
Digital Signal Processing: A User’s Guide

Collection Editor:
Douglas L. Jones

Digital Signal Processing: A User’s Guide

Collection Editor:
Douglas L. Jones

Authors:

Richard Baraniuk
Benjamin Fite

Anders Gjendemsjø
Michael Haag
Don Johnson

Douglas L. Jones

Robert Nowak
Ricardo Radaelli-Sanchez

Justin Romberg
Clayton Scott
Ivan Selesnick
Melissa Selik

Online:
<http://cnx.org/content/col10372/1.2/ >

C O N N E X I O N S

Rice University, Houston, Texas

©2008 Douglas L. Jones

This selection and arrangement of content is licensed under the Creative Commons Attribution License:

http://creativecommons.org/licenses/by/2.0/

Table of Contents

Preface for Digital Signal Processing: A User's Guide . 1

1 Background, Review, and Reference

1.1 Discrete-Time Signals and Systems . 3
1.2 Systems in the Time-Domain . 5
1.3 Discrete-Time Convolution .6
1.4 Review of Linear Algebra . 12
1.5 Orthonormal Basis Expansions . 22
1.6 Fourier Analysis . 26
1.7 Continuous-Time Fourier Transform (CTFT) . 27
1.8 Discrete-Time Fourier Transform (DTFT) . 29
1.9 DFT as a Matrix Operation . 34
1.10 Sampling theory .36
1.11 Z-Transform .64
1.12 Random Signals and Processes . 78
Solutions . 96

2 The DFT, FFT, and Practical Spectral Analysis

2.1 The Discrete Fourier Transform .99
2.2 Spectrum Analysis . 102
2.3 Fast Fourier Transform Algorithms . 141
2.4 Fast Convolution . 176
2.5 Chirp-z Transform .181
2.6 FFTs of prime length and Rader's conversion . 183
2.7 Choosing the Best FFT Algorithm .187
Solutions . 189

3 Digital Filter Design

3.1 Overview of Digital Filter Design . 191
3.2 FIR Filter Design . 192
3.3 IIR Filter Design . 207
Solutions . 223

4 Digital Filter Structures and Quantization Error Analysis

4.1 Filter Structures .225
4.2 Fixed-Point Numbers . 239
4.3 Quantization Error Analysis . 243
4.4 Over�ow Problems and Solutions . 255
Solutions . 259

5 Adaptive Filters and Applications

5.1 Introduction to Adaptive Filters . 261
5.2 Wiener Filter Algorithm . 261
5.3 The LMS Adaptive Filter Algorithm . 267
5.4 Applications of Adaptive Filters . 275
5.5 Other Adaptive Filter Algorithms . 283
5.6 Summary of Adaptive Filtering Methods .287
Solutions . 288

6 Multirate Signal Processing

6.1 Overview of Multirate Signal Processing . 289

iv

6.2 Interpolation, Decimation, and Rate Changing by Integer Fractions . 291
6.3 E�cient Multirate Filter Structures . 295
6.4 Filter Design for Multirate Systems . 299
6.5 Multistage Multirate Systems .302
6.6 DFT-Based Filterbanks .305
6.7 Quadrature Mirror Filterbanks (QMF) . 306
6.8 M-Channel Filter Banks . 310
Solutions . 312

Glossary . 313
Bibliography . 315
Index . 317
Attributions .322

Preface for Digital Signal Processing: A

User's Guide1

Digital signal processing (DSP) has matured in the past few decades from an obscure research discipline
to a large body of practical methods with very broad application. Both practicing engineers and students
specializing in signal processing need a clear exposition of the ideas and methods comprising the core signal
processing "toolkit" so widely used today.

This text re�ects my belief that the skilled practitioner must understand the key ideas underlying the
algorithms to select, apply, debug, extend, and innovate most e�ectively; only with real insight can the
engineer make novel use of these methods in the seemingly in�nite range of new problems and applications.
It also re�ects my belief that the needs of the typical student and the practicing engineer have converged in
recent years; as the discipline of signal processing has matured, these core topics have become less a subject
of active research and more a set of tools applied in the course of other research. The modern student
thus has less need for exhaustive coverage of the research literature and detailed derivations and proofs as
preparation for their own research on these topics, but greater need for intuition and practical guidance in
their most e�ective use. The majority of students eventually become practicing engineers themselves and
bene�t from the best preparation for their future careers.

This text both explains the principles of classical signal processing methods and describes how they
are used in engineering practice. It is thus much more than a recipe book; it describes the ideas behind
the algorithms, gives analyses when they enhance that understanding, and includes derivations that the
practitioner may need to extend when applying these methods to new situations. Analyses or derivations
that are only of research interest or that do not increase intuitive understanding are left to the references.
It is also much more than a theory book; it contains more description of common applications, discussion of
actual implementation issues, comments on what really works in the real world, and practical "know-how"
than found in the typical academic textbook. The choice of material emphasizes those methods that have
found widespread practical use; techniques that have been the subject of intense research but which are
rarely used in practice (for example, RLS adaptive �lter algorithms) often receive only limited coverage.

The text assumes a familiarity with basic signal processing concepts such as ideal sampling theory, con-
tinuous and discrete Fourier transforms, convolution and �ltering. It evolved from a set of notes for a second
signal processing course, ECE 451: Digital Signal Processing II, in Electrical and Computer Engineering at
the University of Illinois at Urbana-Champaign, aimed at second-semester seniors or �rst-semester graduate
students in signal processing. Over the years, it has been enhanced substantially to include descriptions of
common applications, sometimes hard-won knowledge about what actually works and what doesn't, useful
tricks, important extensions known to experienced engineers but rarely discussed in academic texts, and
other relevant "know-how" to aid the real-world user. This is necessarily an ongoing process, and I continue
to expand and re�ne this component as my own practical knowledge and experience grows. The topics are
the core signal processing methods that are used in the majority of signal processing applications; discrete
Fourier analysis and FFTs, digital �lter design, adaptive �ltering, multirate signal processing, and e�cient
algorithm implementation and �nite-precision issues. While many of these topics are covered at an intro-

1This content is available online at <http://cnx.org/content/m13782/1.1/>.

1

2

ductory level in a �rst course, this text aspires to cover all of the methods, both basic and advanced, in
these areas which see widespread use in practice. I have also attempted to make the individual modules and
sections somewhat self-su�cient, so that those who seek speci�c information on a single topic can quickly
�nd what they need. Hopefully these aspirations will eventually be achieved; in the meantime, I welcome
your comments, corrections, and feedback so that I can continue to improve this text.

As of August 2006, the majority of modules are unedited transcriptions of handwritten notes and may
contain typographical errors and insu�cient descriptive text for documents unaccompanied by an oral lecture;
I hope to have all of the modules in at least presentable shape by the end of the year.

Publication of this text in Connexions would have been impossible without the help of many people. A
huge thanks to the various permanent and temporary sta� at Connexions is due, in particular to those who
converted the text and equations from my original handwritten notes into CNXML and MathML. My former
and current faculty colleagues at the University of Illinois who have taught the second DSP course over the
years have had a substantial in�uence on the evolution of the content, as have the students who have inspired
this work and given me feedback. I am very grateful to my teachers, mentors, colleagues, collaborators, and
fellow engineers who have taught me the art and practice of signal processing; this work is dedicated to you.

Chapter 1

Background, Review, and Reference

1.1 Discrete-Time Signals and Systems1

Mathematically, analog signals are functions having as their independent variables continuous quantities,
such as space and time. Discrete-time signals are functions de�ned on the integers; they are sequences. As
with analog signals, we seek ways of decomposing discrete-time signals into simpler components. Because
this approach leading to a better understanding of signal structure, we can exploit that structure to represent
information (create ways of representing information with signals) and to extract information (retrieve the
information thus represented). For symbolic-valued signals, the approach is di�erent: We develop a common
representation of all symbolic-valued signals so that we can embody the information they contain in a
uni�ed way. From an information representation perspective, the most important issue becomes, for both
real-valued and symbolic-valued signals, e�ciency: what is the most parsimonious and compact way to
represent information so that it can be extracted later.

1.1.1 Real- and Complex-valued Signals

A discrete-time signal is represented symbolically as s (n), where n = {. . . ,−1, 0, 1, . . . }.

Cosine

n

sn

1
…

…

Figure 1.1: The discrete-time cosine signal is plotted as a stem plot. Can you �nd the formula for this
signal?

We usually draw discrete-time signals as stem plots to emphasize the fact they are functions de�ned only
on the integers. We can delay a discrete-time signal by an integer just as with analog ones. A signal delayed
by m samples has the expression s (n−m).

1This content is available online at <http://cnx.org/content/m10342/2.13/>.

3

4 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

1.1.2 Complex Exponentials

The most important signal is, of course, the complex exponential sequence.

s (n) = ej2πfn (1.1)

Note that the frequency variable f is dimensionless and that adding an integer to the frequency of the
discrete-time complex exponential has no e�ect on the signal's value.

ej2π(f+m)n = ej2πfnej2πmn

= ej2πfn
(1.2)

This derivation follows because the complex exponential evaluated at an integer multiple of 2π equals one.
Thus, the period of a discrete-time complex exponential equals one.

1.1.3 Sinusoids

Discrete-time sinusoids have the obvious form s (n) = Acos (2πfn + φ). As opposed to analog complex
exponentials and sinusoids that can have their frequencies be any real value, frequencies of their discrete-
time counterparts yield unique waveforms only when f lies in the interval

(
−
(

1
2

)
, 1

2

]
. From the properties

of the complex exponential, the sinusoid's period is always one; this choice of frequency interval will become
evident later.

1.1.4 Unit Sample

The second-most important discrete-time signal is the unit sample, which is de�ned to be

δ (n) =

 1 if n = 0

0 otherwise
(1.3)

Unit sample

1

n

δn

Figure 1.2: The unit sample.

Examination of a discrete-time signal's plot, like that of the cosine signal shown in Figure 1.1 (Cosine),
reveals that all signals consist of a sequence of delayed and scaled unit samples. Because the value of
a sequence at each integer m is denoted by s (m) and the unit sample delayed to occur at m is written
δ (n−m), we can decompose any signal as a sum of unit samples delayed to the appropriate location and
scaled by the signal value.

s (n) =
∞∑

m=−∞
(s (m) δ (n−m)) (1.4)

This kind of decomposition is unique to discrete-time signals, and will prove useful subsequently.

5

1.1.5 Unit Step

The unit sample in discrete-time is well-de�ned at the origin, as opposed to the situation with analog
signals.

u (n) =

 1 if n ≥ 0

0 if n < 0
(1.5)

1.1.6 Symbolic Signals

An interesting aspect of discrete-time signals is that their values do not need to be real numbers. We do
have real-valued discrete-time signals like the sinusoid, but we also have signals that denote the sequence
of characters typed on the keyboard. Such characters certainly aren't real numbers, and as a collection of
possible signal values, they have little mathematical structure other than that they are members of a set.
More formally, each element of the symbolic-valued signal s (n) takes on one of the values {a1, . . . , aK} which
comprise the alphabet A. This technical terminology does not mean we restrict symbols to being mem-
bers of the English or Greek alphabet. They could represent keyboard characters, bytes (8-bit quantities),
integers that convey daily temperature. Whether controlled by software or not, discrete-time systems are
ultimately constructed from digital circuits, which consist entirely of analog circuit elements. Furthermore,
the transmission and reception of discrete-time signals, like e-mail, is accomplished with analog signals and
systems. Understanding how discrete-time and analog signals and systems intertwine is perhaps the main
goal of this course.

1.1.7 Discrete-Time Systems

Discrete-time systems can act on discrete-time signals in ways similar to those found in analog signals and
systems. Because of the role of software in discrete-time systems, many more di�erent systems can be
envisioned and "constructed" with programs than can be with analog signals. In fact, a special class of
analog signals can be converted into discrete-time signals, processed with software, and converted back into
an analog signal, all without the incursion of error. For such signals, systems can be easily produced in
software, with equivalent analog realizations di�cult, if not impossible, to design.

1.2 Systems in the Time-Domain2

A discrete-time signal s (n) is delayed by n0 samples when we write s (n− n0), with n0 > 0. Choosing n0

to be negative advances the signal along the integers. As opposed to analog delays3, discrete-time delays
can only be integer valued. In the frequency domain, delaying a signal corresponds to a linear phase shift of
the signal's discrete-time Fourier transform:

(
s (n− n0) ↔ e−(j2πfn0)S

(
ej2πf

))
.

Linear discrete-time systems have the superposition property.

Superposition
S (a1x1 (n) + a2x2 (n)) = a1S (x1 (n)) + a2S (x2 (n)) (1.6)

A discrete-time system is called shift-invariant (analogous to time-invariant analog systems) if delaying
the input delays the corresponding output.

Shift-Invariant
If S (x (n)) = y (n) , Then S (x (n− n0)) = y (n− n0) (1.7)

We use the term shift-invariant to emphasize that delays can only have integer values in discrete-time, while
in analog signals, delays can be arbitrarily valued.

2This content is available online at <http://cnx.org/content/m0508/2.7/>.
3"Simple Systems": Section Delay <http://cnx.org/content/m0006/latest/#delay>

6 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

We want to concentrate on systems that are both linear and shift-invariant. It will be these that allow us
the full power of frequency-domain analysis and implementations. Because we have no physical constraints
in "constructing" such systems, we need only a mathematical speci�cation. In analog systems, the di�er-
ential equation speci�es the input-output relationship in the time-domain. The corresponding discrete-time
speci�cation is the di�erence equation.

The Di�erence Equation

y (n) = a1y (n− 1) + · · ·+ apy (n− p) + b0x (n) + b1x (n− 1) + · · ·+ bqx (n− q) (1.8)

Here, the output signal y (n) is related to its past values y (n− l), l = {1, . . . , p}, and to the current and
past values of the input signal x (n). The system's characteristics are determined by the choices for the
number of coe�cients p and q and the coe�cients' values {a1, . . . , ap} and {b0, b1, . . . , bq}.

aside: There is an asymmetry in the coe�cients: where is a0 ? This coe�cient would multiply the
y (n) term in the di�erence equation (1.8: The Di�erence Equation). We have essentially divided
the equation by it, which does not change the input-output relationship. We have thus created the
convention that a0 is always one.

