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A signal detection model applied to the
stimulus: Understanding covariances in face
recognition experiments in the context of face
sampling distributions
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We provide a description and interpretation of signal de-
tection theory as applied to the analysis of an individual
stimulus in a recognition experiment. Despite the common
use of signal detection theory in this context, especially in
the face recognition literature, the assumptions of the model
have rarely been made explicit. In a series of simulations, we
first varied the stability of d’ and C in face sampling distri-
butions and report the pattern of correlations between the
hit and false alarm rate components of the model across the
simulated experiments. These kinds of correlation measures
have been reported in recent face recognition papers and
have been considered to be theoretically important. The
simulation data we report revealed widely different corre-
lation expectations as a function of the parameters of the
face sampling distribution, making claims of theoretical im-
portance for any particular correlation questionable. Next,
we report simulations aimed at exploring the effects of face
sampling distribution parameters on correlations between in-
dividual components of the signal detection model, (i.e., hit
and false alarm rates), and other facial measures such as
typicality ratings. These data indicated that valid interpre-
tations of such correlations need to make reference to the
parameters of the relevant face sampling distribution.
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1. INTRODUCTION

A number of researchers have employed techniques
based on signal detection theory (Green & Swets,
1966) with the aim of measuring the recognizability
of individual faces in an experiment (e.g., Bartlett,
Hurrey, & Thorley, 1984; Hancock, Burton & Bruce,
1996; Light, Kayra-Stuart, & Hollander, 1979; Light,
Hollander, & Kayra-Stuart, 1981; O’Toole, Deffen-
bacher, Valentin, & Abdi, 1994; Valentine & Bruce,
1986; Vokey & Read, 1992). Applied to the analysis
of individual faces rather than individual observers,
these techniques have proven useful for understanding
both theoretical and practical issues in human face
processing. For example, the relationship between
the rated typicality and recognizability of faces is the
primary evidence for a prototype-based account of
human face processing. Additionally, measurement-
based approaches to the recognizability of individual
faces have proven useful for understanding applied is-
sues in forensic psychology, such as the relationship
between confidence and accuracy in face recognition
(Deffenbacher, 1980) and the relationship between
facial description accuracy and recognition accuracy
(Pigott, Brigham & Bothwell, 1990).

Despite its widespread use, the implicit assump-
tions underlying a signal detection theory model ap-
plied to the analysis of individual stimuli are rarely
made explicit. To our knowledge, the issues have
been addressed only once, in the appendix of O’ Toole,

Deffenbacher, Valentin, McKee, Huff, and Abdi (1998),
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and there, only briefly. In the present paper we sketch
out a full description. Given the extremely common
application of signal detection theory to the descrip-
tion of individual observer performance in a partic-
ular condition of an experiment, this may seem un-
necessary. We would argue, however, that there are a
number of crucial differences in how these signal de-
tection measures tend to be used for stimulus versus
observer-based performance descriptions. For exam-
ple, whereas individual differences in observer perfor-
mance obviously occur in an experimental condition,
they are rarely considered “interesting” in a theoreti-
cal sense. In fact, they are mostly viewed as an exper-
imental annoyance, which is dealt with by the appli-
cation of inferential statistics. By contrast, although
the majority of face recognition studies operate at
the level of observer analysis, individual differences in
face recognizability have become an important theo-
retical focus in the face recognition literature. For
example, individual differences in face recognizabil-
ity form the backbone evidence for theories of face
processing that build on face space models (Valen-
tine, 1991). Additionally, the primary evidence for
prototype theory as applied to faces is the finding
that the recognizability of individual faces correlates
inversely with ratings of facial typicality (cf., Bruce
& Young, 1986; Light et al., 1979). Individual differ-
ences in faces have been used also for assessing the
categorical structure of face spaces.

The focus on studying individual stimuli has been
extended recently by a number of researchers to ad-
dress questions about the kinds of recognition errors
people tend to make with individual faces. These
questions have obvious practical value in the con-
text of eyewitness identification accuracy. Thus, re-
searchers have asked questions like, “What kinds of
faces elicit many false alarms?”, “What kinds of faces
elicit few hits?”, and “What factors underlie the re-
lationship between hits and false alarm rates for indi-
vidual faces?”. Good examples of this kind of ques-
tioning can be found in recent papers by Hancock,
Burton and Bruce (1996) and Lewis and Johnston
(1997) who consider the theoretical significance of
their finding that hit and false alarm rate errors did
not correlate in their recognition experiment. Both
suggest that this result indicates a dissociation of
the processses and/or information used in recognizing
faces as “old”, and the processes and/or information

used in rejecting faces as “novel”. While these ques-
tions seem to have a prominent role when signal de-
tection theory is applied to stimuli, they are ascribed
theoretical status only rarely when the analysis is
applied to the description of observer performance.?
The important difference in the uses to which sig-
nal detection measures have been put for the individ-
ual observer versus individual face case motivates the
present simulations. Signal detection theory is suffi-
ciently complicated that our intuitions may be of only
limited utility in predicting how the different compu-
tational components of the model interrelate under
varying assumptions about the properties of the dis-
tribution of faces serving as stimuli in a particular
experiment.

The aims of this paper are : 1.) to give an ex-
plicit presentation of the signal detection model im-
plied in measuring the recognizability of individual
stimuli; 2.) to measure the pattern of correlations
between the components of hit and false alarm rate
that are expected for face samples that vary in the
mean and standard deviation of their characteristic
discriminability index and criterion; and 3.) to ex-
plore the source of correlations between a single com-
ponent of the discriminability index and criterion, (ei-
ther hit or false alarm rate), and another measure
such as typicality. For this latter question we look at
the extent to which criterion and discrimination in-
dex variation in the face sample relate to correlations
obtained between a nonsignal detection measure of
faces, such as a facial rating, and hit or false alarm

1 Readers who have followed the very active literature on the
mirror effect (Glanzer and Adams, 1990) and its surrounding
controversy (Hintzman, 1994; Hintzman, Caulton & Curran,
1994), will note a number of complex and subtle connections
with the issues we raise here. The difference in the approach
we have taken here to understanding these issues is dictated in
large part by an historical difference between the face recog-
nition literature and the more general recognition literature.
In the former literature, stimulus properties (e.g., typicality)
have been analyzed generally as continous variables that are
measured with stimulus-based analyses in the broader context
of an experiment. Among these stimulus-based measures, cor-
relations of all sorts have been reported. Our efforts in this
paper are directed at understanding these kinds of covariance
measures applied a posteriori to samples of faces, each de-
scribed by a signal detection model. In the latter literature,
stimulus properties have been treated most commonly as di-
chotomous independent variable manipulations (e.g., high ver-
sus low-frequency words). We return to the implications of
this issue in the discussion.
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rates. Although it is possible to make the primary
points for the second and third goals of this paper by
using a more mathematical or analytical approach to
the problem, we have chosen to present simulations
for two reasons. First, the simulation approach can
be presented in a manner that makes it accessible to a
broader audience of researchers in the area of face and
object recognition who are not necessarily specialists
in mathematical psychology. Second, and equally im-
portant, there are a number of open parameters con-
cerning the form of the distributions. These open pa-
rameters make the simulation approach applicable to
real experiments for which the parameters are known,
but do not support the assumptions required for the
application of a mathematical analysis.

