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Abstract

The domain deformation method has been applied successfully to steady state free surface flows where the volume of
the flow domain is unknown [V.F. de Almeida, Gas-liquid counterflow through constricted passages, Ph.D. thesis, Uni-
versity of Minnesota, Minneapolis, MN 1995; P.A. Sackinger, P.R. Schunk, R.R. Rao, A Newton-Raphson pseudo-solid
domain mapping technique for free and moving boundary problems: a finite element implementation, J. Comput. Phys.
125 (1996) 83-103; L.C. Musson, Two-layer slot coating, Ph.D. thesis, University of Minnesota, Minneapolis, MN
2001]; however, this method does not handle effectively problems where the volume of the flow domain is known « priori.
This work extends the original domain deformation method to a new isochoric domain deformation method to account for
the volume conservation. Like in the original domain deformation method, the unknown shape of the flow domain is
mapped onto a reference domain by using the equations of an elastic pseudo-solid; the difference with the original method
is that this pseudo-solid is considered incompressible. Because of the incompressibility, the pseudo-pressure of the mapping
appears as a Lagrange multiplier in the equations, and it is determined only up to an arbitrary uniform datum. By ana-
lyzing the coupled fluid flow-mapping problem, we show that, in the finite-element setting, such pressure datum can be
specified by replacing one continuity equation in the fluid domain.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Flows with free surfaces have movable boundaries whose shapes are achieved by a balance of all the forces
evident in viscous flow plus capillarity—the action of surface tension in a curved interface. In most free surface
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flows, for example, slot coating and polymer extrusion flow, both the shape and the volume of the flow domain
are unknown a priori. However, the volume of the fluid in the domain is occasionally known a priori. For
example, a neutrally buoyant immiscible drop suspended in a flowing fluid can deform its shape, but the vol-
ume of the droplet is conserved.

Previously, several methods for handling steady free surface problems have been developed, in particular
using so-called elliptic mesh generation [4] and domain deformation [2,5]. These methods have been successful
in describing 2D free surface problems [1,3,6-8]. In addition, the domain deformation method has been
applied successfully to 3D Newtonian free surface problems [9] and 3D viscoelastic free surface flows
[10,11]. These methods compute the shape of the free surfaces together with the flow equations by mapping
the physical (flow) domain onto a reference domain; however, the mapping does not preserve the domain vol-
ume. Whereas free surface flows with open boundaries are solvable by a suitable prescription of open-flow
boundary conditions, models of closed flows with moving boundaries are under-determined without a math-
ematical constraint that prescribes the volume that the liquid occupies; one example is a deforming droplet
suspended in a shearing flow. Although a new method has been presented recently to preserve the mapping
volume locally in an unsteady flow [12], no such method is currently available for steady flows.

This paper extends the original domain deformation method to preserve the volume of the reference
domain in a steady flow, so that the volume of the physical domain is equal to the volume of the reference
domain. The finite element method is then applied to solve the problem equations and to determine the shape
of the flow domain. The new method is called the isochoric domain deformation method. In this new method,
the mesh is treated as an incompressible elastic pseudo-solid, so that the physical domain is related to a ref-
erence domain through an isochoric mapping. Here, the isochoric domain deformation method is evaluated by
solving volume-conserved steady free surface problems with Newtonian liquids; the method is universally
applicable to non-Newtonian fluids.

Section 2 presents the mathematical formulation and the solution method. Sections 3-5 present 2D and 3D
test cases for validating the isochoric domain deformation method. Section 6 tests the effectiveness of the
method in handling large domain deformations. Finally, Section 7 summarizes the results and assesses the
potential of the isochoric domain deformation method.

