Efficient Solving of Structural Constraints

Bassem Elkarablieh
University of Texas at Austin
Austin, TX 78712
elkarabl@ece.utexas.edu

ABSTRACT

Structural constraint solving is being increasingly used for software
reliability tasks such as systematic testing or error recovery. For ex-
ample, the Korat algorithm provides constraint-based test genera-
tion: given a Java predicate that describes desired input constraints
and a bound on the input size, Korat systematically searches the
bounded input space of the predicate to generate all inputs that sat-
isfy the constraints. As another example, the STARC tool uses a
constraint-based search to repair broken data structures. A key is-
sue for these approaches is the efficiency of search.

This paper presents a novel approach that significantly improves
the efficiency of structural constraint solvers. Specifically, most
existing approaches use backtracking through code re-execution
to explore their search space. In contrast, our approach performs
checkpoint-based backtracking by storing partial program states
and performing abstract undo operations. The heart of our approach
is a light-weight search that is performed purely through code in-
strumentation. The experimental results on Korat and STARC for
generating and repairing a set of complex data structures show an
order to two orders of magnitude speed-up over the traditionally
used searches.

Categories and Subject Descriptors: D.2.5 [Software Engineer-
ing]: Testing and Debugging—testing tools

General Terms: Algorithms, Reliability

Keywords: Backtracking, model checking, systematic testing

1. INTRODUCTION

Constraint solving lies at the heart of several approaches which
are used increasingly effectively to improve software reliability,
including symbolic execution [2, 11, 14, 17, 24], systematic test-
ing [1,4,21], and data structure repair [6, 7, 13]. Modern soft-
ware operates on complex data, so of increasing importance are ap-
proaches that can handle such data. We use the term structural con-
straints to refer to the constraints on the structure of object graphs
that arise during a program’s execution.

Two examples of solvers for such structural constraints are Ko-
rat [1,20], for systematic test generation, and STARC [8], for data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISSTA’08, July 20-24, 2008, Seattle, Washington, USA.

Copyright 2008 ACM 978-1-60558-050-0/08/07 ...$5.00.

Darko Marinov
University of lllinois at Urbana
Urbana, IL 61801
marinov@cs.uiuc.edu

39

Sarfraz Khurshid
University of Texas at Austin
Austin, TX 78712
khurshid@ece.utexas.edu

structure repair. A primary application of Korat is to enumerate
test inputs from constraints that define properties of desired inputs.
Such test inputs enable bounded-exhaustive testing that checks the
code under test exhaustively within given bounds. Such testing
was used previously to reveal faults in several real-world applica-
tions, including a fault-tree analyzer developed for NASA [26], an
XPath compiler at Microsoft [25], and a web traversal application at
Google [22]. The same solving also enables other reliability tasks,
such as data structure repair, where violated assertions are used as
a basis for mutating and repairing a program’s erroneous states [7].

To generate/repair data structures, the solvers analyze a given im-
perative constraint, i.e., a Java predicate that represents constraints
that define properties of the desired object graphs, and use a sys-
tematic search to explore the bounded space of the predicate to
determine object graphs that satisfy the given constraint. For ex-
ample, to generate data structures, Korat takes a bound on the size
of the structure, along with the structural constraints, and generates
all graphs (within the given bound) for which the predicate returns
true. To explore the state space, Korat implements a search where
program states are not stored for backtracking; instead, the state at
a backtracking control point is re-created by re-executing the pro-
gram from its beginning. This contrasts with stateful searches, such
as those used in some model checkers, e.g., SPIN [12] and Java
Pathfinder (JPF) [27], which store program states and retrieve them
for backtracking. Both approaches have complementary strengths
and traditionally model checkers are based on one of the two ap-
proaches [3,10,12,27].

Efficiency of constraint solving is a key issue for wider adoption
of solvers for structural constraints. For example, the current search
in STARC enables repairing structures with up to a hundred thou-
sand nodes. Improving the efficiency of STARC enables repairing
larger structures that are typically found in real applications.

We present a new approach that significantly improves the effi-
ciency of structural constraint solving. Our work builds on the Ko-
rat search [1,20], but rather than using a backtracking that re-builds
the structure and re-checks all the integrity constraints with every
search candidate, our approach uses a checkpoint-based backtrack-
ing that employs efficient state manipulations based on (1) selective
storing of program components and (2) abstract undo operations for
retrieving the program state.

Our approach is based on two key insights: (1) the predicates
check desired properties by traversing the given structures without
mutating them; and (2) the traversals are over object graphs and of-
ten use standard worklist-based algorithms that track sets of visited
nodes to prevent infinite traversals. The first insight allows us to
define a minimal part of state to store, which reduces storage over-
head. The second insight allows us to use our own library classes
in place of the standard Java libraries, such as sets and lists, that are

class SinglyLinkedList {
Node header;
Node getHeader() {...}

int size;
int getSize() {...}

static class Node {
Node next;
Node getNext() {...}
}

// class invariant
boolean repOk () {

Ll. // If header is null, then size must be 0

L2. if (getHeader() == null) {

L3. return getSize () == 0;

L4. }

Ls.

L6. // Acyclicity

L7. Set<Node> visited = new HashSet<Node>();
L8. Node p = getHeader ();

L9. while (p != null) {

L10. if (!visited.add(p)) {

L1l return false;

Li12. }

L13. p = p.getNext();

L14. }

L15. // Number of reachable nodes cached in size
L16. return getSize () == visited.size ();

}

Figure 1: Class invariant for the singlyLinkedList.

commonly used in graph traversals; in contrast with the standard
libraries that optimize program execution, our libraries optimize
backtracking and thus speedup the search.

This paper makes the following contributions:

e Hybrid search for structural constraint solving: We show
how to combine the benefits of a re-execution-based search
with the benefits of a checkpoint-based search.

e Abstract undo operations: We introduce undo operations
that are performed at an abstract data type level to enable
efficient backtracking.

e Implementation: We present an implementation for per-
forming backtracking based on code instrumentation that ex-
ecutes on a standard Java Virtual Machine (JVM).

e Evaluation: We evaluated our approach on generation/repair
of a suite of commonly used data structures. The experimen-
tal results show speedups of up to two orders of magnitude
over Korat and an order of magnitude over STARC.

2. EXAMPLE

To illustrate our approach, we present the example of generat-
ing singly linked lists using Korat. This example illustrates how
integrating our checkpoint-based search in Korat optimizes its per-
formance and enables more efficient data structure generation. We
start by describing the Korat search algorithm and present in de-
tail all the steps for generating all singly linked lists with up to two
nodes using Korat. We then illustrate how to generate the same lists
more efficiently using our approach.

