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1. INTRODUCTION 

Concepts and meaning are fundamental components of nearly all aspects of human cognition. 

We use this knowledge every day to recognize entities and objects in our environment, anticipate 

how they will behave and interact with each other, use them to perform functions, to generate 

expectancies for situations, and to interpret language. This general knowledge of meaning falls 

within the realm of semantic memory. For many years, semantic memory was viewed as an 

amodal, modular memory store for factual information about concepts, distinct from episodic 

memory (our memory for specific instances of personal experience). However, researchers now 

interpret semantic memory more broadly to refer to general world knowledge, entangled in 

experience, and dependent on culture. Furthermore, there is now considerable evidence 

suggesting that semantic memory is grounded in the sensory modalities, is distributed across 

brain regions, and depends on episodic memories at least in terms of learning, with the 

possibility that there is no definite line between episodic and semantic memory. In this chapter, 

we review contemporary research in semantic memory. We limit our discussion to lexical 

semantics (the meaning of individual words), with particular focus on recent findings and trends, 

formal computational models, neural organization, and future directions. 

1.1. Classic View of Semantic Memory 

Tulving (1972) viewed memory as a system of independent modules. Long-term memory was 

subdivided into declarative (facts) and procedural (skills) components. Declarative memory was 

further divided into semantic memory and episodic memory, with a clear distinction between 

them. Tulving characterized semantic memory as amodal. In an amodal view, when one thinks of 

an apple, the information retrieved from semantic memory is independent of the sensory 

modalities used to perceive an apple. Although semantic memory contains factual information 
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about an apple’s color and taste, this information is dissociated from the sensory systems used to 

actually see or taste. 

Early neuropsychological evidence supported Tulving’s (1972) view. For example, 

amnesic patients showed dissociations between episodic and semantic memory tasks (Squire, 

1988); their impairment seemed to have little effect on semantic memory despite profound 

episodic deficiencies, bolstering the modularity claim. Research on ‘schema abstraction’ tasks 

found that the decay of episodic and semantic memory followed different profiles (Posner & 

Keele, 1968). Although memory for episodes is stronger than for category prototypes 

immediately after training, episodic memory decays much faster than semantic memory (or at 

least, instances decay faster than do abstract prototypes). 

Tulving’s (1972) characterization of semantic memory as an amodal, modular system 

separate from episodic and procedural memory provided a useful foundation to study and 

understand human semantic representations. In retrospect, however, it may have actually stifled 

research in semantics by imposing a rigid framework that is unlikely to be correct. Recent 

research with improved experimental, computational, and neuroimaging techniques clearly 

contradicts the classic view. Semantic memory is now viewed more broadly as a part of an 

integrated memory system, grounded in the sensory, perceptual, and motor systems, and is 

distributed across key brain regions. 

2. GROUNDING SEMANTIC MEMORY 

Tulving’s classic view of semantic memory as an amodal symbolic store has been challenged by 

contemporary research. There is a growing body of behavioral and neuroimaging research 

demonstrating that when humans access word meaning, they automatically activate sensorimotor 

information used to perceive and act on the real-world objects and relations to which a word 
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refers. In theories of grounded cognition, the meaning of a word is grounded in the sensorimotor 

systems (Barsalou, 1999; see Pecher & Zwann, 2005, for a review). Hence, when one thinks of 

an apple, knowledge regarding motoric grasping, chewing, sights, sounds, and tastes used to 

encode episodic experiences of an apple are reinstated via sensorimotor simulation. Thus, a 

grounded simulation refers to context-specific re-activations that incorporate the important 

aspects of episodic experience into a current representation. In this sense, simulations are guided 

and only partial (Barsalou, 2008). This approach challenges amodal views, and makes a clear 

link between episodic experience and semantic memory. 

A wealth of recent behavioral evidence supports the grounded simulation approach to 

semantics. For example, response latencies for images and feature names are faster when they 

have visual properties congruent with context (Solomon & Barsalou, 2001; Zwann, Stanfield, & 

Yaxley, 2002). Similarly, having participants perform particular motions (e.g., grasping) 

facilitates the comprehension of sentences describing actions involving these motions (Klatzky et 

al., 1989), and prime-target pairs sharing motor-manipulation features (e.g., typewriter-piano) 

are responded to more quickly than pairs that do not (Myun, Blumstein, & Sedivy, 2006). Zwann 

and Madden (2005) review numerous studies suggesting that the mental representations activated 

during comprehension also include information about object features, temporal and spatial 

perspective, and spatial iconicity. Barsalou (2008) and Pecher, Boot, and Van Danzig (2011) 

contain surveys of the recent literature attesting to the importance of situation models, simulation 

(perceptual, motor, and affective), and gesture in language comprehension and abstract concepts. 
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3. SEMANTIC ORGANIZATION IN THE BRAIN 

Semantic memory research was for many years dominated by cognitive psychologists who 

generally were not concerned with neural organization. In cognitive neuropsychology, there is a 

history of studies investigating patients with semantic deficits (Warrington & Shallice, 1984). 