As opposed to di�erential equations, which only provide an implicit description of a system (we must
somehow solve the di�erential equation), di�erence equations provide an explicit way of computing the
output for any input. We simply express the di�erence equation by a program that calculates each output
from the previous output values, and the current and previous inputs.

1.3 Discrete-Time Convolution4

1.3.1 Overview

Convolution is a concept that extends to all systems that are both linear and time-invariant5 (LTI). The
idea of discrete-time convolution is exactly the same as that of continuous-time convolution6. For this
reason, it may be useful to look at both versions to help your understanding of this extremely important
concept. Recall that convolution is a very powerful tool in determining a system's output from knowledge of
an arbitrary input and the system's impulse response. It will also be helpful to see convolution graphically
with your own eyes and to play around with it some, so experiment with the applets7 available on the
internet. These resources will o�er di�erent approaches to this crucial concept.

1.3.2 Convolution Sum

As mentioned above, the convolution sum provides a concise, mathematical way to express the output of an
LTI system based on an arbitrary discrete-time input signal and the system's response. The convolution
sum is expressed as

y [n] =
∞∑

k=−∞

(x [k]h [n− k]) (1.9)

As with continuous-time, convolution is represented by the symbol *, and can be written as

y [n] = x [n] ∗ h [n] (1.10)

By making a simple change of variables into the convolution sum, k = n − k, we can easily show that
convolution is commutative:

x [n] ∗ h [n] = h [n] ∗ x [n] (1.11)

4This content is available online at <http://cnx.org/content/m10087/2.18/>.
5"System Classi�cations and Properties" <http://cnx.org/content/m10084/latest/>
6"Continuous-Time Convolution" <http://cnx.org/content/m10085/latest/>
7http://www.jhu.edu/∼signals

7

For more information on the characteristics of convolution, read about the Properties of Convolution8.

1.3.3 Derivation

We know that any discrete-time signal can be represented by a summation of scaled and shifted discrete-time
impulses. Since we are assuming the system to be linear and time-invariant, it would seem to reason that
an input signal comprised of the sum of scaled and shifted impulses would give rise to an output comprised
of a sum of scaled and shifted impulse responses. This is exactly what occurs in convolution. Below we
present a more rigorous and mathematical look at the derivation:

Letting H be a DT LTI system, we start with the following equation and work our way down the
convolution sum!

y [n] = H [x [n]]

= H
[∑∞

k=−∞ (x [k] δ [n− k])
]

=
∑∞

k=−∞ (H [x [k] δ [n− k]])

=
∑∞

k=−∞ (x [k]H [δ [n− k]])

=
∑∞

k=−∞ (x [k]h [n− k])

(1.12)

Let us take a quick look at the steps taken in the above derivation. After our initial equation, we using the
DT sifting property9 to rewrite the function, x [n], as a sum of the function times the unit impulse. Next, we
can move around the H operator and the summation because H [·] is a linear, DT system. Because of this
linearity and the fact that x [k] is a constant, we can pull the previous mentioned constant out and simply
multiply it by H [·]. Finally, we use the fact that H [·] is time invariant in order to reach our �nal state - the
convolution sum!

A quick graphical example may help in demonstrating why convolution works.

Figure 1.3: A single impulse input yields the system's impulse response.

8"Properties of Convolution" <http://cnx.org/content/m10088/latest/>
9"The Impulse Function": Section The Sifting Property of the Impulse <http://cnx.org/content/m10059/latest/#sifting>

8 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

Figure 1.4: A scaled impulse input yields a scaled response, due to the scaling property of the system's
linearity.

Figure 1.5: We now use the time-invariance property of the system to show that a delayed input
results in an output of the same shape, only delayed by the same amount as the input.

9

Figure 1.6: We now use the additivity portion of the linearity property of the system to complete the
picture. Since any discrete-time signal is just a sum of scaled and shifted discrete-time impulses, we can
�nd the output from knowing the input and the impulse response.

1.3.4 Convolution Through Time (A Graphical Approach)

In this section we will develop a second graphical interpretation of discrete-time convolution. We will begin
this by writing the convolution sum allowing x to be a causal, length-m signal and h to be a causal, length-k,
LTI system. This gives us the �nite summation,

y [n] =
m−1∑
l=0

(x [l]h [n− l]) (1.13)

Notice that for any given n we have a sum of the products of xl and a time-delayed h−l. This is to say that
we multiply the terms of x by the terms of a time-reversed h and add them up.

Going back to the previous example:

10 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

Figure 1.7: This is the end result that we are looking to �nd.

Figure 1.8: Here we reverse the impulse response, h , and begin its traverse at time 0.

11

Figure 1.9: We continue the traverse. See that at time 1 , we are multiplying two elements of the
input signal by two elements of the impulse response.

Figure 1.10

12 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

Figure 1.11: If we follow this through to one more step, n = 4, then we can see that we produce the
same output as we saw in the initial example.

What we are doing in the above demonstration is reversing the impulse response in time and "walking
it across" the input signal. Clearly, this yields the same result as scaling, shifting and summing impulse
responses.

This approach of time-reversing, and sliding across is a common approach to presenting convolution,
since it demonstrates how convolution builds up an output through time.

1.4 Review of Linear Algebra10

Vector spaces are the principal object of study in linear algebra. A vector space is always de�ned with
respect to a �eld of scalars.

1.4.1 Fields

A �eld is a set F equipped with two operations, addition and mulitplication, and containing two special
members 0 and 1 (0 6= 1), such that for all {a, b, c} ∈ F

1. (a) a + b ∈ F
(b) a + b = b + a
(c) (a + b) + c = a + (b + c)
(d) a + 0 = a
(e) there exists −a such that a + (−a) = 0

2. (a) ab ∈ F
(b) ab = ba
(c) (ab) c = a (bc)

10This content is available online at <http://cnx.org/content/m11948/1.2/>.

13

(d) a · 1 = a
(e) there exists a−1 such that aa−1 = 1

3. a (b + c) = ab + ac

More concisely

1. F is an abelian group under addition
2. F is an abelian group under multiplication
3. multiplication distributes over addition

1.4.1.1 Examples

Q, R, C

1.4.2 Vector Spaces

Let F be a �eld, and V a set. We say V is a vector space over F if there exist two operations, de�ned for
all a ∈ F , u ∈ V and v ∈ V :

• vector addition: (u, v) → u + v ∈ V
• scalar multiplication: (a,v) → av ∈ V

and if there exists an element denoted 0 ∈ V , such that the following hold for all a ∈ F , b ∈ F , and u ∈ V ,
v ∈ V , and w ∈ V

1. (a) u + (v + w) = (u + v) + w
(b) u + v = v + u
(c) u + 0 = u
(d) there exists −u such that u + (−u) = 0

2. (a) a (u + v) = au + av
(b) (a + b)u = au + bu
(c) (ab)u = a (bu)
(d) 1 · u = u

More concisely,

1. V is an abelian group under plus
2. Natural properties of scalar multiplication

1.4.2.1 Examples

• RN is a vector space over R
• CN is a vector space over C
• CN is a vector space over R
• RN is not a vector space over C

The elements of V are called vectors.

1.4.3 Euclidean Space

Throughout this course we will think of a signal as a vector

x =


x1

x2

...

xN

 =
(

x1 x2 . . . xN

)T

14 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

The samples {xi} could be samples from a �nite duration, continuous time signal, for example.
A signal will belong to one of two vector spaces:

1.4.3.1 Real Euclidean space

x ∈ RN (over R)

1.4.3.2 Complex Euclidean space

x ∈ CN (over C)

1.4.4 Subspaces

Let V be a vector space over F .
A subset S ⊆ V is called a subspace of V if S is a vector space over F in its own right.

Example 1.1
V = R2, F = R, S = any line though the origin.

Figure 1.12: S is any line through the origin.

Are there other subspaces?

Theorem 1.1:
S ⊆ V is a subspace if and only if for all a ∈ F and b ∈ F and for all s ∈ S and t ∈ S, as + bt ∈ S

1.4.5 Linear Independence

Let u1, . . . ,uk ∈ V .
We say that these vectors are linearly dependent if there exist scalars a1, . . . , ak ∈ F such that

k∑
i=1

(aiui) = 0 (1.14)

and at least one ai 6= 0.
If (1.14) only holds for the case a1 = · · · = ak = 0, we say that the vectors are linearly independent.

Example 1.2

1


1

−1

2

− 2


−2

3

0

+ 1


−5

7

−2

 = 0

so these vectors are linearly dependent in R3.

15

1.4.6 Spanning Sets

Consider the subset S = {v1, v2, . . . , vk}. De�ne the span of S

< S > ≡ span (S) ≡

{
k∑

i=1

(aivi) |ai ∈ F

}
Fact: < S > is a subspace of V .

Example 1.3

V = R3, F = R, S = {v1, v2}, v1 =


1

0

0

, v2 =


0

1

0

 ⇒ < S > = xy-plane.

Figure 1.13: < S > is the xy-plane.

1.4.6.1 Aside

If S is in�nite, the notions of linear independence and span are easily generalized:
We say S is linearly independent if, for every �nite collection u1, . . . , uk ∈ S, (k arbitrary) we have

k∑
i=1

(aiui) = 0 ⇒ ∀i : (ai = 0)

The span of S is

< S > =

{
k∑

i=1

(aiui) |ai ∈ F ∧ ui ∈ S ∧ k < ∞

}

16 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

Note: In both de�nitions, we only consider �nite sums.

1.4.7 Bases

A set B ⊆ V is called a basis for V over F if and only if

1. B is linearly independent
2. < B > = V

Bases are of fundamental importance in signal processing. They allow us to decompose a signal into building
blocks (basis vectors) that are often more easily understood.

Example 1.4
V = (real or complex) Euclidean space, RN or CN .

B = {e1, . . . , eN} ≡ standard basis

ei =



0
...

1
...

0


where the 1 is in the ith position.

Example 1.5
V = CN over C.

B = {u1, . . . , uN}
which is the DFT basis.

uk =


1

e−(j2π k
N)

...

e−(j2π k
N (N−1))


where j =

√
−1.

1.4.7.1 Key Fact

If B is a basis for V , then every v ∈ V can be written uniquely (up to order of terms) in the form

v =
N∑

i=1

(aivi)

where ai ∈ F and vi ∈ B.

1.4.7.2 Other Facts

• If S is a linearly independent set, then S can be extended to a basis.
• If < S > = V , then S contains a basis.

17

1.4.8 Dimension

Let V be a vector space with basis B. The dimension of V , denoted dim (V), is the cardinality of B.

Theorem 1.2:
Every vector space has a basis.

Theorem 1.3:
Every basis for a vector space has the same cardinality.

⇒ dim (V) is well-de�ned.
If dim (V) < ∞, we say V is �nite dimensional.

1.4.8.1 Examples

vector space �eld of scalars dimension

RN R

CN C

CN R

Every subspace is a vector space, and therefore has its own dimension.

Example 1.6
Suppose S = {u1, . . . , uk} ⊆ V is a linearly independent set. Then

dim (< S >) =

Facts

• If S is a subspace of V , then dim (S) ≤ dim (V).
• If dim (S) = dim (V) < ∞, then S = V .

1.4.9 Direct Sums

Let V be a vector space, and let S ⊆ V and T ⊆ V be subspaces.
We say V is the direct sum of S and T , written V = (S ⊕ T), if and only if for every v ∈ V , there exist

unique s ∈ S and t ∈ T such that v = s + t.
If V = (S ⊕ T), then T is called a complement of S.

Example 1.7

V = C ′ = {f : R → R|f is continuous}

S = even funcitons inC ′

T = odd funcitons inC ′

f (t) =
1
2

(f (t) + f (−t)) +
1
2

(f (t)− f (−t))

If f = g + h = g′ + h′, g ∈ S and g′ ∈ S, h ∈ T and h′ ∈ T , then g − g′ = h′ − h is odd and even,
which implies g = g′ and h = h′.

18 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

1.4.9.1 Facts

1. Every subspace has a complement
2. V = (S ⊕ T) if and only if

(a) S
⋂

T = {0}
(b) < S, T > = V

3. If V = (S ⊕ T), and dim (V) < ∞, then dim (V) = dim (S) + dim (T)

1.4.9.2 Proofs

Invoke a basis.

1.4.10 Norms

Let V be a vector space over F . A norm is a mapping (V → F), denoted by ‖ · ‖, such that forall u ∈ V ,
v ∈ V , and λ ∈ F

1. ‖ u ‖> 0 if u 6= 0
2. ‖ λu ‖= |λ| ‖ u ‖
3. ‖ u + v ‖≤‖ u ‖ + ‖ v ‖

1.4.10.1 Examples

Euclidean norms:
x ∈ RN :

‖ x ‖=

(
N∑

i=1

(
xi

2
)) 1

2

x ∈ CN :

‖ x ‖=

(
N∑

i=1

(
(|xi|)2

)) 1
2

1.4.10.2 Induced Metric

Every norm induces a metric on V
d (u,v) ≡‖ u− v ‖

which leads to a notion of "distance" between vectors.

1.4.11 Inner products

Let V be a vector space over F , F = R or C. An inner product is a mapping V × V → F , denoted < ·, · >,
such that

1. < v,v >≥ 0, and (< v,v >= 0 ⇔ v = 0)
2. < u,v >= < v,u >
3. < au + bv,w >= a < u,w > +b < v,w >

19

1.4.11.1 Examples

RN over R:

< x,y >= xT y =
N∑

i=1

(xiyi)

CN over C:

< x,y >= xHy =
N∑

i=1

(xiyi)

If x = (x1, . . . , xN)T ∈ C, then

xH ≡


x1

...

xN


T

is called the "Hermitian," or "conjugate transpose" of x.

1.4.12 Triangle Inequality

If we de�ne ‖ u ‖=< u,u >, then
‖ u + v ‖≤‖ u ‖ + ‖ v ‖

Hence, every inner product induces a norm.

1.4.13 Cauchy-Schwarz Inequality

For all u ∈ V , v ∈ V ,
| < u,v > | ≤‖ u ‖‖ v ‖

In inner product spaces, we have a notion of the angle between two vectors:

∠ (u,v) = arccos

(
< u,v >

‖ u ‖‖ v ‖

)
∈ [0, 2π)

1.4.14 Orthogonality

u and v are orthogonal if
< u,v >= 0

Notation: (u ⊥ v).
If in addition ‖ u ‖=‖ v ‖= 1, we say u and v are orthonormal.
In an orthogonal (orthonormal) set, each pair of vectors is orthogonal (orthonormal).