2.1 Singly linked list

Consider the skeleton of a singly linked list class in Figure 1. The
inner class Node models the entries in a list. Each Node object has
a next field which points to the next node in the list. Each singly

40

Candidate structures Field
initializations
size 0 size 1 size: 2 header
(a) |] O size
size 0 size 1 size: 2 header
? header ? header ? header header.next
o
header
header
(©) ‘ next header.next
size 0 size: 1 size: 2
L] L]
header header header | NG2dEY
NO header.next
next next next header.next.next
(d) size
? header ? header
NO NO
[NoJ [NoJ header
next next
header.next
() next next header.next.next

Figure 2: The candidate structures considered by Korat for
generating lists with up to two nodes. Valid lists are displayed
in bold. The candidates are grouped according to the field ini-
tializations that Korat performs when generating them. For ex-
ample, all the lists in row (a) require initializing the header and
the size fields. The small boxes represent SinglyLinkedList
objects and the large boxes represent Node objects.

linked list object has a header node which points to the first node
in the list, and a size field which caches the number of unique
nodes reachable from the header node along the next field. Each
field is associated with an accessor method that returns its value.

The structural integrity constraints are: (1) acyclicity along next
and (2) number of nodes reachable from the header field following
next is cached in size.

The structural integrity constraints of a SinglyLinkedList can
be represented as a Java predicate method which takes the structure
as input and returns true if and only if the structure satisfies all
the integrity constraints. Following Liskov [19], we term such a
predicate method repOk, and for object-oriented programs, we term
structural invariants as class invariants. The class invariant for the
SinglyLinkedList class is shown in Figure 1.

2.2 Korat generation

To generate lists, Korat takes as inputs the class declaration, the
repOk predicate, and a finitization, i.e., a bound on the number of
objects of each type and a domain of values for each field. Korat
starts by allocating the values of each field domain, and creates a
default structure, i.e., a structure where all the fields are uninitial-
ized. Korat then invokes repOk on the structure and initializes the
fields to values from their domains as they are accessed during the
execution of repok. (Korat instruments the accessor methods and
uses them to non-deterministically mutate the values of the fields.)
When repoOk terminates, Korat backtracks, mutates the last field

Figure 3: The Korat search tree for generating all non-
isomorphic lists with up to two nodes. The vertices represent
field initializations, the edges represent values from the field
domains. A path from the root to a leaf represents a candidate
structure. Valid lists end at a bold leaf and invalid ones end at
a dashed leaf.

accessed by repOk to the next value in its domain, and re-executes
repOk. Korat terminates when all the search is exhausted, i.e., all
the values in the field domains are considered, and reports all the
structures that resulted from a positive execution of repok. Ko-
rat employs efficient pruning techniques to reduce the search space
and only generates non-isomorphic structures [1].

To illustrate, consider generating all the singly linked lists with
up to two nodes using Korat. The domains of the types are the sets
[0, 1, 2] for the size field, and [null, NO, N1] for the header and
next fields, where NO and N1 are labels assigned for two objects
of type Node. Figure 2 shows all the candidate structures and field
initializations considered by Korat while generating the lists. The
valid candidates are displayed in bold. Following the execution
of repOk, Korat first accesses (and initializes) the header field
to null—the first value in header’s domain— then initializes the
size field to 0 and reports the structure as valid. Korat then re-
executes repOk from the beginning, backtracking on the last field
initialized during the execution of repOk, i.e., the size field, and
sets it to 1—the second value of its domain. Once all the values
of the size field are considered, Korat backtracks and assigns the
header field to NO, which enables extending the list to generate the
rest of the graphs. Note how Korat backtracks directly after repok
returns false which enables efficient pruning of the search space.
Also note that Korat only considers NO, and not N1, for header
to avoid generating isomorphic structures [1]. Korat’s backtrack-
ing approach re-initializes all the fields that are accessed by repOk
with every candidate structure. We next describe our backtracking
approach using the same example.

2.3 Checkpoint-based generation

Another way to look at the Korat framework is by considering
the search (execution) tree that Korat builds while generating the
lists. Figure 3 shows the search tree. Each vertex in the tree rep-
resents a field initialization. Each edge represents a value from
the field domain. For example, the root node corresponds to the

41

Figure 4: The backtracking process. Black nodes represent
choice points. White nodes represent termination points. Upon
execution, the program state is saved. Upon backtracking, the
program state is retrieved.

header field, and the values considered for header are null and
NO. Throughout the rest of the paper, we term the vertices as
choice points as they represent expressions in the code where non-
deterministic choices are performed, and the edges as choices as
they represent the possible alternatives for field values.

Each path from the root to a leaf represents an execution of
repOk and thus, a candidate structure. The leafs in bold repre-
sent executions of repOk that resulted in valid structures. In Korat,
every execution of repOk traverses the tree from the root to a leaf.
While this approach is sufficient to consider all the candidates, it (1)
adds unnecessary field initializations with every path traversal, and
(2) performs redundant checks of the structure properties. To illus-
trate, consider the three candidates at row (d) in Figure 2. These
candidates only differ by the value of the size field. Since the last
accessed field is the size field, (1) there is no need to re-initialize
the list before changing the value of size, and (2) there is no need
to check for the acyclicity of the list since a change in the size
field only affects the check performed at line (1L16) in repOk.

Our generation approach combines lightweight backtracking (Sec-
tion 3.2) with incremental state storage and retrieval (Section 3.1)
to optimize the performance of Korat. Rather than re-executing
repOk (traversing the search tree from the root) for each candi-
date structure, our approach backtracks to the last choice point in
repOk (the nearest parent in the tree), retrieves the program state
at that statement, and proceeds with repok’s execution (the next
path in the tree starting at the nearest parent). Using this approach,
only the last accessed field is re-initialized, and the only constraint
checks performed are those checked after that field access. To il-
lustrate, let us again consider the candidates at row (d) in Figure 2.
Our algorithm backtracks to the check at line .16, mutates size,
and only checks the size property of the structure.

For the singly linked list example, the checkpoint-based approach
requires only 17 field initializations (which is equivalent to the
number of edges in the search tree), whereas Korat requires 35
(which is equivalent to the sum of the number of edges for each
path from the root vertex to a leaf). This difference in field initial-
ization increases with the size of the structure. For example, for
a list with 100 nodes, Korat performs 873,852 field initializations
and generates the list in 532ms, whereas the checkpoint-based ap-
proach performs 15,452 in 54ms which is 10 times faster.

3. ALGORITHM

This section describes our approach for efficient backtracking.
There are two key operations for backtracking: (1) switching the
execution control to specific statements in a program and (2) stor-

ing/retrieving the program state at those statements. While this
backtracking is advantageous for avoiding the overhead of rebuild-
ing the program state as in re-execution-based backtracking, its per-
formance is highly dependent on the efficiency of these two op-
erations. For instance, our experiments with Korat show that the
overhead imposed by a naive approach for storing/retrieving, which
takes a snapshot of the heap at every choice point, is similar to that
imposed by rebuilding the program state through re-execution for
most structures.

We next describe our backtracking algorithm. We first show how
to maintain the program state (but program counter), i.e., the stack,
static, and heap memory, and then show our technique for effi-
ciently maintaining the program counter when backtracking. We
use Korat as an illustrative application of our approach, yet we point
out that the approach is not limited to it (Section 6).

3.1 State storage and retrieval algorithm

Systematic search algorithms [1, 8, 14,24] employ choice points,
i.e., program statements where nondeterministic choices are per-
formed on the search variables, and termination points, i.e., pro-
gram statements that specify the end of a search path or a choice.
For instance, the choice points in Korat are the field access state-
ments in repOk where the search variables are the fields of the
structure and the choices are the members of the field domains. The
termination points in Korat are the return statements of repOk
that declare a structure as valid or not.

