |
Database B Database A
\—-/ \.—/

N /

Batch (FTP) interfaces

o

Data warehousel

Figure 1. Gurrent
architecture.

For this example, we consider a large finan-
cial organization’s IT systems. These systems
suffer from shortcomings typical of most en-
terprises: business functionality is duplicated
across multiple systems, interfaces tightly cou-
ple various parts of the infrastructure, and sys-
tem maintenance costs are higher than desired.

To start addressing these challenges and
meet emerging business needs, the organiza-
tion developed an architectural vision to guide
its systems’ transformation through numerous
infrastructure improvement projects. Dis-
cussing the process for constructing these types
of architectural visions is beyond this article’s
scope; “An Architectural Process for System
Evolution” covers it in detail.”

Current state

The company’s most urgent business need
involves letting the customers receive an im-
mediate response when they apply for a new
financial product (credit card, loan, savings
account, and so on). The organization per-
forms the complex approval process in
batches, with notification by letter. An in-
house-developed system, which is showing its
age, performs the existing batch process (Sys-
tem A in Figure 1). Its processing flow and

22 IEEE SOFTWARE www.computer.org/software

business rules are hard-coded with few config-
uration options.

The company recently deployed a commer-
cial off-the-shelf solution (System B) to handle
the approval process for one type of financial
product. The COTS package is based on a flex-
ible workflow engine, in which non-IT person-
nel can create rules. This solution works in
batch and interactive mode but must be heav-
ily customized to support other product types.

Both systems interact with numerous client
applications. Since none of these interactions
happen in real time, they’re done by FTP-based
file exchange. The company has an internally
developed API-based middleware platform,
which many customer-facing applications use.
This middleware platform has become a bot-
tleneck for developing new functionality be-
cause the company must coordinate any
change with all client systems using it. Neither
System A nor System B exposes its functional-
ity through this middleware.

Architecture decisions

The objectives define a problem that a tech-
nical solution must address. We start by iden-
tifying the architecture decisions we need to
make:

® How can we transform the current batch
business process into an interactive one?

® How can we connect a decisioning back-
end system to the client applications so it
can receive requests and respond with de-
cisions in real time?

®m How can we make the same flexibility
with respect to changing business rules
that exists in System B available to all fi-
nancial products?

The first key decision must address imple-
mentation of the interactive approval process.
We consider three alternatives: rearchitecting
existing batch logic in System A, extending
System B to handle a new product type, or de-
veloping a replacement for System A.

Selecting an approach

We first identify the criteria we’ll use to se-
lect the best approach. Obviously, the ability to
satisfy business needs is essential. Providing in-
stantaneous decisions would differentiate the
company’s offerings from its competitors. This
leads to the following objectives or goals:

Rearchitect Extend Replace

Selection criteria: will the solution ... System A System B System A
N1 Enable interactive approval? Yes Yes Yes
N2 Be ready for delivery in six months? Yes Yes No
N3 Reduce time to market for future enhancements? No Yes Yes
N4 Reduce costs? No Yes No
N5 Reduce risks? No Yes No
N6 Disrupt business operations as little as possible? Unknown Unknown No

N7 Meet desired system characteristics? No Yes Unknown
N8 Support enterprise principles (reuse existing infrastructure, buy before build)? Yes Yes No
N9 Use proven technologies? Yes Yes No

B N1: Provide instant approval for cus- ® N4: Reduce the infrastructure’s operational
tomers online and over the phone. costs.

B N2: Deploy the capability within six ® N35: Reduce risks associated with tight
months because of competitive pressures. coupling and redundant business logic.

B N3: Reduce time to market for future en-
hancements by giving business customers Our solution should also minimize potential

greater control over changing business rules. disruptions to normal business operations (N6)

Decision DOI: Extend System B to implement interactive approval processing

Issue Current IT infrastructure doesn’t support interactive approval functionality for most financial products.

Decision Extend System B beyond its original functional boundaries to implement interactive approval processing for the financial
products it handles.

Status Approved

Grouping System structuring

Assumptions We must deliver new capabilities in six months.

We can’t increase the project budget by more than 10 percent.
We'll use existing client applications.
Constraints None
Positions Rearchitect existing batch logic in System A.
Extend System B to handle a new product type.
Develop a replacement for System A.

Argument Extending System B to handle approval processing for all financial products will reduce duplicate business logic, let all lines of
business use flexible workflow and rules engines to improve time to market for new products, and reduce maintenance costs
and operational risks. This solution also has a solid chance of meeting project timelines because the IT organization is already
familiar with the proposed technology.

