
SUPPORT-VECTOR NETWORKSCorinna Cortes 1 and Vladimir Vapnik 2AT&T Labs-Research, USAAbstract. The support-vector network is a new learning machine for two-groupclassi�cation problems. The machine conceptually implements the following idea: inputvectors are non-linearly mapped to a very high-dimension feature space. In this featurespace a linear decision surface is constructed. Special properties of the decision surfaceensures high generalization ability of the learning machine. The idea behind the support-vector network was previously implemented for the restricted case where the trainingdata can be separated without errors. We here extend this result to non-separabletraining data.High generalization ability of support-vector networks utilizing polynomial inputtransformations is demonstrated. We also compare the performance of the support-vector network to various classical learning algorithms that all took part in a benchmarkstudy of Optical Character Recognition.Keywords: Pattern recognition, e�cient learning algorithms, neural networks, ra-dial basis function classi�ers, polynomial classi�ers.1 IntroductionMore than 60 years ago R. A. Fisher [7] suggested the �rst algorithm for pattern recog-nition. He considered a model of two normal distributed populations, N(m1;�1) andN(m2;�2) of n dimensional vectors x with mean vectors m1 and m2 and co-variancematrices �1 and �2, and showed that the optimal (Bayesian) solution is a quadraticdecision function:Fsq(x) = sign �12(x�m1)T��11 (x�m1)� 12(x�m2)T��12 (x�m2) + ln j�2jj�1j� :(1)In the case where �1 =�2 = � the quadratic decision function (1) degenerates to alinear function:Flin(x) = sign �(m1 �m2)T��1x� 12(mT1��1m1 �mT2��1m2)� : (2)To estimate the quadratic decision function one has to determine n(n+3)2 free parameters.To estimate the linear function only n free parameters have to be determined. In the1Daytime phone: (973)360-8670. E-mail: corinna@research.att.com2Daytime phone: (732)345-3342. E-mail: vlad@research.att.com1

output from the 4 hidden units
weights of the 4 hidden units

dot−products

weights of the 5 hidden units

dot−products

dot−product

perceptron output

α 1, ... ,α

1

input vector, x

5

5

weights of the output unit,

z , ... , zoutput from the 5 hidden units:

Figure 1: A simple feed-forward perceptron with 8 input units, 2 layers of hidden units,and 1 output unit. The gray-shading of the vector entries re
ects their numeric value.case where the number of observations is small (say less than 10n2) estimating o(n2)parameters is not reliable. Fisher therefore recommended, even in the case of �1 6= �2,to use the linear discriminator function (2) with � of the form:� = ��1 + (1� �)�2 ; (3)where � is some constant3. Fisher also recommended a linear decision function forthe case where the two distributions are not normal. Algorithms for pattern recognitionwere therefore from the very beginning associated with the construction of linear decisionsurfaces.In 1962 Rosenblatt [11] explored a di�erent kind of learning machines: perceptronsor neural networks. The perceptron consists of connected neurons, where each neu-ron implements a separating hyperplane, so the perceptron as a whole implements apiecewise linear separating surface. See Figure 1.The problem of �nding an algorithm that minimizes the error on a set of vectorsby adjusting all the weights of the network was not found in Rosenblatt's time, andRosenblatt suggested a scheme where only the weights of the output unit are adaptive.According to the �xed setting of the other weights the input vectors are non-linearlytransformed into the feature space, Z, of the last layer of units. In this space a lineardecision function is constructed:I(x) = sign Xi �izi(x)! (4)by adjusting the weights �i from the i-th hidden unit to the output unit so as to mini-mize some error measure over the training data. As a result of Rosenblatt's approach,3The optimal coe�cient for � was found in the sixties [2].2

construction of decision rules was again associated with the construction of linear hy-perplanes in some space.An algorithm that allows for all weights of the neural network to adapt in orderlocally to minimize the error on a set of vectors belonging to a pattern recognitionproblem was found in 1986 [12, 13, 10, 8] when the back-propagation algorithm wasdiscovered. The solution involves a slight modi�cation of the mathematical model ofneurons. Therefore, neural networks implement \piece-wise linear-type" decision func-tions.In this article we construct a new type of learning machines, the so-called support-vector network. The support-vector network implements the following idea: it mapsthe input vectors into some high dimensional feature space Z through some non-linearmapping chosen a priori. In this space a linear decision surface is constructed withspecial properties that ensure high generalization ability of the network.Example: To obtain a decision surface corresponding to a polynomial of degreetwo, one can create a feature space, Z, which has N= n(n+3)2 coordinates of the form:z1=x1; : : : ; zn=xn ; n coordinates ;zn+1=x21; : : : ; z2n=x2n ; n coordinates ;z2n+1=x1x2; : : : ; zN=xnxn�1 ; n(n�1)2 coordinates ;where x=(x1; : : : ; xn). The hyperplane is then constructed in this space.Two problems arise in the above approach: one conceptual and one technical. Theconceptual problem is how to �nd a separating hyperplane that will generalize well: thedimensionality of the feature space will be huge, and not all hyperplanes that separatethe training data will necessarily generalize well4. The technical problem is how com-putationally to treat such high-dimensional spaces: to construct polynomial of degree4 or 5 in a 200 dimensional space it may be necessary to construct hyperplanes in abillion dimensional feature space.The conceptual part of this problem was solved in 1965 [14] for the case of optimalhyperplanes for separable classes. An optimal hyperplane is here de�ned as the lineardecision function with maximal margin between the vectors of the two classes, seeFigure 2. It was observed that to construct such optimal hyperplanes one only has totake into account a small amount of the training data, the so called support vectors,which determine this margin. It was shown that if the training vectors are separatedwithout errors by an optimal hyperplane the expectation value of the probability ofcommitting an error on a test example is bounded by the ratio between the expectation4Recall Fisher's concerns about small amounts of data and the quadratic discriminant function.3