Backtracking occurs between a termination point and a choice
point. To maintain the correctness of a program execution, a back-
tracking approach must store the program state at each choice point,
and upon backtracking, must retrieve the stored state and proceed
with the next choice. To illustrate, Figure 4 gives an abstraction
of the search process. Black nodes represent choice points, and
white nodes represent termination points. As the program executes
(following the dashed arrows in Figure 4), the search algorithm
stores the state between choice points. Once a termination point
is reached, the search algorithm backtracks to the last choice point
(following the dotted arrows in Figure 4), retrieves the stored state
and proceeds with the next choice.

Several approaches exist for state storage/retrieval [16,31]. A
simple, yet expensive, approach for storing the state is taking a
snapshot of the heap at every choice point. This approach is not
only expensive in terms of memory requirements but also ineffi-
cient as it stores a lot of redundant copies of parts of states. A
more efficient approach for state storage is by using state compar-
isons [18,30]. This approach efficiently stores the heap at the first
choice point, and then incrementally updates it by comparing the
state at the current choice point with the stored one.

We propose an alternative approach for state storage/retrieval.
Rather than taking a snapshot of the heap at the choice point, or
conceptually performing state comparisons to update the snapshot,
we incrementally store the program state as the changes occur dur-
ing execution. To enable efficient state retrieval, along with every
stored change, we save a corresponding undo command [9] that en-
ables retrieving the original state when the command is executed.
Undo commands are implementations of the “Command" design
pattern [9] where each command object saves the necessary infor-
mation for undoing the effect of an action performed on the ob-
ject. Undo commands have been previously used in software model
checkers [23]. However, our use of the undo commands is differ-
ent. Rather than performing the operations at the concrete heap
level, we introduce abstract undo commands which perform these
operations at an abstract object level. We elaborate on this idea
later in this section.

42

// An interface for undo commands
public interface UndoCommand {
public void execute ();

}

// Declaration of the
// the undo commands
Stack <UndoCommand> undoStack =

stack used for storing

new Stack <UndoCommand>();
// Store method for the undo commands
// at a choice point
public void store () {

saveUndoStack (undoStack);

undoStack = new Stack <UndoCommand>();

}

saving

// Retrieve method for restoring
// at the backtracking target
public void retrieve () {
undoStack = getLastUndoStack ();
while (!undoStack.isEmpty()) {
UndoCommand uc = undoStack.pop();
uc.execute ();
}
}

the program state

Figure 5: Components for maintaining the program state. The
UndoCommand interface defines the common behavior of all
undo commands. The undoStack saves the undo commands
that occur between two choice points in the program. The
store method saves the undo stack and clears it while the
retrieve method retrieves the last undo stack and executes
its commands to restore the program state.

The search algorithm maintains the undo commands in a stack
which we term undo stack. As the program executes, the undo
stack is populated with undo commands. At each choice point, the
undo stack is saved. Upon backtracking, the last saved undo stack
is retrieved, and its commands are executed to restore the state to
the previous choice point. To illustrate, Figure 5 shows the imple-
mentation of the store method which is invoked at choice points,
and the retrieve method which is invoked when backtracking.

3.1.1 Undo commands

We next describe the undo commands. Undo commands are con-
sidered in the methods of interest for the search algorithm. For in-
stance, in Korat’s search, undo commands are inserted in repOk
and any helper method invoked by repok that accesses the target
structure fields, i.e., contains choice points. Undo commands are
inserted at method statements that cause a change in the program
state. The statements of interest for inserting the undo commands
are the following:

e store operations on the local variables,
e store operations on instance or static fields of a class, and
e method invocations.

We create undo command that (1) saves the original value of the
modified object, and (2) enables retrieving the state of the modified
object when the undo command is executed. We next describe the
undo operation for each of above statements.

Local variable stores: Store operations on local variables are
treated as field store operations. Since Java doesn’t support pointer
creations to elements in the JVM registers’ stack, our approach re-
places local variables with static fields and uses field undo com-
mands (described in the next paragraph) to undo local changes.

// A static field to the local

public static Node p;

replace variable p

// RepOk method with undo commands,
boolean repOk() {

// The HashSet is replaced with an undoable hash set

Set<Node> visited = new UndoableHashSet<Node>(undoStack);

while (p != null) {

// Undo command added to retrieve the value of p
undoStack . push (new PUndoCommand(this, p));
p = p.getNext();

}

(a)

// The undo command for field accesses

public class PUndoCommand implements UndoCommand {
SinglyLinkedList list;
Node value;

public PUndoCommand(SinglyLinkedList list , Node value)

this.list = list;
this.value = value;

}

public void execute () {
list.p = value;
}
}
(b)

Figure 6: (a) Undo commands inserted for the repok method
of the singlyLinkedList class. Undo commands are added
before variable changes, and containers are replaced with un-
doable containers. (b) An undo command class to restore the
value of the variable p in repok. The execute method reas-
signs p to its original value.

This approach adds some overhead as XSTORE instructions which
access variables from stack memory are replaced with PUTSTATIC
instructions which access variables from static memory. Note that
our transformation replaces stack frames with static fields and as
such cannot support recursive methods; to support recursion, our
transformation would need to replace stack frames with (appropri-
ately linked) heap objects

Field stores: Field store operations are the simplest to save and
undo. Before each field store operation, we create an undo com-
mand object that takes as input the field’s owner object and the
field’s value. When the command is executed, it reassigns the
field to the saved value. To illustrate, consider the example of the
repOk method for the signlyLinkedList class in Figure 6(a).
The method has one field to store, p (the visited variable is never
re-assigned and thus it is not saved). To store p, we push a new
instance of the PUndoCommand class (Figure 6(b)) which takes the
list object and the field’s value, onto the undo stack. Upon back-
tracking, when the execute method of the PUndoCommand is in-
voked, the field p retrieves its old value. The example in Figure 6(b)
describes the general implementation of an undo command to re-
store the value of a field. We point out, however, that there is no
need to save the owner object when restoring static fields.

Note that executing the undo commands upon backtracking re-
stores the heap, static, and stack memory since local variables are
transformed into static fields.

and undoable containers

{

// A snippet of the UndoableHashSet class

public class UndoableHashSet<T> implements Set<T> {
Stack <UndoCommand> undoStack;
Set<T> container;

public boolean add(T e) {
if (container.add(e)) {
undoStack . push (new AddUndoCommand<T>(container ,
return true;
}
return false;
}
}

€));

(a)

// Implementation for the abstract add undo command
public class AddUndoCommand<T> implements UndoCommand {
Set<T> container;
T val;

public AddUndoCommand(Set<T> container , T val) {

this.container = container;
this.val = val;

}

public void execute () {
container .remove(val);
}
}
(b)

Figure 7: Abstract undo commands on sets. (a) An
UndoableHashsSet class that associates each operation with its
corresponding undo command. (b) An undo command for re-
versing the effect of the add operation on sets. If an item is
added to the set, the undo command removes it when executed.

