SUPPORT-VECTOR NETWORKS

Corinna Cortes ' and Vladimir Vapnik 2
AT&T Labs-Research, USA

Abstract. The support-vector network is a new learning machine for two-group
classification problems. The machine conceptually implements the following idea: input
vectors are non-linearly mapped to a very high-dimension feature space. In this feature
space a linear decision surface is constructed. Special properties of the decision surface
ensures high generalization ability of the learning machine. The idea behind the support-
vector network was previously implemented for the restricted case where the training
data can be separated without errors. We here extend this result to non-separable
training data.

High generalization ability of support-vector networks utilizing polynomial input
transformations is demonstrated. We also compare the performance of the support-
vector network to various classical learning algorithms that all took part in a benchmark
study of Optical Character Recognition.

Keywords: Pattern recognition, efficient learning algorithms, neural networks, ra-
dial basis function classifiers, polynomial classifiers.

1 Introduction

More than 60 years ago R. A. Fisher [7] suggested the first algorithm for pattern recog-
nition. He considered a model of two normal distributed populations, N(mj, 3;) and
N(mgz, 33) of n dimensional vectors x with mean vectors m; and mj and co-variance
matrices ¥; and X3, and showed that the optimal (Bayesian) solution is a quadratic
decision function:

. 1 _ 1 B b
Fyq(x) = sign [5(" - my) S (x - my) - §(X —my) 'y (x — my) +1n M])

%]

(1)
In the case where 3; = 33 = ¥ the quadratic decision function (1) degenerates to a
linear function:

. - 1 _ _
Fj;,, (x) = sign [(ml —my) T x - S(mfZ 'm; —mlxT lmg)] . (2)

2

To estimate the quadratic decision function one has to determine w free parameters.

To estimate the linear function only n free parameters have to be determined. In the

'Daytime phone: (973)360-8670. E-mail: corinna@research.att.com
*Daytime phone: (732)345-3342. E-mail: vlad@research.att.com

perceptron output

weights of the output unit,
Qg5 0l g

output from the 5 hidden units: zq, ..., Zg

EEmr] weights of the 5 hidden units

output from the 4 hidden units
(1 DL EL 111 CEI I W] (T e weights of the 4 hidden units

\ dot—products /
mEnEE . [

input vector, x

Figure 1: A simple feed-forward perceptron with 8 input units, 2 layers of hidden units,
and 1 output unit. The gray-shading of the vector entries reflects their numeric value.

case where the number of observations is small (say less than 10n?) estimating o(n?)
parameters is not reliable. Fisher therefore recommended, even in the case of ¥ # X,
to use the linear discriminator function (2) with X of the form:

Y=r3+(1-1)%,, (3)

where 7 is some constant®. Fisher also recommended a linear decision function for
the case where the two distributions are not normal. Algorithms for pattern recognition
were therefore from the very beginning associated with the construction of linear decision
surfaces.

In 1962 Rosenblatt [11] explored a different kind of learning machines: perceptrons
or neural networks. The perceptron consists of connected neurons, where each neu-
ron implements a separating hyperplane, so the perceptron as a whole implements a
piecewise linear separating surface. See Figure 1.

The problem of finding an algorithm that minimizes the error on a set of vectors
by adjusting all the weights of the network was not found in Rosenblatt’s time, and
Rosenblatt suggested a scheme where only the weights of the output unit are adaptive.
According to the fixed setting of the other weights the input vectors are non-linearly
transformed into the feature space, Z, of the last layer of units. In this space a linear
decision function is constructed:

I(x) = sign (Z Q;z (x)) (4)

by adjusting the weights «; from the ¢-th hidden unit to the output unit so as to mini-
mize some error measure over the training data. As a result of Rosenblatt’s approach,

®The optimal coefficient for 7 was found in the sixties [2].

construction of decision rules was again associated with the construction of linear hy-
perplanes in some space.

An algorithm that allows for all weights of the neural network to adapt in order
locally to minimize the error on a set of vectors belonging to a pattern recognition
problem was found in 1986 [12, 13, 10, 8] when the back-propagation algorithm was
discovered. The solution involves a slight modification of the mathematical model of
neurons. Therefore, neural networks implement “piece-wise linear-type” decision func-
tions.

In this article we construct a new type of learning machines, the so-called support-
vector network. The support-vector network implements the following idea: it maps
the input vectors into some high dimensional feature space Z through some non-linear
mapping chosen a priori. In this space a linear decision surface is constructed with
special properties that ensure high generalization ability of the network.

Example: To obtain a decision surface corresponding to a polynomial of degree

. 3 .
two, one can create a feature space, Z, which has N = % coordinates of the form:
ZI =Ly ey I =&y n coordinates ,
— 2 .2 di
Il =Xy e ey Zan =25 n coordinates ,
n(n—1) .
29041 = XLy - ooy AN =L Tp—1 , 5— coordinates ,
where x=(z1,...,2,). The hyperplane is then constructed in this space.

Two problems arise in the above approach: one conceptual and one technical. The
conceptual problem is how to find a separating hyperplane that will generalize well: the
dimensionality of the feature space will be huge, and not all hyperplanes that separate
the training data will necessarily generalize well?. The technical problem is how com-
putationally to treat such high-dimensional spaces: to construct polynomial of degree
4 or 5 in a 200 dimensional space it may be necessary to construct hyperplanes in a
billion dimensional feature space.