Implications The team will need to develop a real-time interface between online and phone client applications and System B. System B will
become a mission-critical platform because multiple lines of business depend on it. The team needs to develop and deploy ade-
quate disaster-recovery procedures for this system. The rollout strategy should focus on minimizing the risk of negatively
affecting System B’s other financial products.

Related decisions See Figure 2.

Related requirements See Table 2.

Related artifacts None

Related principles Reuse existing infrastructure, buy before build.

Use proven technologies.

Notes None

March/April 2005 1EEE SOFTWARE 23

Figure 2. Architecture
decisions model for the
financial-institution
example. Nine
decisions all connect
to DOL.

24

D01-Extend System B
to implement interactive
approval processing

D04-Rollout only new
marketing campaigns
on new platform

D02-Use message-hased
middleware platform
for real-time interfaces

D03-Continue to use System A
database to store
product-specific data

D06-Use XML
as message format

D07-All batch interfaces
will be replaced

L !

D08-Use API-based
middleware
for current clients

D05-Continue to populate
data warehouse
from System A database

D09-Create interfaces
hetween message-based
and API-based middleware

and meet desired system characteristics, such
as performance, capacity, reliability, and so on
(N7). Finally, it should be consistent with ex-
isting enterprise architecture principles. The
following principles apply to our situation:

B Reuse existing infrastructure, buy before
build. To meet time commitments to the
business, we need to reuse as much of the
current infrastructure as possible with the
aim of gradually replacing custom-devel-
oped components with COTS components
in the application’s future releases (N8).

m Use proven technologies. Although many
promising technologies seem to be on the
horizon, it’s unwise to put the business at
risk by relying on unproven technologies
(N9).

We could analyze the alternatives in a num-
ber of ways, but we prefer a simple comparison
of each option’s pros and cons (see Table 2).

Clearly, the second alternative has more
benefits. The only drawback is the risk of a
negative impact on other lines of business that
use System B. However, we can mitigate this
risk through a well-planned rollout strategy.

IEEE SOFTWARE www.computer.org/software

Documenting, analyzing, and socializing the
decision

Now we have our first decision: DO1—
Extend System B to implement interactive ap-
proval processing, which we document using
our standard format (see Table 3).

As a result of this decision, we must analyze
numerous implications and possibly turn them
into separate decisions. Some of these decisions
will determine specific tools we’ll use to imple-
ment different functions; others will address
design strategies (see Figure 2). We might even
make decisions about the testing, deployment,
and migration processes. All these new deci-
sions will be connected to DOl1—that is,
changes in DO1 will likely ripple across the
whole decision hierarchy (see Table 3’s meta-
model). Alternatively, we might find that a
downstream decision creates a suboptimum
solution. For example, it might be too complex
to introduce interfaces between the old and
new middleware platforms (D09). We’d then
have to alter some or all dependent decisions
(D08, D02, and even DO01). This shows that
the decision-developing process is iterative.

The architect makes each decision using the
same process—identifying a problem, devel-

oping a set of alternatives, and assessing their
viability. Together, these decisions paint a clear
picture of the final solution (see Figure 3):

B The team will consolidate approval pro-
cessing onto a new COTS platform (Sys-
tem B). They’ll use the flexible rules-based
workflow engine to configure all the mar-
keting campaigns’ aspects for all financial
products.

B To minimize the amount of new work,
System B will use the data structures from
a legacy database (Database A).

B The team will use the new message-
oriented middleware platform to facilitate
real-time interaction between client appli-
cations and back-end systems.

m To ensure the projects’ timely delivery, the
team has decided to use API-based mid-
dleware for these clients, which already
have live connections with it. The mes-
sage-oriented middleware will still provide
a gateway to the back-end systems, which
would require interfaces between two
middleware platforms.

The architect should now review the deci-
sions with the rest of the project team and the
project stakeholders. Once the architect ob-
tains buy-in on the solution, he or she can fur-
ther define the architecture. The next step
would be to elaborate the decisions through a
series of architectural views (component mod-
els, deployment models, and so on).

Did it work?