Figure 1.14: Orthogonal vectors in R2.

20 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

1.4.15 Orthonormal Bases

An Orthonormal basis is a basis {vi} such that

< vi, vi >= δij =

 1 if i = j

0 if i 6= j

Example 1.8
The standard basis for RN or CN

Example 1.9
The normalized DFT basis

uk =
1√
N


1

e−(j2π k
N)

...

e−(j2π k
N (N−1))



1.4.16 Expansion Coe�cients

If the representation of v with respect to {vi} is

v =
∑

(aivi)

then
ai =< vi,v >

1.4.17 Gram-Schmidt

Every inner product space has an orthonormal basis. Any (countable) basis can be made orthogonal by the
Gram-Schmidt orthogonalization process.

1.4.18 Orthogonal Compliments

Let S ⊆ V be a subspace. The orthogonal compliment S is

S⊥ = {u |u ∈ V ∧ < u,v >= 0 ∧ ∀v : (v ∈ S)}

S⊥ is easily seen to be a subspace.
If dim (v) < ∞, then V =

(
S ⊕ S⊥

)
.

Aside: If dim (v) = ∞, then in order to have V =
(
S ⊕ S⊥

)
we require V to be a Hilbert Space.

1.4.19 Linear Transformations

Loosely speaking, a linear transformation is a mapping from one vector space to another that preserves
vector space operations.

More precisely, let V , W be vector spaces over the same �eld F . A linear transformation is a mapping
T : V → W such that

T (au + bv) = aT (u) + bT (v)

for all a ∈ F , b ∈ F and u ∈ V , v ∈ V .
In this class we will be concerned with linear transformations between (real or complex) Euclidean spaces,

or subspaces thereof.

21

1.4.20 Image

image (T) = {w |w ∈ W ∧ T (v) = wfor somev}

1.4.21 Nullspace

Also known as the kernel:
ker (T) = {v |v ∈ V ∧ T (v) = 0}

Both the image and the nullspace are easily seen to be subspaces.

1.4.22 Rank

rank (T) = dim (image (T))

1.4.23 Nullity

null (T) = dim (ker (T))

1.4.24 Rank plus nullity theorem

rank (T) + null (T) = dim (V)

1.4.25 Matrices

Every linear transformation T has a matrix representation. If T : EN → EM , E = R or C, then T is
represented by an M ×N matrix

A =


a11 . . . a1N

...
. . .

...

aM1 . . . aMN


where (a1i, . . . , aMi)

T = T (ei) and ei = (0, . . . , 1, . . . , 0)T
is the ith standard basis vector.

Aside: A linear transformation can be represented with respect to any bases of EN and EM ,
leading to a di�erent A. We will always represent a linear transformation using the standard bases.

1.4.26 Column span

colspan (A) =< A > = image (A)

22 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

1.4.27 Duality

If A : RN → RM , then
ker⊥ (A) = image

(
AT
)

Figure 1.15

If A : CN → CM , then
ker⊥ (A) = image

(
AH
)

1.4.28 Inverses

The linear transformation/matrix A is invertible if and only if there exists a matrix B such that AB =
BA = I (identity).

Only square matrices can be invertible.

Theorem 1.4:
Let A : FN → FN be linear, F = R or C. The following are equivalent:

1. A is invertible (nonsingular)
2. rank (A) = N
3. null (A) = 0
4. detA 6= 0
5. The columns of A form a basis.

If A−1 = AT (or AH in the complex case), we say A is orthogonal (or unitary).

1.5 Orthonormal Basis Expansions11

1.5.1 Main Idea

When working with signals many times it is helpful to break up a signal into smaller, more manageable parts.
Hopefully by now you have been exposed to the concept of eigenvectors12 and there use in decomposing a

11This content is available online at <http://cnx.org/content/m10760/2.4/>.
12"Eigenvectors and Eigenvalues" <http://cnx.org/content/m10736/latest/>

23

signal into one of its possible basis. By doing this we are able to simplify our calculations of signals and
systems through eigenfunctions of LTI systems13.

Now we would like to look at an alternative way to represent signals, through the use of orthonormal
basis. We can think of orthonormal basis as a set of building blocks we use to construct functions. We will
build up the signal/vector as a weighted sum of basis elements.

Example 1.10

The complex sinusoids 1√
T

ejω0nt for all −∞ < n < ∞ form an orthonormal basis for L2 ([0, T]).
In our Fourier series14 equation, f (t) =

∑∞
n=−∞

(
cnejω0nt

)
, the {cn} are just another represen-

tation of f (t).

note: For signals/vectors in a Hilbert Space, the expansion coe�cients are easy to �nd.

1.5.2 Alternate Representation

Recall our de�nition of a basis: A set of vectors {bi} in a vector space S is a basis if

1. The bi are linearly independent.
2. The bi span

15 S. That is, we can �nd {αi}, where αi ∈ C (scalars) such that

∀x, x ∈ S :

(
x =

∑
i

(αibi)

)
(1.15)

where x is a vector in S, α is a scalar in C, and b is a vector in S.

Condition 2 in the above de�nition says we can decompose any vector in terms of the {bi}. Condition
1 ensures that the decomposition is unique (think about this at home).

note: The {αi} provide an alternate representation of x.

Example 1.11
Let us look at simple example in R2, where we have the following vector:

x =

 1

2


Standard Basis: {e0, e1} =

{
(1, 0)T

, (0, 1)T
}
x = e0 + 2e1

Alternate Basis: {h0, h1} =
{

(1, 1)T
, (1,−1)T

}
x =

3
2
h0 +

−1
2

h1

In general, given a basis {b0, b1} and a vector x ∈ R2, how do we �nd the α0 and α1 such that

x = α0b0 + α1b1 (1.16)

13"Eigenfunctions of LTI Systems" <http://cnx.org/content/m10500/latest/>
14"Fourier Series: Eigenfunction Approach" <http://cnx.org/content/m10496/latest/>
15"Linear Algebra: The Basics": Section Span <http://cnx.org/content/m10734/latest/#span_sec>

24 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

1.5.3 Finding the Alphas

Now let us address the question posed above about �nding αi's in general for R2. We start by rewriting
(1.16) so that we can stack our bi's as columns in a 2×2 matrix.(

x
)

= α0

(
b0

)
+ α1

(
b1

)
(1.17)

(
x
)

=


...

...

b0 b1

...
...


 α0

α1

 (1.18)

Example 1.12
Here is a simple example, which shows a little more detail about the above equations. x [0]

x [1]

 = α0

 b0 [0]

b0 [1]

+ α1

 b1 [0]

b1 [1]


=

 α0b0 [0] + α1b1 [0]

α0b0 [1] + α1b1 [1]

 (1.19)

 x [0]

x [1]

 =

 b0 [0] b1 [0]

b0 [1] b1 [1]

 α0

α1

 (1.20)

1.5.3.1 Simplifying our Equation

To make notation simpler, we de�ne the following two items from the above equations:

• Basis Matrix:

B =


...

...

b0 b1

...
...


• Coe�cient Vector:

α =

 α0

α1


This gives us the following, concise equation:

x = Bα (1.21)

which is equivalent to x =
∑1

i=0 (αibi).

Example 1.13

Given a standard basis,


 1

0

 ,

 0

1

, then we have the following basis matrix:

B =

 0 1

1 0



25

To get the αi's, we solve for the coe�cient vector in (1.21)

α = B−1x (1.22)

Where B−1 is the inverse matrix16 of B.

1.5.3.2 Examples

Example 1.14
Let us look at the standard basis �rst and try to calculate α from it.

B =

 1 0

0 1

 = I

Where I is the identity matrix. In order to solve for α let us �nd the inverse of B �rst (which is
obviously very trivial in this case):

B−1 =

 1 0

0 1


Therefore we get,

α = B−1x = x

Example 1.15

Let us look at a ever-so-slightly more complicated basis of


 1

1

 ,

 1

−1

 = {h0, h1} Then

our basis matrix and inverse basis matrix becomes:

B =

 1 1

1 −1



B−1 =

 1
2

1
2

1
2

−1
2


and for this example it is given that

x =

 3

2


Now we solve for α

α = B−1x =

 1
2

1
2

1
2

−1
2

 3

2

 =

 2.5

0.5


and we get

x = 2.5h0 + 0.5h1

Exercise 1.1 (Solution on p. 96.)

Now we are given the following basis matrix and x:

{b0, b1} =


 1

2

 ,

 3

0


16"Matrix Inversion" <http://cnx.org/content/m2113/latest/>

26 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

x =

 3

2


For this problem, make a sketch of the bases and then represent x in terms of b0 and b1.

note: A change of basis simply looks at x from a "di�erent perspective." B−1 transforms x from
the standard basis to our new basis, {b0, b1}. Notice that this is a totally mechanical procedure.

1.5.4 Extending the Dimension and Space

We can also extend all these ideas past just R2 and look at them in Rn and Cn. This procedure extends nat-
urally to higher (> 2) dimensions. Given a basis {b0, b1, . . . , bn−1} for Rn, we want to �nd {α0, α1, . . . , αn−1}
such that

x = α0b0 + α1b1 + · · ·+ αn−1bn−1 (1.23)

Again, we will set up a basis matrix

B =
(

b0 b1 b2 . . . bn−1

)
where the columns equal the basis vectors and it will always be an n×n matrix (although the above matrix
does not appear to be square since we left terms in vector notation). We can then proceed to rewrite (1.21)

x =
(

b0 b1 . . . bn−1

)
α0

...

αn−1

 = Bα

and
α = B−1x

1.6 Fourier Analysis17

Fourier analysis is fundamental to understanding the behavior of signals and systems. This is a result of
the fact that sinusoids are Eigenfunctions18 of linear, time-invariant (LTI)19 systems. This is to say that if
we pass any particular sinusoid through a LTI system, we get a scaled version of that same sinusoid on the
output. Then, since Fourier analysis allows us to rede�ne the signals in terms of sinusoids, all we need to do is
determine how any given system e�ects all possible sinusoids (its transfer function20) and we have a complete
understanding of the system. Furthermore, since we are able to de�ne the passage of sinusoids through a
system as multiplication of that sinusoid by the transfer function at the same frequency, we can convert the
passage of any signal through a system from convolution21 (in time) to multiplication (in frequency). These
ideas are what give Fourier analysis its power.

Now, after hopefully having sold you on the value of this method of analysis, we must examine ex-
actly what we mean by Fourier analysis. The four Fourier transforms that comprise this analysis are the

17This content is available online at <http://cnx.org/content/m10096/2.10/>.
18"Eigenfunctions of LTI Systems" <http://cnx.org/content/m10500/latest/>
19"System Classi�cations and Properties" <http://cnx.org/content/m10084/latest/>
20"Transfer Functions" <http://cnx.org/content/m0028/latest/>
21"Properties of Convolution" <http://cnx.org/content/m10088/latest/>

27

Fourier Series22, Continuous-Time Fourier Transform (Section 1.7), Discrete-Time Fourier Transform23 and
Discrete Fourier Transform24. For this document, we will view the Laplace Transform25 and Z-Transform
(Section 1.11.3) as simply extensions of the CTFT and DTFT respectively. All of these transforms act
essentially the same way, by converting a signal in time to an equivalent signal in frequency (sinusoids).
However, depending on the nature of a speci�c signal i.e. whether it is �nite- or in�nite-length and whether
it is discrete- or continuous-time) there is an appropriate transform to convert the signal into the frequency
domain. Below is a table of the four Fourier transforms and when each is appropriate. It also includes the
relevant convolution for the speci�ed space.

Table of Fourier Representations

Transform Time Domain Frequency Domain Convolution

Continuous-Time
Fourier Series

L2 ([0, T)) l2 (Z) Continuous-Time Cir-
cular

Continuous-Time
Fourier Transform

L2 (R) L2 (R) Continuous-Time Lin-
ear

Discrete-Time Fourier
Transform

l2 (Z) L2 ([0, 2π)) Discrete-Time Linear

Discrete Fourier Trans-
form

l2 ([0, N − 1]) l2 ([0, N − 1]) Discrete-Time Circular

1.7 Continuous-Time Fourier Transform (CTFT)26

1.7.1 Introduction

Due to the large number of continuous-time signals that are present, the Fourier series27 provided us the
�rst glimpse of how me we may represent some of these signals in a general manner: as a superposition of a
number of sinusoids. Now, we can look at a way to represent continuous-time nonperiodic signals using the
same idea of superposition. Below we will present the Continuous-Time Fourier Transform (CTFT),
also referred to as just the Fourier Transform (FT). Because the CTFT now deals with nonperiodic signals,
we must now �nd a way to include all frequencies in the general equations.

1.7.1.1 Equations

Continuous-Time Fourier Transform

F (Ω) =
∫ ∞

−∞
f (t) e−(jΩt)dt (1.24)

Inverse CTFT

f (t) =
1
2π

∫ ∞

−∞
F (Ω) ejΩtdΩ (1.25)

22"Continuous-Time Fourier Series (CTFS)" <http://cnx.org/content/m10097/latest/>
23"Discrete-Time Fourier Transform (DTFT)" <http://cnx.org/content/m10108/latest/>
24"Discrete Fourier Transform(DTFT)" <http://cnx.org/content/m0502/latest/>
25"The Laplace Transforms" <http://cnx.org/content/m10110/latest/>
26This content is available online at <http://cnx.org/content/m10098/2.9/>.
27"Fourier Series" <http://cnx.org/content/m0039/latest/>

28 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

warning: Do not be confused by notation - it is not uncommon to see the above formula written
slightly di�erent. One of the most common di�erences among many professors is the way that the
exponential is written. Above we used the radial frequency variable Ω in the exponential, where
Ω = 2πf , but one will often see professors include the more explicit expression, j2πft, in the
exponential. Click here28 for an overview of the notation used in Connexion's DSP modules.

The above equations for the CTFT and its inverse come directly from the Fourier series and our under-
standing of its coe�cients. For the CTFT we simply utilize integration rather than summation to be able
to express the aperiodic signals. This should make sense since for the CTFT we are simply extending the
ideas of the Fourier series to include nonperiodic signals, and thus the entire frequency spectrum. Look at
the Derivation of the Fourier Transform29 for a more in depth look at this.

