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ADAPTIVE LOCAL RATIO*

JULIAN MESTRE!

Abstract. Local ratio is a well-known paradigm for designing approximation algorithms for
combinatorial optimization problems. At a very high level, a local-ratio algorithm first decomposes
the input weight function w into a positive linear combination of simpler weight functions or models.
Guided by this process, a solution S is constructed such that S is a-approximate with respect to
each model used in the decomposition. As a result, S is a-approximate under w as well. These
models usually have a very simple structure that remains “unchanged” throughout the execution of
the algorithm. In this work we show that adaptively choosing a model from a richer spectrum of
functions can lead to a better local ratio. Indeed, by turning the search for a good model into an
optimization problem of its own, we get improved approximations for a data migration problem.
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1. Introduction. The local-ratio technique and the primal-dual schema are two
well-known paradigms for designing approximation algorithms for combinatorial op-
timization problems. Over the years a clear connection between the two paradigms
was observed as researchers found primal-dual interpretations for local-ratio algo-
rithms [12, 3] and vice versa [8, 5]. This culminated with the work of Bar-Yehuda
and Rawitz [10] showing their equivalence under a fairly general and encompassing
definition of primal-dual and local-ratio algorithms. For a survey of results and a
historical account of the local-ratio technique, see [7]; for a survey of the primal-dual
schema, see [20, 30].

At a very high level, a local-ratio algorithm consists of two steps. First, the input
weight function w is decomposed into a positive linear combination of models w;, that
is, w = w1 + -+ + €,wg and ¢; > 0. Then, guided by this process, a solution S
is constructed such that w;(S) < aw;(A) for any feasible solution A for all i. We
refer to « as the local ratio of w;. By the local-ratio theorem [8], it follows that S is
a-approximate with respect to w.

Typically the models used in local-ratio approximation algorithms are 0-1 func-
tions or simple aggregates of structural features of the problem at hand. (In primal-
dual parlance this corresponds to increasing some dual variables uniformly when
constructing the dual solution.) Furthermore, the structure of the models remains
“unchanged” throughout the execution of the algorithm. For example, consider the
vertex cover problem. Bar-Yehuda and Even [8] set the weight of the endpoints of
a yet-uncovered! edge to 1 and the remaining vertices to 0; Clarkson [13] chose a
number of yet-uncovered edges forming a star and set the weight of each vertex to the
number of star edges incident on it; while Gandhi, Khuller, and Srinivasan [18] and
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Bar-Yehuda [6] set the weight of each vertex to the number of yet-uncovered edges
incident on it.?

This paper studies a problem for which adaptively choosing a model from a richer
spectrum of weight functions leads to a better local ratio, and thus to better ap-
proximations. Indeed, by turning the search for a good model into an optimization
problem of its own, we get improved approximations for a data migration problem.
We hope that these findings encourage the study of nonuniform updates for local-ratio
or primal-dual algorithms; perhaps in some cases, as in our problem, this may help
realize the full potential of these techniques.

1.1. Our results. The data migration problem arises in large storage systems,
such as storage area networks [24], where a dedicated network of disks is used to store
multimedia data. As the data access pattern evolves over time, the load across the
disks must be rebalanced so as to continue providing efficient service. This is done
by computing a new data layout and then migrating data to convert the current data
layout to the target data layout. While migration is being performed, the storage
system is running suboptimally, so it is important to perform the migration quickly.
The problem can be modeled [25] with a transfer multigraph (V, E), where each vertex
corresponds to a disk and each edge (u,v) € E corresponds to a data item that must
be transferred between v and v. A disk can be involved in at most one transfer at a
time, and each data transfer takes one unit of time. We are to schedule the transfers
so as to minimize the sum of completion times of the disks. The problem is NP-hard,
but 3-approximations are known [25, 19].

First, we cast the primal-dual algorithm of Gandhi and Mestre [19] as a local-
ratio algorithm and provide a family of instances showing their analysis is tight. To
overcome these difficult instances we propose to adaptively choose a model minimizing
the local ratio and formulate the problem of finding such a model as a linear program
(LP). Interestingly, our algorithm is neither purely combinatorial nor LP rounding,
but lies somewhere in between. Every time the weight function needs to be updated,
an LP is solved to find the best model. These LPs are much smaller that the usual
LP formulations, so our scheme should be faster than an LP rounding algorithm.

In the analysis we show that the models found using the LP exhibit a better local
ratio than the usual 0-1 models. Somewhat surprisingly a precise characterization
of the local ratio can be derived analytically. We prove that the overall scheme is
a (1 + ¢)-approximation, where ¢ = %5 is the golden ratio, and give a family of
instances achieving this ratio.

To derive the worst-case local ratio of our scheme we use a method similar to the
factor-revealing LP approach of Jain et al. [23], which has been successfully applied
in the analysis of many greedy heuristics [23, 2, 22, 11]. The basic idea of the factor-
revealing LP method is to use an LP to find a worst-case instance maximizing the
approximation ratio achieved by the heuristic at hand. The value of this LP is then
upper bounded by producing a dual solution. We also use a mathematical program
to find the worst-case instance maximizing the local ratio of our scheme. The main
difference is that, since we already use an LP to guide our local-ratio algorithm, the
resulting factor-revealing program is nonlinear. Even though we cannot solve this
program numerically, we are still able to prove a tight bound of 1 + ¢ on its cost.

2In fact, Bar-Yehuda’s algorithm [6] works for a generalization of vertex cover and uses slightly
different weights. However, when the algorithm is applied to regular vertex cover, the weights are as
described.
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Finally, we present an alternative algorithm based on the fractional local ratio
technique [9], which requires solving a single, albeit larger, LP.

1.2. Related work on data migration. As noted by Coffman et al. [14], if
every transfer takes one unit of time, a schedule is simply a proper edge coloring of
the transfer multigraph.