In the beginning, we identified numerous
breakdowns in conventional architecture-
development approaches. By explicitly focus-
ing on architecture decisions, we were able to
address these issues:

m Conveying change. The decisions repre-
sent key changes in a way the developers
and designers can understand easily. They
clearly identify the affected systems and
interfaces.

m Conveying implications. The decisions de-
scribe more than just a solution—they
also communicate the essential risks and
issues. The team is informed about where
it should focus its attention. For example,
the rollout strategy is critical.

m Conveying rationale and options. The de-

Internet Desktop Internet Desktop
client A client A client B client B
Real-time interfaces
API-based Message-based
middleware middleware
commariol | SysemA
off-the-shelf)
| |
Database B Database A

Batch (FTP) interfaces

Data warehousel
Figure 3. Future

cision-making process is transparent. Any- architecture.
body can read a decision description in

Table 3 and understand how the team de-

veloped it. People might still challenge

some subjective assessments—for exam-

ple, that this solution had a solid chance

to meet delivery timeframes. If the as-

sumptions change, a decision would have

to change as well.

B Ease of traceability. Table 2 lets you trace
a decision back to requirements.

B Providing agile documentation. In an agile
process, the team doesn’t have time to
wait for the architect to completely de-
velop and document the architecture. The
architect communicates each decision sep-
arately, with the caveat that it’s subject to
change due the effects of downstream
work (see Figure 2). As long as they un-
derstand these relationships and risks, a
team can start using the decisions.

e’d like architecture decisions to
have a permanent place in the soft-
ware architecture development
process. A good place to start would be to add
them to a standard conceptual model for an ar-

March/April 2005 1EEE SOFTWARE 25

In this article, we describe architecture decisions simply as an
instance of applying design rationale within the context of soft-
ware architecture. Design rationale research has been active for
nearly two decades. For an overview of other approaches, see
Design Rationale: Concepts, Techniques and Use.! When that
work was done, a key issue design rationale researchers faced
was how much to modify existing design practice to incorporate
design rationale. We attempt to address this still-relevant ques-
tion in the context of software architecture.

In Documenting Software Architectures: Views and Beyond,?
Paul Clements and his colleagues emphasize design rationale’s
importance. They provide an outline for decision description as
well as guidelines on which decisions fo justify. Clements states
that “perhaps the most important concept associated with soft-
ware architecture documentation is that of the view.” We would
argue that architecture decisions are the most important concept.

In Documenting Software Architectures in an Agile World,?

Clements and his colleagues make a proposal for reconciling
the Views and Beyond and agile approaches. They propose
that the architect “using the view selection scheme of the V&B
approach, decide which architecture views [he] would want to
produce, given enough resources. ... Choosing a view identi-
fies a family of design decisions that the architect needs to re-
solve and be able to express.” Our approach is different. We
first determine what decisions are important. These decisions
then drive architecture, and hence the views.

References
1. T.P. Moran and J.M. Carroll, eds., Design Rationale: Concepts, Techniques,
and Use, Lawrence Erlbaum Associates, 1996.
2. P. Clements et al., Documenting Software Architectures: Views and Beyond,
Pearson Education, 2003.

3. P Clements et al., Documenting Software Architectures in an Agile World,
tech. report CMU/SEI-2003-TN-023, Software Eng. Inst., 2003.

26

chitecture description. The current IEEE model
includes rationale but not its implications or a
clean mapping between it and other architec-
tural elements.!® This would involve standard-
izing on a metamodel (notation) for represent-
ing the rationale, combining aspects of such
notations as IBIS (Issue-Based Information Sys-
tem), QOC (Questions, Options, and Criteria),
DRL (Decision Representation Language), Sei-
ichi Komiya’s proposed extensions,!' and the
elements we’ve proposed in this article. Lau-
rent Karsenty’s study provides insight into
what additional information the architects
should capture as part of the metamodel.!?

Paul Clements and his colleagues provide a
potential standard outline for documenting ar-
chitectures.!3 You could use our article to define
a framework for how the Views and Beyond ap-
proach represents design rationale. However,
decisions drive views, rather than views driving
decisions. From this perspective, decisions are
the architecture’s primary representation.

Architecture decisions and design rationale
in general could benefit from better modeling-
tool support. We’ve been using Rose to create
decision relationship maps; however, the next
step would be to establish relationships be-
tween the decision entities and the compo-
nents they influence (packages, classes, de-
ployment units, and so on). Incorporating
ideas such as design decision trees could help
in organizing and traversing decisions.'*

IEEE SOFTWARE www.computer.org/software

We see opportunities for using decisions to
document traceability between requirements and
technical implementation. Since decisions repre-
sent a solution’s major building blocks, it makes
sense to use them to measure how well the solu-
tion satisfies its purpose and helps identify con-
flicting decisions. You can also use the approach
to prove that alternatives, documented in the de-
cisions, don’t provide the desired qualities. In
“Modeling Conflict Management in Design: An
Explicit Approach,” Frances Brazier and her
colleagues provide an approach for managing
conflicting decisions that should be leveraged as
part of a holistic traceability methodology.!®