optimal margin

optimal hyperplaneFigure 2: An example of a separable problem in a 2 dimensional space. The supportvectors, marked with grey squares, de�ne the margin of largest separation between thetwo classes.value of the number of support vectors and the number of training vectors:E[Pr(error)] � E[number of support vectors]number of training vectors : (5)Note, that this bound does not explicitly contain the dimensionality of the space ofseparation. It follows from this bound, that if the optimal hyperplane can be constructedfrom a small number of support vectors relative to the training set size the generalizationability will be high | even in an in�nite dimensional space. In Section 5 we willdemonstrate that the ratio (5) for a real life problems can be as low as 0.03 and theoptimal hyperplane generalizes well in a billion dimensional feature space.Let w0 � z+ b0 = 0be the optimal hyperplane in feature space. We will show, that the weights w0 for theoptimal hyperplane in the feature space can be written as some linear combination ofsupport vectors w0 = Xsupport vectors�izi : (6)The linear decision function I(z) in the feature space will accordingly be of the form:I(z) = sign0@ Xsupport vectors�izi � z+ b01A ; (7)where zi�z is the dot-product between support vectors zi and vector z in feature space.The decision function can therefore be described as a two layer network. Figure 3.4

non−linear transformation

1w iw jw Nw

z isupport vectors
in feature space

input vector in feature space

xinput vector,

classification

Figure 3: Classi�cation by a support-vector network of an unknown pattern is concep-tually done by �rst transforming the pattern into some high-dimensional feature space.An optimal hyperplane constructed in this feature space determines the output. Thesimilarity to a two-layer perceptron can be seen by comparison to Figure 1.
5

α1 αi α j

k

αs

u ju iu1 us
ku = K(,)

x

x

x x

input vector,

vectors,
support

Lagrange multipliers

classification

k

comparison

Figure 4: Classi�cation of an unknown pattern by a support-vector network. Thepattern is in input space compared to support vectors. The resulting values are non-linearly transformed. A linear function of these transformed values determine the outputof the classi�er.However, even if the optimal hyperplane generalizes well the technical problem ofhow to treat the high dimensional feature space remains. In 1992 it was shown [3], thatthe order of operations for constructing a decision function can be interchanged: insteadof making a non-linear transformation of the input vectors followed by dot-products withsupport vectors in feature space, one can �rst compare two vectors in input space (bye.g. taking their dot-product or some distance measure), and then make a non-lineartransformation of the value of the result. See Figure 4. This enables for the constructionof rich classes of decision surfaces, for example polynomial decision surfaces of arbitrarilydegree. We will call this type of learning machine for support-vectors network5.The technique of support-vector networks was �rst developed for the restricted caseof separating training data without errors. In this article we extend the approach ofsupport-vector networks to cover when separation without error on the training vectors5With this name we emphasize how crucial the idea of expanding the solution on support vectorsis for these learning machines. In the support-vectors learning algorithm e.g. the complexity of theconstruction does not depend on the dimensionality of the feature space, but on the number of supportvectors. 6

is impossible. With this extension we consider the support-vector networks as a newclass of learning machine, as powerful and universal as neural networks. In Section 5we will demonstrate how well it generalizes for high degree polynomial decision surfaces(up to order 7) in a high dimensional space (dimension 256). The performance of thealgorithm is compared to that of classical learning machines e.g. linear classi�ers, k-nearest neighbors classi�er, and neural networks. Section 2, 3, and 4 are devoted to themajor points of the derivation of the algorithm and a discussion of some of its properties.Details of the derivation is relegated to an appendix.

7

2 Optimal HyperplanesIn this section we review the method of optimal hyperplanes [14] for separation oftraining data without errors. In the next section we introduce a notion of soft margins,that will allow for an analytic treatment of learning with errors on the training set.2.1 The Optimal Hyperplane AlgorithmThe set of labeled training patterns(y1;x1); : : : ; (y`;x`) ; yi 2 f�1; 1g (8)is said to be linearly separable if there exists a vector w and a scalar b such that theinequalities w � xi + b � 1 if yi=1 ;w � xi + b � �1 if yi=�1 ; (9)are valid for all elements of the training set (8). Below we write the inequalities (9) inthe form6: yi(w � xi + b) � 1 ; i=1; : : : ; ` : (10)The optimal hyperplane w0 � x+ b0 = 0 (11)is the unique one which separates the training data with a maximal margin: it deter-mines the direction w=jwj where the distance between the projections of the trainingvectors of two di�erent classes is maximal, recall Figure 2. This distance �(w; b) is givenby �(w; b) = minfx: y=1g x �wjwj � maxfx: y=�1g x �wjwj : (12)The optimal hyperplane (w0; b0) is the arguments that maximize the distance (12). Itfollows from (12) and (10) that�(w0; b0) = 2jw0j = 2pw0 �w0 : (13)This means, that the optimal hyperplane is the unique one that minimizes w �w un-der the constraints (10). Constructing an optimal hyperplane is therefore a quadraticprogramming problem.6Note that in the inequalities (9) and (10) the right-hand side, but not vector w, is normalized.8