Many objective functions have been studied within this framework, such as min-
imizing the maximum disk completion time (makespan) [14, 28], the sum of disk
completion times [25, 16, 19], and the sum of transfer completion times [4, 25, 27, 31].
A common variant is to allow each transfer to have an arbitrary processing time
[29, 25, 14, 16, 17]. Generalizations of the makespan minimization problem in which
there are storage constraints on disks or constraints on how the data can be transferred
have also been studied [21, 1, 24, 26].

This paper is concerned mainly with the objective of minimizing the weighted
sum of vertex completion times. Kim [25] proved that the problem is NP-hard and
showed that a simple greedy algorithm guided by an optimal LP solution is a 3-
approximation. Gandhi et al. [16] showed that Kim’s analysis is tight. Finally, Gandhi
and Mestre [19] showed that the same greedy algorithm guided by a dual update is
also a 3-approximation, but that an arbitrary greedy schedule can be a w(1)-factor
away from optimum.

2. Algorithmic framework. The input to our problem consists of a transfer
graph G = (V, E) and a weight function w : V' — RT. For ease of exposition, we
assume for now that G is simple; later, in section 6, we will show how to remove this
assumption. A feasible schedule S : E — Z7 is a proper edge-coloring of G; that is,
if two edges e # eq are incident on the same vertex, then S(e;) # S(e2). We are to
find a scheduling minimizing w(S) = _ oy w(u) max,enw){S(u,v)}. Throughout
the paper we use N(u) to denote the set of neighbors for u, and d, to denote the
degree of u.

Let us cast the primal-dual algorithm of Gandhi and Mestre [19] as a local-ratio
algorithm; in the process, we generalize it slightly. The pseudocode of Adaptive Local
Ratio (ALR) is given in Algorithm 1. The algorithm has two stages: labeling and
scheduling. The labeling stage assigns a label ¢, to every u € V. These labels are
then used to guide the scheduling stage.

Initially every node is unlabeled; i.e., £, = nil for all v € V. Denote the set of
unlabeled neighbors of v with UN(u) = {v € N(u) | ¢, = nil}. In each iteration,
choose a node u with the maximum number of unlabeled neighbors A = |[UN(u)|.
Then choose a model @ : V — RT with support in UN(u), find the largest € > 0 such
that e < w, and set w <— w — ew. As a result, at least one vertex in UN(u) has zero
weight in the updated w; set the label of these vertices to A. This continues until all
vertices are labeled and w = 0. How the model w is chosen will be specified shortly.
Ultimately, as the name of the algorithm suggests, we will adaptively choose a model
so as to minimize the algorithm’s local ratio and, therefore, its approximation ratio.

Once the labels are computed, the edges (u,v) € E are sorted in increasing value
of min{¥,, ¢, }, breaking ties with max{¢,,¢,}. The edges are scheduled greedily in
sorted order: Start with the empty schedule and add the edges, one by one in sorted
order, to the current schedule as early as possible without creating a conflict.

The labels guide the scheduling phase and allow us to bound the finishing time
of the vertices. To motivate the use of the labels, Appendix A shows that the same
scheduling procedure can yield a solution with cost w(1) times the optimum when
guided by the degrees instead of the labels.
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Algorithm 1. ALR (V, E, w).
1. // LABELING STAGE
2. for u € V do

3 {, + nil

4. repeat
5
6

choose u € V' maximizing A = |[UN(u)|

choose @ with support in UN(u)
7. w<—w—min{M d}(u)>0}d)

@ (u)

8. for v € UN(u) ‘ w(v) =0 do
9. ly +— A
10. until every vertex is labeled
11. // SCHEDULING STAGE
12. sort (u,v) € E in lexicographic order of (min{¢y, ¢,}, max{€,,¢,})
13. S < empty schedule
14. for e € E in sorted order do
15. add e to S as early as possible
16. return S

LEMMA 2.1 (see [19]). In the schedule returned by ALR every vertex v € V
finishes no later than £, + d, — 1.

Proof. Let (v,y) be the edge incident on v that is scheduled the latest in S. Note
that (v, y) need not be the last edge (in sorted order) among those edges incident on v
and y. For example, the edge (v,y’) may come after (v,y) in sorted order and yet be
scheduled before (v, y); this can occur if at some early time slot both v and y’ are free
(allowing us to schedule (v,3’)), but y is busy (preventing us from scheduling (v, y)).

Note, however, that (v,y) cannot be scheduled later than one plus the number of
edges incident on v and y that come before (v,y) in sorted order. How many edges
incident on u can there be before (v,y) in sorted order? Clearly, there are at most
d, — 1 such edges. How many edges incident on y are there before (v,y) in sorted
order? We claim that there are at most ¢, — 1 such edges. It follows that (v, y) must
be scheduled not later than ¢, + d, — 1.

Let z € N(y) be such that £, < ¢,. If £, < £,, then (v, y) must come before (z,y)
since

min{l,, by} = £, < £, = min{l,, {,}.
Similarly, if £, > ¢,, then (v, y) must come before (z,y) since
min{¢,, 4y} = min{l,, l,} = ¢, and max{l,,l,} =0, < {; = max{l;,{,}.

Consider the set X = {x € N(y) | £, < £,}. Tt follows that the number of edges
incident on y that come before (y,v) in sorted order is at most |X| — 1. Note that the
value of the labels assigned in line 9 of ALR can only decrease with time. Consider the
first iteration of the algorithm in which the node u chosen in line 5 of ALR was such
that [UN(u)| = £y; at this point in time UN(y) = X. Since u is chosen to maximize
|[UN(u)|, it follows that | X| = [UN(y)| < |UN(u)| = £,. Thus, as was claimed, there
are at most £, — 1 edges incident on y that come before (v,y) in sorted order. O

As it stands, the algorithm is underspecified: We have not described how the
model w is chosen in line 7. It is important to realize, though, that Lemma 2.1
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holds regardless of our choice of w. Gandhi and Mestre [19] proposed using w(v) =
I[v € UN(u)] as a model, where I[-] is a 0-1 indicator function, and showed that
this is a 3-approximation. To gain some intuition, let us show that the local ratio of
w(v) =Iv € UN(u)] is at most 3.