Method invocations: A straightforward way to handle method
invocations is to instrument the invoked method’s code and add
undo commands before changes to its local variables and fields ac-
cesses. We use this approach on repOk (the method of interest of
Korat’s search algorithm) and any helper method invoked by repok
which contains choice points. However, we treat other method in-
vocations differently depending on the type of the method, its ef-
fect on the caller object, and the type of its caller object. We first
check if the method is pure, i.e., does not mutate the state of its
caller, and if so, there is no need to instrument the method’s code.
We then check the method’s caller object type. If the caller ob-
ject’s type is that of a container type, i.e., its class implements the
java.util.Collection or the java.util.Map interfaces, we
use abstract undo commands to reverse the effect of the method on
the container (Section 3.1.2). If the method’s caller object type is
not a container, we use the straightforward approach, i.e., instru-
ment the method and add undo operations on its field accesses, but
not the local variables.

3.1.2 Abstract undo operations

Container types are widely used in Java programs. For exam-
ple, repOk predicates are typically implemented as standard work-
list algorithms that traverse the object graph, keep track of visited
nodes, and check for the validity of the structural integrity con-
straints [20]. Collection classes provide powerful utilities for per-
forming such traversals and checks, for example, a LinkedList
object can be used for the work-list and a HashSet object can be
used for saving the visited items. These classes maintain complex
data structures to enable efficient operations, such as adding, re-
moving, or checking the occurrence of an element. This makes

public boolean repOk() ({

// LO:
// store();
Node header = getHeader ();
// LI:
// store();
int size = getSize();
System.out. println (header + " " + size);

// retrieve ();
// int index = Search.getTargetld();
// TABLESWITCH \\(index)

LO

// 0 :

// 1 : LI
// 2 L2
// L2:

return true;

Figure 8: An example of the backtracking implementation. At
each choice point, a label is added in addition to a call to the
store method. At the branch target, a call to the retrieve
method is added as well as a TABLESWITCH to enable backtrack-
ing to the program choice points.

it expensive to store and retrieve their states using standard ap-
proaches. To illustrate, a snapshot approach requires iterating over
the container elements at each choice point to save the state. A state
comparison approach requires traversing the container to perform
state comparisons. Even the undo approach that we presented in
the previous section may be expensive due to the complex imple-
mentation of the operations on containers. For example, a HashSet
implementation uses a HashMap which saves its elements in an in-
ternal array. Therefore adding undo commands for all the internal
state changes involves several operations, especially for operations
that dynamically resize the containers which include copying all
the container elements into newly allocated memory.

We present an efficient way for undoing changes on containers.
We perform the undo operations at the abstract level of the con-
tainer rather than at the concrete container implementation. For
example, instead of adding field undo commands in the imple-
mentation of the addFirst method of a LinkedList class, we
add one undo command that reverses the effect of the addrirst
method, i.e., the undo command calls the removeFirst method
on the LinkedList object.

To apply this abstraction, we implement undoable versions of the
container classes and replace all the instances of the concrete ver-
sions with the new ones, e.g., the visited variable in the repOk
method in Figure 6(a). The undoable versions are simple adapters
for the original containers where the methods’ implementations
push the appropriate undo command to the program undo stack.
To illustrate, consider the code snippet of the UndoableHashSet
class in Figure 7(a). The add method of this class adds an object to
the internal wrapped HashSet object. If the add operation is suc-
cessful, an AddUndoCommand object is created and pushed onto the
undo stack. The implementation of the AddUndoCommand class is
displayed in Figure 7(b). Instances of this class are constructed us-
ing the container and the object added to the container. The execute
method simply removes the added object from the container.

Abstract undo operations achieve their efficiency by providing a
way to undo the effect of complex operations that are frequently
invoked and that involve large state changes.

3.2 Backtracking implementation

We next describe an implementation for efficient backtracking.
We describe how to maintain the program counter and change its
value between choice points to automatically switch the program
control without special JVM support.

We start by identifying the backtracking sources, i.e., the pro-
gram statements to backtrack from, and the backtracking targets,
i.e., program statements to backtrack to. We then instrument the
program to enable branching from the backtracking sources to the
targets while restoring the state of the program at those targets.

The backtracking sources are the termination points of the pro-
gram. For instance, the return statements in repOk. The back-
tracking targets are the choice points of the program. In Korat, the
choice points are the accessor methods that perform nondetermin-
istic choices to initialize the fields.

To enable efficient backtracking, we instrument the method un-
der analysis, e.g., repOk, by adding labels at the backtracking tar-
gets, and TABLESWITCH instructions at the backtracking sources.
The branch targets for the TABLESWITCH instructions are the la-
bels inserted before the backtracking targets. The TABLESWITCH
condition checks an integer value returned by search algorithm that
identifies the label of the target choice point (this information is
already maintained by the search algorithm). Note that this is a
non-trivial use of table switches as the targets of the TABLESWITCH
instructions occur at arbitrary points in the method code.

At the backtracking sources and targets, we also add a call to the
retrieve and store methods described in Section 3.1 to maintain
the program state when backtracking.

To illustrate the backtracking approach, consider the example in
Figure 8 of a simplified repOk method that accesses two fields from
the SinglyLinkedList and always returns true. The instruc-
tions added by the instrumentation are displayed in the commented
portion of the code. Our use of the TABLESWITCH statements can-
not be expressed in Java source and therefore, they are expressed
in Java bytecode. The method in Figure 8 is simple and doesn’t
require adding undo commands.

The code example has two choice points. A label is added (LO
and L1) before each choice point, as well as a call to the store
method which is used to save any undo commands performed be-
fore the choice point (in this case none). The added labels are the
backtrack targets.

The method has one backtracking source which is the return
statement. Before this statement, a label is added (L2) in addition
to a call to the ret rieve method which is used to execute the saved
undo commands. A TABLESWITCH is also added before the return
statement. The branching labels are LO and L1, with the default
label L2. The field domains we use in this example are [null, NO]
for the header field, and [0, 1] for the size field. The output of
executing repOk is as follows:

null 0
null 1
NO O
NO 1

The execution works as follows. The first pass on repOk assigns
header and size to null and O respectively. Before the method
returns, the search algorithm returns 1 as the id for the last choice
point, and the TABLESWITCH branches to label L1, assigns size
to 1, and prints the values. At the next encounter of the return
statement, the search algorithm returns O as the last field initializa-
tion since all the values in the size field domain are considered.
The program backtracks to label L0, assigns header to N0, assigns
size to 0, prints the values. The program then backtracks to label
L1 and assigns size to 1. When all the choices are considered, the

search algorithm returns 2 as the branch target, which causes the
TABLESWITCH to branch to label L2, and the method’s execution
then terminates.

The above discussion illustrated backtracking within a single
repOk method. However, normally as the complexity of the struc-
tural constraints increases, it is typical to represent the class in-
variant as multiple small helper methods with one executive repOk
method that invokes the helper methods. Such cases might require
backtracking to choice points that reside in the helper methods from
the return statements in repok. To handle such scenarios, the call
sites of the helper methods are considered backtracking targets,
and TABLESWITCH statements are added at the entry points of the
helper methods to enable branching to the destination choice point.
Upon backtracking from repOk, the control point is changed to
the helper method’s call site, the method is invoked, and then the
TABLESWITCH at the entry of the method directs the control to the
target choice point. Note that there is no need to restore the lo-
cal variables at the target choice point, since restoring the values is
automatically handled by executing the undo commands.