The conceptual part of this problem was solved in 1965 [14] for the case of optimal
hyperplanes for separable classes. An optimal hyperplane is here defined as the linear
decision function with maximal margin between the vectors of the two classes, see
Figure 2. It was observed that to construct such optimal hyperplanes one only has to
take into account a small amount of the training data, the so called support vectors,
which determine this margin. It was shown that if the training vectors are separated
without errors by an optimal hyperplane the expectation value of the probability of
committing an error on a test example is bounded by the ratio between the expectation

“Recall Fisher’s concerns about small amounts of data and the quadratic discriminant function.

Figure 2: An example of a separable problem in a 2 dimensional space. The support
vectors, marked with grey squares, define the margin of largest separation between the
two classes.

value of the number of support vectors and the number of training vectors:

E[number of support vectors]

E[Pr(error)] < (5)

number of training vectors
Note, that this bound does not explicitly contain the dimensionality of the space of
separation. It follows from this bound, that if the optimal hyperplane can be constructed
from a small number of support vectors relative to the training set size the generalization
ability will be high — even in an infinite dimensional space. In Section 5 we will
demonstrate that the ratio (5) for a real life problems can be as low as 0.03 and the
optimal hyperplane generalizes well in a billion dimensional feature space.
Let
Wo ' Z + bo =0

be the optimal hyperplane in feature space. We will show, that the weights wq for the
optimal hyperplane in the feature space can be written as some linear combination of

Wgo = Z az; . (6)

support vectors

support vectors

The linear decision function /(z) in the feature space will accordingly be of the form:

I(z) = sign Z ;z; -z +bo | , (7)

support vectors

where z;-z is the dot-product between support vectors z; and vector z in feature space.
The decision function can therefore be described as a two layer network. Figure 3.

classification

support vectors Z
in feature space

=== L
\\ //
@ input vector in feature space

non-linear transformation

input vector, X

Figure 3: Classification by a support-vector network of an unknown pattern is concep-
tually done by first transforming the pattern into some high-dimensional feature space.
An optimal hyperplane constructed in this feature space determines the output. The
similarity to a two-layer perceptron can be seen by comparison to Figure 1.

A
E‘I;l classification

aq aj Lagrange multipliers
comparison
ug u; Uj Ug uz K(xpx)

t
2] 2] [2 7| vectors, x,

input vector, x

Figure 4: Classification of an unknown pattern by a support-vector network. The
pattern is in input space compared to support vectors. The resulting values are non-
linearly transformed. A linear function of these transformed values determine the output
of the classifier.

However, even if the optimal hyperplane generalizes well the technical problem of
how to treat the high dimensional feature space remains. In 1992 it was shown [3], that
the order of operations for constructing a decision function can be interchanged: instead
of making a non-linear transformation of the input vectors followed by dot-products with
support vectors in feature space, one can first compare two vectors in input space (by
e.g. taking their dot-product or some distance measure), and then make a non-linear
transformation of the value of the result. See Figure 4. This enables for the construction
of rich classes of decision surfaces, for example polynomial decision surfaces of arbitrarily
degree. We will call this type of learning machine for support-vectors network®.

The technique of support-vector networks was first developed for the restricted case
of separating training data without errors. In this article we extend the approach of
support-vector networks to cover when separation without error on the training vectors

5With this name we emphasize how crucial the idea of expanding the solution on support vectors
is for these learning machines. In the support-vectors learning algorithm e.g. the complexity of the
construction does not depend on the dimensionality of the feature space, but on the number of support
vectors.

is impossible. With this extension we consider the support-vector networks as a new
class of learning machine, as powerful and universal as neural networks. In Section 5
we will demonstrate how well it generalizes for high degree polynomial decision surfaces
(up to order 7) in a high dimensional space (dimension 256). The performance of the
algorithm is compared to that of classical learning machines e.g. linear classifiers, k-
nearest neighbors classifier, and neural networks. Section 2, 3, and 4 are devoted to the
major points of the derivation of the algorithm and a discussion of some of its properties.
Details of the derivation is relegated to an appendix.

2 Optimal Hyperplanes

In this section we review the method of optimal hyperplanes [14] for separation of
training data without errors. In the next section we introduce a notion of soft margins,
that will allow for an analytic treatment of learning with errors on the training set.

2.1 The Optimal Hyperplane Algorithm

The set of labeled training patterns

(y1:%1), -y (Yo, x¢) yi € {—-1,1} (8)

is said to be linearly separable if there exists a vector w and a scalar b such that the
inequalities
w-X;+0b
w-x;+b

IN IV

-1 if yi=—1, (9)

are valid for all elements of the training set (8). Below we write the inequalities (9) in
the form®:
y(w-x;+0)>1, i=1,....0(. (10)

The optimal hyperplane
WO'X—|—bOIO (11)

is the unique one which separates the training data with a maximal margin: it deter-
mines the direction w/|w| where the distance between the projections of the training
vectors of two different classes is maximal, recall Figure 2. This distance p(w, b) is given

by
X W X W

w,b)= min —— — max ——. 12
p() {x: y=1} |W| {x: y=—1} |W| ()

The optimal hyperplane (wg, bg) is the arguments that maximize the distance (12). It
follows from (12) and (10) that

2 2
B |W0| B VWo - Wo '

This means, that the optimal hyperplane is the unique one that minimizes w-w un-
der the constraints (10). Constructing an optimal hyperplane is therefore a quadratic
programming problem.

p(Wo, bo) (13)

®Note that in the inequalities (9) and (10) the right-hand side, but not vector w, is normalized.