However, for a number of years, this line of research was divorced from semantic memory 

research using normal adult participants. With the advent of neuroimaging techniques, fMRI in 

particular, research on the neural organization of semantic memory blossomed. 

Researchers have long known that brain regions responsible for perception tend to be 

specialized for specific sensory modalities. Given that perception is distributed across specialized 

neural regions, one possibility is that conceptual representations are organized in a similar 

fashion. For the past 40 years, Paivio (1971) has advocated a form of modality-specific 

representations in his dual-coding theory. Furthermore, studies of patients with category-specific 

semantic deficits have been used as a basis for arguing for multimodal representations for the 

past 25 years or so. In early work, Warrington and McCarthy (1987) put forward their 

sensory/functional theory to account for patterns of category specific impairments of knowledge 

in patients with focal brain damage. The basic assumption is that living things depend primarily 

on visual knowledge, whereas although visual knowledge is also important for nonliving things, 

knowledge of an object’s function is primary. Building on Allport (1985), recent research has 

used analyses of large scale feature production norms to extend the sensory-functional theory to 

other senses and types of knowledge, and move beyond the binary living-nonliving distinction 

(Cree & McRae, 2003). There do remain some accounts of category-specific semantic deficits 

that are amodal (Caramazza & Shelton, 1998, Tyler & Moss, 2001), but even these researchers 
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have begun to find support for theories in which knowledge is tied to modality-specific brain 

areas (Mahon & Caramazza, 2003; Raposo, Moss, Stamatakis, & Tyler, 2009). 

The behavioral and neuropsychological evidence in favor of grounded semantics is 

corroborated by recent neuroimaging studies supporting a distributed multimodal system. A few 

researchers have used evoked response potentials to investigate this issue (Sitnikova, West, 

Kuperberg, & Holcomb, 2006), but the vast majority of studies have used fMRI. For example, 

Goldberg, Perfetti, and Schneider (2006) tied together previously reported neuroimaging 

evidence supporting modally bound tactile, colour, auditory, and gustatory representations. They 

found that sensory brain areas for each modality are recruited during a feature verification task 

using linguistic stimuli (e.g., banana-yellow). The same pattern emerges in single word 

processing. Hauk, Johnsrude, and Pulvermüller (2004) showed that reading action words 

correlates with activation in somatotopically corresponding areas of the motor cortex (lick 

activates tongue regions while kick activates foot regions), indicating that word meaning is 

modally distributed across brain regions. Furthermore, within brain regions that encode 

modality-specific, possibly feature-based representations, some studies suggest a category-based 

organization (Chao, Haxby, & Martin, 1999). Finally, some studies have shown that semantic 

representations are located just anterior to primary perceptual or motor areas, whereas others 

have found evidence for activation of primary areas (see Thompson-Schill, 2003). In summary, 

there is a large amount of converging evidence supporting a distributed multimodal semantic 

system (for thorough reviews, see Binder, 2009; Martin, 2007). 

Perhaps one the most important remaining issues concerns the fact that people’s concepts 

are not experienced as a jumble of features, disjointed across space and time, but instead are 

experienced as coherent unified wholes. Multimodal feature-based theories therefore need to 
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include a solution to the binding problem, specifying how representational elements are 

integrated into conceptual wholes, both within and between modalities. One solution involves 

temporal synchrony of neuronal firing rates (von der Malsburg, 1999). Semantic representations 

may be integrated by coincidental firing rates of distributed neural populations. However, the 

most frequently invoked solution is based on the idea of a convergence zone, which can be 

considered as a set of processing units that encode coincidental activity among multiple input 

units (Damasio, 1989). In connectionist models, a convergence zone may be thought of as a 

hidden layer (Rogers et al., 2004). Because they encode time-locked activation patterns, an 

important property of convergence zones is that they transform their input, rather than just repeat 

signals. In this way, successive convergence zones build more complex or abstract 

representations. Current theories of multimodal semantic representations incorporate either 

single convergence zones, as in Patterson, Nestor, and Rogers’ (2007) anterior temporal lobe hub 

theory, or a hierarchy of convergence zones encoding information over successively more 

complex configurations of modalities (Simmons & Barsalou, 2003). At the moment, it is unclear 

which of these hypotheses is correct. 

In summary, recent research supports the idea that semantic representations are grounded 

across modality-specific brain regions. Researchers are working toward fleshing out details of 

precisely what these regions encode, the degree to which sub-regions are specific to types of 

concepts, and how semantic representations are experienced as unified wholes. Furthermore, the 

vast majority of research has been conducted on concrete concepts, so research on other 

concepts, such as verbs or abstract concepts, will play a key role over the next few years. 
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4. EVENT-BASED SEMANTIC REPRESENTATIONS 

Another way in which the semantic-episodic distinction has been blurred in recent years 

concerns research on event-based knowledge in semantic memory. People’s knowledge of 

common everyday events includes actions that are part of those events, and common primary 

participants or components, such as agents (the people doing the action), patients (the people or 

objects upon which the action is performed), instruments involved in actions, and locations at 

which various events take part. Furthermore, people have knowledge of temporal aspects of 

events. This generalized event knowledge is learned through our experience with everyday 

events, watching television and movies, and reading and hearing about what people have done, 

what they are doing, and what they are going to do. 