1.7.2 Relevant Spaces

The Continuous-Time Fourier Transform maps in�nite-length, continuous-time signals in L2 to in�nite-
length, continuous-frequency signals in L2. Review the Fourier Analysis (Section 1.6) for an overview of all
the spaces used in Fourier analysis.

Figure 1.16: Mapping L2 (R) in the time domain to L2 (R) in the frequency domain.

For more information on the characteristics of the CTFT, please look at the module on Properties of the
Fourier Transform30.

1.7.3 Example Problems

Exercise 1.2 (Solution on p. 96.)

Find the Fourier Transform (CTFT) of the function

f (t) =

 e−(αt) if t ≥ 0

0 otherwise
(1.26)

Exercise 1.3 (Solution on p. 96.)

Find the inverse Fourier transform of the square wave de�ned as

X (Ω) =

 1 if |Ω| ≤ M

0 otherwise
(1.27)

28"DSP Notation" <http://cnx.org/content/m10161/latest/>
29"Derivation of the Fourier Transform" <http://cnx.org/content/m0046/latest/>
30"Properties of the Fourier Transform" <http://cnx.org/content/m10100/latest/>

29

1.8 Discrete-Time Fourier Transform (DTFT)31

The Fourier transform of the discrete-time signal s (n) is de�ned to be

S
(
ej2πf

)
=

∞∑
n=−∞

(
s (n) e−(j2πfn)

)
(1.28)

Frequency here has no units. As should be expected, this de�nition is linear, with the transform of a
sum of signals equaling the sum of their transforms. Real-valued signals have conjugate-symmetric spectra:
S
(
e−(j2πf)

)
= S (ej2πf).

Exercise 1.4 (Solution on p. 96.)

A special property of the discrete-time Fourier transform is that it is periodic with period one:
S
(
ej2π(f+1)

)
= S

(
ej2πf

)
. Derive this property from the de�nition of the DTFT.

Because of this periodicity, we need only plot the spectrum over one period to understand completely the
spectrum's structure; typically, we plot the spectrum over the frequency range

[
−
(

1
2

)
, 1

2

]
. When the signal

is real-valued, we can further simplify our plotting chores by showing the spectrum only over
[
0, 1

2

]
; the

spectrum at negative frequencies can be derived from positive-frequency spectral values.
When we obtain the discrete-time signal via sampling an analog signal, the Nyquist frequency32 corre-

sponds to the discrete-time frequency 1
2 . To show this, note that a sinusoid having a frequency equal to the

Nyquist frequency 1
2Ts

has a sampled waveform that equals

cos

(
2π

1
2Ts

nTs

)
= cos (πn) = (−1)n

The exponential in the DTFT at frequency 1
2 equals e−(j2πn

2) = e−(jπn) = (−1)n
, meaning that discrete-time

frequency equals analog frequency multiplied by the sampling interval

fD = fATs (1.29)

fD and fA represent discrete-time and analog frequency variables, respectively. The aliasing �gure33 pro-
vides another way of deriving this result. As the duration of each pulse in the periodic sampling signal
pTs

(t) narrows, the amplitudes of the signal's spectral repetitions, which are governed by the Fourier series
coe�cients34 of pTs (t), become increasingly equal. Examination of the periodic pulse signal35 reveals that as
∆ decreases, the value of c0, the largest Fourier coe�cient, decreases to zero: |c0| = A∆

Ts
. Thus, to maintain

a mathematically viable Sampling Theorem, the amplitude A must increase as 1
∆ , becoming in�nitely large

as the pulse duration decreases. Practical systems use a small value of ∆, say 0.1 · Ts and use ampli�ers to
rescale the signal. Thus, the sampled signal's spectrum becomes periodic with period 1

Ts
. Thus, the Nyquist

frequency 1
2Ts

corresponds to the frequency 1
2 .

31This content is available online at <http://cnx.org/content/m10247/2.28/>.
32"The Sampling Theorem" <http://cnx.org/content/m0050/latest/#para1>
33"The Sampling Theorem", Figure 2: aliasing <http://cnx.org/content/m0050/latest/#alias>
34"De�nition of the Complex Fourier Series", (9) <http://cnx.org/content/m0042/latest/#eqn2>
35"De�nition of the Complex Fourier Series", Figure 1 <http://cnx.org/content/m0042/latest/#pps>

30 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

Example 1.16
Let's compute the discrete-time Fourier transform of the exponentially decaying sequence s (n) =

anu (n), where u (n) is the unit-step sequence. Simply plugging the signal's expression into the
Fourier transform formula,

S
(
ej2πf

)
=

∑∞
n=−∞

(
anu (n) e−(j2πfn)

)
=

∑∞
n=0

((
ae−(j2πf)

)n) (1.30)

This sum is a special case of the geometric series.

∞∑
n=0

(αn) = ∀α, |α| < 1 :
(

1
1− α

)
(1.31)

Thus, as long as |a| < 1, we have our Fourier transform.

S
(
ej2πf

)
=

1
1− ae−(j2πf)

(1.32)

Using Euler's relation, we can express the magnitude and phase of this spectrum.

|S
(
ej2πf

)
| = 1√

(1− acos (2πf))2 + a2sin2 (2πf)
(1.33)

∠
(
S
(
ej2πf

))
= −

(
tan−1

(
asin (2πf)

1− acos (2πf)

))
(1.34)

No matter what value of a we choose, the above formulae clearly demonstrate the periodic nature
of the spectra of discrete-time signals. Figure 1.17 (Spectrum of exponential signal) shows indeed
that the spectrum is a periodic function. We need only consider the spectrum between −

(
1
2

)
and

1
2 to unambiguously de�ne it. When a > 0, we have a lowpass spectrum�the spectrum diminishes
as frequency increases from 0 to 1

2�with increasing a leading to a greater low frequency content;
for a < 0, we have a highpass spectrum (Figure 1.18 (Spectra of exponential signals)).

31

Spectrum of exponential signal

-2 -1 0 1 2

1

2

f

|S(ej2πf)|

-2 -1 1 2

-45

45

f

∠S(ej2πf)

Figure 1.17: The spectrum of the exponential signal (a = 0.5) is shown over the frequency range [-2,
2], clearly demonstrating the periodicity of all discrete-time spectra. The angle has units of degrees.

32 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

Spectra of exponential signals

f

a = 0.9

a = 0.5

a = –0.5

S
pe

ct
ra

l M
ag

ni
tu

de
 (

dB
)

-10

0

10

20

0.5

a = 0.9

a = 0.5

a = –0.5

A
ng

le
 (

de
gr

ee
s)

f

-90

-45

0

45

90

0.5

Figure 1.18: The spectra of several exponential signals are shown. What is the apparent relationship
between the spectra for a = 0.5 and a = −0.5?

Example 1.17
Analogous to the analog pulse signal, let's �nd the spectrum of the length-N pulse sequence.

s (n) =

 1 if 0 ≤ n ≤ N − 1

0 otherwise
(1.35)

The Fourier transform of this sequence has the form of a truncated geometric series.

S
(
ej2πf

)
=

N−1∑
n=0

(
e−(j2πfn)

)
(1.36)

For the so-called �nite geometric series, we know that

N+n0−1∑
n=n0

(αn) = αn0
1− αN

1− α
(1.37)

for all values of α.

Exercise 1.5 (Solution on p. 97.)

Derive this formula for the �nite geometric series sum. The "trick" is to consider the di�erence
between the series' sum and the sum of the series multiplied by α.

Applying this result yields (Figure 1.19 (Spectrum of length-ten pulse).)

S
(
ej2πf

)
= 1−e−(j2πfN)

1−e−(j2πf)

= e−(jπf(N−1)) sin(πfN)
sin(πf)

(1.38)

33

The ratio of sine functions has the generic form of sin(Nx)
sin(x) , which is known as the discrete-time sinc

function dsinc (x). Thus, our transform can be concisely expressed as S
(
ej2πf

)
= e−(jπf(N−1))dsinc (πf).

The discrete-time pulse's spectrum contains many ripples, the number of which increase with N , the pulse's
duration.

Spectrum of length-ten pulse

Figure 1.19: The spectrum of a length-ten pulse is shown. Can you explain the rather complicated
appearance of the phase?

The inverse discrete-time Fourier transform is easily derived from the following relationship:

∫ 1
2

−(1
2)

e−(j2πfm)ej2πfndf =

 1 if m = n

0 if m 6= n
(1.39)

Therefore, we �nd that∫ 1
2

−(1
2)

S
(
ej2πf

)
ej2πfndf =

∫ 1
2

−(1
2)
∑

m

(
s (m) e−(j2πfm)ej2πfn

)
df

=
∑

m

(
s (m)

∫ 1
2

−(1
2)

e(−(j2πf))(m−n)df

)
= s (n)

(1.40)

The Fourier transform pairs in discrete-time are

S
(
ej2πf

)
=

∞∑
n=−∞

(
s (n) e−(j2πfn)

)
(1.41)

s (n) =
∫ 1

2

−(1
2)

S
(
ej2πf

)
ej2πfndf (1.42)

34 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

The properties of the discrete-time Fourier transform mirror those of the analog Fourier transform. The
DTFT properties table 36 shows similarities and di�erences. One important common property is Parseval's
Theorem.

∞∑
n=−∞

(
(|s (n) |)2

)
=
∫ 1

2

−(1
2)

(
|S
(
ej2πf

)
|
)2

df (1.43)

To show this important property, we simply substitute the Fourier transform expression into the frequency-
domain expression for power.∫ 1

2

−(1
2)
(
|S
(
ej2πf

)
|
)2

df =
∫ 1

2

−(1
2)
(∑

n

(
s (n) e−(j2πfn)

))∑
m

(
s (n)ej2πfm

)
df

=
∑

(n,m)

(
s (n) s (n)

∫ 1
2

−(1
2)

ej2πf(m−n)df

) (1.44)

Using the orthogonality relation (1.39), the integral equals δ (m− n), where δ (n) is the unit sample (Fig-
ure 1.2: Unit sample). Thus, the double sum collapses into a single sum because nonzero values occur only
when n = m, giving Parseval's Theorem as a result. We term

∑
n

(
s2 (n)

)
the energy in the discrete-time

signal s (n) in spite of the fact that discrete-time signals don't consume (or produce for that matter) energy.
This terminology is a carry-over from the analog world.

Exercise 1.6 (Solution on p. 97.)

Suppose we obtained our discrete-time signal from values of the product s (t) pTs (t), where the
duration of the component pulses in pTs (t) is ∆. How is the discrete-time signal energy related to
the total energy contained in s (t)? Assume the signal is bandlimited and that the sampling rate
was chosen appropriate to the Sampling Theorem's conditions.

1.9 DFT as a Matrix Operation37

1.9.1 Matrix Review

Recall:

• Vectors in RN :

∀xi, xi ∈ R :

x =


x0

x1

. . .

xN−1




• Vectors in CN :

∀xi, xi ∈ C :

x =


x0

x1

. . .

xN−1




• Transposition:

1. transpose:

xT =
(

x0 x1 . . . xN−1

)
36"Discrete-Time Fourier Transform Properties" <http://cnx.org/content/m0506/latest/>
37This content is available online at <http://cnx.org/content/m10962/2.5/>.

35

2. conjugate:

xH =
(

x0 x1 . . . xN−1

)
• Inner product38:

1. real:

xT y =
N−1∑
i=0

(xiyi)

2. complex:

xHy =
N−1∑
i=0

(xnyn)

• Matrix Multiplication:

Ax =


a00 a01 . . . a0,N−1

a10 a11 . . . a1,N−1

...
... . . .

...

aN−1,0 aN−1,1 . . . aN−1,N−1




x0

x1

. . .

xN−1

 =


y0

y1

. . .

yN−1



yk =
N−1∑
n=0

(aknxn)

• Matrix Transposition:

AT =


a00 a10 . . . aN−1,0

a01 a11 . . . aN−1,1

...
... . . .

...

a0,N−1 a1,N−1 . . . aN−1,N−1


Matrix transposition involved simply swapping the rows with columns.

AH = AT

The above equation is Hermitian transpose.[
AT
]
kn

= Ank

[
AH
]
kn

=
[
A
]
nk

1.9.2 Representing DFT as Matrix Operation

Now let's represent the DFT39 in vector-matrix notation.

x =


x [0]

x [1]

. . .

x [N − 1]


38"Inner Products" <http://cnx.org/content/m10755/latest/>
39"Discrete Fourier Transform (DFT)" <http://cnx.org/content/m10249/latest/>

36 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

X =


X [0]

X [1]

. . .

X [N − 1]

 ∈ CN

Here x is the vector of time samples and X is the vector of DFT coe�cients. How are x and X related:

X [k] =
N−1∑
n=0

(
x [n] e−(j 2π

N kn)
)

where

akn =
(
e−(j 2π

N)
)kn

= WN
kn

so
X = Wx

where X is the DFT vector, W is the matrix and x the time domain vector.

Wkn =
(
e−(j 2π

N)
)kn

X = W


x [0]

x [1]

. . .

x [N − 1]


IDFT:

x [n] =
1
N

N−1∑
k=0

(
X [k]

(
ej 2π

N

)nk
)

where (
ej 2π

N

)nk

= WN
nk

WN
nk is the matrix Hermitian transpose. So,

x =
1
N

WHX

where x is the time vector, 1
N WH is the inverse DFT matrix, and X is the DFT vector.

1.10 Sampling theory

1.10.1 Introduction40

Contents of Sampling chapter

• Introduction(Current module)
• Proof (Section 1.10.2)
• Illustrations (Section 1.10.3)

40This content is available online at <http://cnx.org/content/m11419/1.29/>.

37

• Matlab Example41

• Hold operation42

• System view (Section 1.10.4)
• Aliasing applet43

• Exercises44

• Table of formulas45

1.10.1.1 Why sample?

This section introduces sampling. Sampling is the necessary fundament for all digital signal processing and
communication. Sampling can be de�ned as the process of measuring an analog signal at distinct points.