Vectors x; for which y; (w - x; +b) =1 will be termed support vectors. In Appendix
we show that the vector wy that determines the optimal hyperplane can be written as
a linear combination of training vectors:

‘
wo =Y yialx; (14)
=1

where af > 0. Since @ > 0 only for support vectors (see Appendix), the expression
(14) represents a compact form of writing wo. We also show that to find the vector of
parameters «;:

Al =(aY,...,a0),

one has to solve the following quadratic programming problem:

W(A) = AT1 - %ATDA (15)
with respect to AT =(aq,...,a), subject to the constraints:
A>0, (16)
ATY =0, (17)
where 17 = (1,...,1) is an f(-dimensional unit vector, Y7 = (yi,...,) is the (-

dimensional vector of labels, and D is a symmetric £ X £-matrix with elements
Di; =yyxi-x;, ,5=1,...,10. (18)

The inequality (16) describes the nonnegative quadrant. We therefore have to maximize
the quadratic form (15) in the nonnegative quadrant, subject to the constraints (17).

When the training data (8) can be separated without errors we also show in Appendix
A the following relationship between the maximum of the functional (15), the pair
(Ao, bg), and the maximal margin pg from (13):

2
W(Ag) = — . (19)
Po
If for some A, and large constant Wy the inequality
W(AL) > W (20)

is valid, one can accordingly assert that all hyperplanes that separate the training data
(8) have a margin
2

<A/ T -
p WO

If the training set (8) can not be separated by a hyperplane, the margin between patterns
of the two classes becomes arbitrary small, resulting in the value of the functional W (A)
turning arbitrary large. Maximizing the functional (15) under constraints (16) and (17)
one therefore either reaches a maximum (in this case one has constructed the hyperplane
with the maximal margin pg), or one finds that the maximum exceeds some given (large)
constant Wy (in which case a separation of the training data with a margin larger then
\/2/Wy is impossible).

The problem of maximizing functional (15) under constraints (16) and (17) can
be solved very efficiently using the following scheme. Divide the training data into a
number of portions with a reasonable small number of training vectors in each portion.
Start out by solving the quadratic programming problem determined by the first portion
of training data. For this problem there are two possible outcome: either this portion
of the data can not be separated by a hyperplane (in which case the full set of data as
well can not be separated), or the optimal hyperplane for separating the first portion of
the training data is found.

Let the vector that maximizes functional (15) in the case of separation of the first
portion be A;. Among the coordinates of vector A; some are equal to zero. They
correspond to non-support training vectors of this portion. Make a new set of training
data containing the support vectors from the first portion of training data and the
vectors of the second portion that does not satisfy constraint (10), where w is determined
by Ai. For this set a new functional W3(A) is constructed and maximized at As.
Continuing this process of incrementally constructing a solution vector A, covering all
the portions of the training data one either finds that it is impossible to separate the
training set without error, or one constructs the optimal separating hyperplane for the
full data set, Ay = Ag. Note, that during this process the value of the functional W (A)
is monotonically increasing, since more and more training vectors are considered in the
optimization, leading to a smaller and smaller separation between the two classes.

3 The Soft Margin Hyperplane

Consider the case where the training data can not be separated without error. In this

case one may want to separate the training set with a minimal number of errors. To

express this formally let us introduce some non-negative variables & >0, +=1,...,¢.
We can now minimize the functional

L
®E) =D & (21)

for small ¢ > 0, subject to the constraints

yz(WXZ—I'b)Zl_gzv 22177£7 (22)

10

&>0, i=1,...,0. (23)

For sufficiently small & the functional (21) describes the number of the training errors’.

Minimizing (21) one finds some minimal subset of training errors:

(yilvxil)v R (yikvxik) .

If these data are excluded from the training set one can separate the remaining part of
the training set without errors. To separate the remaining part of the training data one
can construct an optimal separating hyperplane.

This idea can be expressed formally as: minimize the functional

1 2 ‘ o
SV HCE (; &) (24)
subject to constraints (22) and (23), where F(u) is a monotonic convex function and C'
is a constant.

For sufficiently large C and sufficiently small o, the vector wq and constant bg, that
minimize the functional (24) under constraints (22) and (23), determine the hyperplane
that minimizes the number of errors on the training set and separate the rest of the
elements with maximal margin.

Note, however, that the problem of constructing a hyperplane which minimizes
the number of errors on the training set is in general NP-complete. To avoid NP-
completeness of our problem we will consider the case of o =1 (the smallest value of
o for which the optimization problem (15) has a unique solution). In this case the
functional (24) describes (for sufficiently large C') the problem of constructing a sep-
arating hyperplane which minimizes the sum of deviations, £, of training errors and
maximizes the margin for the correctly classified vectors. If the training data can be
separated without errors the constructed hyperplane coincides with the optimal margin
hyperplane.

In contrast to the case with o < 1 there exists an efficient methods for finding the
solution of (24) in the case of c=1. Let us call this solution the soft margin hyperplane.

In Appendix A we consider the problem of minimizing the functional

14
L 2
— CF i 25
peer (3e))
subject to the constraints (22) and (23), where F'(u) is a monotonic convex function
with F(0)=0. To simplify the formulas we only describe the case of F'(u)=wu? in this
section. For this function the optimization problem remains a quadratic programming
problem.

TA training error is here defined as a pattern where the inequality (22) holds with £ > 0.