2. Mathematical formulation and solution method

Steady, free surface flows modeled by the isochoric domain deformation method are described by the cou-
pled domain volume conservation equation, domain mapping equation, mass conservation equation, and
momentum conservation equation. These equations are coupled and simultaneously yield domain shape
and flow field. The problem equations are

0=detF'—1 (1)
0=V-T¢ (2)
0=V-v (3)
0=pv-VWv—V-T-VO (4)

where det indicates the determinant of a tensor, FY is the domain mapping deformation gradient tensor, V is
the gradient vector in space, T is the stress tensor of the elastic pseudo-solid, v is the velocity, p is the fluid
density, T = — pI + u(Vv + Vv') is the total stress tensor of the fluid, p is the pressure, u is the fluid viscosity, I
is the identity tensor, superscript 7 denotes the transpose, and @ is the potential body force per unit volume.

Eq. (1) expresses volume conservation for the pseudo-solid. Eq. (2) is the pseudo-solid momentum equation
and it is also called mapping equation in this study. These two equations describe an incompressible elastic
pseudo-solid, i.e. the isochoric mapping. Egs. (3) and (4) are fluid mass conservation equation and fluid
momentum equation; they describe Newtonian fluid flow.

2.1. Isochoric domain deformation method

The isochoric domain deformation method treats the mesh as an incompressible elastic pseudo-solid and
computes the mapping by solving the equilibrium equations of such pseudo-solid. Refs. [3,5,10,11] detail
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the original domain deformation method. The isochoric domain deformation method follows a similar con-
struction, except that a volume conservation constraint (Eq. (1)) is introduced and the elastic pseudo-solid
constitutive equations are different.

Fig. 1 shows the elastic body mapping from the reference domain Q, to the physical domain Q

X = y(Xo) (5)

where x is a point in  that corresponds to point Xq in €. An infinitesimal filament dx, at xo deforms to dx at
x according to

dx =F'-dxg;  dy; = Fydxy (6)
where F¢ is called the domain mapping deformation gradient, and it is given by
Ox;
F! = (0x/0x,)"; Fd4=_—"
(0x/0x0) s F; o, (7

F¢ includes information of local deformation and rotation. Because rigid body rotation has no effect on equi-
librium of solid, a new variable B, the left Cauchy—Green strain tensor—also called the Finger tensor, is intro-
duced to eliminate the rigid body rotation component by multiplying F® with its transpose,

Ox; Ox;
B=F F'; B;=_— 8
’ ] aka aka ( )
B is positive definite and symmetric by construction.
In a domain mapping, there are two methods to conserve domain volume. The first method is to set
/ detF'dQ — 7, =0 (9)
Q

where V| is the reference domain volume. This method gives only one extra equation, but couples all the ele-
ments in this flow domain, thereby giving a full row in the Jacobian matrix that is used in Newton’s non-linear
equation solution method. Having such a full row is undesirable for parallel solvers because it requires extra
inter-processor communication. The second method is to set

detF'—1=0 (10)

This method gives extra equations in each element, but only gives extra terms in the diagonal block of the
Jacobian matrix, which is favorable for parallel solvers; thus, this study develops the second method.
The momentum-conservation equation of the pseudo-solid is

V-T°=0 (11)
Qo Q
x = x(xo)
X X
€ ey
€] e
€3 e3

Fig. 1. Mapping between a reference domain Q, and a physical domain Q. y is a mapping function that maps position x, in @, to position
x in Q, and this mapping is a one-to-one mapping.
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The momentum-conservation equation and the volume conservation equation forms a complete set to com-
pute the deformation of an incompressible solid.
The constitutive equation of an incompressible pseudo-solid is [13]:

. ow

T = nI+2B-aB (12)
where 7 is an arbitrary isotropic pressure of the pseudo-solid and it is called mapping pseudo-pressure here-
after; w is the stored energy depending on material model and deformation and it has a form of
w = f(Ig, g, I1lg), where Iy, I1g, I1Ig are the first, second, and third invariants of B. A discussion of the rel-
ative merits of various choices of stored energy functions can be found in Ref. [3]. For an incompressible elas-
tic pseudo-solid, Iz = (det Fd)2 = 1; thus, w = f (I, lIg). Here an incompressible neo-Hookean elastic solid
is chosen for simplicity and without loss of generality; its stored energy is w = % (Ig — 3). Therefore, the elastic
constitutive equation (Eq. (12)) can be rewritten as

T = —nl + B,B (13)

where f, is a constant parameter related with solid shear modulus; f, = 1 is set in this study—a function fS(x)
would easily yield an adaptive mesh.