The described backtracking mechanism adds minimal overhead
since it primarily adds table switches at method entries and return
statements. Backtracking within repOk requires one switch, while
backtracking for the cases of helper methods, requires two switches
per invocation to reach the target choice point.

4. EVALUATION
4.1 Methodology

We evaluate the efficiency of our search by implementing it in
both Korat, the test input generation tool described in Section 2, and
STARC [8], a framework for data structure repair which employs a
backtracking search based on static analysis.

We conduct two experiments using Korat. In the first experiment,
we use Korat to exhaustively enumerate all the non-isomorphic
structures of a small size, ranging from 6 to 15 nodes. In the second
experiment, we use Korat to generate the first 100 non-isomorphic
structures of a larger size, up to a few hundred nodes (generating all
structures is infeasible due to the large number of such structures).
For both experiments, we compare the generation time taken by
the checkpoint-based approach with that taken by the re-execution-
based approach originally used in Korat. The comparison with Ko-
rat shows up to 8.3X speedup in execution time when using the
checkpoint-based approach for generating small structures, and up
to 117X speedup for generating large structures.

To demonstrate the efficiency of the backtracking technique, in
addition to the generation time, we compare the number of field
initializations performed by the checkpoint-based approach with
those performed by Korat.

For data structure repair, we use STARC for repairing struc-
turally complex subjects with tens of thousands of nodes. We per-
form the experiment using the checkpoint-based approach and us-
ing the original search implemented in STARC. A comparison of
the results shows up to 56X speedup for the checkpoint-based search
when repairing structures with 100,000 nodes and 100 faults.

4.2 Subjects

The evaluation is performed on ten subject structures that have
been previously used to evaluate various approaches in testing and
error recovery [8,20]. The structures are the following: singly
linked list, the acyclic structure described in Section 2; sorted list,
structurally identical to a singly linked list but with sorted elements;
binary and n-ary trees; search trees, similar to binary trees but with
ordered elements; red-black and avl trees, implementations of bal-

45

anced search trees, with red-black trees having complex constraints
on the colors of the nodes along the paths from the root [5]; doubly
linked list, an implementation of the java.util.LinkedList li-
brary; disjoint set, a linked-based implementation of the fast union-
find data structure [5]; and heap array, an implementation of a pri-
ority queue. For each of the subjects, we implemented the repOk
methods that represent the structural constraints.

4.3 Experimental results

We next describe the experimental results. All experiments used
a 1.7 GHZ Pentium M processor with 512 MB of RAM.

4.3.1 Generation using Korat
Experiment 1: Generating all small structures

In this experiment, we study the efficiency of the checkpoint-
based backtracking approach by using it to generate all the non-
isomorphic structures within a given small scope (up to 15 nodes).
We refer to the original implementation as Korat. Table 1 shows
the generation results. The table displays the generation time in
milliseconds taken by Korat and the checkpoint-based approach for
generating eight of the subject structures. We do not show the re-
sults for the singly and doubly linked lists as both approaches can
generate all the lists with less than 20 nodes within 50ms. The table
also contains a comparison between the number of field initializa-
tions performed by Korat and the checkpoint-based approach when
generating the structures. We use this comparison to illustrate the
efficiency of the backtracking algorithm. In addition to the gener-
ation time and the number of field initializations, the table reports
the number of undo commands performed by the checkpoint-based
approach to maintain the program state.

The generation time results show that for the reported subjects,
the checkpoint-based approach is faster than Korat with speedup
ranging from 1.2X for heap array, to 8.3X for search tree. The
results also show that the speedup factors increase with the size
of the structure. For example, in the red-black tree example, the
speedup ratio increases from 3.2X when generating trees with 6
nodes to 6.6X when generating those with 9 nodes.

To study the speedups obtained by using the checkpoint-based
backtracking approach, we evaluate the reduction in the number of
field initializations, as well as the number of undo operations re-
quired by the backtracking approach to maintain the program state.
The field initialization results in Table 1 show that for all the studied
subjects the checkpoint-based approach reduces the number of field
initializations required by Korat to generate the structures. The re-
duction ratio ranges from 6.3X for heap array to 28X for red-black
tree. In comparison with the number of field initializations per-
formed by Korat, the number of undo operations is smaller by ap-
proximately one order of magnitude.

Note that the speedup factors vary among different subjects with
the same size. For example, the speedup factor for generating a
heap array with 10 nodes is 2.6X whereas that of the avl tree is
6.4X. This variation is due to the field initialization ratio and the
number of undo operations performed. For example, the field ini-
tialization ratio for generating the heap array is 9.5X whereas that
of the avl tree is 22X. Similarly, the number of undo operations
performed in the heap array example is approximately 8X less than
the number of field initializations of Korat, whereas in the avl tree
it is approximately 18X less.

The above results show that as the structure size increases, the
reduction ratio in the number of field initializations increases which
leads to an increase in the speedup factor. The next experiment
shows how this result enables our approach to achieve up to two
orders of magnitude speedup factors over Korat.

| Subject | Size | Candidate Valid [Time(ms) [Speedup [Field initializations Ratio | Undo
structure structures | structures | Korat | checkpoint-based | [Korat [checkpoint-based | operations
9 210,444 4,862 901 330 2.7X 3,556,640 241,074 14.7X 282,525
10 815,100 16,796 3,404 892 3.8X 15,366,812 921,312 16.6X 1,064,599
Binary tree 11 3,162,018 58,786 13,590 2,784 4.8X 65,809,076 3,535,028 18.6X 4,036,961
12 | 12,284,830 208,012 57,263 10,055 5.7X 279,823,708 13,608,752 20.5X 15,386,477
7 43,485 136 350 110 3.2X 801,754 50,364 15.9X 77,540
8 182,930 288 1,021 262 3.8X 3,840,910 207,966 18.4X 309,971
Avl tree 9 611,592 440 3,615 650 5.5X 14,013,240 686,794 20.4X 980,053
10 2,036,700 660 11,627 1,802 6.4X 50,271,572 2,265,072 22.1X 3,107,883
6 23,327 140 341 108 3.2X 623,331 30,876 20.1X 69,096
7 101,104 280 931 232 4.0X 3,130,680 135,274 23.1X 315,071
Red black 8 449,270 576 3,681 657 5.6X 15,812,723 614,107 25.7X 1,510,765
9 2,061,202 1,220 19,885 3,014 6.6X 81,246,102 2,899,485 28.0X 7,578,187
6 98,693 924 661 161 4.1X 1,798,082 115,354 15.5X 202,942
7 755,833 3,432 3,862 791 4.8X 15,782,074 864,476 18.2X 1,445,712
Search tree 8 5,797,298 12,870 30,261 4,779 6.3X 136,077,730 6,524,130 20.8X 10,459,953
9 | 44,537,298 48,620 276,551 32,960 8.3X 1,159,010,940 49,493,134 23.4X 76,579,239
6 314,515 7,752 1,151 371 3.1X 5,631,007 376,824 14.9X 497,258
7 2,084,503 43,263 8,682 1,933 4.5X 43,319,152 2,436,750 17.7X 3,115,667
N-ary tree 8 13,776,898 246,675 64,799 11,737 5.6X 326,280,532 15,806,535 20.6X 19,709,837
9 | 90,939,373 | 1,430,715 446,970 66,391 6.7X 2,419,176,805 102,814,365 23.5X 125,611,705
12 98,227 13 491 140 3.5X 2,117,998 106,430 19.9X 131,077
13 212,902 14 1,055 250 4.2X 49,105,46 229,298 21.4X 278,534
Sorted list 14 458,048 15 2,210 430 5.1X 11,266,473 491,429 22.9X 589,831
15 982,921 16 5,108 801 6.3X 25,617,641 1,048,471 24.4X 1,245,192
7 14,512 4,147 90 72 1.2X 343,484 53,992 6.3X 66,952
8 138,025 21,814 521 382 1.4X 3,319,853 440,829 7.5X 528,867
Heap array 9 2,981,757 231,710 4,083 1,829 2.2X 28,078,660 3,312,910 8.4X 3,984,900
10 9,745,451 2,015,168 38,801 14,635 2.6X 286,898,609 30,059,909 9.5X 35,782,329
6 31,801 5,040 171 80 2.1X 597,707 35422 | 16.8X 181,636
Disjoint 7 202,832 40,420 911 301 31X 6,410,217 322,743 19.8X 1,814,650
sets 8 2,085,332 362,880 10,565 2,473 4.2X 74,576,822 3,266,149 22.8X 19,958,710
9 | 23,458,671 | 3,628,800 126,718 26,391 4.8X 936,490,880 36,288,280 25.8X 239,501,176