11

In Appendix A we show that the vector w, as for the optimal hyperplane algorithm,
can be written as a linear combinations of support vectors x;:

{
_ 0, ~.
wp = g QG YiXi
=1

To find the vector AT = (ay,..., @) one has to solve the dual quadratic programming
problem of maximizing

1 52
W(A,5) = AT1 - 5 [ATDA + 5] (26)
subject to constraints
ATY =0, (27)
02>0, (28)
0<A<G1, (29)

where 1, A, Y, and D are the same elements as used in the optimization problem for
constructing an optimal hyperplane, ¢ is a scalar, and (29) describes coordinate-wise
inequalities.

Note that (29) implies that the smallest admissible value ¢ in functional (26) is

§ = gy = max(aq, ..., qp) .

Therefore to find a soft margin classifier one has to find a vector A that maximizes

2
W%A):Ajl—llAﬁL\+gﬂ£] (30)
2 C
under the constraints A > 0 and (27). This problem differ from the problem of con-
structing an optimal margin classifier only by the additional term with «,,.; in the
functional (30). Due to this term the solution to the problem of constructing the soft
margin classifier is unique and exists for any data set.

The functional (30) is not quadratic because of the term with ay,q,. Maximizing
(30) subject to the constraints A > 0 and (27) belongs to the group of so-called convex
programming problems. Therefore, to construct soft margin classifier one can either
solve the convex programming problem in the f-dimensional space of the parameters
A, or one can solve the quadratic programming problem in the dual £ 4 1 space of the
parameters A and 4. In our experiments we construct the soft margin hyperplanes by
solving the dual quadratic programming problem.

12

4 The Method of Convolution of the Dot-Product in Fea-
ture Space

The algorithms described in the previous sections construct hyperplanes in the input
space. To construct a hyperplane in a feature space one first has to transform the n-
dimensional input vector x into an N-dimensional feature vector through a choice of an
N-dimensional vector function ¢:

b R RV

An N dimensional linear separator w and a bias b is then constructed for the set of
transformed vectors

A(x;) = 1(x:), P2(%4), ..., ON(X4) i=1,...,0.

Classification of an unknown vector x is done by first transforming the vector to the
separating space (x — ¢(x)) and then taking the sign of the function

J(x) = w - 6(x) + . (31)

According to the properties of the soft margin classifier method the vector w can be
written as a linear combination of support vectors (in the feature space). That means

4
w = Zyiaiqb(xi) . (32)

=1
The linearity of the dot-product implies, that the classification function f in (31)
for an unknown vector x only depends on the dot-products:

4
FX) =0(x) - w+b=> yia;d(x)- d(x;) +b . (33)

=1

The idea of constructing support-vectors networks comes from considering general forms
of the dot-product in a Hilbert space [2]:

¢(u) - ¢(v) = K(u,v) . (34)

According to the Hilbert-Schmidt Theory [6] any symmetric function K (u,v), with
K (u,v)€ Ly, can be expanded in the form

K(u,v)= i_o: Aigi(u) - i (v) (35)

13

where A; € R and ¢; are eigenvalues and eigenfunctions
/K(qu)@(u)du = Aigi(v) .

of the integral operator defined by the kernel K (u,v). A sufficient condition to ensure
that (34) defines a dot-product in a feature space is that all the eigenvalues in the
expansion (35) are positive. To guarantee that these coefficients are positive, it is
necessary and sufficient (Merser’s Theorem) that the condition

//K(u,v)g(u)g(v)dudv >0

is satisfied for all ¢ such that
/gz(u)du <00 .

Functions that satisfy Merser’s theorem can therefore be used as dot-products. Aiz-
erman, Braverman and Rozonoer [1] consider a convolution of the dot-product in the
feature space given by function of the form

g

K(u,v) =exp <_|u—v|) , (36)

which they call Potential Functions.

However, the convolution of the dot-product in feature space can be given by any
function satisfying the Merserer’s condition, in particular to construct polynomial clas-
sifier of degree d in n-dimensional input space one can use the following function

K(u,v)=(u-v+1)7. (37)

Using different dot-products K (u,v) one can construct different learning machines
with arbitrarily types of decision surfaces [3]. The decision surface of these machines

has a form
¥4

flx)= Z i K (x,%x;)
=1
where x; is the image of a support vector in input space and «; is the weight of a support
vector in the feature space.
To find the vectors x; and weights «; one follow the same solution scheme as for the
original optimal margin classifier or soft margin classifier. The only difference is that
instead of matrix D (determined by (18)) one uses the matrix

Di; = yiy; K (xi,x5) , i,5=1,...,1.

14

5 General Features of Support-Vector Networks

5.1 Constructing the decision rules by Support-Vector Networks is
efficient

To construct a support-vector networks decision rule one has to solve a quadratic opti-
mization problem:

1 5
W(A)=AT1- - |ATDA + —
() S [ATDA+ C] ,
under the simple constraints:
0<A<61,
ATy =0,

where matrix
Di; = yiy; K (xi,x5) , i,5=1,...,1.

is determined by the elements of the training set, and K (u, v) is the function determining
the convolution of the dot-products.

The solution to the optimization problem can be found efficiently by solving interme-
diate optimization problems determined by the training data, that currently constitute
the support vectors. This technique is described in Section 3. The obtained optimal
decision function is unique®.

Each optimization problem can be solved using any standard techniques.