Digital representation of analog signals o�ers advantages in terms of

• robustness towards noise, meaning we can send more bits/s
• use of �exible processing equipment, in particular the computer
• more reliable processing equipment
• easier to adapt complex algorithms

1.10.1.2 Claude E. Shannon

Figure 1.20: Claude Elwood Shannon (1916-2001)

Claude Shannon46 has been called the father of information theory, mainly due to his landmark papers on the
"Mathematical theory of communication"47 . Harry Nyquist48 was the �rst to state the sampling theorem

41"Sampling and reconstruction with Matlab" <http://cnx.org/content/m11549/latest/>
42"Hold operation" <http://cnx.org/content/m11458/latest/>
43"Aliasing Applet" <http://cnx.org/content/m11448/latest/>
44"Exercises" <http://cnx.org/content/m11442/latest/>
45"Table of Formulas" <http://cnx.org/content/m11450/latest/>
46http://www.research.att.com/∼njas/doc/ces5.html
47http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
48http://www.wikipedia.org/wiki/Harry_Nyquist

38 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

in 1928, but it was not proven until Shannon proved it 21 years later in the paper "Communications in the
presence of noise"49 .

1.10.1.3 Notation

In this chapter we will be using the following notation

• Original analog signal x (t)
• Sampling frequency Fs

• Sampling interval Ts (Note that: Fs = 1
Ts
)

• Sampled signal xs (n). (Note that xs (n) = x (nTs))
• Real angular frequency Ω
• Digital angular frequency ω. (Note that: ω = ΩTs)

1.10.1.4 The Sampling Theorem

The Sampling theorem: When sampling an analog signal the sampling frequency must be
greater than twice the highest frequency component of the analog signal to be able to reconstruct
the original signal from the sampled version.

Finished? Have at look at: Proof (Section 1.10.2); Illustrations (Section 1.10.3); Matlab Example50;
Aliasing applet51; Hold operation52; System view (Section 1.10.4); Exercises53

1.10.2 Proof54

Sampling theorem: In order to recover the signal x (t) from it's samples exactly, it is necessary
to sample x (t) at a rate greater than twice it's highest frequency component.

1.10.2.1 Introduction

As mentioned earlier (p. 37), sampling is the necessary fundament when we want to apply digital signal
processing on analog signals.

Here we present the proof of the sampling theorem. The proof is divided in two. First we �nd an
expression for the spectrum of the signal resulting from sampling the original signal x (t). Next we show
that the signal x (t) can be recovered from the samples. Often it is easier using the frequency domain when
carrying out a proof, and this is also the case here.

Key points in the proof

• We �nd an equation (1.52) for the spectrum of the sampled signal
• We �nd a simple method to reconstruct (1.58) the original signal
• The sampled signal has a periodic spectrum...
• ...and the period is 2πFs

49http://www.stanford.edu/class/ee104/shannonpaper.pdf
50"Sampling and reconstruction with Matlab" <http://cnx.org/content/m11549/latest/>
51"Aliasing Applet" <http://cnx.org/content/m11448/latest/>
52"Hold operation" <http://cnx.org/content/m11458/latest/>
53"Exercises" <http://cnx.org/content/m11442/latest/>
54This content is available online at <http://cnx.org/content/m11423/1.27/>.

39

1.10.2.2 Proof part 1 - Spectral considerations

By sampling x (t) every Ts second we obtain xs (n). The inverse fourier transform of this time discrete
signal55 is

xs (n) =
1
2π

∫ π

−π

Xs

(
ejω
)
ejωndω (1.45)

For convenience we express the equation in terms of the real angular frequency Ω using ω = ΩTs. We then
obtain

xs (n) =
Ts

2π

∫ π
Ts

−π
Ts

Xs

(
ejΩTs

)
ejΩTsndΩ (1.46)

The inverse fourier transform of a continuous signal is

x (t) =
1
2π

∫ ∞

−∞
X (jΩ) ejΩtdΩ (1.47)

From this equation we �nd an expression for x (nTs)

x (nTs) =
1
2π

∫ ∞

−∞
X (jΩ) ejΩnTsdΩ (1.48)

To account for the di�erence in region of integration we split the integration in (1.48) into subintervals of
length 2π

Ts
and then take the sum over the resulting integrals to obtain the complete area.

x (nTs) =
1
2π

∞∑
k=−∞

(∫ (2k+1)π
Ts

(2k−1)π
Ts

X (jΩ) ejΩnTsdΩ

)
(1.49)

Then we change the integration variable, setting Ω = η + 2πk
Ts

x (nTs) =
1
2π

∞∑
k=−∞

(∫ π
Ts

−π
Ts

X

(
j

(
η +

2πk

Ts

))
ej(η+ 2πk

Ts
)nTsdη

)
(1.50)

We obtain the �nal form by observing that ej2πkn = 1, reinserting η = Ω and multiplying by Ts

Ts

x (nTs) =
Ts

2π

∫ π
Ts

−π
Ts

∞∑
k=−∞

(
1
Ts

X

(
j

(
Ω +

2πk

Ts

))
ejΩnTs

)
dΩ (1.51)

To make xs (n) = x (nTs) for all values of n, the integrands in (1.46) and (1.51) have to agreee, that is

Xs

(
ejΩTs

)
=

1
Ts

∞∑
k=−∞

(
X

(
j

(
Ω +

2πk

Ts

)))
(1.52)

This is a central result. We see that the digital spectrum consists of a sum of shifted versions of the original,
analog spectrum. Observe the periodicity!

We can also express this relation in terms of the digital angular frequency ω = ΩTs

Xs

(
ejω
)

=
1
Ts

∞∑
k=−∞

(
X

(
j
ω + 2πk

Ts

))
(1.53)

This concludes the �rst part of the proof. Now we want to �nd a reconstruction formula, so that we can
recover x (t) from xs (n).

55"Discrete time signals" <http://cnx.org/content/m11476/latest/>

40 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

1.10.2.3 Proof part II - Signal reconstruction

For a bandlimited (Figure 1.22) signal the inverse fourier transform is

x (t) =
1
2π

∫ π
Ts

−π
Ts

X (jΩ) ejΩtdΩ (1.54)

In the interval we are integrating we have: Xs

(
ejΩTs

)
= X(jΩ)

Ts
. Substituting this relation into (1.54) we

get

x (t) =
Ts

2π

∫ π
Ts

−π
Ts

Xs

(
ejΩTs

)
ejΩtdΩ (1.55)

Using the DTFT56 relation for Xs

(
ejΩTs

)
we have

x (t) =
Ts

2π

∫ π
Ts

−π
Ts

∞∑
n=−∞

(
xs (n) e−(jΩnTs)ejΩt

)
dΩ (1.56)

Interchanging integration and summation (under the assumption of convergence) leads to

x (t) =
Ts

2π

∞∑
n=−∞

(
xs (n)

∫ π
Ts

−π
Ts

ejΩ(t−nTs)dΩ

)
(1.57)

Finally we perform the integration and arrive at the important reconstruction formula

x (t) =
∞∑

n=−∞

xs (n)
sin
(

π
Ts

(t− nTs)
)

π
Ts

(t− nTs)

 (1.58)

(Thanks to R.Loos for pointing out an error in the proof.)

1.10.2.4 Summary

spectrum sampled signal: Xs

(
ejΩTs

)
= 1

Ts

∑∞
k=−∞

(
X
(
j
(
Ω + 2πk

Ts

)))

Reconstruction formula: x (t) =
∑∞

n=−∞

(
xs (n)

sin(π
Ts

(t−nTs))
π

Ts
(t−nTs)

)
Go to Introduction (Section 1.10.1); Illustrations (Section 1.10.3); Matlab Example57; Hold operation58;

Aliasing applet59; System view (Section 1.10.4); Exercises60 ?

1.10.3 Illustrations61

In this module we illustrate the processes involved in sampling and reconstruction. To see how all these
processes work together as a whole, take a look at the system view (Section 1.10.4). In Sampling and
reconstruction with Matlab62 we provide a Matlab script for download. The matlab script shows the process
of sampling and reconstruction live.

56"Table of Formulas" <http://cnx.org/content/m11450/latest/>
57"Sampling and reconstruction with Matlab" <http://cnx.org/content/m11549/latest/>
58"Hold operation" <http://cnx.org/content/m11458/latest/>
59"Aliasing Applet" <http://cnx.org/content/m11448/latest/>
60"Exercises" <http://cnx.org/content/m11442/latest/>
61This content is available online at <http://cnx.org/content/m11443/1.33/>.
62"Sampling and reconstruction with Matlab" <http://cnx.org/content/m11549/latest/>

41

1.10.3.1 Basic examples

Example 1.18
To sample an analog signal with 3000 Hz as the highest frequency component requires sampling
at 6000 Hz or above.

Example 1.19
The sampling theorem can also be applied in two dimensions, i.e. for image analysis. A 2D
sampling theorem has a simple physical interpretation in image analysis: Choose the sampling
interval such that it is less than or equal to half of the smallest interesting detail in the image.

1.10.3.2 The process of sampling

We start o� with an analog signal. This can for example be the sound coming from your stereo at home or
your friend talking.

The signal is then sampled uniformly. Uniform sampling implies that we sample every Ts seconds. In
Figure 1.21 we see an analog signal. The analog signal has been sampled at times t = nTs.

Figure 1.21: Analog signal, samples are marked with dots.

42 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

In signal processing it is often more convenient and easier to work in the frequency domain. So let's look
at at the signal in frequency domain, Figure 1.22. For illustration purposes we take the frequency content
of the signal as a triangle. (If you Fourier transform the signal in Figure 1.21 you will not get such a nice
triangle.)

Figure 1.22: The spectrum X (jΩ).

Notice that the signal in Figure 1.22 is bandlimited. We can see that the signal is bandlimited because
X (jΩ) is zero outside the interval [−Ωg,Ωg]. Equivalentely we can state that the signal has no angular

frequencies above Ωg, corresponding to no frequencies above Fg = Ωg

2π .
Now let's take a look at the sampled signal in the frequency domain. While proving (Section 1.10.2) the

sampling theorem we found the the spectrum of the sampled signal consists of a sum of shifted versions of
the analog spectrum. Mathematically this is described by the following equation:

Xs

(
ejΩTs

)
=

1
Ts

∞∑
k=−∞

(
X

(
j

(
Ω +

2πk

Ts

)))
(1.59)

1.10.3.2.1 Sampling fast enough

In Figure 1.23 we show the result of sampling x (t) according to the sampling theorem (Section 1.10.1.4: The
Sampling Theorem). This means that when sampling the signal in Figure 1.21/Figure 1.22 we use Fs ≥ 2Fg.
Observe in Figure 1.23 that we have the same spectrum as in Figure 1.22 for Ω ∈ [−Ωg,Ωg], except for the
scaling factor 1

Ts
. This is a consequence of the sampling frequency. As mentioned in the proof (Key points

in the proof, p. 38) the spectrum of the sampled signal is periodic with period 2πFs = 2π
Ts
.

Figure 1.23: The spectrum Xs. Sampling frequency is OK.

43

So now we are, according to the sample theorem (Section 1.10.1.4: The Sampling Theorem), able to
reconstruct the original signal exactly. How we can do this will be explored further down under reconstruction
(Section 1.10.3.3: Reconstruction). But �rst we will take a look at what happens when we sample too slowly.

1.10.3.2.2 Sampling too slowly

If we sample x (t) too slowly, that is Fs < 2Fg, we will get overlap between the repeated spectra, see
Figure 1.24. According to (1.59) the resulting spectra is the sum of these. This overlap gives rise to the
concept of aliasing.

aliasing: If the sampling frequency is less than twice the highest frequency component, then
frequencies in the original signal that are above half the sampling rate will be "aliased" and will
appear in the resulting signal as lower frequencies.

The consequence of aliasing is that we cannot recover the original signal, so aliasing has to be avoided.
Sampling too slowly will produce a sequence xs (n) that could have orginated from a number of signals.
So there is no chance of recovering the original signal. To learn more about aliasing, take a look at this
module63. (Includes an applet for demonstration!)

Figure 1.24: The spectrum Xs. Sampling frequency is too low.

To avoid aliasing we have to sample fast enough. But if we can't sample fast enough (possibly due to
costs) we can include an Anti-Aliasing �lter. This will not able us to get an exact reconstruction but can
still be a good solution.

Anti-Aliasing filter: Typically a low-pass �lter that is applied before sampling to ensure that
no components with frequencies greater than half the sample frequency remain.

Example 1.20
The stagecoach e�ect

In older western movies you can observe aliasing on a stagecoach when it starts to roll. At �rst
the spokes appear to turn forward, but as the stagecoach increase its speed the spokes appear to
turn backward. This comes from the fact that the sampling rate, here the number of frames per
second, is too low. We can view each frame as a sample of an image that is changing continuously
in time. (Applet illustrating the stagecoach e�ect64)

63"Aliasing Applet" <http://cnx.org/content/m11448/latest/>
64http://�owers.ofthenight.org/wagonWheel/wagonWheel.html

44 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

1.10.3.3 Reconstruction

Given the signal in Figure 1.23 we want to recover the original signal, but the question is how?
When there is no overlapping in the spectrum, the spectral component given by k = 0 (see (1.59)),is

equal to the spectrum of the analog signal. This o�ers an oppurtunity to use a simple reconstruction process.
Remember what you have learned about �ltering. What we want is to change signal in Figure 1.23 into
that of Figure 1.22. To achieve this we have to remove all the extra components generated in the sampling
process. To remove the extra components we apply an ideal analog low-pass �lter as shown in Figure 1.25
As we see the ideal �lter is rectangular in the frequency domain. A rectangle in the frequency domain
corresponds to a sinc65 function in time domain (and vice versa).

Figure 1.25: H (jΩ) The ideal reconstruction �lter.

Then we have reconstructed the original spectrum, and as we know if two signals are identical in the
frequency domain, they are also identical in the time domain. End of reconstruction.

1.10.3.4 Conclusions

The Shannon sampling theorem requires that the input signal prior to sampling is band-limited to at most
half the sampling frequency. Under this condition the samples give an exact signal representation. It is truly
remarkable that such a broad and useful class signals can be represented that easily!

We also looked into the problem of reconstructing the signals form its samples. Again the simplicity of
the principle is striking: linear �ltering by an ideal low-pass �lter will do the job. However, the ideal �lter
is impossible to create, but that is another story...

Go to? Introduction (Section 1.10.1); Proof (Section 1.10.2); Illustrations (Section 1.10.3); Matlab Ex-
ample66; Aliasing applet67; Hold operation68; System view (Section 1.10.4); Exercises69

1.10.4 Systems view of sampling and reconstruction70

1.10.4.1 Ideal reconstruction system

Figure 1.26 shows the ideal reconstruction system based on the results of the Sampling theorem proof
(Section 1.10.2).