Language provides many cues into event knowledge. For example, verbs like travel or 

cook denote events and actions, some nouns like breakfast refer to events, and other nouns refer 

to entities or objects that typically play a role in specific situations, such as waitress, customer, 

fork, or cafeteria. A number of studies have shown that such event knowledge is computed 

rapidly from single words. These experiments have tended to use a priming paradigm with a 

short stimulus onset asynchony (SOA: the time between the onset of the prime and the onset of 

the target), which is viewed as providing a window into the organization of semantic memory. 

Moss, Ostrin, Tyler, and Marslen-Wilson (1995) showed priming effects based on 

instrument relations (such as broom-floor) and what they called script relations, in which the 

primes were a mixture of events and locations (hospital-doctor and war-army). Subsequent 

studies have shown that verbs prime their typical agents (arresting-cop), patients (serving-

customer), and instruments (stirred-spoon), but not locations (skated-arena; Ferretti, McRae, & 

Hatherell, 2001). Furthermore, typical agents, patients, instruments, and locations prime verbs 
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(McRae, Hare, Elman, & Ferretti, 2005). In addition, Hare, Jones, Thomson, Kelly, and McRae 

(2009) showed that event nouns prime the types of people and things commonly found at those 

events (sale-shopper, breakfast-eggs), location nouns prime entities and objects typically found 

at those locations (stable-horse, sandbox-shovel), and instrument nouns prime the types of things 

on which they typically are used (key-door) but not the people who typically use them (hose-

gardener, although priming was found in the other direction). Hare et al. used a corpus-based 

model, BEAGLE (Jones, Kintsch, & Mewhort, 2006) to simulate their results. 

Chwilla and Kolk (2005) showed that people can integrate words rapidly to construct 

situations, thus producing priming. They presented two words simultaneously that were 

unrelated except when considered in the context of some broader event (director bribe), and 

demonstrated priming of a third word (dismissal) related to the situation. Chwilla and Kolk’s 

results depend on conceptually integrating both primes with the target, thus speaking to rapid 

activation of knowledge of situations. In addition, Khalkhali, Wammes, and McRae (2011) found 

that relatedness decision latencies were shorter when three events were presented in the order 

corresponding to their usual real-world sequence (marinate-grill-chew) than when the order of 

the first two events was reversed (grill-marinate-chew), suggesting that such temporal 

information is encoded in semantic memory. 

An interesting consequence of these studies is that they move toward a stronger tie 

between semantic memory and sentence comprehension. For example, a number of the studies 

used thematic roles of verbs as the basis for testing relations, thus making direct contact with a 

key construct in sentence processing research. Along this same line, Jones and Love (2007) 

provide a point of contact between sentence processing and how people learn lexical concepts. 

Participants studied sentences such as The polar bear chases the seal and The German shepherd 
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chases the cat. In a test phase, similarity ratings for entities and objects participating in common 

relational systems increased. The increase was largest for objects playing the same role within a 

relation (e.g., the chaser), but also was present for those playing different roles in the same 

relation (e.g., the chaser or the chasee role in the chase relation), and this happened regardless of 

whether they participated in the same sentence/event. 

In summary, recent studies have investigated people’s episodic-based knowledge of 

common generalized events. These studies show that semantic memory is organized so that this 

knowledge is computed and used rapidly, and they demonstrate direct links between episodic and 

semantic memory. 

5. SEMANTIC AND ASSOCIATIVE RELATIONS 

There are longstanding issues in semantic memory research regarding associative versus 

semantic relations. Association has a long history in psychology and philosophy, and normative 

word association has often been used to explain performance in semantic memory experiments 

(Nelson, McEvoy, & Dennis, 2000; Roediger, Watson, McDermott, & Gallo, 2001). Bower 

(2000) defined associations as “sensations that are experienced contiguously in time and/or 

space. The memory that sensory quality or event A was experienced together with, or 

immediately preceding, sensory quality or event B is recorded in the memory bank as an 

association from idea a to idea b." (p. 3). In 1965, Deese stated that “almost all the basic 

propositions of current association theory derive from the sequential nature of events in human 

experience” (p. 1). More recently, Moss et al. (1995) claimed that associations between words 

are “built up through repeated co-occurrence of the two word forms.” (p. 864). In general, the 

consensus seems to be that contiguity is key to forming a link between two concepts. 
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In contrast, association in cognitive psychology almost invariably is defined in terms of 

its operationalization. In a word association task, a participant hears or reads a stimulus word and 

produces the first word that comes to mind (Nelson, McEvoy, & Schreiber, 1998). Thus, two 

words are associated if one is produced as a response to the other. There exist significant 

discrepancies between the definition of association and its operationalization. Association is 

learning-based whereas word association is production-based. Association is based on sensory 

information whereas word association is linguistically-based. Association is based on contiguity, 

whereas word associations are virtually always meaningful. 

The construct of semantic relatedness was for a long time limited to exemplars from the 

same category, or featurally-similar concepts (as in cow-horse; Lupker, 1984; Frenck-Mestre & 

Bueno, 1999). Recently, however, researchers have investigated a much wider array of relations. 