5.2 The Support-Vector Network is a Universal Machine

By changing the function K (u,v) for the convolution of the dot-product one can im-
plement different networks.

In the next section we will consider support-vector networks machines that use
polynomial decision surfaces. To specify polynomials of different order d one can use
the following functions for convolution of the dot-product

K(u,v)=(u-v+1)%.
Radial Basis Function machines with decision functions of the form
n o2
f(x) = sign (Z Q; exp {%})
=1

can be implemented by using convolutions of the type

K(u,v)=exp {—M} .

o2

The decision function is unique but not its expansion on support vectors.

15

In this case the support-vector network machine will construct both the centers x; of
the approximating function and the weights «;.

One can also incorporate a priory knowledge of the problem at hand by constructing
special convolution functions. Support-vector networks are therefore a rather general
class of learning machines which changes its set of decision function simply by changing
the form of the dot-product.

5.3 Support-Vector Networks and Control of Generalization Ability

To control the generalization ability of a learning machines one has to control two
different factors: the error-rate on the training data and the capacity of the learning
machine as measured by its VC-dimension [14]. There exist a bound for the probability
of errors on the test set of the following form: with probability 1 — n the inequality

Pr(test error) < Frequency (training error) + Confidence Interval (38)

is valid. In the bound (38) the confidence interval depends on the VC-dimension of the
learning machine, the number of elements in the training set, and the value of 7.

The two factors in (38) form a trade-off: the smaller the VC-dimension of the set
of functions of the learning machine, the smaller the confidence interval, but the larger
the value of the error frequency.

A general way for resolving this trade-off was proposed as the principle of structural
risk minimization: for the given data set one has to find a solution that minimizes their
sum. A particular case of structural risk minimization principle is the Occam-Razor
principle: keep the fist term equal to zero and minimize the second one.

It is known that the VC-dimension of the set of linear indicator functions

I(x) =sign(w-x+0b), |x|]<Cx

with fixed threshold b is equal to the dimensionality of the input space. However, the
VC-dimension of the subset

I(x) =sign(w-x+0b), |x|<C, |w|<Cy

(the set of functions with bounded norm of the weights) can be less than the dimen-
sionality of the input space and will depend on Cl.

From this point of view the optimal margin classifier method execute an Occam-
Razor principle. It keep the first term of (38) equal to zero (by satisfying the inequality
(9)) and it minimizes the second term (by minimizing functional w-w). This minimiza-
tion prevents an over-fitting problem.

However, even in the case where the training data are separable one may obtain
a better generalization ability by minimizing the confidence term in (38) even further
on the expense of errors on the training set. In the soft margin classifier method this

16

can be done by choosing appropriate values of the parameter C'. In the support-vector
networks algorithm one can control the trade-off between complexity of decision rule and
frequency of error by changing the parameter C', even in the more general case where
there exists no solution with zero error on the training set. Therefore the support-vectors
network can control both factors for generalization ability of the learning machine.

17

@) [° 8 o.
o * . . o) .
°" 00 o @9 ©° X o °°§(o

OX o ° o X ® oo 00%0 ° o

Figure 5: Examples of the dot-product (39) with d = 2. Support patterns are indicated
with double circles, errors with a cross.

6 Experimental Analysis

To demonstrate the support-vector network method we conduct two types of experi-
ments. We construct artificial sets of patterns in the plane and experiment with 2nd
degree polynomial decision surfaces, and we conduct experiments with the real-life prob-
lem of digit recognition.

6.1 Experiments in the Plane

Using dot-products of the form
K(u,v)=(u-v+1)* (39)

with d = 2 we construct decision rules for different sets of patterns in the plane. Results
of these experiments can be visualized and provide nice illustrations of the power of the
algorithm. Examples are shown in Figure 5. The 2 classes are represented by black and
white bullets. In the figure we indicate support patterns with a double circle, and errors
with a cross. The solutions are optimal in the sense that no 2nd degree polynomials
exist that make less errors. Notice that the numbers of support patterns relative to the
number of training patterns are small.

6.2 Experiments with Digit Recognition

Our experiments for constructing support-vector networks make use of two different
databases for bit-mapped digit recognition, a small and a large database. The small

18

8 7 4 8 7 3 7

Figure 6: Examples of patterns with labels from the US Postal Service digit database.

one is a US Postal Service database that contains 7,300 training patterns and 2,000 test
patterns. The resolution of the database is 16 X 16 pixels, and some typical examples are
shown in Figure 6. On this database we report experimental research with polynomials
of various degree.

The large database consists of 60,000 training and 10,000 test patterns, and is a 50-50
mixture of the NIST? training and test sets. The resolution of these patterns is 28 x 28
yielding an input dimensionality of 784. On this database we have only constructed a
4th degree polynomial classifier. The performance of this classifier is compared to other
types of learning machines that took part in a benchmark study [4].

In all our experiments ten separators, one for each class, are constructed. FEach
hyper-surface make use of the same dot product and pre-processing of the data. Classi-
fication of an unknown patterns is done according to the maximum output of these ten
classifiers.

6.2.1 Experiments with US Postal Service Database

The US Postal Service Database has been recorded from actual mail pieces and results
from this database have been reported by several researchers. In Table 1 we list the
performance of various classifiers collected from publications and own experiments. The
result of human performance was reported by J. Bromley & E. Sackinger [5]. The result
with CART was carried out by Daryl Pregibon and Michael D. Riley at Bell Labs,
Murray Hill, NJ. The results of C4.5 and the best 2-layer neural network (with optimal
number of hidden units) were obtained specially for this paper by Corinna Cortes and
Bernard Schoelkopf respectively. The result with a special purpose neural network
architecture with 5 layers, LeNet1, was obtained by Y. LeCun et al. [9].