65http://ccrma-www.stanford.edu/∼jos/Interpolation/sinc_function.html
66"Sampling and reconstruction with Matlab" <http://cnx.org/content/m11549/latest/>
67"Aliasing Applet" <http://cnx.org/content/m11448/latest/>
68"Hold operation" <http://cnx.org/content/m11458/latest/>
69"Exercises" <http://cnx.org/content/m11442/latest/>
70This content is available online at <http://cnx.org/content/m11465/1.20/>.

45

Figure 1.26 consists of a sampling device which produces a time-discrete sequence xs (n). The recon-

struction �lter, h (t), is an ideal analog sinc71 �lter, with h (t) = sinc
(

t
Ts

)
. We can't apply the time-discrete

sequence xs (n) directly to the analog �lter h (t). To solve this problem we turn the sequence into an analog
signal using delta functions72. Thus we write xs (t) =

∑∞
n=−∞ (xs (n) δ (t− nT)).

Figure 1.26: Ideal reconstruction system

But when will the system produce an output x̂ (t) = x (t)? According to the sampling theorem (Sec-
tion 1.10.1.4: The Sampling Theorem) we have x̂ (t) = x (t) when the sampling frequency, Fs, is at least
twice the highest frequency component of x (t).

1.10.4.2 Ideal system including anti-aliasing

To be sure that the reconstructed signal is free of aliasing it is customary to apply a lowpass �lter, an
anti-aliasing �lter (p. 43), before sampling as shown in Figure 1.27.

Figure 1.27: Ideal reconstruction system with anti-aliasing �lter (p. 43)

Again we ask the question of when the system will produce an output x̂ (t) = s (t)? If the signal is entirely
con�ned within the passband of the lowpass �lter we will get perfect reconstruction if Fs is high enough.

But if the anti-aliasing �lter removes the "higher" frequencies, (which in fact is the job of the anti-aliasing
�lter), we will never be able to exactly reconstruct the original signal, s (t). If we sample fast enough we
can reconstruct x (t), which in most cases is satisfying.

The reconstructed signal, x̂ (t), will not have aliased frequencies. This is essential for further use of the
signal.

1.10.4.3 Reconstruction with hold operation

To make our reconstruction system realizable there are many things to look into. Among them are the fact
that any practical reconstruction system must input �nite length pulses into the reconstruction �lter. This
can be accomplished by the hold operation73. To alleviate the distortion caused by the hold opeator we
apply the output from the hold device to a compensator. The compensation can be as accurate as we wish,
this is cost and application consideration.

71http://ccrma-www.stanford.edu/∼jos/Interpolation/sinc_function.html
72"Table of Formulas" <http://cnx.org/content/m11450/latest/>
73"Hold operation" <http://cnx.org/content/m11458/latest/>

46 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

Figure 1.28: More practical reconstruction system with a hold component74

By the use of the hold component the reconstruction will not be exact, but as mentioned above we can
get as close as we want.

Introduction (Section 1.10.1); Proof (Section 1.10.2); Illustrations (Section 1.10.3); Matlab example75;
Hold operation76; Aliasing applet77; Exercises78

1.10.5 Sampling CT Signals: A Frequency Domain Perspective79

1.10.5.1 Understanding Sampling in the Frequency Domain

We want to relate xc (t) directly to x [n]. Compute the CTFT of

xs (t) =
∞∑

n=−∞
(xc (nT) δ (t− nT))

Xs (Ω) =
∫∞
−∞

(∑∞
n=−∞ (xc (nT) δ (t− nT))

)
e(−j)Ωtdt

=
∑∞

n=−∞

(
xc (nT)

∫∞
−∞ δ (t− nT) e(−j)Ωtdt

)
=

∑∞
n=−∞

(
x [n] e(−j)ΩnT

)
=

∑∞
n=−∞

(
x [n] e(−j)ωn

)
= X (ω)

(1.60)

where ω ≡ ΩT and X (ω) is the DTFT of x [n].

Recall:

Xs (Ω) =
1
T

∞∑
k=−∞

(Xc (Ω− kΩs))

X (ω) = 1
T

∑∞
k=−∞ (Xc (Ω− kΩs))

= 1
T

∑∞
k=−∞

(
Xc

(
ω−2πk

T

)) (1.61)

where this last part is 2π-periodic.

74"Hold operation" <http://cnx.org/content/m11458/latest/>
75"Sampling and reconstruction with Matlab" <http://cnx.org/content/m11549/latest/>
76"Hold operation" <http://cnx.org/content/m11458/latest/>
77"Aliasing Applet" <http://cnx.org/content/m11448/latest/>
78"Exercises" <http://cnx.org/content/m11442/latest/>
79This content is available online at <http://cnx.org/content/m10994/2.2/>.

47

1.10.5.1.1 Sampling

Figure 1.29

Example 1.21: Speech
Speech is intelligible if bandlimited by a CT lowpass �lter to the band ±4 kHz. We can sample
speech as slowly as _____?

48 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

Figure 1.30

Figure 1.31: Note that there is no mention of T or Ωs!

1.10.5.2 Relating x[n] to sampled x(t)

Recall the following equality:

xs (t) =
∑

n

(x (nT) δ (t− nT))

49

Figure 1.32

Recall the CTFT relation: (
x (αt) ↔ 1

α
X

(
Ω
α

))
(1.62)

where α is a scaling of time and 1
α is a scaling in frequency.

Xs (Ω) ≡ X (ΩT) (1.63)

1.10.6 The DFT: Frequency Domain with a Computer Analysis80

1.10.6.1 Introduction

We just covered ideal (and non-ideal) (time) sampling of CT signals (Section 1.10.5). This enabled DT signal
processing solutions for CT applications (Figure 1.33):

80This content is available online at <http://cnx.org/content/m10992/2.3/>.

50 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

Figure 1.33

Much of the theoretical analysis of such systems relied on frequency domain representations. How do we
carry out these frequency domain analysis on the computer? Recall the following relationships:

x [n] DTFT↔ X (ω)

x (t) CTFT↔ X (Ω)

where ω and Ω are continuous frequency variables.

1.10.6.1.1 Sampling DTFT

Consider the DTFT of a discrete-time (DT) signal x [n]. Assume x [n] is of �nite duration N (i.e., an N -point
signal).

X (ω) =
N−1∑
n=0

(
x [n] e(−j)ωn

)
(1.64)

where X (ω) is the continuous function that is indexed by the real-valued parameter −π ≤ ω ≤ π. The
other function, x [n], is a discrete function that is indexed by integers.

We want to work with X (ω) on a computer. Why not just sample X (ω)?

X [k] = X
(

2π
N k
)

=
∑N−1

n=0

(
x [n] e(−j)2π k

N n
) (1.65)

In (1.65) we sampled at ω = 2π
N k where k = {0, 1, . . . , N − 1} and X [k] for k = {0, . . . , N − 1} is called the

Discrete Fourier Transform (DFT) of x [n].

Example 1.22

Finite Duration DT Signal

Figure 1.34

The DTFT of the image in Figure 1.34 (Finite Duration DT Signal) is written as follows:

X (ω) =
N−1∑
n=0

(
x [n] e(−j)ωn

)
(1.66)

51

where ω is any 2π-interval, for example −π ≤ ω ≤ π.

Sample X(ω)

Figure 1.35

where again we sampled at ω = 2π
N k where k = {0, 1, . . . ,M − 1}. For example, we take

M = 10

. In the following section (Section 1.10.6.1.1.1: Choosing M) we will discuss in more detail how we
should choose M , the number of samples in the 2π interval.

(This is precisely how we would plot X (ω) in Matlab.)

1.10.6.1.1.1 Choosing M

1.10.6.1.1.1.1 Case 1

Given N (length of x [n]), choose (M � N) to obtain a dense sampling of the DTFT (Figure 1.36):

Figure 1.36

1.10.6.1.1.1.2 Case 2

Choose M as small as possible (to minimize the amount of computation).
In general, we require M ≥ N in order to represent all information in

∀n, n = {0, . . . , N − 1} : (x [n])

Let's concentrate on M = N :
x [n] DFT↔ X [k]

for n = {0, . . . , N − 1} and k = {0, . . . , N − 1}

numbers ↔ N numbers

52 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

1.10.6.2 Discrete Fourier Transform (DFT)

De�ne

X [k] ≡ X

(
2πk

N

)
(1.67)

where N = length (x [n]) and k = {0, . . . , N − 1}. In this case, M = N .

DFT

X [k] =
N−1∑
n=0

(
x [n] e(−j)2π k

N n
)

(1.68)

Inverse DFT (IDFT)

x [n] =
1
N

N−1∑
k=0

(
X [k] ej2π k

N n
)

(1.69)

1.10.6.2.1 Interpretation

Represent x [n] in terms of a sum of N complex sinusoids81 of amplitudes X [k] and frequencies

∀k, k ∈ {0, . . . , N − 1} :
(

ωk =
2πk

N

)
Think: Fourier Series with fundamental frequency 2π

N

1.10.6.2.1.1 Remark 1

IDFT treats x [n] as though it were N -periodic.

x [n] =
1
N

N−1∑
k=0

(
X [k] ej2π k

N n
)

(1.70)

where n ∈ {0, . . . , N − 1}
Exercise 1.7 (Solution on p. 97.)

What about other values of n?

1.10.6.2.1.2 Remark 2

Proof that the IDFT inverts the DFT for n ∈ {0, . . . , N − 1}

1
N

∑N−1
k=0

(
X [k] ej2π k

N n
)

= 1
N

∑N−1
k=0

(∑N−1
m=0

(
x [m] e(−j)2π k

N mej2π k
N n
))

= ???
(1.71)

Example 1.23: Computing DFT
Given the following discrete-time signal (Figure 1.37) with N = 4, we will compute the DFT using
two di�erent methods (the DFT Formula and Sample DTFT):

81"The Complex Exponential" <http://cnx.org/content/m10060/latest/>

53

Figure 1.37

1. DFT Formula

X [k] =
∑N−1

n=0

(
x [n] e(−j)2π k

N n
)

= 1 + e(−j)2π k
4 + e(−j)2π k

4 2 + e(−j)2π k
4 3

= 1 + e(−j) π
2 k + e(−j)πk + e(−j) 3

2 πk

(1.72)

Using the above equation, we can solve and get the following results:

x [0] = 4

x [1] = 0

x [2] = 0

x [3] = 0

2. Sample DTFT. Using the same �gure, Figure 1.37, we will take the DTFT of the signal and
get the following equations:

X (ω) =
∑3

n=0

(
e(−j)ωn

)
= 1−e(−j)4ω

1−e(−j)ω

= ???

(1.73)

Our sample points will be:

ωk =
2πk

4
=

π

2
k

where k = {0, 1, 2, 3} (Figure 1.38).

54 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

Figure 1.38

1.10.6.3 Periodicity of the DFT

DFT X [k] consists of samples of DTFT, so X (ω), a 2π-periodic DTFT signal, can be converted to X [k],
an N -periodic DFT.

X [k] =
N−1∑
n=0

(
x [n] e(−j)2π k

N n
)

(1.74)

where e(−j)2π k
N n is an N -periodic basis function (See Figure 1.39).

Figure 1.39

Also, recall,

x [n] = 1
N

∑N−1
n=0

(
X [k] ej2π k

N n
)

= 1
N

∑N−1
n=0

(
X [k] ej2π k

N (n+mN)
)

= ???

(1.75)

55

Example 1.24: Illustration

Figure 1.40

note: When we deal with the DFT, we need to remember that, in e�ect, this treats the signal as
an N -periodic sequence.

1.10.6.4 A Sampling Perspective

Think of sampling the continuous function X (ω), as depicted in Figure 1.41. S (ω) will represent the
sampling function applied to X (ω) and is illustrated in Figure 1.41 as well. This will result in our discrete-
time sequence, X [k].

56 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

Figure 1.41

Recall: Remember the multiplication in the frequency domain is equal to convolution in the
time domain!

1.10.6.4.1 Inverse DTFT of S(ω)

∞∑
k=−∞

(
δ

(
ω − 2πk

N

))
(1.76)

Given the above equation, we can take the DTFT and get the following equation:

N

∞∑
m=−∞

(δ [n−mN]) ≡ S [n] (1.77)

Exercise 1.8 (Solution on p. 97.)

Why does (1.77) equal S [n]?

57

So, in the time-domain we have (Figure 1.42):

Figure 1.42

58 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

1.10.6.5 Connections

Figure 1.43

Combine signals in Figure 1.43 to get signals in Figure 1.44.

Figure 1.44

59

1.10.7 Discrete-Time Processing of CT Signals82

1.10.7.1 DT Processing of CT Signals

DSP System

Figure 1.45

1.10.7.1.1 Analysis

Yc (Ω) = HLP (Ω) Y (ΩT) (1.78)

where we know that Y (ω) = X (ω) G (ω) and G (ω) is the frequency response of the DT LTI system. Also,
remember that

ω ≡ ΩT

So,
Yc (Ω) = HLP (Ω) G (ΩT) X (ΩT) (1.79)

where Yc (Ω) and HLP (Ω) are CTFTs and G (ΩT) and X (ΩT) are DTFTs.

Recall:

X (ω) =
2π

T

∞∑
k=−∞

(
Xc

(
ω − 2πk

T

))
OR

X (ΩT) =
2π

T

∞∑
k=−∞

(Xc (Ω− kΩs))

Therefore our �nal output signal, Yc (Ω), will be:

Yc (Ω) = HLP (Ω) G (ΩT)

(
2π

T

∞∑
k=−∞

(Xc (Ω− kΩs))

)
(1.80)

82This content is available online at <http://cnx.org/content/m10993/2.2/>.

60 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

Now, if Xc (Ω) is bandlimited to
[
−
(

Ωs

2

)
, Ωs

2

]
and we use the usual lowpass reconstruction �lter in the

D/A, Figure 1.46:

Figure 1.46

Then,

Yc (Ω) =

 G (ΩT) Xc (Ω) if |Ω| < Ωs

2

0 otherwise
(1.81)

1.10.7.1.2 Summary

For bandlimited signals sampled at or above the Nyquist rate, we can relate the input and output of the
DSP system by:

Yc (Ω) = Geff (Ω) Xc (Ω) (1.82)

where

Geff (Ω) =

 G (ΩT) if |Ω| < Ωs

2

0 otherwise

61

Figure 1.47

1.10.7.1.2.1 Note

Geff (Ω) is LTI if and only if the following two conditions are satis�ed:

1. G (ω) is LTI (in DT).
2. Xc (T) is bandlimited and sampling rate equal to or greater than Nyquist. For example, if we had a

simple pulse described by
Xc (t) = u (t− T0)− u (t− T1)

where T1 > T0. If the sampling period T > T1 − T0, then some samples might "miss" the pulse while
others might not be "missed." This is what we term time-varying behavior.