Additionally, the signal detection model allows for
the meaningful computational assessment of a face’s
criterion. While the interpretation of this criterion is
somewhat less certain for the stimulus model than for
the observer model, we consider cases in the discus-
sion section for which stimulus-based criterion fluc-
tuation occurs and can be theoretically interesting.
For present purposes, we sketch the basics of the full
stimulus model in this section, and leave these other
interpretation issues aside until the discussion sec-
tion.

In the observer model, to be able to recognize faces
at a level above chance, a particular observer should
experience higher levels of “familiarity”? when view-
ing faces he/she has seen before than when viewing
novel faces. In this case, each individual point in the

92 THE SIGNAL DETECTION THEORY MODELprobability density function represents the degree of

OF OBSERVERS AND STIMULI

In this section we make explicit the model underlying
the application of signal detection theory to individ-
ual stimuli. Readers who are not very familiar with
signal detection theory, or who would like a quick
refresher course in the context of analyzing observer
behavior in a face recognition task, are referred to
the presentation in Appendix A. This appendix pro-
vides a complete description of the observer model
in a face recognition experiment. We include this as
a complete self-contained foundation for the analogy
we develop for the stimulus model.

It is worth noting that the description we present
in the next section can apply to any kind of stimulus
employed in a standard yes/no recognition experi-
ment. For concreteness and clarity, however, we use
the problem of face recognition as an example.

The signal detection model in experimental psy-
chology is applied occasionally to the task of measur-
ing or describing the “behavior” of a single stimulus.
Most commonly in the literature, it is the recogniz-
ability of a particular face that is of interest. Thus,
Jjust as some people are better at face recognition than
other people, some faces are more recognizable than
other faces. As is the case for other stimulus-based
measures, to compute the recognizability of a face,
data are collapsed across different observers. So, just
as data are collapsed across face stimuli to measure
the performance of a single observer, data are col-
lapsed across observers to measure the recognizability
of a single face.

familiarity elicited by a single face when it is viewed
by the observer. In other words, the noise distrib-
ution on the left of Figure 1 is comprised of faces
the observer has never seen before and the signal +
noise distribution 1s comprised of faces the observer
has seen before. By contrast, the signal detection the-
ory model applied to stimuli is based on the assump-
tion that the degree of familiarity experienced by ob-
servers when viewing a particular face for the first
time is discriminable from the degree of familiarity
experienced by observers when viewing this face for
a second time. Thus, for a face to be recognizable at
a level above chance, on the average, observers should
experience lower levels of familiarity viewing the face
for the first time, than when viewing it for a second
time. The familiarity experienced by observers view-
ing the face for the first time is represented in the
distribution on the left of Figure 1, whereas the dis-
tribution on the right represents the familiarity expe-
rienced by observers viewing the face for the second
time. Each data point in each probability density
function represents the degree of familiarity experi-
enced by a single observer viewing the face. In other
words, the noise distribution on the left is comprised
of observers who have never seen the face before and
the signal + noise distribution is comprised of ob-
servers who have seen the face before.

2Care must be taken in interpreting familiarity in this con-
text. No connection is claimed between this rather abstract
and unspecified dimension and more precise definitions offered
other papers, e.g., Bartlett, Hurry & Thorley (1984) and Vokey

& Read (1992).
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d-prime

F1GURE 1. A classic signal detection
model, with d =2 and C = 0.

The computation of the d’ and C for the stimu-
lus model proceeds analogously to the computation
for the observer model. In the observer model, each
hit that contributes to the hit rate, and each false
alarm that contributes to the false alarm rate comes
from a different face. In the stimulus model, each hit
that contributes to the hit rate, and each false alarm
that contributes to the false alarm rate comes from a
different observer.

Applied to the observer model, d’ refers to how
accurately the observer recognizes faces in the par-
ticular experimental condition, whereas C' gauges the
bias of the observer to respond “old” versus “new”.
Applied to a face stimulus, this model is intuitive and
interpretable as follows. The discrimination index or
d' gauges the recognizablility of the face, (i.e., how
good people tend to be at recognizing this particular
face). Generally, d’ is thought to reflect the charac-
teristics of the individual face, such as whether or not
it has distinctive features, (e.g., a mole, buck teeth,
etc). The criterion gauges the tendency of the face to
evoke “old” versus “new” responses from observers in
a particular experimental condition. The criterion re-
flects both the characteristics of the individual faces
and the characteristics of the experimental context.
Both factors might work together as follows. A male
face with long hair may evoke many “old responses”
in a task in which long-haired males comprise 80 per-
cent of the learned faces used (e.g., recognition of rock
stars), but may evoke many fewer “old” responses

when long-haired males represent only a small mi-
nority of the faces (e.g., Wall Street brokers).

3. SIMULATIONS

To carry out the simulations that follow, we generated
a data base of “face models” that varied systemati-
cally in their characteristic d’ and C'. A face model is
simply a signal detection theory representation of a
single face in an experimental condition, and is spec-
ified by a d’ and C. We then sampled from this data
base in different ways and analyzed the samples to
address our questions.

The construction of the data base proceeded as
follows. We generated a “matrix” of signal detection
models that varied systematically in d’ and C. This
is depicted schematically in Figure 2, which shows a
sampling of signal detection models with d’ increasing
across rows, and criterion increasing across columns.
While d’ can vary computationally from negative in-
finity to positive infinity, in practical terms, success-
ful psychological experiments are those that set up
the task requirements to avoid ceiling and floor ef-
fects. The simulations we report here are indeed sen-
sitive to the d’ and criterion range chosen. To make
these simulations as meaningful as possible, we have
choosen parameter values that are commonly encoun-
tered in these kinds of experiments. For d’, we chose
only positive values, varying from .50 to 2.5, in in-
crements of 0.1. The criterion varied in this matrix
from —1 to +1, also with an increment parameter of
0.1. This yielded a 21 x 21 matrix similar in form to
that displayed in Figure 2.

In summary, each “element” of this matrix can be
thought of as an hypothetical face stimulus model
that could correspond to a particular face in some
experimental condition of a yes/no recognition ex-
periment. Highly recognizable faces are represented
toward the bottom part of the matrix, and less recog-
nizable faces toward the top. Faces recognized with
loose criteria are on the left side of the matrix and
faces recognized with with stricter criteria are on the
right side of the matrix.