Finally, to quote Ruth Malan and Dana
Bredemeyer, an architecture is successful if “it
is actually used in developing systems that de-
liver strategic value.”'® The challenge of ar-
chitecture construction isn’t technical, but
gaining various stakeholders’ consensus on the
architecture direction. We’ve found that so-
cializing architecture decisions provides a
mechanism for meeting this challenge. @

References
1. J. Putman, Architecting With RM-ODP, Prentice Hall,
2001.
2. P. Kruchten, “The 4+1 View Model of Architecture,”
IEEE Software, vol. 12, no. 6, 1995, pp. 42-50.
3. P. Kruchten, The Rational Unified Process: An Intro-
duction, Addison-Wesley, 2000.

4. R. Malan and D. Bredemeyer, “Less is More with Mini-
malist Architecture,” IEEE IT Professional, vol. 4, no.
5, 2002, pp. 46—48.

5. L. Bass, P. Clements, and R. Kazman, Software Archi-
tecture in Practice, Addison-Wesley, 2003. Mlﬂl" "IB AII"IUI'S

6. G. Flurry and W. Vicknair, “The IBM Application
Framework for e-Business,” IBM Systems]., vol. 40,
no. 1, 2001, pp. 8-24.

7. P. Louridas and P. Loucopoulos, “A Generic Model for
Reflective Design,” ACM Trans. Software Eng. and
Methodology, vol. 9, no. 2, 2000, pp. 199-237.

8. J.K. Kyaruzi and J. van Katwijk, “Beyond Components-
Connections-Constraints: Dealing with Software Archi-
tecture Difficulties,” Proc. 14th IEEE Int’l Conf. Auto-
mated Software Eng., IEEE Press, 1999, pp. 235-242.

9. A. Akerman, J. Tyree, and L. Coglianese, “An Architec-

Jeff Tyree i a solutions architect at Capital One Financial. His research inferests include
large-scale system design, system evolution processes, refactoring, and performance engineering.
He received his master’s degree in mathematics from the University of Tennessee, Knoxville.
Contact him at 11013 W. Broad St., Glen Allen, VA 23060; jeff.tyree@capitalone.com.

tural Process for System Evolution,” Enterprise Archi- Art Akerman is a system architect at Capital One Financial and a practicing member of the
tect Magazine, vol. 2, no. 1, 2004, www.ftponline.com/ World Wide Institute of Software Architects. His research interests include creation of formal edu-
ea/magazine/spring/features/aakerman. cation programs for software architects, communicating architecture fo the development commu-
10. IEEE Std. 1471-2000, Recommended Practice for Ar- nity, and making architecture development more practical and less time consuming. He received
chitectural Description of Software-Intensive Systems, his master’s degree in management of information technology from the University of Virginia.
IEEE, 2000. Contact him at 11013 W. Broad St., Glen Allen, VA 23060; art.akerman@«capitalone.com.

11. S. Komiya, “A Model for the Recording and Reuse of
Software Design Decisions and Decision Rationale,”
Proc. 3rd Int’l Conf. Software Reuse: Advances in Soft-

ware Reusability, IEEE Press, 1994, pp. 200-201. ece.utexas.edu/~perry/prof/wicsal/final/savolainen.pdf.
12. L. Karsenty, “An Empirical Evaluation of Design Ratio- 15. EM.T. Brazier et al., “Modeling Conflict Management

nale Documents,” Proc. SIGCHI Conf. Human Factors in Design: An Explicit Approach,” Artificial Intelligence

in Computing Systems: Common Ground (CHI 96), for Eng. Design, Analysis and Manufacturing

M.J. Tauber, ed., ACM Press, 1996, pp. 150-156. (AIEDAM), special issue on conflict management in de-
13. P. Clements et al., Documenting Software Architectures: sign, vol. 9, no. 4, 1995, pp. 353-366.

Views and Beyond, Pearson Education, 2003. 16. R. Malan and D. Bredemeyer, “Software Architecture:
14. J. Savolainen, “Tools for Design Rationale Documentation Central Concerns, Key Decisions,” 2002, www.

in the Development of a Product Family,” 1999, www. bredemeyer.com/pdf_files/ArchitectureDefinition.PDE.