LEMMA 2.2. If line 7 of ALR always uses w(v) = L[v € UN(u)], then w(S) <
(3 - ﬁ) w(A) for any schedule A, where A = [UN(u)|.

Proof. An obvious lower bound on the cost of A is W(A) = 3, cyn(y) dv- Fur-
thermore, since nodes in UN(u) share u as a common neighbor, it follows that
W(A) 2> ,c(a1? = A(A +1)/2. On the other hand, by Lemma 2.1 we get

B(S) < Y (by+dy—1),

veEUN(u)

< A(A + Y d,

vGUN(u)

Q( 1)t 2

vEUN(u)
4 N
(3 - m) W (A).

The second inequality follows from the fact that the labels that ALR assigns can only
decrease with time. The third inequality follows from the two lower bounds on w(A)
outlined above. |

Since S is a 3-approximation with respect to every model and the input weight
function w is a positive linear combination of these models, it follows that S is 3-
approximate with respect to w as well. It is worth pointing out that the bound on
the local ratio obtained in Lemma 2.2 is tight if we assume that the upper bound
on completion times given by Lemma 2.1 is also tight. (To see this, consider what
happens when the ith vertex in UN(u) has degree d; = i.) Of course, this alone does
not imply a tight bound on the overall approximation guarantee. However, as we will
see in Lemma 3.7, there is a family of instances where the algorithm in [19] produces
a schedule whose cost is 3 — o(1) times optimum.

Note that the degree sequence d; = i can be easily circumvented if we use a
different model: Instead of w(v) = I[v € UN(w)], which may have a local ratio
3— ALH, use the model that gives a 1 to the nodes in UN(u) with maximum degree.
For the latter model, this particular degree sequence has a local ratio of at most 2 — %.
Indeed, in general choosing the better of these two strategies leads to a better local
ratio.

LEMMA 2.3. If line 7 of ALR chooses w(v) = I[v € argmaxweUN(u)d | when
max,cuN(w) de > |BA], and w(v) = I[v € UN(u)] when max,cuynew)ds < [BA],
then g<—~°‘§ < 2.802 for B = 0.555.

Proof. Let z be a node in UN(u) with maximum degree. Furthermore, suppose
dy > |SA]. Then the local ratio of @ can be bounded as follows:

1
< = +1< +1< = +1.

(2.1) A 4, i, S NES 3

W(S)  A+dy—1 A-—1 A1
W

Now let us see what happens when d, < |SA]. Recall that in this case w(z) =1
for all z € UN(u). Consider the order in which the edges between uw and UN(u) are
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scheduled in some feasible solution A, and let dy,ds,...,da be the degree sequence
of nodes in UN(u) listed in this order. Clearly the ith vertex in UN(u) cannot finish
earlier than max{i,d;} in A, so we get the lower bound

(2.2) w(A) > Y, max{i,d;}.
On the other hand, by Lemma 2.1 we get the upper bound
(2.3) w(S) <Y, A+d;, —1.

Consider a degree sequence maximizing the ratio of (2.3) and (2.2). We can
assume without loss of generality that A schedules the edges so that the degrees
d; are in nondecreasing order, since this minimizes (2.2). Furthermore, for every
i < |BA] we must have d; = i, for otherwise we could increase or decrease d; to get
a larger ratio. Also, for every i > |BA] the ratio is largest when d; = |SA|—recall
that we have the constraint that the maximum degree should not exceed |SA]. It
follows that we can restrict our attention to the degree sequence d; = min{i, |SA |},
whose local ratio is

(2.4) = <3—(1-p)>

(A) — A2 A2

i(S) _ A4 S=CFPAE 3A7 - (A [BA)?
w 2

Combining (2.1) and (2.4), we get that the local ratio is
1 2
max B+1,3—(1—ﬁ) .

It is now straightforward to check that this quantity is minimized when 5 ~ 0.555
and that the local ratio attained for this value of § is 2.802. 0

Besides a modest improvement in the approximation guarantee, Lemma 2.3 sug-
gests a general line of attack: In each iteration find a model that minimizes the local
ratio. The rest of the paper is devoted to pursuing this strategy.

3. Minimizing the local ratio. The abstract problem we are to solve is, given
a sequence d = (di,dg, ..., da) corresponding to the degrees of vertices in UN(u), find
weights w = (W1, Wa, . .., Wa) minimizing the local ratio of w.

In order to evaluate the quality of a given model W we first need an upper bound
on w(S), where S is the schedule produced by ALR. For this we use Lemma 2.1 and
the fact that the values of labels assigned in line 9 of ALR can only decrease with time.

DEFINITION 3.1. UB(d, @) = > ;ca) i (di + A — 1).

Similarly, we need a lower bound on @w(A), where A can be any schedule. Note
that A must schedule the edges from UN(u) to u at different time slots; this induces
a total order on UN(u), which we denote by the permutation o : [A] — [A]. Note
that vertex ¢ cannot finish earlier than o () since (u, ) is the o(i)th edge incident on
u to be scheduled, or earlier than d; since all edges incident on ¢ must be scheduled
before it finishes.