From the signal detection models specified, we next
computed a matrix of the hit rates these models yield,
and a second matrix of the false alarm rates these
models yield.
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FI1GURE 2. Schematic representation of the signal detection models created, with d’ increas-
ing by row, and criterion becoming stricter by column.

The first set of simulations results in variations
of the kind of information captured in families of Re-
ceiver Operating Characteristic (Roc) curves. Specif-
ically, we present the results that occur: 1.) when one
limits oneself to a range of commonly found d’ and C
scores, and more importantly, 2.) when different sam-
pling distributions of face models are included. We
wished, first, to extract from this representation, the
correlations between hit and false alarm rates that
one would obtain when these different distributions
underlie the face models included in a standard face
recognition study.

3.1. Exhaustive Distribution Simulations.

3.1.1. Baseline Statistics. .

In this first analysis, we did the simplest thing pos-
sible. We correlated the hit and false alarm rates for
all of the face models in the matrix. This is an ex-
haustive sample of the faces. This sample yields a
correlation of 0.589 between hit and false alarm rate.
The pattern of covariance is illustrated in Figure 3
and is simply a repesentation of a complete set of
RoC curves for the d’ and C range considered.

3.1.2. One dimensional variation of face sam-
pling distribution. In this exercise, we simply di-
vided up Figure 3 into the parts caused by variation
in the d’ and and the parts caused by variation in the

C.

Stable Criterion. .

The case that is perhaps most commonly assumed
or hoped for in face recognition experiments, is a case
in which the criterion remains more or less constant
and only d’, or face recognizability, varies meaning-
fully. It is obvious that if this is the case, regardless of
the value of d’, the correlation between hit and false
alarm rate is high and negative, with r peaking at
—1.0 when the criterion is stable at 0. This is easy to
see intuitively if we look back at Figure 1. With the
criterion stable at 0, imagine pulling apart the signal
and noise distributions symmetrically about this zero
point. One obtains a perfect negative correlation be-
tween hits and false alarms. Figure 4 illustrates iso-
criterion functions for the range of criteria between
—1 and 1. For the range we included, the correla-
tions between hit and false alarm varied from —.9696
to —1.0.
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Exhaustive Sample Distribution
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FiGURE 3. Hit versus false alarm rates in an exhaustive sample distribution of face models.
Each point represents a possible combination of hit and false alarm rate. The correlation
between hit and false alarm rates across the entire sample is equal to 0.589.

Stable d’. .

The complementary possibility is a stable d’ with
meaningful variation in only the criterion. Although
theoretically possible, the extreme version of this is
an unlikely situation given the commonly reported
finding that face ratings and d’ correlate. This indi-
cates that d’ must vary at least somewhat. Nonethe-

value. We have already seen in the previous sim-
ulations that a completely stable criterion produces
high negative correlations between hit and false alarm
rates, and that a completely stable d’ produces high
positive correlations between hit and false alarm rates.
In this simulation we investigate the middle ground of

moderate variations of d’ and C'. Additionally, rather

less, for completeness, we present the iso-discrimination than using an exhaustive sampling distribution, in

lines in Figure 4. These iso-discrimination lines clearly
produce correlations in the opposite direction to those
obtained with a stable criterion. For the d’ and C
range tested, the correlations for this stable d’ case

ranged from 0.847 to 0.99.

3.2. Random Normal Distribution Simu-
lations. In this series of simulations, we generated
random normal, distributions that varied in the stan-
dard deviation of the d’ and C about some mean

which all d’ and C values in the matrix were equally
probable, we sampled these values from normal dis-
tributions. This seems more realistic as a sampling
assumption.

We began by generating random normal sampling
distributions n = 100 from the face models created
previously. These distributions were centered on a
mean d’ = 1.0 and C' = 0.0. We varied only the stan-
dard deviation of the sampling distributions. These
standard deviations varied from 0, i.e., completely
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FI1GURE 4. In the left figure are the iso-criterion lines, and in the right figure are the iso-

discrimination lines.

Within iso-criterion lines, highly negative correlations between hit

and false alarm rate are found. Within iso-discrimination lines moderately high positive
correlations between hit and false alarm rate are found.

stable and equivalent to the above “extreme” situa-
tions, to .5, in .1 z-score increments. The standard
deviation for the d’ and C' components of the distri-
bution varied in all possible combinations, yielding
36 different face sampling distributions (e.g., o4 = 0
and oc = 03 0y = 0 and 6¢ = .1; ¢ = 0 and
oc=.2... 04 =.5and o¢ = .5).

We present the results of these simulations in two
figures. First, by way of summary, Figure 5 illustrates
the correlations between hit and false alarm rates for
the face samples as a function of the standard devia-
tion of d’ and C. The figure does not include the line
for a stable criterion at 0, because we have already
illustrated that this condition yields a perfect corre-
lation of —1.0.* As can be seen from Figure 5, the
correlation between hit and false alarm rate varies
widely as a function of the stability of d’ and C' in
the sampling distribution of faces in the experiment.
Further, it can be seen clearly that the correlations
are generally lower (i.e., less strongly positive, more
strongly negative) for relatively smaller variability of
the C', and generally larger for relatively smaller vari-
ability of the d'.

3As noted in Figure 5, this first variation is meaningless
because it defines only one face model.

4We do not display the line for C = 0.5, but it continues
the pattern.

The same data are illustrated more graphically in
Figure 6, which shows scatter plots for hit and false
alarm rates as a function of the standard deviations
of d and C in the sample. Each individual scatter
plot represents a face sampling distribution, with hit
rate on the z-axis and false alarm rate on the y-axis.
As can be seen, the manipulation of face distribu-
tion parameters has a strong effect on the covariance
relationship between hit and false alarm rate.

The simple conclusion from these data 1s that the
mechanics of signal detection theory, in conjunction
with the mean and variability of the face sample pa-
rameters, can yield widely different correlations be-
tween hit and false alarm rate. The range of expected
correlations found across the samples we examined
here spans from a perfect inverse correlation to a per-
fect positive correlation. Also, while we consider this
issue more thoroughly in the discussion, with the ex-
ception of the extreme cases of zero variability, we
consider all of the points on the graph in Figure 5
to be quite plausible face sampling distributions for
a standard face recognition experiment. Thus, in
the absence of other evidence, these factors should
be considered to provide the most parsimonious ac-
count of any particular obtained correlation between
hit and false alarm rate.
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Hit and False Alarm Rate Correlations

0.8

0.6
0.4
c
je
©
o 02
S
S
@]
O
-0.2 Cstd=.1
Cstd=.2
04l Cstd=.3
Cstd=.4
_06 Il Il Il Il Il Il Il Il
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Standard Deviation of d—prime

FIGURE 5. Hit versus false alarm rate correlations as a function of the variation in the
standard deviation of the face sampling distribution about the mean d’ = 1.0 and mean
C = 0.0. As can be seen, increasing the standard deviation for C' produces increasing
correlations between hit and false alarm rates, whereas increasing the standard deviation
for d’ produces decreasing correlations between hit and false alarm rate.