Vectors xi for which yi(w � xi + b)=1 will be termed support vectors. In Appendixwe show that the vector w0 that determines the optimal hyperplane can be written asa linear combination of training vectors:w0 = X̀i=1 yi�0ixi ; (14)where �0i � 0. Since � > 0 only for support vectors (see Appendix), the expression(14) represents a compact form of writing w0. We also show that to �nd the vector ofparameters �i: �T0 = (�01; : : : ; �0̀) ;one has to solve the following quadratic programming problem:W (�) = �T1� 12�TD� (15)with respect to �T =(�1; : : : ; �`), subject to the constraints:� � 0 ; (16)�TY = 0 ; (17)where 1T = (1; : : : ; 1) is an `-dimensional unit vector, YT = (y1; : : : ; y`) is the `-dimensional vector of labels, and D is a symmetric ` � `-matrix with elementsDij = yiyjxi � xj ; i; j = 1; : : : ; l : (18)The inequality (16) describes the nonnegative quadrant. We therefore have to maximizethe quadratic form (15) in the nonnegative quadrant, subject to the constraints (17).When the training data (8) can be separated without errors we also show in AppendixA the following relationship between the maximum of the functional (15), the pair(�0; b0), and the maximal margin �0 from (13):W (�0) = 2�20 : (19)If for some �? and large constant W0 the inequalityW (�?) > W0 (20)is valid, one can accordingly assert that all hyperplanes that separate the training data(8) have a margin � < s 2W0 :9

If the training set (8) can not be separated by a hyperplane, the margin between patternsof the two classes becomes arbitrary small, resulting in the value of the functional W (�)turning arbitrary large. Maximizing the functional (15) under constraints (16) and (17)one therefore either reaches a maximum (in this case one has constructed the hyperplanewith the maximal margin �0), or one �nds that the maximum exceeds some given (large)constant W0 (in which case a separation of the training data with a margin larger thenp2=W0 is impossible).The problem of maximizing functional (15) under constraints (16) and (17) canbe solved very e�ciently using the following scheme. Divide the training data into anumber of portions with a reasonable small number of training vectors in each portion.Start out by solving the quadratic programming problem determined by the �rst portionof training data. For this problem there are two possible outcome: either this portionof the data can not be separated by a hyperplane (in which case the full set of data aswell can not be separated), or the optimal hyperplane for separating the �rst portion ofthe training data is found.Let the vector that maximizes functional (15) in the case of separation of the �rstportion be �1. Among the coordinates of vector �1 some are equal to zero. Theycorrespond to non-support training vectors of this portion. Make a new set of trainingdata containing the support vectors from the �rst portion of training data and thevectors of the second portion that does not satisfy constraint (10), wherew is determinedby �1. For this set a new functional W2(�) is constructed and maximized at �2.Continuing this process of incrementally constructing a solution vector �? covering allthe portions of the training data one either �nds that it is impossible to separate thetraining set without error, or one constructs the optimal separating hyperplane for thefull data set, �? = �0. Note, that during this process the value of the functional W (�)is monotonically increasing, since more and more training vectors are considered in theoptimization, leading to a smaller and smaller separation between the two classes.3 The Soft Margin HyperplaneConsider the case where the training data can not be separated without error. In thiscase one may want to separate the training set with a minimal number of errors. Toexpress this formally let us introduce some non-negative variables �i � 0 ; i=1; : : : ; `.We can now minimize the functional�(�) = X̀i=1 ��i (21)for small � > 0, subject to the constraintsyi(w � xi + b) � 1� �i ; i = 1; : : : ; ` ; (22)10

�i � 0 ; i = 1; : : : ; ` : (23)For su�ciently small � the functional (21) describes the number of the training errors7.Minimizing (21) one �nds some minimal subset of training errors:(yi1 ;xi1); : : : ; (yik ;xik) :If these data are excluded from the training set one can separate the remaining part ofthe training set without errors. To separate the remaining part of the training data onecan construct an optimal separating hyperplane.This idea can be expressed formally as: minimize the functional12w2 + CF X̀i=1 ��i ! (24)subject to constraints (22) and (23), where F (u) is a monotonic convex function and Cis a constant.For su�ciently large C and su�ciently small �, the vector w0 and constant b0, thatminimize the functional (24) under constraints (22) and (23), determine the hyperplanethat minimizes the number of errors on the training set and separate the rest of theelements with maximal margin.Note, however, that the problem of constructing a hyperplane which minimizesthe number of errors on the training set is in general NP-complete. To avoid NP-completeness of our problem we will consider the case of � = 1 (the smallest value of� for which the optimization problem (15) has a unique solution). In this case thefunctional (24) describes (for su�ciently large C) the problem of constructing a sep-arating hyperplane which minimizes the sum of deviations, �, of training errors andmaximizes the margin for the correctly classi�ed vectors. If the training data can beseparated without errors the constructed hyperplane coincides with the optimal marginhyperplane.In contrast to the case with � < 1 there exists an e�cient methods for �nding thesolution of (24) in the case of �=1. Let us call this solution the soft margin hyperplane.In Appendix A we consider the problem of minimizing the functional12w2 + CF X̀i=1 �i! (25)subject to the constraints (22) and (23), where F (u) is a monotonic convex functionwith F (0)=0. To simplify the formulas we only describe the case of F (u)=u2 in thissection. For this function the optimization problem remains a quadratic programmingproblem.7A training error is here de�ned as a pattern where the inequality (22) holds with � > 0.11