Example 1.25

62 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

Figure 1.48

If 2π
T > 2B and ω1 < BT , determine and sketch Yc (Ω) using Figure 1.48.

1.10.7.2 Application: 60Hz Noise Removal

Figure 1.49

Unfortunately, in real-world situations electrodes also pick up ambient 60 Hz signals from lights, computers,
etc.. In fact, usually this "60 Hz noise" is much greater in amplitude than the EKG signal shown in
Figure 1.49. Figure 1.50 shows the EKG signal; it is barely noticeable as it has become overwhelmed by
noise.

63

Figure 1.50: Our EKG signal, y (t), is overwhelmed by noise.

1.10.7.2.1 DSP Solution

Figure 1.51

Figure 1.52

1.10.7.2.2 Sampling Period/Rate

First we must note that |Y (Ω) | is bandlimited to ±60 Hz. Therefore, the minimum rate should be 120
Hz. In order to get the best results we should set

fs = 240Hz

64 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

.

Ωs = 2π

(
240

rad

s

)

Figure 1.53

1.10.7.2.3 Digital Filter

Therefore, we want to design a digital �lter that will remove the 60Hz component and preserve the rest.

Figure 1.54

1.11 Z-Transform

1.11.1 Di�erence Equation83

1.11.1.1 Introduction

One of the most important concepts of DSP is to be able to properly represent the input/output relation-
ship to a given LTI system. A linear constant-coe�cient di�erence equation (LCCDE) serves as a way
to express just this relationship in a discrete-time system. Writing the sequence of inputs and outputs,
which represent the characteristics of the LTI system, as a di�erence equation help in understanding and
manipulating a system.

83This content is available online at <http://cnx.org/content/m10595/2.5/>.

65

De�nition 1: di�erence equation
An equation that shows the relationship between consecutive values of a sequence and the di�er-
ences among them. They are often rearranged as a recursive formula so that a systems output can
be computed from the input signal and past outputs.
Example

y [n] + 7y [n− 1] + 2y [n− 2] = x [n]− 4x [n− 1] (1.83)

1.11.1.2 General Formulas from the Di�erence Equation

As stated brie�y in the de�nition above, a di�erence equation is a very useful tool in describing and calculating
the output of the system described by the formula for a given sample n. The key property of the di�erence
equation is its ability to help easily �nd the transform, H (z), of a system. In the following two subsections,
we will look at the general form of the di�erence equation and the general conversion to a z-transform directly
from the di�erence equation.

1.11.1.2.1 Di�erence Equation

The general form of a linear, constant-coe�cient di�erence equation (LCCDE), is shown below:

N∑
k=0

(aky [n− k]) =
M∑

k=0

(bkx [n− k]) (1.84)

We can also write the general form to easily express a recursive output, which looks like this:

y [n] = −

(
N∑

k=1

(aky [n− k])

)
+

M∑
k=0

(bkx [n− k]) (1.85)

From this equation, note that y [n− k] represents the outputs and x [n− k] represents the inputs. The value
of N represents the order of the di�erence equation and corresponds to the memory of the system being
represented. Because this equation relies on past values of the output, in order to compute a numerical
solution, certain past outputs, referred to as the initial conditions, must be known.

1.11.1.2.2 Conversion to Z-Transform

Using the above formula, (1.84), we can easily generalize the transfer function, H (z), for any di�erence
equation. Below are the steps taken to convert any di�erence equation into its transfer function, i.e. z-
transform. The �rst step involves taking the Fourier Transform84 of all the terms in (1.84). Then we use
the linearity property to pull the transform inside the summation and the time-shifting property of the
z-transform to change the time-shifting terms to exponentials. Once this is done, we arrive at the following
equation: a0 = 1.

Y (z) = −

(
N∑

k=1

(
akY (z) z−k

))
+

M∑
k=0

(
bkX (z) z−k

)
(1.86)

H (z) = Y (z)
X(z)

=
PM

k=0(bkz−k)
1+
PN

k=1(akz−k)

(1.87)

84"Derivation of the Fourier Transform" <http://cnx.org/content/m0046/latest/>

66 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

1.11.1.2.3 Conversion to Frequency Response

Once the z-transform has been calculated from the di�erence equation, we can go one step further to de�ne
the frequency response of the system, or �lter, that is being represented by the di�erence equation.

note: Remember that the reason we are dealing with these formulas is to be able to aid us in
�lter design. A LCCDE is one of the easiest ways to represent FIR �lters. By being able to �nd
the frequency response, we will be able to look at the basic properties of any �lter represented by
a simple LCCDE.

Below is the general formula for the frequency response of a z-transform. The conversion is simple a matter
of taking the z-transform formula, H (z), and replacing every instance of z with ejw.

H (w) = H (z) |z,z=ejw

=
PM

k=0(bke−(jwk))PN
k=0(ake−(jwk))

(1.88)

Once you understand the derivation of this formula, look at the module concerning Filter Design from the
Z-Transform85 for a look into how all of these ideas of the Z-transform (Section 1.11.2), Di�erence Equation,
and Pole/Zero Plots (Section 1.11.4) play a role in �lter design.

1.11.1.3 Example

Example 1.26: Finding Di�erence Equation
Below is a basic example showing the opposite of the steps above: given a transfer function one
can easily calculate the systems di�erence equation.

H (z) =
(z + 1)2(

z − 1
2

) (
z + 3

4

) (1.89)

Given this transfer function of a time-domain �lter, we want to �nd the di�erence equation. To
begin with, expand both polynomials and divide them by the highest order z.

H (z) = (z+1)(z+1)

(z− 1
2)(z+ 3

4)
= z2+2z+1

z2+2z+1− 3
8

= 1+2z−1+z−2

1+ 1
4 z−1− 3

8 z−2

(1.90)

From this transfer function, the coe�cients of the two polynomials will be our ak and bk values
found in the general di�erence equation formula, (1.84). Using these coe�cients and the above
form of the transfer function, we can easily write the di�erence equation:

x [n] + 2x [n− 1] + x [n− 2] = y [n] +
1
4
y [n− 1]− 3

8
y [n− 2] (1.91)

In our �nal step, we can rewrite the di�erence equation in its more common form showing the
recursive nature of the system.

y [n] = x [n] + 2x [n− 1] + x [n− 2] +
−1
4

y [n− 1] +
3
8
y [n− 2] (1.92)

85"Filter Design using the Pole/Zero Plot of a Z-Transform" <http://cnx.org/content/m10548/latest/>

67

1.11.1.4 Solving a LCCDE

In order for a linear constant-coe�cient di�erence equation to be useful in analyzing a LTI system, we must
be able to �nd the systems output based upon a known input, x (n), and a set of initial conditions. Two
common methods exist for solving a LCCDE: the direct method and the indirect method, the later
being based on the z-transform. Below we will brie�y discuss the formulas for solving a LCCDE using each
of these methods.

1.11.1.4.1 Direct Method

The �nal solution to the output based on the direct method is the sum of two parts, expressed in the following
equation:

y (n) = yh (n) + yp (n) (1.93)

The �rst part, yh (n), is referred to as the homogeneous solution and the second part, yh (n), is referred
to as particular solution. The following method is very similar to that used to solve many di�erential
equations, so if you have taken a di�erential calculus course or used di�erential equations before then this
should seem very familiar.

1.11.1.4.1.1 Homogeneous Solution

We begin by assuming that the input is zero, x (n) = 0. Now we simply need to solve the homogeneous
di�erence equation:

N∑
k=0

(aky [n− k]) = 0 (1.94)

In order to solve this, we will make the assumption that the solution is in the form of an exponential. We
will use lambda, λ, to represent our exponential terms. We now have to solve the following equation:

N∑
k=0

(
akλn−k

)
= 0 (1.95)

We can expand this equation out and factor out all of the lambda terms. This will give us a large polynomial
in parenthesis, which is referred to as the characteristic polynomial. The roots of this polynomial will
be the key to solving the homogeneous equation. If there are all distinct roots, then the general solution to
the equation will be as follows:

yh (n) = C1(λ1)
n + C2(λ2)

n + · · ·+ CN (λN)n
(1.96)

However, if the characteristic equation contains multiple roots then the above general solution will be slightly
di�erent. Below we have the modi�ed version for an equation where λ1 has K multiple roots:

yh (n) = C1(λ1)
n + C1n(λ1)

n + C1n
2(λ1)

n + · · ·+ C1n
K−1(λ1)

n + C2(λ2)
n + · · ·+ CN (λN)n

(1.97)

1.11.1.4.1.2 Particular Solution

The particular solution, yp (n), will be any solution that will solve the general di�erence equation:

N∑
k=0

(akyp (n− k)) =
M∑

k=0

(bkx (n− k)) (1.98)

In order to solve, our guess for the solution to yp (n) will take on the form of the input, x (n). After guessing
at a solution to the above equation involving the particular solution, one only needs to plug the solution into
the di�erence equation and solve it out.

68 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

1.11.1.4.2 Indirect Method

The indirect method utilizes the relationship between the di�erence equation and z-transform, discussed
earlier (Section 1.11.1.2: General Formulas from the Di�erence Equation), to �nd a solution. The basic idea
is to convert the di�erence equation into a z-transform, as described above (Section 1.11.1.2.2: Conversion to
Z-Transform), to get the resulting output, Y (z). Then by inverse transforming this and using partial-fraction
expansion, we can arrive at the solution.

1.11.2 The Z Transform: De�nition86

1.11.2.1 Basic De�nition of the Z-Transform

The z-transform of a sequence is de�ned as

X (z) =
∞∑

n=−∞

(
x [n] z−n

)
(1.99)

Sometimes this equation is referred to as the bilateral z-transform. At times the z-transform is de�ned
as

X (z) =
∞∑

n=0

(
x [n] z−n

)
(1.100)

which is known as the unilateral z-transform.
There is a close relationship between the z-transform and the Fourier transform of a discrete time

signal, which is de�ned as

X
(
ejω
)

=
∞∑

n=−∞

(
x [n] e−(jωn)

)
(1.101)

Notice that that when the z−n is replaced with e−(jωn) the z-transform reduces to the Fourier Transform.
When the Fourier Transform exists, z = ejω , which is to have the magnitude of z equal to unity.

1.11.2.2 The Complex Plane

In order to get further insight into the relationship between the Fourier Transform and the Z-Transform it
is useful to look at the complex plane or z-plane. Take a look at the complex plane:

86This content is available online at <http://cnx.org/content/m10549/2.9/>.

69

Z-Plane

Figure 1.55

The Z-plane is a complex plane with an imaginary and real axis referring to the complex-valued variable
z. The position on the complex plane is given by rejω , and the angle from the positive, real axis around
the plane is denoted by ω. X (z) is de�ned everywhere on this plane. X

(
ejω
)
on the other hand is de�ned

only where |z| = 1, which is referred to as the unit circle. So for example, ω = 1 at z = 1 and ω = π at
z = −1. This is useful because, by representing the Fourier transform as the z-transform on the unit circle,
the periodicity of Fourier transform is easily seen.

1.11.2.3 Region of Convergence

The region of convergence, known as the ROC, is important to understand because it de�nes the region
where the z-transform exists. The ROC for a given x [n] , is de�ned as the range of z for which the z-transform
converges. Since the z-transform is a power series, it converges when x [n] z−n is absolutely summable.
Stated di�erently,

∞∑
n=−∞

(
|x [n] z−n|

)
< ∞ (1.102)

must be satis�ed for convergence. This is best illustrated by looking at the di�erent ROC's of the z-
transforms of αnu [n] and αnu [n− 1].

Example 1.27
For

x [n] = αnu [n] (1.103)

70 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

Figure 1.56: x [n] = αnu [n] where α = 0.5.

X (z) =
∑∞

n=−∞ (x [n] z−n)

=
∑∞

n=−∞ (αnu [n] z−n)

=
∑∞

n=0 (αnz−n)

=
∑∞

n=0

((
αz−1

)n)
(1.104)

This sequence is an example of a right-sided exponential sequence because it is nonzero for n ≥ 0.
It only converges when |αz−1| < 1. When it converges,

X (z) = 1
1−αz−1

= z
z−α

(1.105)

If |αz−1| ≥ 1, then the series,
∑∞

n=0

((
αz−1

)n)
does not converge. Thus the ROC is the range of

values where
|αz−1| < 1 (1.106)

or, equivalently,
|z| > |α| (1.107)

71

Figure 1.57: ROC for x [n] = αnu [n] where α = 0.5

Example 1.28
For

x [n] = (− (αn))u [−n− 1] (1.108)

72 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

Figure 1.58: x [n] = (− (αn)) u [−n− 1] where α = 0.5.

