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ABSTRACT

The two primary methods of simulating soft�sphere par�
ticle systems are Molecular Dynamics and Monte Carlo�
Researchers have recently combined the two methods
into a single Hybrid Monte Carlo algorithm� which com�
bines the potential barrier�crossing ability of Monte
Carlo with the large moves in phase space possible
through Molecular Dynamics� We extend the algorithm
by applying randomized selection to the Molecular Dy�
namics aspect of the hybrid model� By simulating a ��D
periodic box of Lennard�Jonesium� we show that our ap�
proach can reduce the computational cost of the hybrid
model by up to ��	� without compromising the accuracy
of the simulation�

� INTRODUCTION

Soft�sphere particle simulations are inherently time�
consuming� This is because every particle in
uences ev�
ery other particle as the system moves through phase
space� requiring quadratic time to naively update the
system each time step� This rapidly becomes computa�
tionally prohibitive� even on modern�day workstations�

One way of reducing the time complexity is by
approximating the interactions in some way� Unfortu�
nately� the gain in speed usually comes at the expense of
simulation accuracy� and one must be careful to ensure
the validity of the simulation in such cases� A second
approach is to sample the phase space more e�ciently�
perhaps maintaining the same computational complexity
at each time step� but reducing the number of time steps
required to measure the quantity of interest to su�cient

precision�

Molecular Dynamics �MD
 moves a system through
phase space according to the Hamiltonian equations of
motion� and in doing so maintains the correct dynamics
of the system� However� local potential minima and har�
monic modes can often trap the system� leading to poor
statistical measurements� On the other hand� Monte
Carlo �MC
 samples directly from the phase space� based
on random perturbations each time step� One advantage
is that potential barriers can be crossed more easily than
with MD� However� because MC is essentially a random
walk through phase space� its expected distance after N
steps is �

p
N �Neal ������ As a result� it can take a

long time for distant areas of phase space to be sampled�

Recent research has seen the development of hy�
brid models� in which the properties of MC are
combined with those of MD� Guarnieri and Still
�Guarnieri and Still ����� developed an alternating MC
� Stochastic Dynamics scheme� which was found to sam�
ple a system of n�pentane molecules signi�cantly faster
than MC or Stochastic Dynamics alone� Clamp et

al� ������ combined MD and MC into a Hybrid Monte
Carlo �HMC
 algorithm� and found that the HMC sam�
ples a system of Lennard�Jonesium an order of magni�
tude faster than MD alone� Our approach is to apply the
concept of �randomized algorithms� to the MD part of
the HMC� in an e�ort to further increase the e�ciency
of the algorithm� and to reduce the computational com�
plexity�

We begin by brie
y summarizing the HMC algo�
rithm� We then show how randomization can be applied
to the algorithm� and motivate its use� Next� we de�
scribe the details of the simulation� and explain how we
determine its e�ciency� Finally� we present the results
of the simulation� and conclude the paper�



� HYBRID MONTE CARLO

The idea of the HMC algorithm is to alternate between
MD and MC steps throughout the simulation� At the
beginning of each cycle� the particle velocities are redis�
tributed according to a Gaussian distribution consistent
with the system temperature� From that point� a series
of MD steps are taken� leading to a new con�guration�
This con�guration is then accepted or rejected accord�
ing to standard MC criteria �Metropolis et al� ������ If
rejected� the positions at the beginning of the MD run
are restored� Either way� the cycle begins again� starting
with the redistribution of particle velocities� Here is the
pseudo�code�

while �simulation not finished� �

redistribute velocities�

calculate energy h��

for �length of md run� �

for �each particle�

calculate force from other

particles�

for �each particle�

move according to calculated

force�

��

calculate energy h��

accept with probability exp�	�h�	h��
kT� �

case �accept�� keep new positions

case �reject�� restore old positions

before MD run

��

�

Here� h is the total energy �potential � kinetic
 of the
system at a given moment� and k is the Boltzmann con�
stant�

The velocity redistribution provides a means to es�
cape local minima and to maintain the system at a con�
stant temperature� The MD run allows the system to
take relatively large steps in phase space� which would
not be possible with MC alone� The accept�reject step
ensures that the points in phase space are sampled cor�
rectly from the canonical distribution�

� HMC WITH RANDOMIZED

SELECTION

��� Randomized Algorithms

Over the last decade� there has been much literature
concerning the use of randomized algorithms in other
areas of Computer Science� These algorithms make de�
cisions based on random number generation� and have
proven to be substantially quicker than their sequen�
tial counterparts in areas such as sorting and classi��
cation� Sequential algorithms sometimes work poorly
when data is distributed non�uniformly� An example
would be a quicksort whose pivot is always taken to be
the �rst item in the data subset� A presorted list takes
��N�
 time� while a randomly distributed list takes an
average of ��N logN 
 time� By randomly selecting the
pivot for each data subset� every list� regardless of the
input distribution� can be sorted in ��N logN 
 time
with high probability �where the high probability is over
the space of outcomes of the random number generator

�Rajasekaran and Reif ������

We apply a similar idea to the particle selection pro�
cess of MD� At each MD step� rather than determine the
force on every particle� we calculate the force acting on
only a subset of the particles� and then move these par�
ticles accordingly� If we randomly choose a new particle
set at each step� then the general character of the MD
moves should be maintained� regardless of the particle
distribution�

��� Application to HMC

Clearly� such a randomizedMD scheme may not conserve
energy� This is acceptable� provided there�s a mecha�
nism in place for redistributing velocities appropriately�
or in the case of the HMC� sampling correctly from phase
space� Instead of taking a regular MD run using all
the particles� we only move a randomly chosen subset of
these particles at each step� The computational savings
can be considerable� as the complexity is proportional to
the size of the random subsets�

The only question which remains is whether or not
the sampling e�ciency can be maintained� To answer
this question� we turn to simulation�



� SIMULATION DETAILS

��� Setup

For purposes of comparison� we chose a system similar
to that of Clamp et al� ������� Our system consisted
of ��� Lennard�Jones particles� all interacting with the
following potential�

V �r
 �

�
���

n�
�

r

�� � ��
r

���o
� r � ����

�� r � ����
��


where � and � are constants of length and energy�
Initially� the particles were arranged on a �� � �� ��
D rectangular lattice� with periodic boundary condi�
tions� In terms of reduced units of energy �E� �
E��
� length �r� � r��
 and time �t� �

p
�����



�Allen and Tildesley ������ the simulations were run at
a temperature of ���� The particle density was �����

For each experiment� the system was then simulated
with ordinary MD� using an ordinary velocity rescaling
scheme� until equilibrium conditions were reached� At
this point� the randomized HMC algorithm began� We
used MD runs of �� steps� and took system measure�
ments at the end of each run� These measurements were
based on the new positions and velocities if the move was
accepted� and on the original positions and velocities if
not� This process was repeated ������ times� for a total
of ������� MD steps�

��� Determining E�ciency

For purposes of measurement� we considered the speci�c
heat capacity� CV � in the canonical ensemble�

CV �
� 	E� �

kBT �
�

where �	E�� is the variance of the total en�
ergy �Allen and Tildesley ������ Following Clamp et

al� ������� we calculated the speci�c heats for shorter
runs� Cave�N 
� by averaging the values of the speci�c
heats obtained from blocks of size N of the full run�

Cave�N 
 �
�

m

mX
i��

Cblock�N �m � �
� Nm
�

where m is the integer part of ���� ����N and
Cblock�N �m��
� Nm
 is the speci�c heat obtained from
the block of steps N �m� �
 to Nm�

Fig� � shows the typical behavior of Cave�N 
 as
a function of block size� As the block size increases�
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Figure �� The dependence of Cave on the block size� using

a random subset size of ���� and �t� � ������

Cave�N 
 approaches a constant value� The more e��
cient the sampling of phase space� the smaller the block
size required to reproduce the speci�c heat of the en�
tire run� CV � Cave����� ���
� We see that in Fig� ��
Cave�N 
 � CV for N � ��� ����

��� Choosing the Timestep

It is important to choose the right timestep in the MD
portion of randomized HMC� Because the MD paths
are gauged by Metropolis selection� it is possible to use
greater timesteps than would be stable for a pure MD
simulation� If the timesteps are too small� then virtu�
ally all the MD paths are accepted� as the system moves
very slowly through phase space� If the timesteps are
too large� then the MD runs become unphysical� and the
resulting trial states are virtually always rejected� For
e�cient sampling� a compromise must be found� Fig� �
demonstrates how the timesize a�ects the acceptance
rate�

� RESULTS

The Lennard�Jonesium system was simulated for ran�
dom subset sizes of ��	� ��	� ��	� ��	 and ���	�
where ���	 is equivalent to no randomized selection
whatsoever �i�e� the original HMC algorithm
� In order
to put each subset size on equal footing� the timestep
leading to maximum e�ciency in each case was deter�
mined� and used in the �nal simulation runs� Table �
lists the timesteps used in each case� as well as the per�
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Figure �� The acceptance rate of randomized HMC with

varying timesteps� The data was extracted from simula�

tion runs using a random subset size of ����

subset size �	
 �t� accept rate �	
 C�

V

�� ����� ���� �����
�� ����� ���� �����
�� ����� ���� �����
�� ����� ���� �����
��� ����� ���� �����

Table �� Timesteps� acceptance rates� and C�

V
�

centage of MD runs which were accepted� Finally� the
equilibrium values of C�

V
�� CV �kB
 are shown� Re�

gardless of the random subset size� the heat capacities
converged to within � �	�

In order to compare the e�ciency of each simula�
tion� we de�ned the �minimum block size� to be the
smallest block size which still produced a speci�c heat
capacity within �	 of the full run� Thus� the smaller the
minimum block size� the better the sampling e�ciency�
The minimum block sizes are plotted in Fig� ��

FromFig� �� we see that the e�ciency of the original
HMC algorithm �random subset size � ���	
 is main�
tained by our randomized version for a subset size as
small as ��	� This translates to a computational sav�
ings of ��	� with no sacri�ce in simulation accuracy�
When the subset size is less than ��	� the equilibrium
values of CV are still consistent with that of ���	 HMC�
but the sampling of phase space becomes less e�cient�

These results can be explained by considering the
nature of the phase space exploration for each model� At
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Figure �� The minimum block size required for conver�

gence� as a function of the random subset size�

one extreme� the original HMC �or ���	�subset random�
ized HMC
 introduces randomness to the phase space
exploration only by redistributing the velocities at the
beginning of each MC cycle� From there� the MD moves
through phase space in a perfectly deterministic fashion�
leading to the next trial point� At the other extreme�
the ��	�subset randomized HMC introduces random�
ness not only through the velocity redistribution� but
also by grossly approximating a full ����	�subset
 MD
run� It appears that the optimum mixture of MC ran�
domness and MD determinism isn�t found at either ex�
treme� but rather around the ��	�subset point� at least
for the system studied here�

� CONCLUSION

The HMC algorithm has been found by other researchers
to be more e�cient in exploring phase space than either
MC or MD alone� The randomness of the MC element
allows HMC to cross potential barriers and avoid har�
monic modes� while the deterministic MD steps permit
large movements through phase space�

We have extended the HMC simulation algorithm
by introducing a new level of randomization to the MD
moves� By randomly selecting a subset of the particles
to be moved at each step� we increase the randomness of
the trial states� while maintaining the character of the
full MD moves�

The e�ciency of the algorithm was measured by
recording the speci�c heat capacity of the system
through the length of the simulation� and determining



the minimum number of iterations required on average
to approximate the speci�c heat capacity of the full run�

It was found that our randomized approach main�
tained equilibrium values of speci�c heat capacity to
within �	 of the full HMC method� Furthermore� the
e�ciency of the randomized HMC was equal to that of
HMC� for a random subset size as small as ��	� This
represents a computational savings of ��	� with no sac�
ri�ce in simulation accuracy�

For ��D Lennard�Jonesium� randomized selection
has greatly improved the e�ciency of the HMC algo�
rithm� It remains to be seen if the randomized approach
can be applied to other systems and algorithms� with
similar success�
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