S~ ~\

EXECUTIVE COMMITTEE

President:

PURPOSE The IEEE Computer Society is the
world’s largest association of computing profes-
sionals, and is the leading provider of technical GERALD L. ENGEL*
information in the field. Compuiter Science & Engineering
MEMBERSHIP Members receive the month- IEEE A Univ. of Connecticul, Stamford
ly magazine Computer, discounts, and opportu- 1 University Place

o 0 ‘ l | I Stamford, CT 06901-2315
nities to serve (all activities are led by volunteer OM P ER Phone: +1 203 251 8431

members). Membership is open to all IEEE Fax: +1 203 251 8592

members, affiliate society members, and others S O(:IE‘ I ! 37 -
interested in the computer field. g.engel@computer.org

President-Elect: DEBORAH M. COOPER*
COMPUTER SOCIETY WEB SITE k J Past President: CARL K. CHANG*

The IEEE Computer Scf)fciety’Sf Web site, aé VP, Educational Activities: MURALI VARANASIt
www.computer.org, offers information an VP, Electronic Products and Services:
samples from the society’s publications and con- COMPUTER SO_CIETY OFFICES JAMES W. MOORE (2ND VP)*

ferences, as well as a broad range of information Headquarters Office VP, Conferences and Tutorials:
ab(_)u}t_technical committees, standards, student 1730 Massachusetts Ave. NW YERVANT ZORIANt

activities, and more. Washington, DC 20036-1992 VP, Chapters Activities:

BOARD OF GOVERNORS Phone: +1202 371 0101 T Prbticanions MIOHAEL RLWILLIAMS (15T VP
Term Expiring 2005: Oscar V. Garcia, Fax: +1 202 728 9614 VP, Standards Activities: SUSAN K. (KATHY) LAND*
Mark A. Grant, Michel Israel, Robit Kapur, ; b o 4 . A .

Stephen B. Seidman, Kathleen M. Swigger, Makoto E-mail: bq.ofc@computer.org mﬁeé‘_? mical Activities: STEPHANIE M.
Takizawa

Term Expiring 2006: Mark Christensen, Publications Office Secretary: STEPHEN B. SEIDMAN

Alan Clements, Annie Combelles, Ann Q. Gates, 10662 Los Vaqueros Cir., PO Box 3014 Treasurer: RANGA.C.H_AR KAS,TURIT

James D. Isaak, Susan A. Mengel, Bill N. Schilit Los Alamitos, CA 90720-1314 2004-2005 IEEE Division V Director:

GENE F. HOFFNAGLEt

Term Expiring 2007: M. B , George V. o 2
© piring Jean 1. Bacon, George Phone:+1 714 8218350 2005-2006 IEEE Division VIII Director:
Cybenko, Richard A. Kemmerer, Susan K. (Kathy) il »
N A o E-mail: belp@computer.mg STEPHEN L DlAMONDT
Land, Itaru Mimura, Brian M. O’Connell, Christina . L. . ’
M. Schober Membership and Publication Orders: 2005 IEEE Division V Director-Elect:
Next Board Meeting: 11 Mar. 2005, P()ﬂl[lnd, OR Phone: +1 800 272 6657 OSCAR N. GARCIA
Fax: +1 714 821 4641 Computer Editor in Chief: DORIS L. CARVERTt
IEEE OFFICERS E-mail: belp@computerorg Executive Director: DAVID W. HENNAGE+t
g "QSW;""[’EI- CL’\Z%ﬁ QI'E\IIE)F%RLSIC?ITTNER * voting member of the Board of Governors
resident-Elect: t nonvoting member of the Board of Governors
Past President: ARTHUR W. WINSTON Asia/Pacific Office
Executive Director: TBD Watanabe Building
Secretary: MOHAMED EL-HAWARY 1-4-2 Minami-Aoyama, Minato-ku E X E,c U TIVE STAFF
. Executive Director: DAVID W.HENNAGE
Treasurer: JOSEPH V. LILLIE Tokyo 107-0062, Japan : .
) o N v Assoc. Executive Director- ANNE MARIE KELLY
VP, Educational Activities: MOSHE KAM Phone: +81 3 3408 3118 Publisher- ANGELA BURGESS
VI Pub. Services & Products LEAH H. JAMIESON 2408 355 uorser:
g . ; Fax: +81 3 3408 3553 Assistant Publisher: DICK PRICE

VP, Regional Activities: MARC T. APTER o . . o o
VP Standards Association: JAMES T. CARLO E-mail: tokyo.ofc@computer.org Director, Administration: VIOLET S. DOAN

VI, Technical Activities: RALPH W. WYNDRUM JR. Director, Information Technology & Services:

IEEE Division V Director: GENE F. HOFFNAGLE I E E E 210755(5—[-33252? & Product Development:
IEEE Division VIII Director: STEPHEN L. DIAMOND 4 PETER TURNER

President, IEEE-USA: GERARD A. ALPHONSE