On the experiments with the US Postal Service Database we used pre-processing
(centering, de-slanting and smoothing) to incorporate knowledge about the invariances

?National Institute for Standards and Technology, Special Database 3.

19

Classifier raw error, %
Human performance 2.5
Decision tree, CART 17
Decision tree, C4.5 16
Best 2 layer neural network 6.6
Special architecture 5 layer network 5.1

Table 1: Performance of various classifiers collected from publications and own experi-
ments. For references see text.

degree of raw support | dimensionality of
polynomial || error, % | vectors feature space

1 12.0 200 256

2 4.7 127 ~ 33000

3 4.4 148 ~1x10°

4 4.3 165 ~1x10?

5 4.3 175 ~1x 10"

6 4.2 185 ~1x 10"

7 4.3 190 ~1x10'

Table 2: Results obtained for dot products of polynomials of various degree. The number
“support vectors” is a mean value per classifier.

of the problem at hand. The effect of smoothing of this database as a pre-processing
for support-vector networks was investigated in [3]. For our experiments we chose the
smoothing kernel as a Gaussian with standard deviation ¢=0.75 in agreement with [3].

In the experiments with this database we constructed polynomial indicator functions
based on dot-products of the form (39). The input dimensionality was 256, and the order
of the polynomial ranged from 1 to 7. Table 2 describes the results of the experiments.
The training data are not linearly separable.

Notice, that the number of support vectors increase very slowly. The 7 degree
polynomial has only 30% more support vectors than the 3rd degree polynomial — and
even less than the first degree polynomial. The dimensionality of the feature space
for a 7 degree polynomial is however 10'° times larger than the dimensionality of the
feature space for a 3nd degree polynomial classifier. Note that performance almost does
not change with increasing dimensionality of the space — indicating no over-fitting
problems.

20

4 4 8 5

Figure 7: Labeled examples of errors on the training set for the 2nd degree polynomial
support-vector classifier.

The relatively high number of support vectors for the linear separator is due to
non-separability: the number 200 includes both support vectors and training vectors
with a non-zero &-value. If € > 1 the training vector is misclassified; the number of
mis-classifications on the training set averages to 34 per classifier for the linear case.
For a 2nd degree classifier the total number of mis-classifications on the training set is
down to 4. These 4 patterns are shown in Figure 7.

It is remarkable that in all our experiments the bound for generalization ability
(5) holds when we consider the number of obtained support vectors instead of the
expectation value of this number. In all cases the upper bound on the error probability
for the single classifier does not exceed 3% (on the test data the actual error does not
exceed 1.5% for the single classifier).

The training time for construction of polynomial classifiers does not depend on the
degree of the polynomial — only the number of support vectors. Even in the worst case
it is faster than the best performing neural network, constructed specially for the task,
LeNetl [9]. The performance of this neural network is 5.1% raw error. Polynomials
with degree 2 or higher outperform LeNet]1.

6.2.2 Experiments with NIST database

The NIST database was used for benchmark studies conducted over just 2 weeks. The
limited time frame enabled only the construction of 1 type of classifier, for which we
chose a 4th degree polynomial with no pre-processing. Our choice was based on our
experience with the US Postal database.

Table 3 lists the number of support vectors for each of the 10 classifiers and gives the
performance of the classifier on the training and test set. Notice that even polynomials
of degree 4 (that have more than 10® free parameters) commit errors on this training set.
The average frequency of training errors is 0.02 % ~ 12 per class. The 14 misclassified
test patterns for classifier 1 are shown in Figure 8. Notice again how the upper bound
(5) holds for the obtained number of support vectors.

The combined performance of the ten classifiers on the test set is 1.1% error. This
result should be compared to that of other participating classifiers in the benchmark

21

ChL.ojCL1|CL2|CL3|CL4|CLS5|CL6|CLT|CLS8|CLY

Supp. patt. || 1379 | 989 | 1958 | 1900 | 1224 | 2024 | 1527 | 2064 | 2332 | 2765

Error train 7 16 8 11 2 4 8 16 4 1

Error test 19 14 35 35 36 49 32 43 48 63

Table 3: Results obtained for a 4th degree polynomial classifier on th NIST database.
The size of the training set is 60,000, and the size of the test set is 10,000 patterns.

A pe

[e

119

I

VL2 R

Figure 8: The 14 misclassified test patterns with labels for classifier 1. Patterns with
label “1” are false negative. Patterns with other labels are false positive.

22

Test A |

error
2% + §> <§
8.4
106 L 2.4
1.7
1.1 1.1
linear k=3—-nearest LeNetl LeNet4 SVN

classifier neighbor
Figure 9: Results from the benchmark study.

study. These other classifiers include a linear classifier, a k=3-nearest neighbor classifier
with 60,000 prototypes, and two neural networks specially constructed for digit recogni-
tion (LeNetl and LeNet4). The authors only contributed with results for support-vector
networks. The result of the benchmark are given in Figure 9.

We conclude this section by citing the paper [4] describing results of the benchmark:

For quite a long time LeNetl was considered state of the art. ... Through
a series of experiments in architecture, combined with an analysis of the
characteristics of recognition error, LeNet4 was crafted. ...