DEFINITION 3.2. LB(d, @) = miny.[a}5[a] X_e(a) Wi max{d;, o (i)}

It follows from the above discussion that @w(S) < UB(d, w) and LB(d, w) < w(A)
for all A. Hence, the minimum local ratio for d can be expressed as a function of
UB and LB. A

DEFINITION 3.3. Let p(d) = infy Eggﬁg; be the minimum local ratio of d.
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We now turn our attention to the problem of computing a model @ with a lo-
cal ratio that achieves p(d). This can be done using the program min{UB(d, @) |
LB(d,w) > 1, @ > 0}, which can be written as an LP:

(LP1) min Y (di + A — 1)
i€[A]
subject to
(3.1) > i max{d;, o(i)} > 1 Vo : [A] = [A],
1€[A]

Clearly, (LP1) computes a model @ with local ratio p(d). Even though (LP1) is
exponentially large, it can be solved in polynomial time using the ellipsoid method—
the separation oracle involves solving a minimum assignment problem where the cost
of an edge (i,7) is w; max{d;,j}. The ellipsoid algorithm, however, is not practical,
so below we derive a more succinct formulation. The new formulation is obtained
through a number of step-by-step transformations. First, we rewrite the constraints
(3.1) of (LP1) as a single (nonlinear) constraint:

Ej 55 >1 Vi € [A],
(3.2) min Z ;W max{d;, j} | Ywi; <1 vj € [A], > 1
i.j€(A] zij €{0,1} Vi, j € [A]

Clearly, constraint (3.2) is equivalent to all constraints (3.1) in (LP1) put together.
Then we relax the integrality requirement on the x; ; variables inside the assignment
problem:

Zj Tij > 1 Vi € [A],
(3.3)  mind Y @iy dbimax{d;,j} | Y@ <1 Viela]l, »>1.
i,5€[A] x5 >0 Vi, j € [A]
Since the polytope of the assignment problem is integral [15], constraints (3.3)

and (3.2) are equivalent. Now we replace the LP corresponding to the minimum cost
assignment problem with its dual program

oy | iz <max{di,jhi Vi j € [A]
(3.4) max .EZ[A](% %) Yirz; =20 Vi € [A] =

By the strong duality theorem, constraints (3.3) and (3.4) are equivalent. Finally,
we unpack the left-hand side of (3.4) into (LP1) to obtain the following equivalent
linear programming formulation:

(LP2) min Y (di + A — 1)
i€[A]
subject to
(3.5) Z (yi —2) 2 1,
i€[A]
(36) Yi — %5 < max(di,j) ’UA}Z' VZ,] S [A],
yi,Zi,llA}iZO VZE[A]
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This finishes the description of ALR from Algorithm 1. Namely, in each iteration
of the labeling stage, line 7 solves (LP2) to find the best model for the degree sequence
of nodes in UN(u).

DEFINITION 3.4. Let p = supy p(d) and pa = maxq,q—a p(d).

THEOREM 3.5. ALR is a p-approximation for the data migration problem, and
this is tight.

The proof that the algorithm is a p-approximation follows straightforwardly from
the local-ratio theorem [7]. Let S be the schedule produced by ALR. For every model
w used by ALR, by definition, S is p-approximate with respect to w. Since the input
weight function w is a linear combination of these models, S is p-approximate with
respect to w as well. The tightness claim follows from the next two lemmas.

LEMMA 3.6. For any A, we have pa < paa.-

Proof. Let d be such that pa = p(d). Then define dy, _, = db, = 2d; for each
i € [A]. Let (@',y',2") be a solution to (LP2) for d’ with cost p(d’). Define y; =
Yhi_ 1+ Y, zi = 2,1 +2h,;, and W; = 2(wh;_, + ;). The solution (b, y, z) is feasible
for d since

Nwi-z1 = > i) =1

i€[24] i€[A]
and

/ / / . )
Yi—1 — Z2j—1 < max{dy; _1,2j—1} s 4 ’ R
T yi — 2 < max{d;, j} w;.

/ I < d / J
Yo; — 225 = max{dsy;, 2} Wy,

Furthermore, the cost of (1, y, z) is less than the cost of (@', 1/, 2’):

Z(di—FA—l)wi:Z(di‘FA—l) 2 (wh;_q + ;)

i€[A] i€EA
= > (2dpiz + 24 - 2)
1€[2A]
< >0 (dj+ 20 — 1),
1E€[2A]

The lemma follows since
pa = p(d) < cost(w,y,z) < cost(@',y,2") = p(d') < paa. O

The next lemma shows that for any degree sequence d obeying certain properties,
if ALR chooses a certain model % in line 7 when the vertices in UN(u) have degrees
di,...,da, then there exists an instance where the algorithm constructs a solution
whose cost is gg((jfu’)) (1 — %) times the optimum. Even though the lemma does not
apply to arbitrary degree sequences, it is nevertheless general enough that we can
show the worst-case performance of the algorithm to be tight.

LEMMA 3.7. Let d = (dy,...,da) be a degree sequence such that 1 < d; < A for
all i € [A]. Suppose that line 7 of ALR chooses model W when the vertices in UN(u)
have degrees d. Then the algorithm can produce a schedule with cost gg((i’gj)) (1 — %)
times the optimum.

Proof. Consider the instance in Figure 3.1, namely, a tree with four levels. The
ith node in the second level has weight w;; nodes in other levels have weight zero.
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Fic. 3.1. Tight instance for ALR.

The root has degree A, the ith node in the second level has degree d;, and nodes in
the third level have degree A.