The reference domain from which the mesh is deformed is completely arbitrary. In a first calculation, usu-
ally the initial guess of the domain shape and the mesh inscribed thereupon is used as the reference domain. In
practice, solutions to free-boundary problems are rarely found unless, among other things, the initial guess is
“relatively close” to the solution, and so mesh strains are not overly large. Thus convergence difficulties of the
non-linear domain deformation equations are alleviated. Because one steady-state solution is of limited prac-
tical value, usually families of steady states are sought at wide ranges of operating and physical parameters
most often by arc-length continuation techniques [14-16]. Again, because the reference state is arbitrary—
and is thus a choice, the final configuration of the mesh at one steady state serves as the reference state for
the succeeding state on the solution path. Thus, relative strains between consecutive continuation steps are
always kept modest, whereas overall strains can be arbitrarily large (see Section 6). It should be noted, how-
ever, that the relative strains are not so modest as to render the quadratic strain measure equivalent to an infin-
itesimal one.

2.2. Free surface boundary conditions

The equations must be solved together with appropriate boundary conditions. Special care has to be taken
on free surface for both the fluid flow momentum equation and pseudo-solid momentum equation, i.e. the
mesh mapping equation. Fig. 2 shows the physical boundary conditions on free surfaces, where n; and n,
are unit normal vectors on the surface of fluid 1 and fluid 2 domains, T; and T, are the total stress tensors
in fluid 1 and fluid 2, respectively, Vy; is the surface gradient which represents (I — nn) - V, and IT is the surface
stress with a tensor value of y(I-nn) when the surface is a simple liquid-liquid or liquid—gas interface, n can be
either n; or n, and 7 is the surface tension. At the liquid free surface/interface, the physical boundary condi-
tions show that dynamic equilibrium is

n-T,+nm - T, =V -1I (14)

No penetration

oo fluid 1

Tl A%
np

Stress balance

fluid 2 fluid 2
n

n-v=ny-v=_0 n -Ti+ny -To=Vy-II

Fig. 2. Physical boundary conditions on free surface.



402 X. Xie et al. | Journal of Computational Physics 226 (2007) 398-413

Eq. (14) is imposed naturally as fluid flow momentum equation boundary condition, i.e., through the weighted
residual integral — the weak form in Galerkin’s method — of the traction n- T at boundary I" as

/Flpf; n - T, dF+/rzpf; n - T, df:/rlﬁﬁ.(vn-l'l)df

traction in fluid 1 traction in fluid 2
:_/vlllﬁi‘-ndr+/¢;nA-ndA (15)
r A

where A is the boundary of boundary I' (in 3D, I is a surface, 4 is a curve), n is outward unit normal vector
of A and it is tangent to I' at the same time, and y;, is the weighting function « for the momentum equation
(m). In a free surface problem with only one liquid domain, n, - T, = n;p, with p, the ambient pressure, the
traction jump boundary condition becomes

/Flp;n-Tdr:—/Flp:;npa—/rvnwﬁ,-ndr+/Al/f§,nA-Hd/\ (16)

traction

If it is a 2D problem, then the surface stress term in Eq. (15) is

/n,b“VH~HdF:—/%t~HdF+w“nA«H|b:—/%t~HdF+w“(t-H)b—W(t~H) (17)
r m r dS m a r dS m m a

where t is the tangent to I', s is the path of the boundary line, ¢ and b are the starting and the ending points of
the boundary curve.