Table 1: Results for generating all non-isomorphic structures with up to 15 nodes. The table shows a comparison of the generation
time between Korat and our approach. The tabulated times are in milliseconds. It also compares the number of field initializations
performed by the two approaches. The results show up to 10 times speedup for the checkpoint-based approach over Korat.

Experiment 2: Generating few large structures

We study the efficiency of the checkpoint-based backtracking
approach on generating larger structures with hundreds of nodes.
While enumerating all small structures is important for exhaustive
bounded testing of programs, it is prudent to test the applications
on larger inputs to capture bugs that are not easily detected with
small tests.

We generate the first 100 non-isomorphic structures as it is infea-
sible to generate all of them. Table 2 shows the generation results.
The items of this table are similar to those in Table 1. For structures
with only 1 non-isomorphic candidate of a given size, such as the
singly and doubly linked lists, we generate 100 structures within a
size range. For the balanced trees, and the ordered data structures,
Korat’s execution does not terminate within 20 minutes for gener-
ating 2 structures with 100 nodes due to the constraints on the data
elements, and thus, we drop these structures from the comparison.

The generation time results show up to two orders of magnitude
in the speedup factor of the checkpoint-based approach over Ko-
rat. Note how the speedup factor increases when generating larger
structures. For example the speedup factors of the binary tree ex-
ample increased from 5.7X for generating trees with 12 nodes to
69.2X when generating trees with 400 nodes.

The improvement in the speedup factor is due to the improve-
ments in the reduction factor of the number of field initializations
performed. For example, for the binary tree example, the field ini-
tialization reduction ratio increases from 20X to 721X when gen-
erating trees with 400 nodes. This is an expected result as for each
candidate structure, Korat re-executes repOk from the beginning

46

and reinitializes all the fields accessed by repOk. As the size of the
structure increases, the number of candidates increases, as well as
the number of field initializations required for generation.

As for the undo operations, the number of operations performed
when generating large structures is still approximately one order of
magnitude less than the number of field initializations performed by
Korat, and thus adds minimal overhead to the overall performance.

The experimental results illustrate how using the lightweight back-
tracking approach with the abstract undo operations optimizes Ko-
rat’s generation time by reducing the number of field initializa-
tions without introducing a comparable number of undo operations.
These results show the applicability of the approach to various
complex structures ranging from a few nodes to hundreds of nodes.

4.3.2 Repair using STARC

STARC [8] is a framework for assertion-based repair of complex
data structures. STARC aims at automatically repairing data struc-
ture corruptions that occur at runtime, enabling programs to recover
from corruption errors and proceed with their executions. Given a
corrupt structure and a repOk method that describes the structural
constraints, STARC mutates the corrupt structure and transforms
it into one that satisfies repok. STARC builds on previous work
on data-structure repair [7] which uses a re-execution-based back-
tracking search based on symbolic execution and introduces a static
analysis that guides the search to efficiently repair large complex
structures. Unlike the Korat search which aims at enumerating all
structures of a given size, STARC aims at searching for the first
structure that satisfies the given constraints starting from the cor-
rupt structure.

| Subject | Size Candidate | [Time(ms) [Speedup [Field initializations Ratio | Undo |

structure structures | Korat | checkpoint-based | [Korat [checkpoint-based | operations
401-500 125,751 10,455 150 69.7X 42,043,252 126,752 331.6X 254,502

Singly 501-600 180,901 18,076 210 86.0X 72,541,902 182,102 398.3X 365,402
linked list 601-700 246,051 29,531 302 97.7X 115,070,552 247,452 465.0X 496,302
701-800 321,201 46,210 410 112.7X 171,629,202 322,802 531.6X 647,202

401-500 377,247 42,281 511 82.7X 251,501,000 379,247 663.1X 382,744

Doubly 501-600 542,697 64,002 721 88.7X 434,161,200 545,097 796.4X 549,294
linked list 601-700 738,147 112,532 1,210 93.0X 688,941,400 740,947 929.8X 745,844
701-800 963,597 178,352 1,807 98.7X 1,027,841,600 966,797 1,063.1X 972,394

100 50,678 2,103 93 22.6X 9,745,867 51,585 188.9X 52,222

200 111,428 8,062 201 43.0X 41,780,717 112,635 370.9X 113,072

Binary tree 300 182,178 19,528 350 55.8X 100,105,567 183,685 544.9X 183,922
400 262,928 39,457 570 69.2X 188,720,417 26,4735 712.8X 264,772

100 65,516 3,816 181 32.3X 19,163,888 66,651 287.5X 67,888

200 141,066 15,181 250 60.7X 80,656,838 142,601 565.6X 143,638

N-ary tree 300 226,616 30,710 331 92.7X 190,479,788 228,551 833.4X 229,388
400 322,166 64,483 551 117.0X 354,632,738 324,501 1,092.8X 325,138

100 22,154 1,902 130 14.6X 4,806,571 22,725 211.5X 550,052

Disjoint 200 74,304 15,393 320 48.1X 29,853,071 75,375 396.0X 2,829,852
sets 300 156,454 57,143 811 70.4X 91,139,571 158,025 576.7X 7,839,652
400 268,604 151,181 1,602 94.3X 204,666,071 270,675 756.1X 16,579,452

Table 2: Results for generating 100 structures with hundreds of nodes. The tabulated times are in milliseconds. The results show up

to 100 times speedup for the checkpoint-based approach over Korat.