In Appendix A we show that the vector w, as for the optimal hyperplane algorithm,can be written as a linear combinations of support vectors xi:w0 = X̀i=1 �0i yixi :To �nd the vector �T =(�1; : : : ; �`) one has to solve the dual quadratic programmingproblem of maximizing W (�; �) = �T1 � 12 "�TD�+ �2C # (26)subject to constraints �TY = 0 ; (27)� � 0 ; (28)0 � � � �1 ; (29)where 1;�;Y, and D are the same elements as used in the optimization problem forconstructing an optimal hyperplane, � is a scalar, and (29) describes coordinate-wiseinequalities.Note that (29) implies that the smallest admissible value � in functional (26) is� = �max = max(�1; : : : ; �`) :Therefore to �nd a soft margin classi�er one has to �nd a vector � that maximizesW (�) = �T1� 12 "�TD�+ �2maxC # (30)under the constraints � � 0 and (27). This problem di�er from the problem of con-structing an optimal margin classi�er only by the additional term with �max in thefunctional (30). Due to this term the solution to the problem of constructing the softmargin classi�er is unique and exists for any data set.The functional (30) is not quadratic because of the term with �max. Maximizing(30) subject to the constraints � � 0 and (27) belongs to the group of so-called convexprogramming problems. Therefore, to construct soft margin classi�er one can eithersolve the convex programming problem in the `-dimensional space of the parameters�, or one can solve the quadratic programming problem in the dual `+ 1 space of theparameters � and �. In our experiments we construct the soft margin hyperplanes bysolving the dual quadratic programming problem.12

4 The Method of Convolution of the Dot-Product in Fea-ture SpaceThe algorithms described in the previous sections construct hyperplanes in the inputspace. To construct a hyperplane in a feature space one �rst has to transform the n-dimensional input vector x into an N -dimensional feature vector through a choice of anN -dimensional vector function �: � : <n ! <N :An N dimensional linear separator w and a bias b is then constructed for the set oftransformed vectors�(xi) = �1(xi); �2(xi); : : : ; �N(xi) ; i=1; : : : ; ` :Classi�cation of an unknown vector x is done by �rst transforming the vector to theseparating space (x 7! �(x)) and then taking the sign of the functionf(x) = w � �(x) + b : (31)According to the properties of the soft margin classi�er method the vector w can bewritten as a linear combination of support vectors (in the feature space). That meansw = X̀i=1 yi�i�(xi) : (32)The linearity of the dot-product implies, that the classi�cation function f in (31)for an unknown vector x only depends on the dot-products:f(x) = �(x) �w+ b = X̀i=1 yi�i�(x) � �(xi) + b : (33)The idea of constructing support-vectors networks comes from considering general formsof the dot-product in a Hilbert space [2]:�(u) � �(v) � K(u;v) : (34)According to the Hilbert-Schmidt Theory [6] any symmetric function K(u;v), withK(u;v)2L2, can be expanded in the formK(u;v) = 1Xi=1 �i�i(u) � �i(v) ; (35)13

where �i 2 < and �i are eigenvalues and eigenfunctionsZ K(u;v)�i(u)du = �i�i(v) :of the integral operator de�ned by the kernel K(u;v). A su�cient condition to ensurethat (34) de�nes a dot-product in a feature space is that all the eigenvalues in theexpansion (35) are positive. To guarantee that these coe�cients are positive, it isnecessary and su�cient (Merser's Theorem) that the conditionZ Z K(u;v)g(u)g(v)dudv> 0is satis�ed for all g such that Z g2(u)du <1 :Functions that satisfy Merser's theorem can therefore be used as dot-products. Aiz-erman, Braverman and Rozonoer [1] consider a convolution of the dot-product in thefeature space given by function of the formK(u;v) = exp��ju� vj� � ; (36)which they call Potential Functions.However, the convolution of the dot-product in feature space can be given by anyfunction satisfying the Merserer's condition, in particular to construct polynomial clas-si�er of degree d in n-dimensional input space one can use the following functionK(u;v) = (u � v+ 1)d : (37)Using di�erent dot-products K(u;v) one can construct di�erent learning machineswith arbitrarily types of decision surfaces [3]. The decision surface of these machineshas a form f(x) = X̀i=1 yi�iK(x;xi) ;where xi is the image of a support vector in input space and �i is the weight of a supportvector in the feature space.To �nd the vectors xi and weights �i one follow the same solution scheme as for theoriginal optimal margin classi�er or soft margin classi�er. The only di�erence is thatinstead of matrix D (determined by (18)) one uses the matrixDij = yiyjK(xi;xj) ; i; j = 1; : : : ; l :14

5 General Features of Support-Vector Networks5.1 Constructing the decision rules by Support-Vector Networks ise�cientTo construct a support-vector networks decision rule one has to solve a quadratic opti-mization problem: W (�) = �T1� 12 "�TD�+ �2C # ;under the simple constraints: 0 � � � �1 ;�TY = 0 ;where matrix Dij = yiyjK(xi;xj) ; i; j = 1; : : : ; l :is determined by the elements of the training set, andK(u;v) is the function determiningthe convolution of the dot-products.The solution to the optimization problem can be found e�ciently by solving interme-diate optimization problems determined by the training data, that currently constitutethe support vectors. This technique is described in Section 3. The obtained optimaldecision function is unique8.Each optimization problem can be solved using any standard techniques.5.2 The Support-Vector Network is a Universal MachineBy changing the function K(u;v) for the convolution of the dot-product one can im-plement di�erent networks.In the next section we will consider support-vector networks machines that usepolynomial decision surfaces. To specify polynomials of di�erent order d one can usethe following functions for convolution of the dot-productK(u;v) = (u � v+ 1)d :Radial Basis Function machines with decision functions of the formf(x) = sign nXi=1 �i exp(jx� xij2�2)!can be implemented by using convolutions of the typeK(u;v) = exp(�ju � vj2�2) :8The decision function is unique but not its expansion on support vectors.15