Imposing boundary conditions on the momentum equations of the pseudo-solid at the free surface is chal-
lenging because manipulating free surface characteristics on a 3D surface is difficult, especially on an unstruc-
tured mesh. A complete set of boundary conditions on the momentum equations requires three equations on a
3D surface; one component is normal to the surface and two are tangential to it and are usually orthogonal to
one another. The normal component boundary condition is dictated by the physics whereas the tangential
component equations can be chosen for computational convenience. The tangential equations are derived
in such a way that material points of the pseudo-solid, represented by mesh nodes, form elements near the
surface that are devoid of excessive skewness or aspect ratio.

The free surface is a streamline in 2D or surface in 3D, so there is no velocity component normal to it as
shown in Fig. 2, i.e., n- v = 0; this is called the kinematic boundary condition and it is applied in the normal
direction as an essential boundary condition.

In the tangent directions, element nodes should move freely so as to achieve a desirable mesh quality. This
is done by requiring the pseudo-solid surface to be free of shear stress, viz tn : T = 0, where i =1, 2 in 3D
flows and t; and t, are two orthogonal tangent vectors. Imposing this boundary condition on a boundary
where one tangent vector is aligned with one coordinate direction is straightforward because the contribution
of this term to the weighted residual is zero. Imposing this condition on a boundary which is arbitrarily ori-
ented with respect to the coordinate system, e.g. a free surface, is more complicated. This condition can be
applied either essentially or naturally in 2D flows [1-3]; in 3D flows it is applied naturally due to the difficulties
in manipulating surface normal and tangent vectors and their derivatives. In a 3D problem, the mapping equa-
tions are projected onto two tangent directions; then the zero shear stress condition is imposed naturally. In
general, the rotation can be done before or after integration of the volumetric terms of the equations; for sim-
plicity, here the equations are rotated after integration as done in Ref. [9]. The residuals corresponding to t;
and t, after rotation are

Vi(l’z =1 - r* (18)
rff‘ =t -r** (19)
where r** is the mapping weighted residual equation associated with the mapping weighting function ¢%; the
corresponding Jacobian matrix includes two contributions: (1) the derivatives of the vector residual projected
onto the tangent directions and (2) the derivatives of the tangent vectors multiplied by the residuals. Compu-
tations reported below show that the quadratic convergence of Newton’s iteration is preserved with this
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rotation strategy. In 3D, there are countless tangent directions. Unit tangent vectors are usually different when
they are calculated in different elements; however, the unit normal vectors are unique within numerical preci-
sion. In order to obtain two unit orthogonal tangent vectors consistent for each node shared by elements, the
tangent vectors are computed globally. For each node on free boundary, the first unit tangent vector is cal-
culated by

~ (I—mn)-s
[[(I—nn) - s|
where s is an arbitrary seed vector [9], chosen to be sufficiently different from n to avoid a vanishing product in

the projection. The second unit tangent vector is calculated from the unit normal vector and the first unit tan-
gent vector

tb=nxt (21)

t, (20)

At edges when two or more surfaces meet, special care must be taken for the boundary conditions. If different
boundary conditions are prescribed on the surfaces meeting at one edge or corner, one of them must be kept
and the others must be discarded. If the node location is specified on any of the surfaces, this condition is im-
posed preferentially. Alternatively, the kinematic boundary condition is imposed. If neither of these two con-
ditions is prescribed, the node distribution boundary condition is imposed.

2.3. Coupling of fluid and elastic pseudo-solid

To solve the free surface flow equations involves computing a fluid flow field and a mesh. The equations for
liquid and pseudo-solid are coupled to solve the problem simultaneously; the coupling is strong when surface
tension is high—more precisely, when the capillary number Ca= uv/y is low. The kinematic boundary condi-
tion, n - v = 0, couples solid and liquid because this fluid flow condition is imposed as a boundary condition on
the mapping equation; this coupling exists regardless of the method used to compute the mapping. Most
importantly, in the isochoric domain deformation method, one continuity equation in one location is replaced
by an equation that sets the mapping pseudo-pressure = a constant reference value; the reason is explained
below.