Consider an execution of the algorithm that chooses the root in the first iteration.
As a result, all nodes in the second level get a label of A. In the next ) . (d; — 1)
iterations the leaves are labeled A — 1. Finally, the root gets a label of max; d;, and
the nodes on the third level get a label less than or equal to max; d;. Now consider a
node in the third level; note that the children are labeled A — 1, while its parent is
labeled A. Therefore, the edges between the third and fourth levels will be scheduled
before those edges between the second and third levels. Since d; > 1, the ith node in
the second level has at least one child, and thus it must finish at time d; + A — 2 or
later. On the other hand, the optimal solution has cost precisely LB(d, w). Therefore,
the approximation ratio is at least

LB(d, w) N LB(d, )
UB(d, w) 1
> g (17x):

where the last inequality follows from the fact that UB(d, ) > >-;c(a) A Wi O

As a corollary, we get that the analysis of Gandhi and Mestre [19] is essentially
tight. Recall that their algorithm always uses as a model @; = 1 for all ¢ € [A] on all
degree sequences. Then for the degree sequence

2 ifi =1,
di= 41 ifl<i<A,
A—1 ifi=A,

we have LB(d, ®) = 25 4 1 and UB(d, @) = A% + 2&=1 which implies a local
ratio of 3 — %. By Lemma 3.7 it follows that there are instances where the
algorithm of Gandhi and Mestre [19] returns a (3 — o(1))-approximate solution.

On the other hand, if in each iteration of ALR we use (LP2) to find a model
with minimum local ratio, then the approximation factor becomes p. To argue
that the algorithm can produce solutions with arbitrarily close to p times the op-
timum, let di,...,da be a degree sequence with p(d) close to p. Recall that if
max; d; > A, then p(d) < 2, which in this case can be achieved using the model
w(i) =1 [d; € argmax;c(a)d;]. As we will see shortly, p is strictly larger than 2; thus,
we can safely assume that max; d; < A. Let d’ be a new degree sequence of length 2A
defined as db; _; = dj; = 2d;. This is the sequence used in the proof of Lemma 3.6,
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3 Al pa Al pa
11 20 | 2.4453
I+ F---- il 2|15 30 | 2.5006
— 3| 1.7273 40 | 2.5275
o 7 4 | 1.9310 50 | 2.5447
I 5| 2.0115 60 | 2.5556
| 6 | 2.1042 70 | 2.5667
’ 7 | 2.1863 80 | 2.5728
8 | 2.2129
1 T T T 9 22589 : :
0 20 40 60 80 10 | 2.2857 0 | 1+¢
F1a. 3.2. Ezperimental evaluation of pa = d:r\%?jA p(d).

where it was shown that p(d) < p(d'). The degree sequence d’ has the properties
needed to apply Lemma 3.7, so we know that there are instances where the algorithm
produces a solution with cost p(d') (1 — 5k ) times the optimum. By Lemma 3.6 we
can assume that A is large enough to make this as close to p(d’), and therefore to p,
as desired.

It remains only to bound p. Somewhat surprisingly, a precise characterization in
terms of the golden ratio ¢ = # ~ 1.618 can be derived analytically.

THEOREM 3.8. p=1+ ¢.

The next section is devoted to proving this theorem. Figure 3.2 shows pa for
small values of A obtained through exhaustive search.

4. A tight bound for p. We start by showing that p < 1+ ¢. In a sense, we
need to argue that every degree sequence d has a good model. Recall that in each
iteration of the algorithm a model is found by solving (LP2). At first glance this may
seem like an obstacle since we are essentially treating our LP as a black box. We can,
however, bound p using linear duality.

The idea is to replace (LP2) with its dual problem (LP3) given below. By the
strong duality theorem the optimal solutions of (LP2) and (LP3) have the same cost:

(LP3) max o

subject to
Z xi,jZa VZE[A],
Jjela]
Z Tij S« Vi€ [A]
1€[A]

Z max{dz,]}a:” SdZ—I—A—l Vie [A],

Jjela]

xi,j,azo VZ,]E[A]

Recall that pao = maxg.|q—a p(d). Suppose we modify (LP3) by letting di, ..., da
be variables in [A]. The result is a nonlinear mathematical program for pa:
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(NLPA) max o

subject to

(41) Z Tij > Vie [A],
j€lA]
(42) Z Tij <« V] € [A],
i€[A]
(4.3) > max{d;,jtzi; <di+A-1 Vie [A]
jelA]
xi,j,azo Vi,jE[A],
d; € [A] Vi € [A].
Note that (NLPA) is feasible and its optimal value is always at least 1. For
example, setting z;; = 2352 and d; = A for all 4,j € [A] leads to a solution with

—9_ 1
a=2—-x.

The plan is to show that (NLPa) is upper bounded by 1 + ¢. To that end, let
us first derive some structural properties of the solutions of (NLPA). We can picture
x as a A by A matrix of positive reals, where every row sums up to at least « (4.1)
and every column sums up to at most « (4.2). Note that this implies that every row
and every column of x sum up exactly to «; this fact will be useful in our proofs.

For a given row of z, consider the smallest set of consecutive entries from the left
to right that adds up to at least 1, and call this set the first unit of the row. The
first lemma essentially says that once x and « are chosen, there is a simple rule for
choosing d: Simply set d; to be the largest index in the first unit of the ith row.

LEMMA 4.1. Let (z,d,«) be an optimal solution for (NLPA). Then there exists
another optimal solution (x,d', ), where d; = min{k | Z;ﬂ:l xij > 1},

Proof. First note that the new degree sequence d’ is well defined since o > 1. The
plan is to transform d into d’ step by step. Suppose that d; < min{k | Z?Zl x;; > 1}
for some ¢ € [A]. Then we can increment d; by 1, which will increase the left-
hand side of (4.3) by less than 1 (since Z?;l x;; < 1) and its right-hand side by 1.
Therefore, the modification preserves feasibility, and we can keep doing this until
d; = d. Similarly, if d; > min{k | Z?:l x;; > 1}, we can safely decrease d; without
violating feasibility, because the left-hand side of (4.3) decreases by at least 1 (since
Z?;l x;j > 1), and the right-hand side decreases by 1. O

To prove our upper bound on the cost of (NLPA), we need an optimal solution
where the contribution of the first unit of each row is concentrated on one or two
adjacent entries. The next lemma provides this crucial property. Figure 4.1 provides
an example matrix obeying the conditions stated in the lemma.