In this case the support-vector network machine will construct both the centers xi ofthe approximating function and the weights �i.One can also incorporate a priory knowledge of the problem at hand by constructingspecial convolution functions. Support-vector networks are therefore a rather generalclass of learning machines which changes its set of decision function simply by changingthe form of the dot-product.5.3 Support-Vector Networks and Control of Generalization AbilityTo control the generalization ability of a learning machines one has to control twodi�erent factors: the error-rate on the training data and the capacity of the learningmachine as measured by its VC-dimension [14]. There exist a bound for the probabilityof errors on the test set of the following form: with probability 1� � the inequalityPr(test error) � Frequency(training error) + Con�dence Interval (38)is valid. In the bound (38) the con�dence interval depends on the VC-dimension of thelearning machine, the number of elements in the training set, and the value of �.The two factors in (38) form a trade-o�: the smaller the VC-dimension of the setof functions of the learning machine, the smaller the con�dence interval, but the largerthe value of the error frequency.A general way for resolving this trade-o� was proposed as the principle of structuralrisk minimization: for the given data set one has to �nd a solution that minimizes theirsum. A particular case of structural risk minimization principle is the Occam-Razorprinciple: keep the �st term equal to zero and minimize the second one.It is known that the VC-dimension of the set of linear indicator functionsI(x) = sign(w � x+ b) ; jxj � Cxwith �xed threshold b is equal to the dimensionality of the input space. However, theVC-dimension of the subsetI(x) = sign(w � x+ b) ; jxj � C ; jwj � Cw(the set of functions with bounded norm of the weights) can be less than the dimen-sionality of the input space and will depend on Cw.From this point of view the optimal margin classi�er method execute an Occam-Razor principle. It keep the �rst term of (38) equal to zero (by satisfying the inequality(9)) and it minimizes the second term (by minimizing functional w�w). This minimiza-tion prevents an over-�tting problem.However, even in the case where the training data are separable one may obtaina better generalization ability by minimizing the con�dence term in (38) even furtheron the expense of errors on the training set. In the soft margin classi�er method this16

can be done by choosing appropriate values of the parameter C. In the support-vectornetworks algorithm one can control the trade-o� between complexity of decision rule andfrequency of error by changing the parameter C, even in the more general case wherethere exists no solution with zero error on the training set. Therefore the support-vectorsnetwork can control both factors for generalization ability of the learning machine.

17

Figure 5: Examples of the dot-product (39) with d = 2. Support patterns are indicatedwith double circles, errors with a cross.6 Experimental AnalysisTo demonstrate the support-vector network method we conduct two types of experi-ments. We construct arti�cial sets of patterns in the plane and experiment with 2nddegree polynomial decision surfaces, and we conduct experiments with the real-life prob-lem of digit recognition.6.1 Experiments in the PlaneUsing dot-products of the form K(u;v) = (u � v+ 1)d (39)with d = 2 we construct decision rules for di�erent sets of patterns in the plane. Resultsof these experiments can be visualized and provide nice illustrations of the power of thealgorithm. Examples are shown in Figure 5. The 2 classes are represented by black andwhite bullets. In the �gure we indicate support patterns with a double circle, and errorswith a cross. The solutions are optimal in the sense that no 2nd degree polynomialsexist that make less errors. Notice that the numbers of support patterns relative to thenumber of training patterns are small.6.2 Experiments with Digit RecognitionOur experiments for constructing support-vector networks make use of two di�erentdatabases for bit-mapped digit recognition, a small and a large database. The small18

 7 7 4 8 0 1 4

 8 7 4 8 7 3 7Figure 6: Examples of patterns with labels from the US Postal Service digit database.one is a US Postal Service database that contains 7,300 training patterns and 2,000 testpatterns. The resolution of the database is 16�16 pixels, and some typical examples areshown in Figure 6. On this database we report experimental research with polynomialsof various degree.The large database consists of 60,000 training and 10,000 test patterns, and is a 50-50mixture of the NIST9 training and test sets. The resolution of these patterns is 28� 28yielding an input dimensionality of 784. On this database we have only constructed a4th degree polynomial classi�er. The performance of this classi�er is compared to othertypes of learning machines that took part in a benchmark study [4].In all our experiments ten separators, one for each class, are constructed. Eachhyper-surface make use of the same dot product and pre-processing of the data. Classi-�cation of an unknown patterns is done according to the maximum output of these tenclassi�ers.6.2.1 Experiments with US Postal Service DatabaseThe US Postal Service Database has been recorded from actual mail pieces and resultsfrom this database have been reported by several researchers. In Table 1 we list theperformance of various classi�ers collected from publications and own experiments. Theresult of human performance was reported by J. Bromley & E. Sackinger [5]. The resultwith CART was carried out by Daryl Pregibon and Michael D. Riley at Bell Labs,Murray Hill, NJ. The results of C4.5 and the best 2-layer neural network (with optimalnumber of hidden units) were obtained specially for this paper by Corinna Cortes andBernard Schoelkopf respectively. The result with a special purpose neural networkarchitecture with 5 layers, LeNet1, was obtained by Y. LeCun et al. [9].On the experiments with the US Postal Service Database we used pre-processing(centering, de-slanting and smoothing) to incorporate knowledge about the invariances9National Institute for Standards and Technology, Special Database 3.19