3.3. Nonmodel Measure Simulations. It is
common practice in the face memory literature to cor-
relate particular kinds of errors, such as false alarms
or hits with other, non-signal detection-based mea-
sures of the stimuli (e.g., rated typicality, rated at-
tractiveness). We have argued elsewhere (O’ Toole, et
al., 1994) that the interpretation of such correlations
can be problematic. Primarily, the problem stems
from the fact that a false alarm or hit rate by itself is
uninterpretable without knowing the d’ and C' of the
face model. So, for example, if a false alarm rate is
greater for face A than for face B, three interpreta-
tions are possible: 1.) face A is less recognizable than
face B; 2.) observers tend to use less conservative
criteria with face A than with face B; and finally, 3.)
some unknown combination of 1.) and 2.). Although
often the researcher may not care theoretically which
of these interpretations is correct in a particular con-
dition of an experiment, very serious interpretation

problems can occur when the correlations are made
and compared among two or more conditions of an
experiment that differ in either their mean d’ or C, or
in the standard deviations of these. Often such sys-
tematic differences in the recognizability of the faces
in the different conditions of an experiment are both
predicted and obtained.

We carried out two kinds of simulations here. In
the first, we work from synthesized correlations be-
tween an “other measure” and hit (false alarm) rate,
with the aim of examining how these synthesized cor-
relations constrain the expectations for : a.) corre-
lations between this other measure and d’; and b.)
for correlations between this other measure and C.
For convenience, we will refer to this other measure,
generically, as “facial-rating”. In the second kind of
simulation, we work from synthesized correlations be-
tween a facial rating measure and d’ with the aim
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Random Normal Samples:

Hit versus False Alarm Rate
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FI1GURE 6. Scatter plots for hit and false alarm rates as a function of the standard deviations
of d’ and C in the sample. The plots show all 36 combinations of the d’ and C' standard
deviations, with the top left corner showing the meaningless case of zero variability for both
d’ and C and the lower right corner showing the hit and false alarm rate relationship for

standard deviations of 0.5 for both d’ and C.

of examining how these synthesized correlations con-
strain the expectations for correlations between the
rating measure and hit rate and between the rating
measure and false alarm rate.

Correlations between Facial Ratings and Hit or False
Alarm Rate. In this simulation, we used random nor-
mal samples of faces, and synthesized a facial-rating
measure that correlated with either the hit or false
alarm rate of the sampled data.

The simulation proceeded as follows. For each cor-
relation level®, we sampled 100 faces from a random
normal distribution with a mean d’ = 1.0 and a mean
C = 0.0, (see Section 2.2). Based on the hit and
false alarm correlation data presented in Figure 5,
we set the standard deviation for the d’ sampling dis-
tribution to .3 and the standard deviation for the C

5Note that these levels vary probabilistically, not in precise
intervals.

sampling distribution to .1, values which yielded ap-
proximately zero correlation between the hit and false
alarm rates.®

Next, we generated a facial-rating measure for the
100 faces. Facial-rating vectors were created to cor-
relate to varying degrees with false alarm rate by :
1.) sampling 100 numbers from a normal distribu-
tion with a mean of zero and a standard deviation
of o, where ¢ varied probabilistically from 0 to .495
in 0.005 steps;” and by 2.) adding one of these 100
sampled values to each one of 100 false alarm rates
for the faces sample. For each standard deviation
condition, this yielded 100 pairs of false alarm rates

61n fact, the correlation was a bit more negative as indicated
in Figure 5. We chose the approximately zero correlation as a
correlation that has been reported previously in a recent face
recognition study (Hancock et al., 1996).

7By probabilistically, we mean that distributions with mean
zero and each of the tested o values were created and that these
distributions were sampled randomly.
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and facial-rating values. Across standard deviation
conditions, the correlation between false alarm rate
and facial rating varied probabilistically as a function
of o, with larger o’s yielding lessor correlations and
smaller ¢’s yielding stronger correlations. We then
computed the associated correlations between d’ and
facial-rating and between C' and facial-rating.

The results of this false alarm analysis appear on
the left half of Figure 7. These results are somewhat
difficult to unpack intuitively. As a guide, however,
it 1s perhaps easiest to start at the extremes. For ex-
ample, beginning at the right hand side of the figure
on the left, the far right points in this figure indi-
cate the case where there is a nearly perfect positive
correlation between the facial-rating and false alarm
rate. In this case, because the facial rating value
equals the false alarm rate, the asterisks at the right
extreme of the z-axis reduce to the correlation be-
tween false alarm rate and d’, which is strong and
negative. Specifically, high false alarm rates gener-
ally indicate low d’s, though again we must recall
that we are operating above ceiling and below floor
in the performance ranges considered. Likewise, the
open circles on the right extreme of the graph repre-
sent the correlation between false alarm rate and C),
which is also strong and negative. Specifically, high
false alarm rates generally indicate low or loose C'.

To aid in interpreting the less extreme data points,
it is convenient to pretend that our facial rating is
face typicality. Many studies have found a moder-
ately positive correlation of approximately .50 be-
tween typicality and false alarms. To obtain such
a correlation with the present face sample, (i.e., op-
erating within the specified ranges of d’ and ('), the
data displayed in the left side of Figure 7 indicate that
the source of the correlation is very likely to comprise
both a negative covariance relationship between typ-
icality and d’ and a negative covariance relationship
between typicality and C'. In short, at the .50 correla-
tion label on the z-axis both the correlation between
d’ and facial-rating and the correlation between C
and facial-rating are non-zero. In other words, it is
very unlikely with this face sample that a false alarm
rate-typicality correlation of this magnitude could be
due only to variations in the recognizability of the
faces — criterion variation must also play a role. Con-
commitently, it 1s very unlikely with this face sample
that a false alarm rate-typicality correlation of this

magnitude could be due only to variations in face cri-
terion — recognizability variation must also play a
role.

The important point made by this illustration is
that the constraint is the nature of the face model
sample. It is highly unlikely to obtain a correlation
of .50 between false alarm rate and “typicality” that
has, as its sole source, recognizability. This is because
C' varies in the face model sample too much relative
to the variation of d’ in the sample. A very differ-
ent result can be obtained by changing the sampling
parameters to tighten the standard deviation of C'
relative to d’. To illustrate, we re-ran this simulation
changing o¢ from 0.1 to 0.02. The results of this sim-
ulation appear on the right side of Figure 7. Here we
see that it quite likely to get recognizability as the
sole source for the correlation between false alarm
rate and facial rating. Again, although this scenario
of a stable C' is the case that researchers may hope
for and perhaps implicitly assume in face recognition
experiments, it is perhaps not a realistic assumption.