LEMMA 4.2. There is an optimal solution (x,d,a) for (NLPA) such that for alli

(i) di =min{k | S5 @5 > 1},

(ii) ;; =0 forall 3 <d; —2, and

(iil) of wia;—1 # 0, then xp q, =0 for all k < i.

Proof. Note that (i) follows from Lemma 4.1. The plan is to modify x row by
row until (ii) and (iii) are satisfied for all rows. After each modification we can invoke
Lemma 4.1, so we can assume that (i) always holds throughout the proof.

First sort the rows of x so that d; < dy < --- < da. For the base case consider
the last row of z; that is, we prove (ii) and (iii) for ¢ = A. Suppose there exists
k < da such that xza , > 0. Recall that every row and every column of x sum up
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1234567

~.
O UL W=

Fic. 4.1. An example matriz complying with Lemma 4.2. Black entries correspond to nonzero
entries in the first unit of each row. White entries are zero, and gray entries are nonzero.

to a. Therefore za 4, < @, and there must be an ¢’ < A such that z; 4, > 0. Let
e = min{xa , i a5 }. Decrease xa i and zy g, by €, and increase za g4, and x; by
e. Note that the update does not affect constraint (4.3) for ¢ or ¢’ and that it preserves
(4.1) and (4.2). However, it may decrease d;» (as a function of ), in which case we
must resort the rows. The update is repeated until 2 ; = 0 for all £ < da.

Assuming that rows in [i + 1, A] obey (ii) and (iii), we show how to modify the
ith row. The idea is very similar to the base case. Suppose there exists k < d; such
that x; ; > 0. If there exists i’ < 4 such that z;/ g, > 0, then we use the same update
as in the base case to decrease x; ;. We can continue to do this until z; 4, = 0 for all
i <iormxy =0forall kK < d;. In the latter case we are done, as the ith row now
obeys (ii) and (iii). Suppose, then, that x4, = 0 for all i’ < i. If z;, = 0 for all
k < d; — 2, then again we are done. Otherwise if x; 5, > 0 for some k < d; — 2, then
we run the update for z; 4,—1. In order to do so, we need to argue that there always
exists ¢’ < 7 such that x; 4,—1 > 0. To that end, we show that z;» q,_1 = 0 for all
i > . If di» > d; + 1, then by (ii) and the fact that d;» > d;, we get d;» q,—1 = 0.
If d;» = d;, then by (iii) and the fact that d; 4, > 0, we get d;» 4,1 = 0. Thus,
since x; 4,—1 < «, there must exist i < ¢ such that z; 4,—1 > 0, which we can use to
perform the update. We repeat the update until x; ;, = 0 for all k¥ < d; — 2, at which
point properties (ii) and (iii) hold for the ith row. O

Now everything is in place to prove the upper bound on the value of (NLPA).

LEMMA 4.3. For any A, the objective value of (NLPa) is upper bounded by
(1+¢) + x5

Proof. Let (z,d,a) be an optimal solution for (NLPA) as in Lemma 4.2. Our
goal is to show that « is less than 1 + ¢ + ﬁ. As before, we sort the rows of = so
that dl SdQ S SdA

Let k be the largest index such that (¢ — 1)k < di. Notice that we are guaranteed
k’s existence since the condition is always met for k = 1.

If k = A, then by constraint (4.3) we have

Z max{da,j} z;; <da+A -1,
Jela]

which together with (4.1) gives us

(4.4) da o <da +A —1.
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Rearranging the terms in (4.4) and using the fact that (¢ — 1)A < da, we get

A
+l<———F1=¢+1.

@ = da (6 —1)A

Let us consider the case where k < A. Adding up constraints (4.3) for all ¢ such
that k <7 < A, we get

A A A
(4.5) SN max{d,j}wi; < Y (di+A-1).
i=k+4+1 j=1 i=k+1

Let \; = Zf:kﬂ x; ;. We can lower bound the left-hand side of (4.5) as follows:

A A A A A
(46) Z Zmax{di,j}xi,j Z Z Zmax{di,j}xi,j Z Z)\Jj

i=k+1 j=1 i=k+1 j=dy, j=du

From property (i) of Lemma 4.2, it follows that x4, > 0. We claim that z; ; =0
for all i > k and j < di. Indeed, if j < d; — 2, then by property (ii) of Lemma 4.2 it
follows that x; ; = 0. Note that if d; > dj, then j < dj < d; and so x; ; = 0. Hence,
we need only consider the case j = d; — 1 = di — 1. By property (iii) of Lemma 4.2,
if &;,4,—1 # 0, then we should have zj 4, = 0, which would contradict the fact that
Tk,d; = Th,d, > 0. Therefore, z; ; = 0 for all 7 > k and j < di. This implies that
Zf: 4. N = (A—k) a. Also, recall that every row and every column of z sum up to a
and therefore \; < a. Given these constraints on the ); values, the right-hand side
in (4.6) is at its minimum when \; = « for dy < j < dp + A — k — 1, which yields

A A detA—k—1
Z Zmax{di,j}xi,j Z Z Oéj,
i=k+1 j=1 G=dy,
_ AR+ A k-1
2 b
(4.7) >a (A;k) [(2¢—3)k+A_1],

where the last inequality uses the fact that (¢ — 1)k < dj.
Now let us upper bound the right-hand side of (4.5) using the fact that, by the
definition of k, we have d; < (¢ — 1) for all ¢ > k:

A A
Nodi+A-1D<(A-RA-D+ Y (6-1)i
i=k+1 i=k+1
(A—Fk)

(4.8) - [2(A—1)+(¢—1)(A+k+1)]

2

Plugging (4.7) and (4.8) back into (4.5) and rearranging the terms, we get

(-1 (A+k+1)+2(A-1)

(4.9) *= 26— 3)k+A—1
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F1G. 4.2. How to construct a solution for (NLPA) for A =T7.