The event-based relations discussed in Section 4 are examples. In addition, researchers have 

been studying what are often called thematic relations (see Estes, Golonka, & Jones, 2011, for a 

recent review). These include, for example, cow-milk, where a cow produces milk, or wind-

erosion, where wind causes erosion. 

A thorny issue concerns delineating between the influences of semantic and associative 

relatedness. Lucas (2000) concluded from a meta-analysis of priming experiments that “pure” 

semantic priming (in the absence of word association) exists, whereas there is no evidence for 

association-based priming in the absence of semantic relatedness. In contrast, Hutchinson (2003) 

reviewed individual studies and concluded that both semantic and associative relatedness 

produce priming. One possibility is that it may not be fruitful to distinguish between associative 

and semantic relations because word associations are best understood in terms of semantic 

relations (Anisfeld & Knapp, 1968; Brainerd et al., 2008). In some views, the word association 



Semantic Memory 12 

 

task unambiguously taps associative connections between words/concepts in people’s semantic 

memory. In contrast, word association can be considered an open-ended task on which 

performance is driven almost exclusively by types of semantic relations. Researchers who have 

classified word associates according to their semantic relations have shown that almost all 

stimulus-response pairs, with the exception of rhymes, have clear semantic relations (Guida & 

Lenci, 2007). Furthermore, Brainerd et al. found that a number of semantic variables correlate 

with word association strength. 

This is likely the primary reason why it has been so difficult to distinguish empirically 

between associative and semantic relations. In studies of associative priming, the items are a 

mixture of semantic relations, such as hammer-nail or engine-car. McNamara (2005) stated the 

issue clearly: “Having devoted a fair amount of time perusing free-association norms, I challenge 

anyone to find two highly associated words that are not semantically related in some plausible 

way. Under this view, the distinction between purely semantically and associatively related 

words is an artificial categorization of an underlying continuum.” (p. 86). Furthermore, in studies 

of pure semantic relatedness priming, items that appear in word association norms are excluded. 

However, it does not appear to make sense to argue that items in these studies are not associated 

in the general sense. For example, Hare et al. (2009) analyzed subsets of stimuli not associated 

according to word association norms, showing priming in the absence of association. This logic 

appears at first glance to be valid because concepts such as sale and shopper are not associated 

according to Nelson et al.’s (1998) norms. However, shoppers are found at sales, and the entire 

point of a sale is to attract shoppers. So, these concepts definitely are associated in the general 

sense, even though forward and backward association statistics indicate that they are not. 
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The line between association and semantics has now been questioned in a number of 

areas of research. McRae, Khalkhali, and Hare (in press) discuss this issue with respect to 

research using the Deese-Roediger-McDermott false memory paradigm, picture-word facilitation 

and interference, the development of associative learning through adolescence, and semantic 

priming. Although association is a critical aspect of learning, one possibility is that virtually all 

retained associations are meaningful and thus can be understood in terms of semantic relations. 

On the other hand, given longstanding views on the primacy of association-based links in 

memory (as indexed by normative word association), this debate is likely to continue. 

6. ABSTRACT CONCEPTS 

The structure and content of abstract concepts such as lucky, advise, and boredom have been 

studied to a much lesser extent than have concrete concepts, and thus are not nearly as well 

understood. In general, there is little consensus regarding how abstract concepts are represented 

and computed. The lack of obvious physical referents in the world for abstract concepts makes 

theorizing, model building, and experiment quite difficult, but also an important and intriguing 

issue. We use the phrase “obvious physical referents” in the previous sentence because many 

abstract concepts are at least partly experienced by the senses, or have internal states that 

correspond to them. For example, we have all experienced boredom, we have internal thoughts 

and emotions that are tied to the meaning of boredom, and we can visually recognize boredom in 

other people. 

The most influential theory has been Paivio’s (1971; 2007) dual-coding theory, in which 

the processing of lexical concepts involves the activation of functionally independent but 

interconnected verbal and nonverbal representational systems. The verbal system consists of 

associatively interconnected linguistically-based units, whereas the nonverbal system consists of 
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spatially-organized representations of objects and events that can be experienced as mental 

images. Activation spreads within and between systems. Concrete concepts are represented in 

both systems, whereas abstract concepts are represented in the verbal system only. Dual-coding 

theory has been used to explain differences between concrete and abstract words in memory 

tasks, lexical decision, EEG, and fMRI experiments. 

Dual-coding theory is contrasted frequently with context-availability theory, in which the 

major difference between abstract and concrete concepts is that abstract words and sentences are 

more difficult to comprehend because it is challenging to access relevant world knowledge 

contextual information when comprehending abstract materials (Schwanenflugel & Shoben, 

1983). At present, however, dual-coding theory has received much more support. 