For the complementary part of this simulation, we
repeated the above methods but synthesized the fa-
cial rating correlation from the hit rate, rather than
from the false alarm rate. The results appear in Fig-
ure 8. Not surprisingly, the pattern of results is rather
different. Again, however, the main point is that
moderate correlations between hit rate and a facial
rating cannot generally be due to variations in only
the recognizability or criteria of faces — the variation
of both factors is likely to be involved. We leave more
detailed interpretations of these data to the reader,
and proceed to the more basic conclusions.

First, correlations between our synthesized facial-
rating measure and hit (false alarm) rate constrain,
in a probabilistic fashion, the magnitude and direc-
tion of correlations between the facial-rating measure
and both d’ and C. This is not surprising in that all
of these measures are codependent. The particular
form of these constraining functions is not as impor-
tant as the point that the mechanics of the signal
detection model mandate that such functions exist.
Indeed the form of these functions will vary with the
parameters of the face sample.® Second, the shape of

8 We carried out this set of simulations also with a standard
deviation for the d’ sampling distribution to 0.3 and the stan-
dard deviation for the C' sampling distribution to .3, and got
similarly shaped functions with somewhat different slopes.
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the constraining functions differs markedly for corre-
lations between facial-rating and hit rate and for cor-
relations between facial-rating and false alarm rate.
Finally, viewed in terms of the source of the corre-
lations, (i.e., d’ and/or C), correlations measured on
hit (false alarm) rate, can be less ambiguously inter-
preted in the context of the signal detection model.

Correlations between Facial Ratings and d'. In this
final simulation, we used the procedures described
previously, with only the following change. We cre-
ated the synthetic correlation between d’ and facial
rating. Additionally, before proceeding, we made a
small change to the o¢ and o4 distribution parame-
ters to enable us to make a more direct comparison
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to some questions raised by the Hancock et al. (1996)
paper. They found correlations between a facial rat-
ing and both hit and false alarms, in the absence of a
correlation between hits and false alarms. As noted,
the parameters previously chosen from Figure 5 actu-
ally produce slightly negative correlations (see Figure
5). We adjusted these parameters to values not dis-
cretely on the Figure 5 graph, to obtain correlations
between hit and false alarm rate as close to zero as
possible. One set of suitable parameters turned out
to be ¢ = .09 and oy = .18.

The results of these analyses appear in Figure 9.
We mention only a few basic points. First, we think
these graphs offer a way out of the apparent para-
dox Hancock, et al. (1996) considered. They found
that the rated facial distinctiveness correlated both
with hit and false alarm rate, but that hit and false
alarm rate did not correlate with each other. Such a
situation is clearly theoretically possible with corre-
lation, but confounds intuition a bit. This situation
arises throughout Figure 9. Specifically, at virtually
all points along the z-axis, there is a nonzero corre-
lation between false alarm rate and the facial rating
and between hit rate and facial rating, and yet, as
noted, no correlation between the hit and false alarm
rate (as specified via the simulation standard devia-
tion parameters).

Although the results of this simulation are diffi-
cult to unpack intuitively, we again looked to a more
extreme case to make the point. On the right side
of the z-axis, are simulations with very high synthe-
sized correlations between d’ and facial rating. As
such, the individual asterisks and open circles on this
side of the graph reduce to the correlations between
hit rate and d’ and false alarm rate and d’, respec-
tively. To get a closer look, we isolated one of these
simulations, which yielded a relatively high correla-
tion between false alarm rate and facial-rating, and
hit rate and facial-rating, but no correlation between
hit and false alarm rate. We then looked at a three-
dimensional scatter plot of the hit rate, false alarm
rate, and facial rating values for the sampled faces.
These data are illustrated in Figure 10. The different
graphs in the figure display the same cloud of points
from 6 different views. Beginning in the first row, we
are viewing this cloud from directly overhead so that
we can see the hit verus false alarm data. It is evident
from this viewpoint that the three-dimensional points
“projected” onto these two dimensions form a circular

structure that yields a 0 correlation between hit and
false alarm. This i1s due, again, to the face sampling
distribution parameters chosen (i.e., the relative vari-
ability of d’ and C). The center graph in the second
row displays these data viewed from a lower elevation.
Moving rightward, the viewer can get a better look
at the positive correlation between hit rate and facial
rating, with the best view in the right-most graph,
which hides the false alarm rate dimension. Moving
leftward, the viewer can see the negative correlation
between false alarm rate and facial rating, with the
best view in the left-most graph, which hides the hit
rate dimension.

These data, thus, illustrate a relatively simple sce-
nario for resolving the apparent paradox reported in
Hancock et al. (1996). When the face sampling dis-
tribution is such that the variations of C' and d’ are
somewhat balanced, even substantial correlations be-
tween hit rate and distinctiveness, and false alarm
rate and distinctiveness, are possible in the absence
of a correlation between hit and false alarm rate. In-
terestingly, the intuitions of Hancock et al. are in-
deed correct when the variability of d' far outweighs
the variability of C. As noted previously, this seems
to be the case most commonly hoped for, and some-
times implicitly assumed in face recognition studies.
To illustrate the important difference this assump-
tion makes, we repeated this last focused simulation
with parameters from Figure 5 that yield a high nega-
tive correlation between hit and false alarm rate (i.e.,
cases where the variability of d’ substantially out-
weighs the variability of ). Specifically, we took
values o¢ = .1 and oy = .35, which yielded a corre-
lation of —.42 between hit and false alarm rate. We
next synthesized a “distinctiveness” rating that cor-
related with d’ to a degree of .61. In summary, in this
relatively stable criterion scenario, we obtained : 1.)
a positive correlation between hit rate and distinc-
tiveness, r = 0.51; 2.) a negative correlation between
false alarm rate and distinctiveness, » = —0.51; 3.)
a positive correlation between d’ and distinctiveness,
r = 0.61; and 4.) a negative correlation between hit
and false alarm rate, r = —0.42. In summary, when
the variability of d’ outweighs the variability of C, it
is highly likely that negative correlation between hit
and false alarm rate will result, and concommitantly,
that these quantities will correlate in opposing direc-
tions with a stable entity such as a facial-rating.
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4. DISCUSSION