We integrated our approach in STARC and used it to repair five
subject structures. We refer to the original search as STARC. Ta-
ble 3 shows the repair time taken by STARC and the checkpoint-
based approach for repairing large structures with up to 100,000
nodes and with 100 faults. The repair time results show a speedup
for the checkpoint-based approach over STARC that ranges from
12X when repairing trees with 10,000 nodes and 100 faults to 56X
when repairing disjoint sets with 100,000 nodes.

The speedup factors increase with the size of the structure. For
example, for the n-ary tree example, the speedup factor increased
from 12X when repairing a corrupt structure with 10,000 nodes to
26X when repairing a structure with 100,000 nodes. This increase
in the speedup factor relates to the nature of the backtracking search
used in STARC. The original search in STARC is re-execution-
based and thus every mutation in the structure requires traversing
the structure from the root to check the class invariant. As the
size (number of faults) of the structure increases, such traversals
become more expensive. The checkpoint-based approach, on the
other hand, incrementally checks for the class invariant and re-
quires a single traversal of the structure to perform all the mutation.

The experiment on repair indicates that integrating the checkpoint-
based approach in STARC scales its performance for repairing larger
data structures more efficiently.

5. DISCUSSION
5.1 Overhead of our approach

The checkpoint-based approach removes the overhead of rebuild-
ing the program state from scratch after each backtracking oper-
ation (as in re-execution-based backtracking). However, it intro-
duces the overhead of maintaining the program state by saving and
executing the undo commands. The experimental results in Sec-
tion 4 show that the checkpoint-based approach reduces the num-
ber of field initializations performed in Korat, while introducing a
set of undo commands. The number of such commands, however,
is relatively an order of magnitude less than the reduction in field
initializations, resulting in faster generation time.

A key reason for this improvement relates to the nature of the
repOk methods used by Korat and STARC to build and explore the

47

Subject Size Faults Time(ms) Speedup
structure STARC | checkpoint-based
Doubly linked 10,000 100 5,083 166 30X
list 100,000 100 58,744 1,255 46X
Binary tree 10,000 100 1,852 133 13X
100,000 100 36,808 1,615 22X
Nary tree 10,000 100 1,722 143 12X
100,000 100 52,463 1,963 26X
Avl] tree 10,000 100 9,924 203 32X
100,000 100 117,092 2,144 54X
Disjoint sets 10,000 100 7,421 155 47X
100,000 100 64,906 1,141 56X

Table 3: Results for repairing five complex structures with up
to 100,000 nodes and 100 faults.

search space. Such methods are typically pure methods, i.e., they
check for the structural properties without mutating the structure.
Thus, we expect state changes between 2 consecutive choice points
to be minimal, which results in less undo operations to retrieve the
state and in turn a better performance than code re-execution.

We point out, however, that this improvement in execution time
is not observed in every application of the backtracking search. For
example, when generating structures with 2 or 3 nodes using Ko-
rat, where building the state requires a hand full of field initial-
izations, the re-execution-based search performed better than the
checkpoint-based search since the overhead introduced for main-
taining the state exceeds that for rebuilding the program state.

In general, for applications that maintain a relatively small state,
or with large number of state changes between choice points, a re-
execution-based search more likely to have a better performance.

5.2 Soundness of our approach

The search presented in this paper is purely performed through
code instrumentation of the class under analysis. This entails some
modifications in the structure of the class, including adding fields
to replace local variables when performing undo operations. Such
modifications might affect the soundness of the approach on some
Java programs. For example, consider a repOk method that reflec-
tively accesses the fields of its declaring class. Such method might
have a different behavior because of the changes performed on the
structure of the class.

Other factors that might break the soundness of the approach are
the abstract undo operations. These operations might not be equiv-
alent to the exact inverse of the corresponding forward operations.
While executing these commands reverses the effect at the abstract
container level, the internal structure of the container might have
changed. For example, adding and removing methods in a bal-
anced tree might involve some reordering operations that result in
a different structure. A repOk method that accesses the internal im-
plementation of the container might have a different behavior after
running the undo operation.

To retrieve the state of a method stack frame, our approach re-
places local variable accesses with static field accesses and per-
forms undo operations at the field level. The current implementa-
tion only supports acyclic call graphs. Extending this approach to
handle recursive calls requires changing the instrumentation to al-
locate a stack frame for each method invocation in order to keep
track of the field values at the different recursion levels.

5.3 Abstract analysis on containers

Although presented in the context of a Java implementation, the
proposed technique is not limited to Java or its containers. Undo
operations can be applied to different languages and on any (well-
specified) container written in that language. For example, similar
containers can be implemented for the C++ standard library.

We believe that extending current program analyses to handle
libraries opens more opportunities for reasoning about programs.
For example, we have previously introduced abstract symbolic ex-
ecution in a workshop paper [15] which treats containers as sym-
bolic objects. By treating containers symbolically, we were able
to test programs that manipulate such containers, an analysis that
was not feasible if the implementation of the container was to be
considered.

6. RELATED WORK

Our work builds on the Korat search. The key difference between
our approach and Korat is the backtracking algorithm. Rather than
using a backtracking that (1) re-builds the structure and (2) re-
checks all the integrity constraints with every search candidate, our
approach uses a checkpoint-based backtracking approach that em-
ploys efficient state manipulations to minimize the redundant re-
builds and checks in Korat improving its performance.

Java PathFinder (JPF) is a general purpose model checker that
has also been used as a solver for imperative predicates [14]. JPF

performs stateful model checking of (multi-threaded) Java programs.

It implements a custom Java Virtual Machine (JVM) that, unlike
the standard JVM, enables non-deterministic re-executions of Java
programs to, theoretically, cover all the possible executions of a
program. JPF has been applied for testing data structure imple-
mentations both at concrete and abstract levels [28—30]. The Korat
search has also been implemented in JPF using lazy initialization
of object fields [14,28]. While this direct implementation of Korat
using JPF provides a stateful implementation of Korat, the result-
ing search is significantly slower than the original Korat search. A
reason for the slowdown is the unnecessary overhead introduced by
the generality of JPE.

Our approach in this paper is inspired by our experience of op-
timizing JPF, and differs from JPF in three key ways, which make
our approach significantly faster than JPF (as well as Korat) for
structural constraint solving. First, we implement a lightweight
backtracking mechanism by performing code instrumentation (Sec-
tion 3.2) rather than implementing a custom JVM, which is re-
quired by JPF. Second, we perform efficient incremental state sav-
ing. Rather than hashing the entire program state, and comparing

48

it with the next state, we incrementally save state changes and their
corresponding undo commands as the changes occur in the pro-
gram. While storing states incrementally (as “deltas”) is a known
technique in explicit-state model checking [3], we perform it at an
abstract level. Third, to perform state backtracking, we execute the
abstract undo commands stored when saving the program state,
which retrieves the program state.

Xu et al. [31] recently proposed an approach for efficient check-
pointing and replay for Java programs. Using code instrumentation,
their tool generates two versions of the program, one for check-
pointing and the other for replay. Given a sequence of method calls,
their approach uses a static analysis to determine the choice points
and the minimal amount of state to save. Our work is closely related
to this work as the presented backtracking is based on code instru-
mentation, however, it differs in its applications, the mechanisms
for maintaining the program state, as well as the implementation
for changing the program counter.