The vast majority of experiments on abstract concepts compare performance on concrete 

versus abstract words, either in isolation or in sentence contexts. A consistent finding is that 

memory is better for concrete concepts (Paivio, 2007). A number of studies have also found 

shorter lexical decision latencies to concrete than to abstract words in isolation (Schwanenflugel 

& Shoben, 1983), and a larger N400 to concrete words (Kounios & Holcomb, 1994). Some 

patients have been reported with better performance on concrete concepts (Coltheart, Patterson, 

& Marshall, 1980). However, a frustrating aspect of this research is that, although the memory 

results are stable, some studies show shorter lexical decision latencies to abstract words (Kousta 

et al., 2011), and some patients perform better on abstract concepts (Breedin, Saffran, & Coslett, 

1994). In addition, there is no compelling explanation for the N400 results. Finally, the fMRI 

literature on concrete versus abstract concepts has produced highly variable results (Grossman et 

al., 2002; Kiehl et al., 1999; Wise et al., 2000). 
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There are at least two reasons for the inconsistency in results. First, some differences may 

be task related because the manner in which people process words influences the form of 

concrete-abstract differences. Second, there may be important differences among item sets across 

studies. Typically, researchers select concrete and abstract words using concreteness and/or 

imageability ratings. However, the categories of concrete and abstract concepts are large, and 

selecting small subsets from these large classes has presumably led to inconsistent results. To 

deal with this issue, researchers have begun to classify abstract words on further dimensions, 

such as emotional valence (Kousta et al., 2011). 

More recent theories of the structure and content of abstract concepts have emerged. In 

Barsalou’s (1999) perceptual simulation theory, abstract and concrete concepts can be simulated 

from prior experience. One issue involves the type of simulations that might be key to abstract 

concepts that do not, at least at first glance, have sensory-motor correspondences. Barsalou and 

Weimer-Hastings (2005) focused on situations as the key to abstract concepts. Concepts such as 

lucky, advise, and boredom are tied both to situations in which people have learned the meaning 

of those concepts, and to internally generated cognitive and emotional states. At present, 

however, little research has been conducted to flesh out these ideas. 

One other prominent theory of abstract concepts is conceptual metaphor or image schema 

theory (Lakoff, 1987). In this view, abstract concepts are mapped to sensory-motor grounded 

image schemas. For example, studies suggest that the abstract concept of time is grounded in our 

knowledge of space (Casasanto & Boroditsky, 2008). At the moment, however, the notion of a 

conceptual metaphor or image schema is inconsistent among theorists (Pecher et al., 2011). 

A promising avenue for studying abstract concepts comes from corpus-based 

distributional models. One advantage of corpus-based models is that they provide representations 
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for all types of words using the same computational mechanisms. As described in Section 7.3, 

these models can also be combined with other approaches to form hybrids. 

In summary, understanding the organization and content of abstract concepts is a major 

challenge for all current theories of semantic memory. Addressing the relevant issues will require 

a deeper appreciation of the similarities and differences among types of abstract concepts, how 

abstract concepts depend differentially on sensory, motor, and internally-generated cognition and 

emotional information, and the degree to which they are tied to situations or contexts in which 

they are important. 

7. COMPUTATIONAL MODELS OF SEMANTIC MEMORY 

There is a fuzzy boundary in the literature between models of semantic processing and semantic 

representation. We define the former to be models of how learned semantic structure is used in 

tasks, and the latter to be models that specify a mechanism by which semantic memory is formed 

from experience. We first review models of semantic processing, and then models of learning 

semantic structure from experience (primarily corpus-based models). However, we acknowledge 

that this distinction between the two ‘levels’ of models is an oversimplification: How we learn 

new semantic information depends on the current contents of semantic memory, and semantic 

structure and process influence each other when explaining behavioral data (Johns & Jones, 

2010). 

7.1. Models of Semantic Processing 

Connectionist networks have been used to provide insight into how word meaning is 

represented and computed, and to simulate numerous empirical semantic memory phenomena. In 

these models, concepts are typically represented as distributed patterns of activity across sets of 

representational units that often represent features (<has 4 legs>), but not necessarily nameable 



Semantic Memory 17 

 

ones. Units are organized into layers, and are connected by weighted connections. These 

connections control processing, and their weights are established using a learning algorithm. 

The impact of connectionist models has been at least four-fold. First, due to distributed 

representations, they naturally encode concept similarity in terms of shared units, and thus 

simulate similarity-based phenomena (Cree et al., 1999; Masson, 1995; Plaut & Booth, 2000). 

Second, because they learn statistical regularities between and within patterns, they have led 

researchers to focus on the distributional statistics underlying semantic representations and 

computations (Tyler & Moss, 2001; McRae, de Sa, & Seidenberg, 1997). Third, because many 

connectionist models settle into representations over time (e.g., attractor networks), they can be 

used to simulate response latencies, and provide insight into the temporal dynamics of computing 

word meaning (Masson, 1995). Fourth, one can train a model and then damage it in various 

ways, thus simulating brain-damaged patients (Hinton & Shallice, 1991; Plaut & Shallice, 1993; 

Rogers et al., 2004). Finally, all of these properties of connectionist models are interrelated. 