Classi�er raw error, %Human performance 2.5Decision tree, CART 17Decision tree, C4.5 16Best 2 layer neural network 6.6Special architecture 5 layer network 5.1Table 1: Performance of various classi�ers collected from publications and own experi-ments. For references see text.degree of raw support dimensionality ofpolynomial error, % vectors feature space1 12.0 200 2562 4.7 127 � 330003 4.4 148 � 1� 1064 4.3 165 � 1� 1095 4.3 175 � 1� 10126 4.2 185 � 1� 10147 4.3 190 � 1� 1016Table 2: Results obtained for dot products of polynomials of various degree. The number\support vectors" is a mean value per classi�er.of the problem at hand. The e�ect of smoothing of this database as a pre-processingfor support-vector networks was investigated in [3]. For our experiments we chose thesmoothing kernel as a Gaussian with standard deviation �=0:75 in agreement with [3].In the experiments with this database we constructed polynomial indicator functionsbased on dot-products of the form (39). The input dimensionality was 256, and the orderof the polynomial ranged from 1 to 7. Table 2 describes the results of the experiments.The training data are not linearly separable.Notice, that the number of support vectors increase very slowly. The 7 degreepolynomial has only 30% more support vectors than the 3rd degree polynomial | andeven less than the �rst degree polynomial. The dimensionality of the feature spacefor a 7 degree polynomial is however 1010 times larger than the dimensionality of thefeature space for a 3nd degree polynomial classi�er. Note that performance almost doesnot change with increasing dimensionality of the space | indicating no over-�ttingproblems. 20

 4 4 8 5Figure 7: Labeled examples of errors on the training set for the 2nd degree polynomialsupport-vector classi�er.The relatively high number of support vectors for the linear separator is due tonon-separability: the number 200 includes both support vectors and training vectorswith a non-zero �-value. If � > 1 the training vector is misclassi�ed; the number ofmis-classi�cations on the training set averages to 34 per classi�er for the linear case.For a 2nd degree classi�er the total number of mis-classi�cations on the training set isdown to 4. These 4 patterns are shown in Figure 7.It is remarkable that in all our experiments the bound for generalization ability(5) holds when we consider the number of obtained support vectors instead of theexpectation value of this number. In all cases the upper bound on the error probabilityfor the single classi�er does not exceed 3% (on the test data the actual error does notexceed 1.5% for the single classi�er).The training time for construction of polynomial classi�ers does not depend on thedegree of the polynomial { only the number of support vectors. Even in the worst caseit is faster than the best performing neural network, constructed specially for the task,LeNet1 [9]. The performance of this neural network is 5.1% raw error. Polynomialswith degree 2 or higher outperform LeNet1.6.2.2 Experiments with NIST databaseThe NIST database was used for benchmark studies conducted over just 2 weeks. Thelimited time frame enabled only the construction of 1 type of classi�er, for which wechose a 4th degree polynomial with no pre-processing. Our choice was based on ourexperience with the US Postal database.Table 3 lists the number of support vectors for each of the 10 classi�ers and gives theperformance of the classi�er on the training and test set. Notice that even polynomialsof degree 4 (that have more than 108 free parameters) commit errors on this training set.The average frequency of training errors is 0:02 % � 12 per class. The 14 misclassi�edtest patterns for classi�er 1 are shown in Figure 8. Notice again how the upper bound(5) holds for the obtained number of support vectors.The combined performance of the ten classi�ers on the test set is 1.1% error. Thisresult should be compared to that of other participating classi�ers in the benchmark21

Cl. 0 Cl. 1 Cl. 2 Cl. 3 Cl. 4 Cl. 5 Cl. 6 Cl. 7 Cl. 8 Cl. 9Supp. patt. 1379 989 1958 1900 1224 2024 1527 2064 2332 2765Error train 7 16 8 11 2 4 8 16 4 1Error test 19 14 35 35 36 49 32 43 48 63Table 3: Results obtained for a 4th degree polynomial classi�er on th NIST database.The size of the training set is 60,000, and the size of the test set is 10,000 patterns.
1 6 1 9 6 6 1

9 1 1 1 1 1 1Figure 8: The 14 misclassi�ed test patterns with labels for classi�er 1. Patterns withlabel \1" are false negative. Patterns with other labels are false positive.22

linear
classifier

LeNet1 LeNet4 SVN

Test
error

1%

2%

1.11.1

8.4

2.4
1.7

k=3−nearest
neighborFigure 9: Results from the benchmark study.study. These other classi�ers include a linear classi�er, a k=3-nearest neighbor classi�erwith 60,000 prototypes, and two neural networks specially constructed for digit recogni-tion (LeNet1 and LeNet4). The authors only contributed with results for support-vectornetworks. The result of the benchmark are given in Figure 9.We conclude this section by citing the paper [4] describing results of the benchmark:For quite a long time LeNet1 was considered state of the art. . . . Througha series of experiments in architecture, combined with an analysis of thecharacteristics of recognition error, LeNet4 was crafted. . . .The support-vector network has excellent accuracy, which is most remark-able, because unlike the other high performance classi�ers, it does not in-clude knowledge about the geometry of the problem. In fact the classi�erwould do as well if the image pixels were encrypted e.g. by a �xed, randompermutation.The last remark suggest that further improvement of the performance of the support-vector network can be expected from the construction of functions for the dot-productK(u;v) that re
ect a priori information about the problem at hand.7 ConclusionThis paper introduces the support-vector network as a new learning machine for two-group classi�cation problems. 23

The support-vector network combines 3 ideas: the solution technique from optimalhyperplanes (that allows for an expansion of the solution vector on support vectors), theidea of convolution of the dot-product (that extends the solution surfaces from linearto non-linear), and the notion of soft margins (to allow for errors on the training set).The algorithm has been tested and compared to the performance of other classicalalgorithms. Despite the simplicity of the design in its decision surface the new algorithmexhibits a very �ne performance in the comparison study.Other characteristics like capacity control and easiness of changing the implementeddecision surface render the support-vector network an extremely powerful and universallearning machine.