Using the fact that ¢ —1 = (1 + ¢)(2¢ — 3), we can simplify (4.9) to get
(p—Dk+(d—1)(A-1)+2(¢p—1)+2(A-1)
(20 —-3)k+A -1 ’
(0+1)20=3)k+(0+1)(A-1)+2(¢—1)
(20 —-3)k+A -1 ’
2(p—1)
(20 —3)k+A -1

a <

=146+

2
<1l4+¢+ AT
where the last inequality follows from the setting k& = 1. O

By Lemmas 3.6 and 4.3, we get that p < 1 + ¢. The next lemma finishes the
proof of Theorem 3.8 by showing that p can be arbitrarily close to 1 + ¢.

LEMMA 4.4. For every A, the objective value of (NLPA) is lower bounded by
(1+¢)(1-3).

Proof. The plan is to construct a feasible solution (z,d,«) for (NLPA) with
a=(14¢) (1 — %) Since the cost of the optimal solution can only be larger than
this, the lemma, follows.

Imagine drawing on the Cartesian plane a A by A grid and lines [y = (¢ — 1)z
and lp = A — (2 — ¢)x. Figure 4.2 shows the grid for A = 7. Define the cell (i, j) to
be the square [t —1,4] X [j — 1, j]. Suppose the intersection of cell (i, j) and {; defines
a segment of length L; and that its intersection with lo defines a segment of length
Lo; then we set

0] 1
x5 = cly N +clLs s
where c is a constant that will be chosen shortly to make the solution feasible.
Let o = ¢(1+ ¢) and d; = [(¢—1)i] for ¢ € [A]. Our goal is show that (z,d, @) is
a feasible solution for (NLPA). First let us consider constraint (4.1) for some i € [A].
Let A; = {(¢,7) | 7 € [A]} be the cells used by this constraint. The total length of I
covered by cells in A4; is

VI2+(0-12=1/3-9,
while the total length of I5 covered by cells in A; is
VPP - E 5
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Therefore, it follows that
10) 1
Z Tij=c\3—¢p——=+c\6—-3¢p ——==c(1+9).
A V3—¢ V6 — 3¢

Now consider constraint (4.2) for some j € [A]. Let B; = {(¢,7) | i € [A]} be the
cells used by this constraint. Consider a horizontal strip of width v, intersecting 1,
but not lo; then the total length of I; covered by the strip is

2
" _ V33— _ V3—¢
(¢_1) +9%=m p— =m(l+9) 5

Similarly, consider a horizontal strip of width 7, intersecting lo, but not l;; then the
total length of I3 covered by the strip is

2 /—
<212¢) +Y = ¢ Y2 (14 ¢) /6 = 3¢.

We can think of B; as two horizontal strips of height v; and 7, intersecting {; and I,
respectively, where 7, + v2 = 1. It follows that

S aij=cl+d)ntel+é)n=c(l+e)

1€[A]

It remains only to show that constraint (4.3) is satisfied for all i € [A] when

c=1-— %. The contribution of L; to the z-value of cells in A; is c¢¢, and it is

concentrated on cells (i, [(¢ — 1)i]) and (i, [(¢ — 1)i] — 1). The contribution of Ls to
the z-value of cells in A; is ¢, and it is concentrated on cells (i, [A — (2 — ¢)(i — 1)])
and (i, [A — (2 —¢)(i —1)] — 1). Therefore,

S max{ds, i < [(0 = Vil co+[A = (2 - )i~ D]e,
el = (0= Dl +A =1+ (- D[(6— Vil +[1 - 2 - §)(i - 1)]),
+T1- @) -1,

(
c([(p—1)il+A—-1)+ (¢ —1)[(¢—
( i+1)+2—-(2-9¢)(i—1),

(6= Dil+A=1)+(¢—-1)((¢ -

- (1—%) ([(¢p—1)il+A=1)+(p—1)%i— (2—¢)i + 3,

1)
1)

where the third line follows from the fact that ¢ < 1, the fourth from the relation
[2] < z+ 1, and the sixth because [(¢ —1)i] + A —1 > A for all ¢ > 1. O

5. A fractional local-ratio algorithm. In this section we present an alterna-
tive algorithm for the data migration problem that involves solving a single large LP
and then round the fractional solution using ALR. The algorithm is based on the
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fractional local-ratio technique [9] and the following linear programming formulation:

(LP4) min " w, Cy

ueV

subject to

(5.1) Zmax{du,t} Tetr < Oy VueV, ee E(u),
teT
(5.2) Zre,t 21 VeeE,
teT
(5.3) Z Ter <1 YueV, teT,
ecE(u)
(5.4) Tet, Cy >0 VueV,ecE teT,

where T is a set of time slots and F(u) is the set of edges incident on vertex u. Notice
that in any reasonable solution the edge (u,v) will be scheduled earlier than deg(u) +
deg(v) (otherwise, it would be possible to move the edge earlier without altering the
rest of the schedule). Therefore, using T = {1,...,2n} is enough to capture any
reasonable schedule. The variable r. ; indicates whether edge e is scheduled at time
t, and C, denotes the finishing time of vertex u. Constraint (5.2) asks that every
edge is scheduled, while constraint (5.3) enforces that two edges incident on the same
vertex are not scheduled in the same time slot. Finally, constraint (5.1) captures the
finishing time of vertex w. It is worth noting that this formulation is stronger than
the standard LP formulation for the problem—usually (5.1) is decoupled into two
constraints.

The idea is to first solve (LP4) to obtain an optimal fractional solution (r*,C*).
Then run ALR using the lower bound offered by (r*, C*) to guide the algorithm when
choosing the model w. More specifically, we will select weights @ so as to minimize

> veun(u)(dv + [UN(u)| — 1)

(5.5) —
ZveUN(u) Wy Cv

This can be computed easily, as the minimum ratio must be obtained by setting a
single entry of @ to be nonzero. Thus, we just run ALR implementing line 7 as follows:

dy+ |UN(u)] — 1
(5.6) W(v) + 1 |v = argmin 2 + | *(u)| .
g€UN(u) Oq

THEOREM 5.1. There is an LP rounding (1+ ¢)-approzimation algorithm for the
data migration problem.