The support-vector network has excellent accuracy, which is most remark-
able, because unlike the other high performance classifiers, it does not in-
clude knowledge about the geometry of the problem. In fact the classifier
would do as well if the image pixels were encrypted e.g. by a fixed, random
permutation.

The last remark suggest that further improvement of the performance of the support-
vector network can be expected from the construction of functions for the dot-product
K (u,v) that reflect a priori information about the problem at hand.

7 Conclusion

This paper introduces the support-vector network as a new learning machine for two-
group classification problems.

23

The support-vector network combines 3 ideas: the solution technique from optimal
hyperplanes (that allows for an expansion of the solution vector on support vectors), the
idea of convolution of the dot-product (that extends the solution surfaces from linear
to non-linear), and the notion of soft margins (to allow for errors on the training set).

The algorithm has been tested and compared to the performance of other classical
algorithms. Despite the simplicity of the design in its decision surface the new algorithm
exhibits a very fine performance in the comparison study.

Other characteristics like capacity control and easiness of changing the implemented
decision surface render the support-vector network an extremely powerful and universal
learning machine.

24

A Constructing Separating Hyperplanes

In this appendix we derive both the method for constructing optimal hyperplanes and
soft margin hyperplanes.

A.1 Optimal Hyperplane Algorithm

It was shown in section 2, that to construct the optimal hyperplane
W()'X—|—bOIO7 (40)
which separate a set of training data

(y17X1)7 BERR) (WJQ))

one has to minimize a functional
dP=w-w,

subject to the constraints
yi(x;owH+b)>1, i=1,...,0(. (41)

To do this we use a standard optimization technique. We construct a Lagrangian

£
1
L(Wvva):_W'W_Zai[yi(xi'w—l_b)_l]7 (42)
2 =1
where AT =(ay, ..., a) is the vector of non-negative Lagrange multipliers corresponding

to the constraints (41).

It is known that the solution to the optimization problem is determined by the
saddle point of this Lagrangian in the 2¢ + 1-dimensional space of w, A, and b, where
the minimum should be taken with respect to the parameters w and b, and the maximum
should be taken with respect to the Lagrange multipliers A.

At the point of the minimum (with respect to w and b) one obtains:

OL(w,b,A) g

T‘w:wo = (wo — ;aiyixi) =0, (43)
dL(w,b, A) B -
B T ;ya =0. (44)

From equality (43) we derive
14
Wo = i (45)
=1

25

which expresses, that the optimal hyperplane solution can be written as a linear com-
bination of training vectors. Note, that only training vectors x; with a; > 0 have an
effective contribution to the sum (45).

Substituting (45) and (44) into (42) we obtain

L
1
W(A) = Z & = 5 Wo * Wo (46)
=1
L 1 JA
= Z a— 3 Z Z QGOGY YK X (47)

In vector notation this can be rewritten as
W(A) = AT1 - %ATDA : (48)
where 1 is an [-dimensional unit vector, and D is a symmetric £ X {-matrix with elements
Dij = yiyjxi - x; .

To find the desired saddle point it remains to locate the maximum of (48) under the
constraints (43)
ATY =0,
where YT = (y1,...,), and
A>0.

The Kuhn-Tucker theorem plays an important part in the theory of optimization.
According to this theorem, at our saddle point in wg, by, Ag, any Lagrange multiplier
o? and its corresponding constraint are connected by an equality

ailyi(xi-wo+bo) —1] =0, i=1,....(.
From this equality comes that non-zero values «; are only achieved in the cases where
Yi(Xi - wo +bo) —1=0.

In other words: «; # 0 only for cases were the inequality is met as an equality. We call
vectors x; for which
yi(x;-wo+bo) =1

for support-vectors. Note, that in this terminology the equation (45) states that the
solution vector wg can be expanded on support vectors.

Another observation, based on the Kuhn-Tucker equation (44) and (45) for the opti-
mal solution, is the relationship between the maximal value W (Ag) and the separation
distance po:

¢ ¢
Wo - Wo = Za?yixi “Wp = 20‘?(1 — yibo) = ZO‘? :
=1 =1 :

26

Substituting this equality into the expression (46) for W (Ag) we obtain

where pg is the margin for the optimal hyperplane.

A.2 Soft Margin Hyperplane Algorithm

Below we first consider the case of I'(u) = u*. Then we describe the general result for
a monotonic convex function F(u).
To construct a soft margin separating hyperplane we maximize the functional

Y k
1
o= §W-W—|—C(;&) . ok>1,
under the constraints
yz(xzwﬁ-b)Zl—fZ, 22177£7 (49)
>0, i=1,....10. (50)
The Lagrange functional for this problem is
1 k
L(w,&,0,A,R)= W W—I—C(Z&) Zazyz X, wW+b) —14&]— Zrzfﬂ (51)
=1 =1
where the non-negative multipliers AT = (ay, ay, ..., o) arise from the constraint (49),
and the multipliers RT = (ry, rq,..., ;) enforce the constraint (50).