24

A Constructing Separating HyperplanesIn this appendix we derive both the method for constructing optimal hyperplanes andsoft margin hyperplanes.A.1 Optimal Hyperplane AlgorithmIt was shown in section 2, that to construct the optimal hyperplanew0 � x+ b0 = 0 ; (40)which separate a set of training data(y1;x1); : : : ; (y`;x`) ;one has to minimize a functional � = w �w ;subject to the constraints yi(xi �w+ b) � 1 ; i = 1; : : : ; ` : (41)To do this we use a standard optimization technique. We construct a LagrangianL(w; b;�) = 12w �w� X̀i=1 �i[yi(xi �w + b)� 1] ; (42)where�T =(�1; : : : ; �`) is the vector of non-negative Lagrange multipliers correspondingto the constraints (41).It is known that the solution to the optimization problem is determined by thesaddle point of this Lagrangian in the 2`+ 1-dimensional space of w, �, and b, wherethe minimum should be taken with respect to the parametersw and b, and the maximumshould be taken with respect to the Lagrange multipliers �.At the point of the minimum (with respect to w and b) one obtains:@L(w; b;�)@w ����w=w0 = (w0 � X̀i=1 �iyixi) = 0 ; (43)@L(w; b;�)@b ����b=b0 =X�i yi�i = 0 : (44)From equality (43) we derive w0 = X̀i=1 �iyixi ; (45)25

which expresses, that the optimal hyperplane solution can be written as a linear com-bination of training vectors. Note, that only training vectors xi with �i > 0 have ane�ective contribution to the sum (45).Substituting (45) and (44) into (42) we obtainW (�) = X̀i=1 �i � 12w0 �w0 (46)= X̀i=1 �i � 12 X̀i=1 X̀j=1�i�jyiyjxi � xj : (47)In vector notation this can be rewritten asW (�) = �T1� 12�TD� ; (48)where 1 is an l-dimensional unit vector, andD is a symmetric `�`-matrix with elementsDij = yiyjxi � xj :To �nd the desired saddle point it remains to locate the maximum of (48) under theconstraints (43) �TY = 0 ;where YT = (y1; : : : ; y`), and � � 0 :The Kuhn-Tucker theorem plays an important part in the theory of optimization.According to this theorem, at our saddle point in w0; b0;�0, any Lagrange multiplier�0i and its corresponding constraint are connected by an equality�i[yi(xi �w0 + b0)� 1] = 0 ; i = 1; : : : ; ` :From this equality comes that non-zero values �i are only achieved in the cases whereyi(xi �w0 + b0)� 1 = 0 :In other words: �i 6= 0 only for cases were the inequality is met as an equality. We callvectors xi for which yi(xi �w0 + b0) = 1for support-vectors. Note, that in this terminology the equation (45) states that thesolution vector w0 can be expanded on support vectors.Another observation, based on the Kuhn-Tucker equation (44) and (45) for the opti-mal solution, is the relationship between the maximal value W (�0) and the separationdistance �0: w0 �w0 = X̀i=1 �0i yixi �w0 = X̀i=1 �0i (1� yib0) = X̀i=1 �0i :26

Substituting this equality into the expression (46) for W (�0) we obtainW (�0) = X̀i=1 �0i � 12w0 �w0 = w0 �w02 :Taking into account the expression (13) from Section 2 we obtainW (�0) = 2�20 ;where �0 is the margin for the optimal hyperplane.A.2 Soft Margin Hyperplane AlgorithmBelow we �rst consider the case of F (u) = uk. Then we describe the general result fora monotonic convex function F (u).To construct a soft margin separating hyperplane we maximize the functional� = 12w �w + C X̀i=1 �i!k ; k > 1 ;under the constraints yi(xi �w + b) � 1� �i ; i = 1; : : : ; ` ; (49)�i � 0 ; i = 1; : : : ; ` : (50)The Lagrange functional for this problem isL(w; �; b;�;R) = 12w �w+C X̀i=1 �i!k �X̀i=1 �i[yi(xi �w+ b)� 1+ �i]� X̀i=1 ri�i ; (51)where the non-negative multipliers �T =(�1; �2; : : : ; �l) arise from the constraint (49),and the multipliers RT =(r1; r2; : : : ; rl) enforce the constraint (50).We have to �nd the saddle point of this functional (the minimum with respect tothe variables wi, b, and �i; and the maximum with respect to the variables �i and ri).Let us use the conditions for the minimum of this functional at the extremum point:@L@w ����w=w0 = w0 � X̀i=1 �iyixi = 0 ; (52)@L@b ����b=b0 = X̀i=1 �iyi = 0 ; (53)27