When computing the deformation of an incompressible pseudo-solid, the variable = is a Lagrange multi-
plier and it only appears in a gradient form in the pseudo-solid momentum equation; thus, = is specified
up to a reference value—much like the pressure in an incompressible liquid or solid. The reference value
can be introduced either by a normal elastic stress boundary condition or by setting a value of 7 at one loca-
tion. However, on known boundaries, the boundary shape must be imposed as boundary condition; on free
boundaries, the kinematic boundary condition is imposed. Therefore, a normal elastic pseudo-stress cannot be
imposed through the boundary, and an arbitrary value of =, i.e., © = mp, has to be set at one interior location.
This apparent paradox can be resolved by examining the continuity equation and kinematic boundary condi-
tion in the flow domain.

In free surface flows with conserved domain volumes, there are no inflow or outflow surfaces; thus, the nor-
mal velocity on all boundaries is zero. On each free boundary, n-v =0 is imposed explicitly as essential
boundary condition on the elastic pseudo-solid equilibrium equation. On all the other boundaries, n-v =0
is generally imposed implicitly through Dirichlet boundary conditions, v = f(x), where v has zero value in nor-
mal direction. By the divergence theorem [17],

/V-de:/n-vdP (22)
Q r

Therefore, the zero normal velocity on the whole boundaries and the mass conservation equation in the whole
domain are linearly dependent. One of the weighted residuals of the continuity equation must be replaced to
generate a set of linearly independent problem equations.

The mapping pseudo-pressure reference value equation © = 7, is introduced in place of this superfluous
continuity residual. Replacing one continuity residual equation by setting a reference value of n not only
removes one linearly dependent equation in the fluid flow domain, but also closes the incompressible solid
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equation set. Thus, this replacement closely couples solid and fluid to form a closed equation set, and it is a
key advantage of the isochoric domain deformation method.

2.4. Solution method

The Galerkin finite element method is used to reduce the partial differential equations of the problem to
algebraic equations [11]. The problem equations are non-linear and fully coupled. Newton’s method is used
to linearize the equations, which yields a large scale linear algebraic system JAx = — R, where J is the Jaco-
bian matrix, Ax is called the Newton update, and R is the residual vector. The Jacobian matrix is computed
analytically so that the iterative solver converges quadratically. In each Newton iteration, a direct frontal sol-
ver with full pivoting [18] solves the linear algebraic equations. Convergence is declared when both ||Ax||, and
|R||, are less than 10°, where || - ||, denotes the Euclidean norm. Typically, four to six Newton iterations are
necessary for convergence.

3. Computation of a 2D slit with a free surface

The isochoric domain deformation method is applied to compute a 2D free surface between two static par-
allel plates. The slit is filled with a liquid of prescribed volume V. As shown in Fig. 3, the meniscus in the slit is
not flat. The distance between the plates is w = 1 and the volume per unit breadth of the liquid between the
plates is ¥y = 4w?. The problem is mapped onto a reference rectangular domain with height # = 4w and width
w. In this static situation, a dimensionless number, Bond number, Bo = pgw?/y is defined to express the ratio
of gravitational forces to surface tension forces; here g is acceleration due to gravity and 7y is the surface ten-
sion. In this study, Bo is fixed at 0.5 and the contact angle is set to 6 = 60°.

The boundary conditions for this case are: (1) on boundary 1, the essential boundary conditions are x = X,
and v = 0; (2) on boundaries 2 and 3, the mesh adheres to the equation of the lines x; = x;y (i = 2, 3) respectively
and moves freely on the line by following the tangent boundary condition tn : T¢ = 0, and v = 0; (3) on bound-

ary 4, free surface boundary conditions are imposed, i.e., n-v=0, tn: T°=0, and n- T = —np, + Vy; - IL
w
&
4 d
h
2 3

/‘:a 1 |

T

Fig. 3. Schematic of a constant volume of liquid between two parallel plates with a meniscus. The numbers 1-4 denote the boundaries, and
the letters a—d denote the intersection corners.
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Fig. 4. Reference and deformed physical meshes of the 2D slit between two parallel plates with a conserved volume of fluid. Left: reference
mesh; right: computed physical mesh.