The stimulus model that most researchers in face
recognition use is based on signal detection theory, for
which hit and false alarm rates are assessed to define
the recognizability and response bias associated with
individual faces in an experimental condition. Con-
sidered across all of the stimuli in a particular exper-
imental condition, the nonlinear mechanics of signal
detection theory limit the utility of intuition for de-
termining the expected covariations of hits and false
alarms with each other, and also, the expected co-
variation of hits and false alarms with other stimulus-
based measures. Notwithstanding, the mechanics of
signal detection theory in combination with stimulus
sampling parameters constrain these expected covari-
ations in a more or less knowable way. The present re-
sults indicate that the interpretation of these covaria-
tion data 1s critically dependent in a number of ways
on the sampling distribution parameter constraints.
The present simulations remind us that with a sig-
nal detection model applied to describing the behav-
ior of individual stimuli in an experiment, both d’
and C' comprise the sampling parameters of the face
distributions. Although the variation in the recogniz-
ability of faces is generally the focus of stimulus-based
research hypotheses (e.g., prototype and face-space
models), the variation of C' has equally potent conse-
quences for the interpretation of a number of kinds of

commonly reported data in face recognition studies.
In this discussion, we consider, in turn, the implica-
tions of variation of the stimulus sampling parameters
at two levels of analysis in psychological experiments
: a.) simple sampling variability of d’ and C for the
faces selected to serve within a particular condition
of an experiment, and b.) systematic variations of d’
and C' between the conditions of an experiment.
There are at least two concrete implications of the
present data for the within condition variation of d’
and C'. First, no specific correlation between hit and
false alarm rate should be expected in any given ex-
perimental condition without reference to the sam-
pling distributions of d' and C' associated with the
condition. It follows, therefore, that any particular
obtained correlation between hit and false alarm rate,
cannot be considered sufficient evidence for a theoret-
ical claim. Thus, while there is intuitive theoretical
appeal in believing that face errors of different kinds
should be related, (e.g., faces that evoke high levels
of hits should also evoke low levels of false alarms),
the stimulus model used in the vast majority of face
recognition experiments does not support such intu-
itions. In fact, the statement that “faces that evoke
high levels of hits should also evoke low levels of false
alarms” is synonymous with the statement that “the
criterion for all faces in an experimental condition is
the same”. As noted previously, we believe that this
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FiGURE 10. Five views of the same three-dimensional scatter plot of hit rate, false alarm
rate, and facial rating. In the first row center, the view is from overhead and shows the
lack of correlation between hit and false alarm rate. The second row center is a view from a
lower elevation. Across the second row, the view changes from right to left of center, with
the left-most plot showing the negative correlation between facial rating and false alarms,
and the right-most plot showing the positive correlation between facial rating and hit rate.

assumption is implicit in the reasoning of many re-
searchers computing the recognizability of individual
stimuli in the context of a signal detection model.
Applied to past work, these findings indicate that
the lack of correlation between hits and false alarms
reported by Hancock et al. (1996) and Lewis and
Johnston (1997) may not need an explanation. One

would need to look at the distribution of both the d’
and C'values to know what to expect for these correla-
tions and then to verify the extent to which the corre-
lations deviate from expectations. This however, does
not indicate that we cannot find out more about how
individual faces “act” in the context of an experiment
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when they are known (potentially a hit or miss) ver-
sus novel (potentially false alarm or correct rejection).
Interestingly, the data of Lewis and Johnston are in-
formative in that they demonstrate quite clearly that
there are additional important experimental-context
factors that may contribute to these covariances. Lewis
and Johnston show that the consistency of false alarms
depends not only on the faces used as distractors but
on those used as targets as well. The single stimulus
model of signal detection theory is only a measure-
ment tool, and thus cannot by itself be used to explain
these context effects.

The second concrete implication of the within con-
dition variation of d’ and C' is that although it is a
very common practice in the face literature to corre-
late false alarm and hit rate with “other” face mea-
sures, such as typicality, attractiveness, and memo-
rability, the interpretation of such correlations is not
straightforward. For example, Lewis and Johnston
(1997) found a significant correlation between dis-
tinctiveness and hits but no correlation between dis-
tinctiveness and false alarms. At the same time, the
authors found that a measure of personal familiarity
of faces, if analyzed on an individual subject basis,
correlated reliabily with false alarms but not hits.
Understandably, given this apparent “double disso-
ciation”, the authors considered the possible infor-
mation processing mechanisms selectively underlying
the hits and false alarms, respectively. This was done
by assessing other aspects of the hits and false alarms
that might give insight into these processes. Though
this may be a reasonable strategy in some cases, we
argue below that there may be a more parsimonious
explanation of these kinds of findings.

It 1s beyond the scope of this paper to delve into
the details of the particular processing mechanisms
advanced in the Lewis and Johnston (1997) paper.

if the simultaneous variation of both d’ and C' con-
tributed to the orignally significant correlation be-
tween the “other” measure and either the hit or false
alarm rate. This is not necessarily problematic if one
views the signal detection measures as an analytical
tool for identifying the sources of interesting and ap-
plicable results concerning, for example, false recog-
nitions (Schacter, Norman, & Koutstaal, 1998). As
such, the covariance of a facial rating and either hit
or false alarm rate may be relevant in the eyewitness
identification literature, where the effects are impor-
tant regardless of their source. We would argue, how-
ever, that in many cases, including applied studies, it
is still important to understand the extent to which
these effects are due to discrimination versus criterion
changes.

Second, our simulations in this paper lead us to
worry that the apparent dissociations involving hit
and false alarm rate measures may prove unstable
across experiments due to irrelevant variations in the
stimulus sets used. It follows then that the correla-
tions between the false alarm or hit rate and other
measure may be similarly unstable. For example,
contrary to the majority of other work in the field
(Bartlett, et al. 1984 ; Hancock et al. 1996; and Light
et al, 1979), Lewis and Johnston (1997) find that dis-
tinctiveness was correlated more strongly with hits
than with false alarms. This might be due to ran-
dom differences in the items, as the procedure used
by Lewis and Johnston was similar to the procedures
used in the previous studies. In any case, the simu-
lations presented here lead us to expect differences of
this sort when the recognizability and bias properties
of the stimulus set are changed.

The major implication of variation of d’ and C' be-
tween experimental conditions concerns comparisons
of correlations obtained in the different conditions,

Rather, we present only two interpretive/methodologicat.g., correlations between false alarm rate and typ-

caveats concerning the treatment of correlations in-
volving hits and false alarms. First, before theo-
rizing about apparent process dissociations involving
the hit and false alarm measures, one should exam-
ine the pattern of correlations using the discrimina-
tion and bias measures directly. We expect that in
many instances, correlations involving d’s and C’s
will support more coherent theoretical accounts than
the hit/false alarm-based correlations. Correlations
done at this level, however, may not be significant

icality in two conditions of an experiment. Specifi-
cally, there are serious interpretation difficulties for
correlations between an “other” measure and either
hit or false alarm rate when they are compared across
conditions in an experiment. Any sort of systematic
effect of condition on d’ or C strongly compromises
the validity of these kinds of false alarm or hit rate
comparisons. This includes manipulations that affect
either the mean or variability of either d’ or C'. Thus,
it may be possible to obtain no main effects of the in-
dependent variable and still be at risk in interpreting
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across condition correlations (e.g., when the variabil-
ity of d’ or C are not comparable in the conditions
compared).