Several existing applications can utilize the presented search.
For example, one candidate application is symbolic execution. For
symbolic execution, the search target is all the program paths, the
choice points are the branch statements, the termination points are
the return statements in a program, and the program variables rep-
resent the state to be maintained.

7. CONCLUSIONS

This paper presented a novel approach for efficient backtrack-
ing. Our approach was used to optimize the search performance
of two frameworks for systematic test input generation (Korat) and
automatic data structure repair (STARC).

The heart of the backtracking approach is a selective state stor-
age as well as abstract undo operations that efficiently maintain the
program state when backtracking. Experiments on generating data
structures with complex structural integrity constraints show that
the checkpoint-based approach achieves up to two orders of mag-
nitude improvement in generation time over Korat and one order of
magnitude in repair time over STARC.

While we have described our approach in the context of test gen-
eration and repair, it also enables efficient search in other contexts,
such as symbolic execution. As the experimental results indicate,
the performance benefits increase as the size of the structures being
generated (or repaired) increases. We believe that integrating our
approach with existing work on generation and repair of large ob-
ject graphs will enable such approaches to more efficiently check
strong properties of real systems.

Acknowledgments

We would like to thank Shadi Abdul Khalek, Michele Saad, and the
anonymous referees for their helpful comments on the paper. This
work was partially supported by the NSF awards #CCF-0702680,
#CNS-0615372, #CNS-0613665, and #11S-0438967, and a gift from
Microsoft.

8. REFERENCES

[1] C.Boyapati, S. Khurshid, and D. Marinov. Korat:
Automated testing based on Java predicates. In Proc.
International Symposium on Software Testing and Analysis
(ISSTA), July 2002.

[2] C. Cadar and D. Engler. Execution generated test cases: How
to make systems code crash itself. In Proc. 12th SPIN
Workshop on Software Model Checking, 2005.

[3] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, Cambridge, MA, 1999.

(4]

(5]

(6]

[7

—

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

L. A. Clarke. A system to generate test data and symbolically
execute programs. [EEE Transactions on Software
Engineering, Sept. 1976.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction
to Algorithms. The MIT Press, Cambridge, MA, 1990.

B. Demsky and M. Rinard. Automatic detection and repair of
errors in data structures. In Proc. Conference on
Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2003.

B. Elkarablieh, I. Garcfia, Y. L. Suen, and S. Khurshid.
Assertion-based repair of structurally complex data. In Proc.
22th Conference on Automated Software Engineering (ASE),
Nov. 2007.

B. Elkarablieh, S. Khurshid, D. Vu, and K. McKinley. Starc:
Static analysis for efficient repair of complex data. In Proc.
Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), Oct. 2007.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements od Reusable Object-Oriented Software.
Addison-Wesley Professional Computing Series.
Addison-Wesley Publishing Company, New York, NY, 1995.
P. Godefroid. Model checking for programming languages
using VeriSoft. In Proc. 24th Annual ACM Symposium on the
Principles of Programming Languages (POPL), Paris,
France, Jan. 1997.

P. Godefroid, N. Klarlund, and K. Sen. Dart: directed
automated random testing. In PLDI "05: Proceedings of the
2005 ACM SIGPLAN conference on Programming language
design and implementation, 2005.

G. Holzmann. The model checker SPIN. IEEE Transactions
on Software Engineering, 23(5), May 1997.

S. Khurshid, I. Garcia, and Y. L. Suen. Repairing structurally
complex data. In Proc. 12th SPIN Workshop on Software
Model Checking, 2005.

S. Khurshid, C. Pasareanu, and W. Visser. Generalized
symbolic execution for model checking and testing. In Proc.
9th Conference on Tools and Algorithms for Construction
and Analysis of Systems (TACAS), Warsaw, Poland, April
2003.

S. Khurshid and Y. L. Suen. Generalizing symbolic
execution to library classes. In 6th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and
Engineering, Lisbon, Portugal, Sept. 2005.

J. L. Kim and T. Park. An efficient protocol for
checkpointing recovery in distributed systems. IEEE
Transactions on Parallel and Distributed Systems, Aug 1993.
J. C. King. Symbolic execution and program testing.
Communications of the ACM, 19(7), 1976.

F. Lerda and W. Visser. Addressing dynamic issues of
program model checking. In SPIN "01: Proceedings of the
8th international SPIN workshop on Model checking of
software, pages 80-102, New York, NY, USA, 2001.
Springer-Verlag New York, Inc.

B. Liskov and J. Guttag. Program Development in Java:
Abstraction, Specification, and Object-Oriented Design.
Addison-Wesley, 2000.

49

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

D. Marinov. Automatic Testing of Software with Structurally
Complex Inputs. PhD thesis, Computer Science and Artificial
Intelligence Laboratory, Massachusetts Institute of
Technology, 2004.

D. Marinov and S. Khurshid. TestEra: A novel framework
for automated testing of Java programs. In Proc. 16th
Conference on Automated Software Engineering (ASE), San
Diego, CA, Nov. 2001.

S. Misailovic, A. Milicevic, N. Petrovic, S. Khurshid, and
D. Marinov. Parallel test generation and execution with
Korat. In Proc. 6th joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE
2007), Sept. 2007.

Robby, M. B. Dwyer, and J. Hatcliff. Bogor: an extensible
and highly-modular software model checking framework. In
FSEO3, pages 267-276, 2003.

K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit
testing engine for C. In Proc. 13th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering (FSE), 2005.

K. Stobie. Advanced modeling, model based test generation,
and Abstract state machine Language (AsmL). Seattle Area
Software Quality Assurance Group, http:
//www.sasgag.org/pastmeetings/asml.ppt,
Jan. 2003.

K. Sullivan, J. Yang, D. Coppit, S. Khurshid, and D. Jackson.
Software assurance by bounded exhaustive testing. In Proc.
International Symposium on Software Testing and Analysis
(ISSTA), 2004.

W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. In Proc. 15th Conference on Automated
Software Engineering (ASE), Grenoble, France, 2000.

W. Visser, C. S. Pasareanu, and S. Khurshid. Test input
generation with Java PathFinder. In Proc. 2004 ACM
SIGSOFT International Symposium on Software Testing and
Analysis, 2004.

W. Visser, C. S. Pédsdreanu, and R. Peldnek. Test input
generation for red-black trees using abstraction. In ASE ’05:
Proceedings of the 20th IEEE/ACM international Conference
on Automated software engineering, pages 414417, New
York, NY, USA, 2005. ACM.

W. Visser, C. S. Pasdreanu, and R. Peldnek. Test input
generation for java containers using state matching. In ISSTA
"06: Proceedings of the 20006 international symposium on
Software testing and analysis, pages 37-48, New York, NY,
USA, 2006. ACM.

G. Xu, A. Rountev, Y. Tang, and F. Qin. Efficient
checkpointing of java software using context-sensitive
capture and replay. In ESEC-FSE "07: Proceedings of the the
6th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The
Sfoundations of software engineering, pages 85-94, 2007.