Boundary conditions for the intersections are: (1) at the intersections ¢ and b, boundary conditions of the
boundary 1 are imposed; (2) at the intersections ¢ and d, fluid momentum boundary condition of boundaries
2-3 are imposed, but for the mesh equation, x; = x;, and the contact angle § = 60° of the meniscus with the wall
are imposed. The contact angle boundary condition is imposed by specifying the normal vector direction at the
intersections ¢ and d on boundary 4.

The above boundary conditions indicate that n- v = 0 on all the boundaries. However, n-v = 0 on all the
boundaries and the continuity equation V -v = 0 in all the domain are linearly dependent according to the
divergence theorem. As described in detail in Section 2.3, one mass conservation equation is replaced by equa-
tion = = 0 at the bottom left corner a.

The triangular mesh of the reference domain Q is shown in Fig. 4 (left). The reference domain has a flat top
and its height is o = 4w so that the volume of the domain equals the volume of the liquid inside the slit. The
mesh has 902 elements and 1905 nodes. The mesh and fluid equations are solved to obtain the final meniscus
shape for the specified boundary conditions. Fig. 4 (right) shows the computed mesh.

Fig. 5 shows the shape of the free surface; the volume of fluid, which is V= 4w? in the reference domain, is
computed in the physical domain. The computed volume is 4.0001 w?, which equals the reference volume ¥V to
within 0.0025%, confirming that the volume is conserved.

Fig. 6 shows the contours of the liquid pressure p and mapping pseudo-pressure 7. The contours show that
7 has a higher value in the middle of the free surface and a lower value at the corners. This is attributed to the
distortion of the mesh elements in the middle and the stretch at the corners as shown in Fig. 4 (right).

4. Computation of a Newtonian drop deforming in a Newtonian shear flow

The deformation of a periodic suspension of drops in a shear flow with an immiscible fluid is calculated by
applying the isochoric domain deformation method in the drop domain and original compressible domain
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Fig. 6. Contours of the liquid pressure p (left) and mapping pseudo-pressure = (right) in the 2D slit with a conserved volume of fluid.

deformation method in the matrix domain. The schematic of the flow domain is shown in Fig. 7, with dimen-
sion 2H = 8Ry and L = 8R,, where R, is the undeformed drop radius, 2H is the width between the top and the
bottom boundary, and L is the length. The Reynolds number is Re = 2pURy/1t,,, Where p,,, is the viscosity of
the external phase, and it is fixed at Re = 0. The viscosity ratio between the drop and the matrix fluid is fixed at
g = 1. The characteristic shear rate is j. = Uy/H; thus, the capillary number is Ca = puRy(Uy/H)/y. The
boundary conditions are: (1) the top boundary moves in the positive x; direction with a constant velocity
U, i.e., v = Upey, (2) the bottom boundary moves opposite to x; direction with a constant velocity U, i.e.,
v = —Uyey, (3) the flow field on the left and right open boundaries is periodic, and (4) the drop surface is a
free interface. The kinematic boundary condition, n-v = 0, is imposed as mesh boundary condition on the
drop surface. By the divergence theorem [17], the kinematic boundary condition integrated over the whole
drop surface is equivalent to the continuity equation V - v = 0 integrated over the whole drop domain. Thus,
the weighted continuity equation at one node in the drop domain must be replaced, in this case, by 7 =0 to
create a linearly independent set of weighted residuals. Because the problem is translationally invariant, the
center location of the drop is specified so as to fix the location of the drop and create a closed set of equations.

With domain dimensions and viscosity ratio ¢ fixed and boundary conditions set, the drop morphology
depends only on capillary number for a Newtonian drop deforming in a Newtonian matrix. The drop
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Fig. 7. Schematic of a periodic suspension of 2D drops in a channel flow. The domain of the computation is the middle domain with
length L.