@L@�i �����i=�0i = kC X̀i=1 �0i !k�1 � �i � ri : (54)If we denote X̀i=1 �0i = � �Ck� 1k�1 ; (55)we can rewrite equation (54) as � � �i � ri = 0 : (56)From the equalities (52)-(55) we �ndw0 = X̀i=1 �iyixi ;X̀i=1 �iyi = 0 ; (57)� = �i + ri : (58)Substituting the expressions for w0, b0, and � into the Lagrange functional (51) weobtain W (�; �) = X̀i=1 �i � 12 X̀i=1 X̀j=1�i�jyiyjxi � xj � �k=k�1(kC)1=k�1 �1� 1k� : (59)To �nd the soft margin hyperplane solution one has to maximize the form functional(59) under the constraints (57)-(58) with respect to the non-negative variables �i; ri withi=1; : : : ; l. In vector notation (59) can be rewritten asW (�; �) = �T1 � "12�TD�+ �k=k�1(kC)1=k�1 �1� 1k�# ; (60)where � and D are as de�ned above. To �nd the desired saddle point one therefore hasto �nd the maximum of (60) under the constraints�TY = 0 ; (61)�+R = �1 ; (62)� � 0 ; (63)and R � 0 : (64)28

From (62) and (64) one obtains that the vector � should satisfy the conditions0 � � � �1 : (65)From conditions (62) and (64) one can also conclude that to maximize (60)� = �max = max(�1; : : : ; �`) :Substituting this value of � into (60) we obtainW (�) = �T1� "12�TD�+ �k=k�1max(kC)1=k�1 �1� 1k�# : (66)To �nd the soft margin hyperplane one can therefore either �nd the maximum of thequadratic form (51) under the constraints (61) and (65), or one has to �nd the maximumof the convex function (60) under the constraints (61) and (56). For the experimentsreported in this paper we used k = 2 and solved the quadratic programming problem(51).For the case of F (u) = u the same technique brings us to the problem of solving thefollowing quadratic optimization problem: minimize the functionalW (�) = �T1� 12�TD� ;under the constraints 0 � � � C1 ;and �TY = 0 :The general solution for the case of a monotone convex function F (u) can also beobtained from this technique. The soft margin hyperplane has a formw = X̀i=1 �iyixi ;where �T0 =(�0; :::; �0̀) is the solution of the following dual convex programming prob-lem: maximize the functionalW (�) = �T1� �12�TD�+ ��maxf�1(�maxC)�� CF �f�1(�maxC)�� ;under the constraints �TY = 0 ;29

� � 0 ;where we denote f(u) = F 0(u) :For convex monotone functions F (u) with F (0)=0 the following inequality is valid:uF 0(u) > F (u) :Therefore the second term in square brackets is positive and goes to in�nity when �maxgoes to in�nity.Finally, we can consider the hyperplane that minimizes the form12 w �w+ X̀i=1 �2i !subject to the constraints (49)-(50), where the second term minimizes the least squarevalue for the errors. This lead to the following quadratic programming problem: maxi-mize the functional W (�) = �T1� 12 ��TD�+ 1C�T�� (67)in the non-negative quadrant � � 0 subject to the constraint �TY=0.References[1] M. Aizerman, E. Braverman, and L. Rozonoer. Theoretical foundations of thepotential function method in pattern recognition learning. Automation and RemoteControl, 25:821{837, 1964.[2] T. W. Anderson and R. R. Bahadur. Classi�cation into two multivariate normaldistributions with di�erent covariance matrices. Ann. Math. Stat., 33:420{431,1966.[3] B. E. Boser, I. Guyon, and V. N. Vapnik. A training algorithm for optimal marginclassi�ers. In Proceedings of the Fifth Annual Workshop of Computational LearningTheory, volume 5, pages 144{152, Pittsburg, 1992. ACM.[4] L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, L. D. Jackel, Y. LeCun,E. Sackinger P. Simard, V. Vapnik, and U. A. Miller. Comparison of classi�ermethods: A case study in handwritten digit recognition. Proceedings of 12th In-ternational Conference on Pattern Recognition and Neural Network, 1994.[5] J. Bromley and E. Sackinger. Neural-network and k-nearest-neighbor classi�ers.Technical Report 11359-910819-16TM, AT&T, 1991.30

[6] R. Courant and D. Hilbert. Methods of Mathematical Physics. Interscience, NewYork, 1953.[7] R. A. Fisher. The use of multiple measurements in taxonomic problems. Ann. Eu-genics, 7:111{132, 2 1936.[8] Y. LeCun. Une procedure d'apprentissage pour reseau a seuil assymetrique. Cogni-tiva 85: A la Frontiere de l`Intelligence Arti�cielle des Sciences de la Connaissancedes Neurosciences, pages 599{604, Paris 1985.[9] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,and L. D. Jackel. Handwritten digit recognition with a back-propagation network.In Advances in Neural Information Processing Systems, volume 2, pages 396{404.Morgan Kaufman, 1990.[10] D. B. Parker. Learning logic. Technical Report TR-47, Center for ComputationalResearch in Economics and Management Science, Massachusetts Institute of Tech-nology, Cambridge, MA, 1985.[11] F. Rosenblatt. Principles of Neurodynamics. Spartam Books, New York, 1962.[12] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representa-tions by backpropagating errors. Nature, 323:533{536, 1986.[13] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal represen-tations by error propagation. In James L. McClelland and David E. Rumelhart,editors, Parallel Distributed Processing, Volume 1, pages 318{362.MIT Press, 1987.[14] V. N. Vapnik. Estimation of Dependences Based on Empirical Data, Addendum 1.New York: Springer-Verlag, 1982.
31