Semantic processing unfolds over time. When we read or hear a word, components of 

meaning become active at different rates over the first several hundred milliseconds. Attractor 

networks, in which units update their states continuously based on both their prior states and 

input from other units, are well suited to simulate this process. Because priming has played such 

a large role in semantic memory research, a number of researchers have simulated it. Given that 

similar concepts have overlapping distributed representations, connectionist networks have been 

successful at simulating priming between featurally-similar concepts such as eagle and hawk, 

providing insight into factors such as correlations among semantic features and the degree of 

similarity between concepts (Cree et al., 1999; McRae et al., 1997). Furthermore, researchers 



Semantic Memory 18 

 

have simulated contiguity-based (associative) priming, and individual differences in priming 

(Masson, 1995; Plaut & Booth, 2000). 

One way in which distributional statistics underlying semantic representations have been 

studied is the feature verification task, in which participants judge whether a feature such as <has 

an engine> is reasonably true of a concept such as van. These studies and accompanying 

simulations have highlighted the role of correlational structure. That is, some features tend to 

occur with others across basic-level concepts, such as <has feathers> and <has a beak>, and there 

is a continuum of the feature correlational strength. Studies such as McRae et al. (1997) and 

Randall et al. (2004) show that connectionist models predict influences of feature correlations 

that are observed in human data. Furthermore, the degree to which features are distinctive (the 

inverse of the number of concepts in which a feature occurs) plays a privileged role in semantic 

computations in both people and connectionist simulations (Cree et al., 2006; Randall et al., 

2004). Distributional statistics such as these are bases for theories such as the conceptual 

structure account (Tyler & Moss, 2001), and are also strongly implicated in understanding data 

from category-specific deficits and semantic dementia patients (Rogers et al., 2004; Tyler & 

Moss). Finally, they may form the basis for understanding how superordinate categories such as 

clothing and fruit are learned and computed (O’Connor, Cree, & McRae, 2009). 

Much of the research on simulating neurally-impaired adults has drawn on work by 

Hinton and Shallice (1993) and Plaut and Shallice (1993). A nice example is Rogers and 

colleagues’ work in which they provide detailed accounts of semantic dementia patients (Rogers 

et al., 2004; Rogers & McClelland, 2004). Rogers et al. damaged a trained attractor network, and 

then simulated patient performance in a number of tasks. For example, they showed that loss of 

knowledge followed a specific-to-general trajectory because of the nature in which regularities 
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across visual and verbal patterns are stored in their model’s hidden units. Features that were 

shared and correlated across numerous concepts tended to be represented in larger and more 

neighboring regions of semantic space than were highly distinctive features. Thus, distinctive 

features were more likely to be influenced by damage, so the model showed a tendency to lose 

its ability to discriminate among similar concepts early in the course of semantic dementia. 

Finally, Rogers and McClelland (2004) present a large set of arguments and simulations 

in which, among other things, they provide connectionist accounts of several phenomena that 

have been highlighted in knowledge-based theories of concepts. The issues are too complex and 

numerous to do them justice in a short paragraph, but their book is highly recommended. 

7.2 Models of Semantic Representation 

Classic models of semantic structure assumed that meaning was represented either as a 

hierarchical network of interconnected nodes (Collins and Quillian, 1969) or as arrays of binary 

features (Smith, Shoben, & Rips, 1974). A major limitation of both these early models is that 

neither specifies how their representations are learned. Instead, their representations must be 

hand coded by the researcher or collected from adult participants. 

More recent distributional models specify cognitive mechanisms for constructing 

semantic representations from statistical experience with text corpora. In general, these models 

are all based on the distributional hypothesis (Harris, 1970): Words that appear in similar 

linguistic contexts are likely to have related meanings. For example, apple may frequently co-

occur with seed, worm, and core. As a result, the model can infer that these words are related. In 

addition, the model can induce that apple is similar to peach even if the two never directly co-

occur, because they occur around the same types of words. In contrast, apple and staple rarely 

appear in the same or similar contexts. 
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There are a large number of distributional models (for reviews, see Bullinaria & Levy 

2007; Riordan & Jones, 2011). To simplify discussion, we classify them into three families based 

on their learning mechanism: 1) latent inference models, 2) passive co-occurrence models, and 3) 

retrieval-based models. For an in-depth review of new advances in distributional modeling, we 

refer readers to the recent pair of special issues of Topics in Cognitive Science, (2011). 

7.2.1. Latent Inference Models. This family of models reverse-engineers the cognitive variables 

responsible for how words co-occur across linguistic contexts. The process is similar to other 

types of latent inference in psychology. For example, personality psychologists commonly 

administer structured questionnaires, constructing items to tap hypothetical psychological 

constructs. Singular value decomposition (SVD) is applied to the pattern of responses over 

questionnaire items to infer the latent psychological variables responsible for the cross-item 

response patterns. Latent inference models of semantic memory work in an analogous way, but 

they apply this decomposition to the pattern of word co-occurrences over documents in a corpus. 