£2

Z1

Fig. 8. Schematic of drop shape and orientation. A is the maximum radius, B is the minimum radius, and 0 is the orientation angle
between the maximum radius direction and the x;-axis.
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Fig. 9. D versus Ca for a 2D periodic Newtonian drop deforming in a Newtonian matrix; comparison of this work with Zhou and
Pozrikidis [19].

morphology is represented by the deformation parameter D defined as D = (4 — B)/(A + B) and orientation
angle 0, where 4, B and 6 are described by Fig. 8. For code validation, this test uses the same parameters and
geometry as those of Ref. [19]. Fig. 9 shows the relationship between deformation parameter D and capillary
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Fig. 10. 0 versus Ca for a 2D periodic Newtonian drop deforming in a Newtonian matrix; comparison of this work with Zhou and
Pozrikidis [19].

number Ca. Fig. 10 shows the drop orientations at different capillary numbers. In both figures, the data com-
parison to the results presented in [19] is excellent up to Ca ~ 0.4.

5. Computation of a 3D rotating bucket flow
The isochoric domain deformation method is applied to a 3D rotating bucket filled with a liquid volume of
Vo as shown in Fig. 11. The analytical free surface shape is available for validating the method. The radius of

the bucket is R. The volume of the liquid is ¥y = 7R*H (here, 7 is Archimedes’ constant; hereafter, H = R).
The bucket rotates in clock-wise direction at an angular speed @ under the influence of gravity (directed

T2

free surface

T3

W

Fig. 11. Schematic of the rotating bucket flow. The top surface is a free surface and the other boundaries are solid walls.
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Fig. 12. Computed meshes in a rotating bucket flow with a constant volume at different Froude numbers. Left: Fr = 0.1; right: Fr = 0.4.

toward the bottom of the bucket, i.e., parallel to the axis of rotation). The Froude number, defined as the ratio
of inertial to gravitational force, is set at Fr = Rw?/g = 0.1 to 0.4.

The boundary conditions are: (1) on the bottom boundary, x = X, and the velocity of the liquid equals that
of solid wall v=1v,, i.e., v; = —x3m, v, = 0, and v; = x;w; (2) on the side wall, the mesh can only move in the
direction of the axis of rotation, i.e., x; = x19, X3 = X3¢, and tn : T® = 0, with t parallel to the x, direction, and
the velocity of the liquid equals that of solid wall v =v,, i.e., v; = —x30, v, = 0,03 = x;0; (3) on the top sur-
face, free surface boundary conditions are imposed, i.e.,n-v=0, tyn: T = 0, t;n : T®* = 0, where t; and t, are
two orthogonal unit tangent vectors, and force balance at free surface n- T = —np, + Vy; - I1. Boundary con-
ditions at the intersections are: (1) at the intersection a, the boundary conditions on the bottom boundary are
applied; (2) at the intersection b, the boundary condition from the free surface is applied to the mapping equa-
tions; the conditions vy = —x3w, v3 = xj0, and (n-T), = (—np, + Vy; - II), are imposed on the momentum
equation.

The above boundary conditions prescribe that n - v = 0 on all the boundaries. One mass conservation equa-
tion is replaced by equation © = 0.

The computation is performed on an tetrahedral mesh with 969 elements and 1674 nodes. At different Fro-
ude number, the computed mesh and velocity vectors are shown in Figs. 12 and 13, respectively. The free sur-
face shape only depends on the Froude number, and the height from the bottom to the top free surface (circle
a), which equals Hj at static state, increases with Froude number. The analytical free surface shape is

2
/R :%Fr(%) —%—I—xz()/R (23)
where x,/R is the dimensionless free surface shape, x» is the top surface location in the absence of rotation,
and r = /x} + x3. The computed free surface shapes at Fr = 0.1 and Fr = 0.4 are plotted at the x3 = 0 plane in
Fig. 14 (left). The free surface deforms more as Froude number increases, but it always meets the static profile
at radius 7 = R/ V2 as expected. Fig. 14 (left) compares the computed free surface shapes with the analytical
shapes. Fig. 14 (right) shows the relative error, which is calculated by dividing the difference between the ana-
lytical and numerical solutions by the total analytical deformation depth. The comparison shows that the