Proof. To show that this is indeed a (1 + ¢)-approximation, we need to argue that
(5.5) is upper bounded by 1 + ¢. Suppose for a moment that this is the case. Let S
be the schedule produced by the algorithm, and let (C*,r*) be the fractional used to
guide it. By our assumption, for every model w used we have

w(S) < (14 ¢)w(Cr).
Adding up over all models, we get that S is a (1 + ¢)-approximation:
w(S) < (1+¢) w(C).
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It remains only to show that (5.5) is always less than or equal to 1+ ¢. Suppose
we replace C in (5.5) with the lower bound offered by constraint (5.1) for the edge
(u,v); then we get that the ratio (5.5) is less than or equal to

(5.7) min 2veun@ (o + A = 1)y

w2>0 ZUGUN(U) D er W max{dy, t} T?u7v)>t.

Consider the polytope that captures the problem of assigning edges between u and
UN(u) to time slots in T

R = {r € 0,142

YoierTet > 1 Vec€ (u,UN(u)), }

e€(u,UN(u)) Tet <1 VvteT

Then (5.7) is upper bounded by

. Z’UEUN(’LL) (dU +A - ]‘) Wy
max min

rER >0 ZUGUN(U) Yoo Wo max{dy, t} riyp..’

which in turn is less than or equal to

(5.8) min max Z:”GUN(M) (do + A — 1)y

>0 reR ZUGUN(U) Yoo Wo max{dy, t} riy e

We can think of (5.7) as an easier version of (5.8). Indeed, while in (5.7) we
are to choose weights w for a specific solution 7*, in (5.8) we have to choose weights
that work for all » € R. Without loss of generality we can assume that the inner
maximization problem assigns the edges to the first A time slots. In fact, because the
R is integral, we can equivalently optimize over its extreme points; that is, we can
focus on one-to-one assignments between UN(u) and [A]. Letting di,...,da be the
degree sequence of nodes in UN(u), we get that (5.8) equals

, >icra)(di + A —1) . UB(d, w,)
(5.9) min — - — =min ———2.
@20 Milg.[A][A] Die(a) Wi max{d;, (i)} w>0 LB(d, )

Note that (5.9) is precisely the problem that (LP1) is trying to solve. By Theo-
rem 3.8 it follows that (5.9), and therefore (5.5), is bounded by 1 + ¢. O

6. Concluding remarks. Throughout the paper we have assumed that the
transfer graph G is simple. In practice G is typically a multigraph. Luckily, it is easy
to modify ALR to handle multigraphs. Let F(u,v) denote the set of edges between u
and v. Two modifications must be made to Algorithm 1. First, in line 5 of ALR we
choose a vertex u maximizing A = 37 yn(,) [£(u, v)|. Then in line 7, to compute
the model w we create a degree sequence d, ..., d, by making |E(u,v)| copies of d,
for each v € N(u). We solve (LP2) to get weights @', and then set w(v) to be the
sum of @} for the indices ¢ induced by d,,. With these two modifications, the analysis
easily carries over to multigraphs.

Arguably, the main drawback of ALR is that we are required to solve (LP2) in each
iteration of the algorithm or, alternatively, to solve the larger (LP4) once. We leave as
an open problem the design of purely combinatorial algorithms with an approximation
ratio of 1+ ¢ or better.
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Appendix A. Bad example for a reasonable heuristic. In this section we
study a seemingly reasonable heuristic for unweighted instances, which is based on
the scheduling stage of ALR but using the degrees instead of £ values to sort the edges.
GREEDY-DEGREE first sorts the edges (u,v) € E in nondecreasing value of min(d,,, ds),
breaking ties with max(d,, d,); the edges are then scheduled (in sorted order) as early
as possible without creating a conflict with the partial schedule built so far.

Gandhi and Mestre [19] showed a family of graphs for which an arbitrary greedy
schedule can be a factor Q(¥/n) away from the optimum, where n is the number of
vertices in the transfer graph. However, for those instances the above heuristic per-
forms well—in fact it computes an optimal solution. Unfortunately GREEDY-DEGREE
is not a constant-factor approximation either.

LEMMA A.1. GREEDY-DEGREE can produce a schedule with cost Q (Yn) times
the optimum.

Proof. Our bad instance, shown in Figure A.1, has three layers. The first, second,
and third layers contain ¢, s, and s? nodes, respectively. The first and second layers
are connected with a complete bipartite graph K, ;. The nodes in the third layer are
divided into s groups, each forming a K that is connected to a single node in the
second layer. The parameters ¢ and s will be chosen to get the desired gap.

-
o /
/

N\

i
:

\*

Fia. A.1. A bad instance for GREEDY-DEGREE.

Note that nodes in the first and third layers have degree s; thus, the heuristic
first schedules the edges in the K,’s, and then we are free to schedule the remaining
edges in any order as their endpoints have degree s and ¢ + s. Suppose a solution
51 first schedules the edges from the first to the second layer, while Sy first schedules
the edges from the second to the third layer. In S; the second-layer nodes are busy
for the first ¢ time steps working on the K, edges; as a result, every node in the
third layer finishes by ©(q), and the overall cost is Q(s?¢). On the other hand, in Sy
the third-layer nodes finish by O(s), and the first and second-layer nodes finish by
O(q + s); thus, the overall cost is O((¢ + 5)% 4+ s%). Choosing ¢ = s7, the ratio of
the cost of S7 and Sy is Q(/s). Our example has O(s?) nodes; therefore the greedy
schedule can be an Q({/n) factor away from optimum. O
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