The best-known latent inference model is Latent Semantic Analysis (LSA; Landauer & 

Dumais, 1997). LSA begins with a word-by-document frequency matrix from a text corpus. Each 

word is weighted relative to its entropy over documents; ‘promiscuous’ words appearing in many 

contexts are dampened more than are ‘monogamous’ words that appear more faithfully in 

particular contexts. Finally, the matrix is factored using SVD, and only the components with the 

largest eigenvalues are retained (typically 300-400). These are the latent semantic components 

that best explain how words co-occur over documents, similar to the way that the psychological 

constructs of introversion and extroversion might explain response patterns over hundreds of 

questionnaire items. With this reduced representation, each word in the corpus is represented as a 

pattern over latent variables. In the reduced space, indirect relationships emerge—even though 
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two words may never have directly co-occurred in a document (e.g., two synonyms), they can 

have similar patterns. 

Landauer and Dumais (1997) suggested that the human brain performs some data 

reduction operation similar to SVD on contextual experience to construct semantic 

representations. However, they were careful not to claim that what the brain does is exactly SVD 

on a perfectly remembered item-by-episode representation of experience. Whether or not LSA is 

a plausible model of human semantic representation (for criticisms, see Glenberg & Robertson, 

2000; Perfetti, 1998), it has been remarkably successful at accounting for data ranging from 

human performance on synonymy tests (Landauer & Dumais, 1997) to metaphor comprehension 

(Kintsch, 2000). LSA set the stage for future distributional models to better study the specific 

mechanisms that might produce a reduced semantic space. In addition, the model made a clear 

formal link between semantic memory structure and episodic experience. 

More recently, Griffiths, Steyvers, and Tenenbaum’s (2007) Topic model extended LSA 

in a Bayesian framework, specifying a generative mechanism by which latent semantic variables 

could produce the pattern of word co-occurrences across documents. The Topic model operates 

on the same initial data representation as LSA—it assumes that we experience words over 

discrete episodic contexts (operationalized as documents in a corpus). However, it specifies a 

cognitive inference process based on probabilistic reasoning to discover word meaning. To 

novice users of semantic models, the computational machinery of the Topic model can be 

daunting. However, the theoretical underpinning of the model is simple and elegant, and is based 

on the same idea posited for how children infer unseen causes for observable events. Consider an 

analogy: Given a set of co-occurring symptoms, a dermatologist must infer the unseen disease or 

diseases that led to the observed symptoms. Over many instances of the same co-occurring 
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symptoms, she can infer the likelihood that they result from a common cause. The topic model 

works in an analogous manner, but on a much larger scale of inference and with mixtures of 

causal variables. Given that certain words tend to co-occur in contexts and this pattern is 

consistent over many contexts, the model infers the likely latent “topics” that are responsible for 

the co-occurrence patterns, where the document is a probabilistic mixture of topics. A word’s 

meaning is a probability distribution over possible topics, where a topic is a probability 

distribution over words (just as a disease would be a probability distribution over symptoms, and 

a symptom is a probability distribution over possible diseases that produced it). 

This results in two key distinctions from LSA. First, the Topic model is generative in that 

it defines a process by which documents could be constructed from mixtures of mental variables. 

Second, a word’s representation is a probability distribution rather than a point in semantic 

space. This allows the Topic model to represent multiple meanings of ambiguous words, whereas 

in LSA, ambiguity is collapsed to a single point. The Topic model is able to account for free 

association data, sense disambiguation, word-prediction, and discourse effects that are 

problematic for LSA (Griffiths et al., 2007). 

7.2.2. Passive Co-Occurrence Models. Passive co-occurrence models posit simple Hebbian type 

accumulation mechanisms that give rise to sophisticated semantic representations. Hence, these 

models tend not to need a full word-by-document matrix, but gradually develop semantic 

structure by simple co-occurrence “counting” as a text corpus is continuously experienced. 

The first passive co-occurrence model was the hyperspace analogue to language model 

(HAL; Lund & Burgess, 1996). HAL slides an n-word window across a text corpus, and counts 

the co-occurrence frequency of words within the window (where frequency is inversely 

proportionate to distance between words in the window). A word’s semantic representation is a 
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vector of distance-weighted co-occurrence values to all other words in the corpus. Hence, a word 

is defined relative to other words in HAL. Comparing the vectors for two words yields their 

semantic similarity, producing both direct and indirect semantic relations as in LSA. HAL has 

accounted for a range of semantic priming phenomena (Lund & Burgess, 1996). Modern variants 

of HAL have improved the model to produce better fits to human data (Rhode, Gonnerman, & 

Plaut, 2009), and a HAL-like model was used by Mitchell et al. (2008) to predicted fMRI 

activation patterns associated with the meanings of concrete nouns. 

A second type of passive co-occurrence model uses the accumulation of random vectors 

as a mechanism for semantic abstraction (Jones, Kintsch, & Mewhort, 2006; Kanerva, 2009). For 

example, in the BEAGLE model (Jones & Mewhort, 2007) words are initially represented by 

random patterns of arbitrary dimensionality. Hence, before any episodic experience, the 

representation for apple is no more similar to peach than it is to staple. As text is experienced, 

each word’s memory pattern is updated as the sum of the random initial patterns representing the 

words with which it co-occurs. Thus, apple, peach, and core move closer to one another in 

semantic space as text is experienced, while staple moves away (but closer to paper, pencil, etc.). 