Condition-based effects on d’ are frequently the
basis of experimental predictions. And, although not
often predicted a priori, condition-based effects on C'
have been found also (O’Toole, Edelman, & Biilthoff,
in press; Valentin, 1996) and have been interpretable
in the context of the experiment. In the experiments
of O’Toole et al. and Valentin, when the observer’s
task was to recognize faces across a large change of
viewpoint (90 degrees), both studies found that ob-
servers used very strict criteria (much stricter than
they used with smaller changes in viewpoint). This
yields stricter criteria for the face models in this large
viewpoint change condition relative to those in the
smaller viewpoint change conditions.® One interpre-
tation of the strict criteria used in this “difficult” con-
dition is of a meta-memorial nature. Observers, per-
haps, did not feel very confident in their own abilities,
which may have made them more generally conserv-
ative on this task. (See also Hintzman, 1994, for a
discussion of the potential complexity of the effects of
meta-memorial influences on recognition data). The
main point is that systematic variations of both d’
and C' across the conditions of an experiment are
possible, and may occur for a number of theoreti-
cal reasons. In the presence of these between con-
dition variations, comparisons of false alarm or hit
rates (or any correlation measure that includes these
measures), confound the role of d’ and C' in the com-
parisons.

Mized Metaphors. We suggest that a number of
the confusions in face recognition studies that con-
sider individual stimulus measures can be traced to
some tempting, but unsupported, “mixed metaphors”
of the observer and stimulus models. As noted, the
model construct of signal detection theory can be ap-
plied equally validly to the analysis of either stim-
uli or observers in a particular condition. However,
there is no valid, formal way to relate the results of
these two analyses to each other. Some common ways
of thinking about this, nonetheless, are evident in a
number of papers in the face literature. We argue
here that these implicit arguments contain various

9We will discuss this observer-face link in the next section
as part of mixed metaphors problem.

mixed metaphors of the observer and stimulus mod-
els. Some of these mixed metaphors contain a grain
of truth, and others lead to circularities in reason-
ing that cannot be supported with empirical data.
We try here to sketch out common advantages and
pitfalls in trying to conceptualize the stimulus and
observer analyses together.'?

First, correlation has occasionally slipped into the
literature as an attempt to relate the stimulus and ob-
server models implicitly, as follows. When one finds a
correlation between face recognizability (i.e., d') and
perceived typicality, it is tempting to imagine that
the certain kinds of faces (e.g., highly typical faces)
tend to “hang out together” in the old and/or new
distributions (i.e., perhaps on the right side of both
distributions or on the right side of one distribution
and on the left side of the other distribution). This
might explain why certain faces kinds of faces attract
more false alarms than hits. Specifically, one might
imagine that certain kinds of faces are sitting at some
particular place in the distribution, and hence have
differential probabilities of being hits or false alarms.
The flaw in this reasoning is that a signal detection
model comprised of individual faces is necessarily a
single observer model, and yet, the correlation we are
trying to understand (between d’s and typicality) is
based on many stimulus models. More to the point,
using the whole set of observers in the experimental
condition, each face in the observer’s old and new dis-
tribution can be said to have its own d’ and a C, as
well as its own hit and false alarm rate. But, there
is no formal relationship between the position of the
faces in the observer distribution and the face’s d’ as
computed across the observers. Indeed different data
contribute to these computations. So, even if it is
tempting to imagine that the correlation one obtains
between d’ and typicality on face models is based on
the face’s clustering in the observer distributions, it
is tenuous at best and can lead to empirically unsup-
portable conclusions.

107t is perhaps worth a brief reference to the classic pa-
per of Clark (1973) on the “language as a fixed-effect fallacy”,
which is relevant by analogy to the present issues. Clark argues
convincingly that not only the observers, but also the stimuli
in an experiment vary meaningfully. Clark’s (1973) concern,
however differs from ours in that he was interested in the im-
plications of the nature of stimulus variation for the validity
of the inferential statisics applied to the data. Our concern is
in relating descriptive measures on a single side of the analysis
— the stimulus side.
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It 1s worth noting explicitly that it is never possible
to figure out exactly where a particular face “sits” in a
signal detection-based observer model; nor, is it pos-
sible to figure out exactly where a particular observer
“sits” in a signal detection-based face model. A face
in an observer’s model has exactly one of four possi-
ble states: it is either a hit, false alarm, correct rejec-
tion or miss. This allows one to locate it into one of
these four regions of the model, but no more precisely
than that.!! This is completely counter-intuitive for
many of us who are used to dealing with both stimu-
lus and observer-based data from face recognition ex-
periments for the following mixed metaphorical rea-
son. A face can be said to have a hit and a false
alarm rate, but it is impossible to find the face in the
signal or signal + noise distributions because again
we are (mentally) in the wrong model. The face’s
hit and false alarm rate define its stimulus-based sig-
nal detection model, not its position in the observer
model.

Second, an alternative method to correlating fa-
cial rating measures and d’ is often implicit in the
reasoning advanced in some ways of discussing fa-
cial rating data and face recognizability. For exam-
ple, the standard interpretation of a correlation be-
tween d’ and typicality is that “distinctive faces are
recognized more accurately than typical faces”. This
correlation is based on the computation of a d’' for
each face (across a large number of observers) and
the assessment of each face’s typicality (again across
a large number of observers). Tt is equally easy to
imagine face typicality (e.g., as pre-assessed by ob-
servers) as an independent variable in an experiment
with two discrete levels : “typical” and “unusual”.
In this case, the signal detection model for observers,
but not for faces, changes entirely from the model
we have been considering. Specifically, whereas in-
dividual face models are the same as those we have
described previously, for the observer model, depend-
ing upon one’s theoretical assumptions, two models
are possible. The simplest would consist of a single

117t is well-worth noting that our limited ability to locate a
face in an observer's signal detection distribution (i.e., as only
a hit, false alarm, miss or correct rejection), has no implica-
tions whatsoever for locating a face in an observer’s face space.
The methods required to compute an observer’s face space are
based on similarity judgements (cf., Johnston, Milne, Willams
& Hosie, 1997) among pairs of faces and not on recognition
data. Thus, the methodological points made in this paper are
not by themselves relevant for evaluating face space models.

noise distribution comprised of novel faces, and two
signal + noise distributions: one comprised of typical
faces and the other comprised of unsual faces.

A second possible observer model emerges by im-
plementing some interesting assumptions about the
way a single prior exposure differentially affects sub-
Jjective familiarity for typical versus unusual faces (cf.,
Bartlett et al., 1984; Mandler, 1980). The assump-
tions, as stated in Bartlett et al. are as follows: a.)
all novel faces elicit non-zero levels of familiarity, but
this familiarity is greater for typical as opposed to
unusual faces; and b.) the increment in familiarity
that results from a single prior exposure is greater
for unusual than for typical faces. Combined, these
assumptions indicate that it is theoretically invalid
for the typical and unusual faces to share a noise dis-
tribution. It 1s further worth noting that under this
model, the analysis of the observer data are analogous
to those that have been well-studied in reference to
the mirror effect (Glanzer & Adams, 1990), though
to our knowledge, no one has ever published a mirror
effect for face recognition.