We have to find the saddle point of this functional (the minimum with respect to
the variables w;, b, and &;, and the maximum with respect to the variables o; and r;).
Let us use the conditions for the minimum of this functional at the extremum point:

oL £

- =wo— Q) oyx; =0, 52

OW | w=w, ; (52)
dL :
— = oy, =0 53
0 oy ~ 2 53)

27

¥4
e (z 5?) P (51)
=1
If we denote

Y- (2)7 (55)

=1

we can rewrite equation (54) as
d—a;—r;=0. (56)

From the equalities (52)-(55) we find
14
Wo = Z QG YiXq
1=1

£
=1
0 = o+, (58)

Substituting the expressions for wgq, bg, and § into the Lagrange functional (51) we
obtain

4 1 L L 5k/k—1 1

=1 =1 7=1

To find the soft margin hyperplane solution one has to maximize the form functional
(59) under the constraints (57)-(58) with respect to the non-negative variables a;, r; with
i

/=1,...,0. In vector notation (59) can be rewritten as
1 §klk—1 1
A5)=A"1- |-ATDA -——————(1——)
W(9) 2 —I_ (kc)l/k_l k‘ 9 (60)

where A and D are as defined above. To find the desired saddle point one therefore has
to find the maximum of (60) under the constraints

ATY =0, (61)
A+R =461, (62)
A>0, (63)
and
R>0. (64)

28

From (62) and (64) one obtains that the vector A should satisfy the conditions
0<A<6l. (65)
From conditions (62) and (64) one can also conclude that to maximize (60)
§ = gy = max(aq, ..., qp) .

Substituting this value of § into (60) we obtain

WA = AT1 - | L ATDA oy ! 1 66
W=at- A PAr o U r)] (66)

To find the soft margin hyperplane one can therefore either find the maximum of the
quadratic form (51) under the constraints (61) and (65), or one has to find the maximum
of the convex function (60) under the constraints (61) and (56). For the experiments
reported in this paper we used k =2 and solved the quadratic programming problem
(51).

For the case of I'(u) = u the same technique brings us to the problem of solving the
following quadratic optimization problem: minimize the functional

1
W(A)=AT1 - 5ATDA ,
under the constraints

0<A<C1,

and
ATY =0.

The general solution for the case of a monotone convex function F'(u) can also be
obtained from this technique. The soft margin hyperplane has a form

¢
W= ZO@'@/Z'XZ' 5
i=1

where Al = (a?, ..., a?) is the solution of the following dual convex programming prob-
lem: maximize the functional

%ATDAJF (ammf‘l(m)) -cr (f_l(m))] ’

A)=AT1-
W(A) c c

under the constraints
ATy =0,

29

A>0,
where we denote
flu)=F(u) .

For convex monotone functions F(u) with F'(0)=0 the following inequality is valid:
uF' (u) > F(u) .

Therefore the second term in square brackets is positive and goes to infinity when a4
goes to infinity.

Finally, we can consider the hyperplane that minimizes the form

1

£
2 (W'W+Z€?)
=1

subject to the constraints (49)-(50), where the second term minimizes the least square
value for the errors. This lead to the following quadratic programming problem: maxi-
mize the functional

W(A) = AT1 -

ATDA + %ATA (67)

1
2
in the non-negative quadrant A > 0 subject to the constraint ATY =0.

References

[1] M. Aizerman, E. Braverman, and L. Rozonoer. Theoretical foundations of the
potential function method in pattern recognition learning. Automation and Remote
Control, 25:821-837, 1964.

[2] T. W. Anderson and R. R. Bahadur. Classification into two multivariate normal
distributions with different covariance matrices. Ann. Math. Stat., 33:420-431,
1966.

[3] B. E. Boser, I. Guyon, and V. N. Vapnik. A training algorithm for optimal margin
classifiers. In Proceedings of the Fifth Annual Workshop of Computational Learning
Theory, volume 5, pages 144-152, Pittsburg, 1992. ACM.

[4] L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, L. D. Jackel, Y. LeCun,
E. Sackinger P. Simard, V. Vapnik, and U. A. Miller. Comparison of classifier
methods: A case study in handwritten digit recognition. Proceedings of 12th In-
ternational Conference on Pattern Recognition and Neural Network, 1994.

[5] J. Bromley and E. Sackinger. Neural-network and k-nearest-neighbor classifiers.
Technical Report 11359-910819-16TM, AT&T, 1991.

30

[6] R. Courant and D. Hilbert. Methods of Mathematical Physics. Interscience, New
York, 1953.

[7] R. A. Fisher. The use of multiple measurements in taxonomic problems. Ann. Fu-
genics, 7:111-132, 2 1936.

[8] Y. LeCun. Une procedure d’apprentissage pour reseau a seuil assymetrique. Cogni-
tiva 85: A la Frontiere de l‘Intelligence Artificielle des Sciences de la Connaissance
des Neurosciences, pages 599-604, Paris 1985.

[9] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel. Handwritten digit recognition with a back-propagation network.
In Advances in Neural Information Processing Systems, volume 2, pages 396-404.
Morgan Kaufman, 1990.

[10] D. B. Parker. Learning logic. Technical Report TR-47, Center for Computational
Research in Economics and Management Science, Massachusetts Institute of Tech-
nology, Cambridge, MA, 1985.

[11] F. Rosenblatt. Principles of Neurodynamics. Spartam Books, New York, 1962.

[12] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representa-
tions by backpropagating errors. Nature, 323:533-536, 1986.

[13] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal represen-
tations by error propagation. In James L. McClelland and David E. Rumelhart,
editors, Parallel Distributed Processing, Volume 1, pages 318-362. MIT Press, 1987.

[14] V. N. Vapnik. Fstimation of Dependences Based on Empirical Data, Addendum 1.
New York: Springer-Verlag, 1982.

31