Random accumulation can be considered as semantic abstraction from the coincidental co-

occurrence of (initially random) brain states representing the words in the episodic context. 

Because of the arbitrary nature of the features, BEAGLE can simultaneously learn about the 

positional information of words in the context similar to HAL-type models (Jones & Mewhort, 

2007 use convolution to encode order information). Hence, a word’s representation becomes a 

pattern of arbitrary “features” that reflects its history of co-occurrence with, and position relative 

to, other words in contexts. BEAGLE simulates a number of phenomena including semantic 

priming, typicality, and semantic constraints in sentence completions. 
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7.2.3. Retrieval-Based Models. Rather than assuming that humans store semantic 

representations, retrieval-based models construct meaning as part of episodic memory retrieval. 

Retrieval-based models are similar to exemplar-based theories of categorization (Nosofsky, 

1986) and multiple-trace theories of global memory (Hintzman, 1986). Just as Hintzman’s 

Minerva 2 model demonstrated that schema abstraction is simulated by a model containing only 

episodic traces, Kwantes’ (2005) constructed semantics model demonstrates that semantic 

phenomena are possible without requiring a semantic memory. In this model, memory is the 

episodic word-by-context matrix. When a word is read or heard, its semantic representation is 

constructed as an average of other words in memory, weighted by their contextual similarity to 

the target. Although semantic abstraction differs radically from LSA, similar representations are 

produced. Dennis (2005) has used a similar approach, accounting for an impressive array of 

semantic phenomena. 

7.3. Integrating Perceptual Information into Distributional Models 

Distributional models have been criticized as psychologically implausible because they learn 

from only linguistic information and do not contain information about sensorimotor perception 

contrary to grounded cognition (for a review, see de Vega, Glenberg, & Graesser, 2008). Hence, 

representations in distributional models are not a replacement for feature norms. Feature-based 

representations contain a great deal of sensorimotor features of words that cannot be learned 

from purely linguistic input, and both types of information are core to human semantic 

representation (Louwerse, 2008). Riordan and Jones (2011) recently compared a variety of 

feature-based and distributional models on semantic clustering tasks. Their results demonstrated 

that whereas there is information about word meaning redundantly coded in both feature norms 
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and linguistic data, each has its own unique variance and the two information sources serve as 

complimentary cues to meaning. 

Research using recurrent networks trained on child-directed speech corpora has found 

that pretraining a network with features related to children’s sensorimotor experience produced 

significantly better word learning when subsequently trained on linguistic data (Howell, 

Jankowicz, & Becker, 2005). Durda, Buchanan, and Caron (2009) trained a feedforward network 

to associate LSA-type semantic vectors with their corresponding activation of features from 

McRae et al.’s (2005) norms. Given the semantic representation for dog, the model attempts to 

activate the output feature <has fur> and inhibit the output feature for <made of metal>. After 

training, the network was able to infer the correct pattern of perceptual features for words that 

were not used in training because of their linguistic similarity to words that were used in training. 

A recent flurry of models using the Bayesian Topic model framework has also explored 

parallel learning of linguistic and featural information (Andrews, Vigliocco, & Vinson, 2009; 

Baroni, Murphy, Barba, & Poesio, 2010; Steyvers, 2009). Given a word-by-document 

representation of a text corpus and a word-by-feature representation of feature production norms, 

the models learn a word’s meaning by simultaneously considering inference across documents 

and features. This enables learning from joint distributional information: If the model learns from 

the feature norms that sparrows have beaks, and from linguistic experience that sparrows and 

mockingbirds are distributionally similar, it infer that mockingbirds also have beaks, despite 

having no feature vector for mockingbird. Integration of linguistic and sensorimotor information 

allows the model to better fit human semantic data than a model trained with only one source 

(Andrews et al., 2009). This information integration is not unique to Bayesian models, but can 
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also be accomplished within passive co-occurrence models (Jones & Recchia, 2010; Vigliocco, 

Vinson, Lewis, & Garrett, 2004) and retrieval-based models (Johns & Jones, in press). 

8. SUMMARY 

Over the past 25 years or so, semantic memory research has blossomed for a number of reasons, 

all of which are equally important. The generation of intriguing patient data and theories of the 

organization of semantic memory that resulted from them, and the acceptance of this patient 

research into what some might call mainstream cognitive psychology, was an important step. 

Furthermore, connectionist models of semantic processing enabled implementations of meaning-

based computations, generating new ideas, experiments, and simulations. The advent of 

neuroimaging methods allowed researchers to study semantic processing in the brain, to integrate 

neurally-based theories with those resulting from implemented models as well as normal adult 

and patient data, and to generate novel theories of semantic representation and processing. In 

addition, theories of grounded cognition added excitement and paved the way for a large number 

of novel experiments designed to test them. Finally, corpus-based models of meaning have 

provided new ways to think about semantic representations, and a plethora of new ideas for 

designing experiments, and techniques for simulating human performance. The present high 

level of enthusiasm surrounding the study of semantic memory should continue as researchers 

refine, compare, and integrate theories, and test predictions that result from those theoretical 

endeavors. We hope that we have communicated some of this excitement to the reader. 
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