The two cases just described are completely valid
observer models, but dissociate the stimulus and ob-
server models in an important way. This dissoci-
ation has to do with the assumption of a discrete
categorical structure for typical versus unusual faces.
We would argue, however, that these models may be
somewhat less appropriate than the single continuous
model, due to the likelihood that faces are distributed
in a continuous rather than in a discretely bimodel
fashion with respect to the dimension of face typical-
ity. In any case, when stimulus and observer models
dissociate in this fashion it becomes even more diffi-
cult to reason back and forth between the stimulus
and observer model perspectives.

Finally, although there is no formal way to put
together data from the stimulus and observer mod-
els, at least one mixed model metaphor is not only
valid, but worth keeping in mind. In all experiments,
we all know that observers actually do the respond-
ing. So, even if one analyzes a particular stimulus,
one is actually only measuring something about ob-
servers’ response patterns to this stimulus. In embed-
ding this stimulus into the context of an experimental
condition comprised of like stimuli (e.g., upside-down
faces), we have the possibility, and indeed hope, that
all or most observers who participate in this condi-
tion will behave in a similar fashion. For example, in
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a “difficult” experimental condition, observers may
lack confidence in their ability to perform well and
may respond 1n a conservative or cautious fashion for
all stimuli. This will yield strict criteria for both the
individual observer measures and for the individual
face measures in this condition. This is a good thing
for the inferential analysis of the experimental data,
which contrary to the advice of Clark (1973), nearly
always proceeds only on observer measures. On the
other hand, as we will argue below, variations in the
“performance” of individual faces, in the context of
representational issues, may be worthy of study in
their own right.

We suggested in the introduction that a major dif-
ference between observer- and stimulus-based mea-
sures in the face recognition literature concerns the
use to which the measures are put. This leaves us
with a somewhat different perspective on the issue of
stimulus-based measures than that evidenced in the
Clark (1973) paper. Specifically, in recent years, the
study of the stimulus has taken on a great deal of
importance as a way of trying to understand the per-
ceptual constraints imposed on human information
processing by the richness of the environment. What
is the information that is available in the human face
for specifying its gender, race, age, and identity? How
is this information represented in the brain? Are faces
represented by their two-dimensional image-based fea-
tures or by object-centered three-dimensional features?

Different models of the information in faces and of
the human representation of this information make
different predictions about which individual faces should
be easy to recognize; easy to classify by gender, etc.
Studying the recognizability and classifiability of in-
dividual faces by human observers, in conjunction
with a computational model of the representation of
faces, provides a very much under-explored reserve
of constraints on theories of face processing. These
analyses have been undertaken in recent years and
have provided a number of useful insights into the
complexity of the information in human faces and
the ways in which observers make use of this informa-
tion under various task demand situations (Hancock
et al., 1996, O’Toole, et al., 1994; O’Toole et al., in
press). Such analyses hold out the possibility of sort-
ing through questions about the nature of represen-
tations of faces and objects that cannot be similarly
tackled by relying only on observer measures. Thus,

in spite of the methodological pitfalls involved in re-
porting and interpreting data on individual faces, we
believe that these analyses are well-worth the trouble.
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APPENDIX A

the left of Figure 1). The signal + noise distribution
represents the familiarity values elicited when the ob-
server views a population of faces known to him/her
(see distribution on the right of Figure 1). Thus, each
data point in each probability density function repre-
sents the degree of familiarity experienced when the
observer views a single face.

Under this model, the “performance” of each ob-
server in a face recognition task can be described com-
pletely in terms of a discrimination index, termed d’,
and a response bias or criterion, termed C'. Both of
these measures are computed directly from the hit
and false alarm rate of the observer in the face recog-
nition task. The hit rate is defined as the proportion
of old or learned faces to which the observer correctly
responds “old”. The false alarm rate is defined as
the proportion of novel faces, to which the observer
incorrectly responds “old”. More formally, the dis-
crimination index is defined as :

OBSERVER-BASED SIGNAL DETECTION MODEL

IN A FACE RECOGNITION EXPERIMENT

The signal detection model in experimental psychol-
ogy 1s, by far, applied most commonly to the task
of measuring or describing the behavior of a single
observer. Applied to the description of a human ob-
server’s performance on a face recognition task, the
model is based on the assumption that the observer
can discriminate learned and novel faces based on
some abstract subjective dimension. In the case of
face recognition, this dimension is often thought to
represent the degree of recollection or familiarity'?
an observer experiences when viewing each face in
the recognition test. This dimension is symbolized
by the z-axis on the sample signal detection model
that appears in Figure 1.

For an observer to perform a face recognition task
at a level above chance, known faces must, on the
average, elicit higher levels of familiarity than novel
faces. Thus, novel versus known faces are represented
by the left and right distributions, respectively, in
Figure ??. The noise distribution represents the fami-
larity values elicited when the observer views a pop-
ulation of faces for the first time (see distribution on

12 Care must be taken in interpreting familiarity in this con-
text. No connection is claimed between this rather abstract
and unspecified dimension and more precise definitions offered
other papers, e.g., Bartlett, Hurry, & Thorley (1984) Vokey &

Read (1992).

dI:Z(PH)—Z(PFA) (1)

where z(Pra) denotes the z-score for the false alarm
rate and z(Pg) denotes the z-score for the hit rate.
This discrimination index measures the degree of over-
lap between the two distributions. More precisely,
d' is simply the distance, in z-score units, between
means of the the noise and signal + noise distribu-
tions (see Figure 1).

The response bias measure is defined as a different
function of the z(Pra) and z(Pr):

C =~ =(Pra) + =(Pn)] (2)

In practical terms, observers respond “old” to faces
that elicit familiarity levels higher than the criterion,
(i.e., to the right of the criterion, see Figure 1). Neg-
ative values of C' indicate loose or liberal criteria, or
a bias to respond “old”, whereas positive values of
C indicate strict or conservative criteria, or a bias to
respond “new”.

Applied to face recognition by a human observer,
this model is intuitive and readily interpretable as
follows. The discrimination index refers to the ob-
server’s ability to discriminate known from unknown
faces and is considered to be a response bias-free
measure of face recognition accuracy. This discrim-
ination index is thought to reflect the characteris-
tics of the individual observer such as his/her visual
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and perceptual abilities, memory capacity, motiva-
tion, and experience with the task. The criterion
measure 1s thought to reflect both the characteris-
tics of the individual observer and the characteristics
of the experimental situation. The former include in-
herent aspects of the observer’s personality (e.g., lib-
eralness/conservativeness of their guessing strategy),
and the latter include task demands. Task demands
might include factors like different reward contingen-
cies for hits versus false alarms, whereas experimental
context might include the proportion of faces that are
actually old versus new in the recognition test.