Fig. 13. Velocity vectors in a rotating bucket flow with a constant volume at different Froude numbers. Left: Fr = 0.1; right: Fr = 0.4.
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Fig. 14. Left: Computed and analytical free surface shape at z =0 plane for a rotating bucket flow with a constant volume at different
Froude numbers; symbols denote computed shapes and solid lines denote analytical shapes. Right: relative errors, open circles denote
Fr=0.1 and solid squares denote Fr = 0.4.

numerical solutions match the analytical solutions to within 3.2% when Fr = 0.1 and 2.5% when Fr = 0.4; this
example validates the isochoric domain deformation method.

6. Horse-shoe problem

The constraint of local incompressibility may yield mapping equations that cannot describe large deforma-
tion. To test whether the incompressible domain deformation method can accommodate large domain defor-
mations, the mapping of a rectangular domain into a curved one is examined here (Fig. 15a and b). This is the
so-called horse-shoe problem that is found in Refs. [1,3,5].

Fig. 16 shows the deformation. The domain is deformed progressively by using a (zeroth-order) continua-
tion (or homotopy); each shape is computed by prescribing the location of the narrow boundaries of the
“deformed” shape and using the previous shape in the sequence as (unstressed) reference domain. The mesh
quality is good at each step of the domain deformation. The use of continuation is not a barrier to adopting

1
a. Initial rectangular domain  b. Deformed horse shoe domain

Fig. 15. Schematic of a rectangle deforming to a horse-shoe shape.
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Fig. 16. Meshes of the rectangular domain and its progressively deformed shapes into a horse-shoe.

the incompressible domain deformation method in free surface flow computations because continuation is
used routinely in such computations to accelerate the convergence of Newton’s method as well as to find turn-
ing points and construct bifurcation diagrams [3,8,14-16].
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7. Conclusions

A new isochoric domain deformation method is developed in this study. This new method treats a volume-
conserved free surface flow domain as an incompressible elastic pseudo-solid. The flow domain is then com-
puted by solving the momentum-conservation equation of the incompressible elastic pseudo-solid together
with its volume conservation equation. The equations for fluid and pseudo-solid are coupled to determine flow
field and unknown domain simultaneously. The isochoric domain deformation method is an extension of the
classical domain deformation method. The key developments in the new method are (1) it treats mesh as
incompressible elastic pseudo-solid instead of a compressible one in the original domain deformation method,
(2) it replaces one mass conservation equation in the fluid with the specification of a reference value for the
mapping pseudo-pressure 7 to break the linear dependence in the equation set and to form a well-posed system
of equations. This new method can be used to compute steady free surface flows with prescribed domain vol-
ume, which cannot be handled as easily by the original domain deformation method. Importantly, the new
method does not introduce global constraints in the equation set and yields sparse and substantially diagonal
matrices when combined with finite element basis functions.

The isochoric domain deformation method is applied in a 2D static case with free surface deformed by cap-
illary force, a 2D drop deformation in a shear flow, and a 3D flow where free surface is deformed due to iner-
tial and gravitational force. The shape of a liquid between two parallel plates is computed successfully, and the
analysis of the results shows that the fluid volume is conserved. The 2D drop deformation is calculated at dif-
ferent capillary number and validated by comparing with results of [19]. A 3D rotating bucket with a constant
volume of liquid inside is modeled at two different Froude numbers. The free surface shapes match the ana-
lytical solutions. Moreover, the incompressible domain deformation method can describe successfully the
large nonlinear deformation of a rectangular strip into a horse-shoe shape. Therefore, the isochoric domain
deformation method can be used successfully to compute both 2D and 3D, steady, volume-conserved free sur-
face flows.
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