X (z) =
∑∞

n=−∞ (x [n] z−n)

=
∑∞

n=−∞ ((− (αn))u [−n− 1] z−n)

= −
(∑−1

n=−∞ (αnz−n)
)

= −
(∑−1

n=−∞

((
α−1z

)−n
))

= −
(∑∞

n=1

((
α−1z

)n))
= 1−

∑∞
n=0

((
α−1z

)n)
(1.109)

The ROC in this case is the range of values where

|α−1z| < 1 (1.110)

or, equivalently,
|z| < |α| (1.111)

If the ROC is satis�ed, then

X (z) = 1− 1
1−α−1z

= z
z−α

(1.112)

73

Figure 1.59: ROC for x [n] = (− (αn)) u [−n− 1]

1.11.3 Table of Common z-Transforms87

The table below provides a number of unilateral and bilateral z-transforms (Section 1.11.2). The table
also speci�es the region of convergence88.

note: The notation for z found in the table below may di�er from that found in other tables. For
example, the basic z-transform of u [n] can be written as either of the following two expressions,
which are equivalent:

z

z − 1
=

1
1− z−1

(1.113)

87This content is available online at <http://cnx.org/content/m10119/2.13/>.
88"Region of Convergence for the Z-transform" <http://cnx.org/content/m10622/latest/>

74 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

Signal Z-Transform ROC

δ [n− k] z−k Allz

u [n] z
z−1 |z| > 1

− (u [−n− 1]) z
z−1 |z| < 1

nu [n] z
(z−1)2

|z| > 1

n2u [n] z(z+1)

(z−1)3
|z| > 1

n3u [n]
z(z2+4z+1)

(z−1)4
|z| > 1

(− (αn))u [−n− 1] z
z−α |z| < |α|

αnu [n] z
z−α |z| > |α|

nαnu [n] αz
(z−α)2

|z| > |α|

n2αnu [n] αz(z+α)

(z−α)3
|z| > |α|Qm

k=1(n−k+1)

αmm! αnu [n] z
(z−α)m+1

γncos (αn) u [n] z(z−γcos(α))
z2−(2γcos(α))z+γ2 |z| > |γ|

γnsin (αn) u [n] zγsin(α)
z2−(2γcos(α))z+γ2 |z| > |γ|

1.11.4 Understanding Pole/Zero Plots on the Z-Plane89

1.11.4.1 Introduction to Poles and Zeros of the Z-Transform

Once the Z-transform of a system has been determined, one can use the information contained in function's
polynomials to graphically represent the function and easily observe many de�ning characteristics. The
Z-transform will have the below structure, based on Rational Functions90:

X (z) =
P (z)
Q (z)

(1.114)

The two polynomials, P (z) and Q (z), allow us to �nd the poles and zeros91 of the Z-Transform.

De�nition 2: zeros
1. The value(s) for z where P (z) = 0.
2. The complex frequencies that make the overall gain of the �lter transfer function zero.

De�nition 3: poles
1. The value(s) for z where Q (z) = 0.
2. The complex frequencies that make the overall gain of the �lter transfer function in�nite.

Example 1.29
Below is a simple transfer function with the poles and zeros shown below it.

H (z) =
z + 1(

z − 1
2

) (
z + 3

4

)
The zeros are: {−1}
The poles are:

{
1
2 ,−

(
3
4

)}
89This content is available online at <http://cnx.org/content/m10556/2.8/>.
90"Rational Functions" <http://cnx.org/content/m10593/latest/>
91"Poles and Zeros" <http://cnx.org/content/m10112/latest/>

75

1.11.4.2 The Z-Plane

Once the poles and zeros have been found for a given Z-Transform, they can be plotted onto the Z-Plane.
The Z-plane is a complex plane with an imaginary and real axis referring to the complex-valued variable z.
The position on the complex plane is given by rejθ and the angle from the positive, real axis around the
plane is denoted by θ. When mapping poles and zeros onto the plane, poles are denoted by an "x" and zeros
by an "o". The below �gure shows the Z-Plane, and examples of plotting zeros and poles onto the plane can
be found in the following section.

Z-Plane

Figure 1.60

1.11.4.3 Examples of Pole/Zero Plots

This section lists several examples of �nding the poles and zeros of a transfer function and then plotting
them onto the Z-Plane.

Example 1.30: Simple Pole/Zero Plot

H (z) =
z(

z − 1
2

) (
z + 3

4

)
The zeros are: {0}
The poles are:

{
1
2 ,−

(
3
4

)}

76 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

Pole/Zero Plot

Figure 1.61: Using the zeros and poles found from the transfer function, the one zero is mapped to
zero and the two poles are placed at 1

2
and −

`
3
4

´

Example 1.31: Complex Pole/Zero Plot

H (z) =
(z − j) (z + j)(

z −
(

1
2 −

1
2j
)) (

z −
(

1
2 + 1

2j
))

The zeros are: {j,−j}
The poles are:

{
−1, 1

2 + 1
2j, 1

2 −
1
2j
}
Pole/Zero Plot

Figure 1.62: Using the zeros and poles found from the transfer function, the zeros are mapped to ±j,
and the poles are placed at −1, 1

2
+ 1

2
j and 1

2
− 1

2
j

77

MATLAB - If access to MATLAB is readily available, then you can use its functions to easily create
pole/zero plots. Below is a short program that plots the poles and zeros from the above example onto the
Z-Plane.

% Set up vector for zeros

z = [j ; -j];

% Set up vector for poles

p = [-1 ; .5+.5j ; .5-.5j];

figure(1);

zplane(z,p);

title('Pole/Zero Plot for Complex Pole/Zero Plot Example');

1.11.4.4 Pole/Zero Plot and Region of Convergence

The region of convergence (ROC) for X (z) in the complex Z-plane can be determined from the pole/zero
plot. Although several regions of convergence may be possible, where each one corresponds to a di�erent
impulse response, there are some choices that are more practical. A ROC can be chosen to make the transfer
function causal and/or stable depending on the pole/zero plot.

Filter Properties from ROC

• If the ROC extends outward from the outermost pole, then the system is causal.
• If the ROC includes the unit circle, then the system is stable.

Below is a pole/zero plot with a possible ROC of the Z-transform in the Simple Pole/Zero Plot (Example 1.30:
Simple Pole/Zero Plot) discussed earlier. The shaded region indicates the ROC chosen for the �lter. From
this �gure, we can see that the �lter will be both causal and stable since the above listed conditions are both
met.

Example 1.32

H (z) =
z(

z − 1
2

) (
z + 3

4

)

78 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

Region of Convergence for the Pole/Zero Plot

Figure 1.63: The shaded area represents the chosen ROC for the transfer function.

1.11.4.5 Frequency Response and the Z-Plane

The reason it is helpful to understand and create these pole/zero plots is due to their ability to help us easily
design a �lter. Based on the location of the poles and zeros, the magnitude response of the �lter can be
quickly understood. Also, by starting with the pole/zero plot, one can design a �lter and obtain its transfer
function very easily. Refer to this module92 for information on the relationship between the pole/zero plot
and the frequency response.

1.12 Random Signals and Processes

1.12.1 Introduction to Random Signals and Processes93

Before now, you have probably dealt strictly with the theory behind signals and systems, as well as look
at some the basic characteristics of signals94 and systems95. In doing so you have developed an important
foundation; however, most electrical engineers do not get to work in this type of fantasy world. In many
cases the signals of interest are very complex due to the randomness of the world around them, which leaves
them noisy and often corrupted. This often causes the information contained in the signal to be hidden
and distorted. For this reason, it is important to understand these random signals and how to recover the
necessary information.

1.12.1.1 Signals: Deterministic vs. Stochastic

For this study of signals and systems, we will divide signals into two groups: those that have a �xed behavior
and those that change randomly. As most of you have probably already dealt with the �rst type, we will

92"Filter Design using the Pole/Zero Plot of a Z-Transform" <http://cnx.org/content/m10548/latest/>
93This content is available online at <http://cnx.org/content/m10649/2.2/>.
94"Signal Classi�cations and Properties" <http://cnx.org/content/m10057/latest/>
95"System Classi�cations and Properties" <http://cnx.org/content/m10084/latest/>

79

focus on introducing you to random signals. Also, note that we will be dealing strictly with discrete-time
signals since they are the signals we deal with in DSP and most real-world computations, but these same
ideas apply to continuous-time signals.

1.12.1.1.1 Deterministic Signals

Most introductions to signals and systems deal strictly with deterministic signals. Each value of these
signals are �xed and can be determined by a mathematical expression, rule, or table. Because of this, future
values of any deterministic signal can be calculated from past values. For this reason, these signals are
relatively easy to analyze as they do not change, and we can make accurate assumptions about their past
and future behavior.

Deterministic Signal

Figure 1.64: An example of a deterministic signal, the sine wave.

1.12.1.1.2 Stochastic Signals

Unlike deterministic signals, stochastic signals, or random signals, are not so nice. Random signals
cannot be characterized by a simple, well-de�ned mathematical equation and their future values cannot
be predicted. Rather, we must use probability and statistics to analyze their behavior. Also, because of
their randomness, average values (Section 1.12.3) from a collection of signals are usually studied rather than
analyzing one individual signal.

Random Signal

Figure 1.65: We have taken the above sine wave and added random noise to it to come up with a
noisy, or random, signal. These are the types of signals that we wish to learn how to deal with so that
we can recover the original sine wave.

80 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

1.12.1.2 Random Process

As mentioned above, in order to study random signals, we want to look at a collection of these signals rather
than just one instance of that signal. This collection of signals is called a random process.

De�nition 4: random process
A family or ensemble of signals that correspond to every possible outcome of a certain signal
measurement. Each signal in this collection is referred to as a realization or sample function of
the process.
Example
As an example of a random process, let us look at the Random Sinusoidal Process below. We use
f [n] = Asin (ωn + φ) to represent the sinusoid with a given amplitude and phase. Note that the
phase and amplitude of each sinusoid is based on a random number, thus making this a random
process.

Random Sinusoidal Process

Figure 1.66: A random sinusoidal process, with the amplitude and phase being random numbers.

A random process is usually denoted by X (t) or X [n], with x (t) or x [n] used to represent an individual
signal or waveform from this process.

In many notes and books, you might see the following notation and terms used to describe di�erent
types of random processes. For a discrete random process, sometimes just called a random sequence, t
represents time that has a �nite number of values. If t can take on any value of time, we have a continuous

81

random process. Often times discrete and continuous refer to the amplitude of the process, and process or
sequence refer to the nature of the time variable. For this study, we often just use random process to refer
to a general collection of discrete-time signals, as seen above in Figure 1.66 (Random Sinusoidal Process).

1.12.2 Stationary and Nonstationary Random Processes96

1.12.2.1 Introduction

From the de�nition of a random process (Section 1.12.1), we know that all random processes are composed
of random variables, each at its own unique point in time. Because of this, random processes have all the
properties of random variables, such as mean, correlation, variances, etc.. When dealing with groups of signals
or sequences it will be important for us to be able to show whether of not these statistical properties hold
true for the entire random process. To do this, the concept of stationary processes has been developed.
The general de�nition of a stationary process is:

De�nition 5: stationary process
a random process where all of its statistical properties do not vary with time

Processes whose statistical properties do change are referred to as nonstationary.
Understanding the basic idea of stationarity will help you to be able to follow the more concrete and

mathematical de�nition to follow. Also, we will look at various levels of stationarity used to describe the
various types of stationarity characteristics a random process can have.

1.12.2.2 Distribution and Density Functions

In order to properly de�ne what it means to be stationary from a mathematical standpoint, one needs to
be somewhat familiar with the concepts of distribution and density functions. If you can remember your
statistics then feel free to skip this section!

Recall that when dealing with a single random variable, the probability distribution function is a
simply tool used to identify the probability that our observed random variable will be less than or equal to
a given number. More precisely, let X be our random variable, and let x be our given value; from this we
can de�ne the distribution function as

Fx (x) = Pr [X ≤ x] (1.115)

This same idea can be applied to instances where we have multiple random variables as well. There may be
situations where we want to look at the probability of event X and Y both occurring. For example, below
is an example of a second-order joint distribution function.

Fx (x, y) = Pr [X ≤ x, Y ≤ y] (1.116)

While the distribution function provides us with a full view of our variable or processes probability,
it is not always the most useful for calculations. Often times we will want to look at its derivative, the
probability density function (pdf). We de�ne the the pdf as

fx (x) =
d

dx
Fx (x) (1.117)

fx (x) dx = Pr [x < X ≤ x + dx] (1.118)

(1.118) reveals some of the physical signi�cance of the density function. This equations tells us the probability
that our random variable falls within a given interval can be approximated by fx (x) dx. From the pdf, we
can now use our knowledge of integrals to evaluate probabilities from the above approximation. Again we
can also de�ne a joint density function which will include multiple random variables just as was done

96This content is available online at <http://cnx.org/content/m10684/2.2/>.

82 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

for the distribution function. The density function is used for a variety of calculations, such as �nding the
expected value or proving a random variable is stationary, to name a few.

note: The above examples explain the distribution and density functions in terms of a single
random variable, X. When we are dealing with signals and random processes, remember that
we will have a set of random variables where a di�erent random variable will occur at each time
instance of the random process, X (tk). In other words, the distribution and density function will
also need to take into account the choice of time.

1.12.2.3 Stationarity

Below we will now look at a more in depth and mathematical de�nition of a stationary process. As was
mentioned previously, various levels of stationarity exist and we will look at the most common types.

1.12.2.3.1 First-Order Stationary Process

A random process is classi�ed as �rst-order stationary if its �rst-order probability density function remains
equal regardless of any shift in time to its time origin. If we let xt1 represent a given value at time t1, then
we de�ne a �rst-order stationary as one that satis�es the following equation:

fx (xt1) = fx (xt1+τ) (1.119)

The physical signi�cance of this equation is that our density function, fx (xt1), is completely independent
of t1 and thus any time shift, τ .

The most important result of this statement, and the identifying characteristic of any �rst-order stationary
process, is the fact that the mean is a constant, independent of any time shift. Below we show the results
for a random process, X, that is a discrete-time signal, x [n].

X = mx [n]

= E [x [n]]

= constant (independentofn)

(1.120)

1.12.2.3.2 Second-Order and Strict-Sense Stationary Process

A random process is classi�ed as second-order stationary if its second-order probability density function
does not vary over any time shift applied to both values. In other words, for values xt1 and xt2 then we will
have the following be equal for an arbitrary time shift τ .

fx (xt1 , xt2) = fx (xt1+τ , xt2+τ) (1.121)

From this equation we see that the absolute time does not a�ect our functions, rather it only really depends
on the time di�erence between the two variables. Looked at another way, this equation can be described as

Pr [X (t1) ≤ x1, X (t2) ≤ x2] = Pr [X (t1 + τ) ≤ x1, X (t2 + τ) ≤ x2] (1.122)

These random processes are often referred to as strict sense stationary (SSS) when all of the distri-
bution functions of the process are unchanged regardless of the time shift applied to them.

For a second-order stationary process, we need to look at the autocorrelation function (Section 1.12.5)
to see its most important property. Since we have already stated that a second-order stationary process
depends only on the time di�erence, then all of these types of processes have the following property:

Rxx (t, t + τ) = E [X (t + τ)]

= Rxx (τ)
(1.123)

83

1.12.2.3.3 Wide-Sense Stationary Process

As you begin to work with random processes, it will become evident that the strict requirements of a SSS
process is more than is often necessary in order to adequately approximate our calculations on random
processes. We de�ne a �nal type of stationarity, referred to as wide-sense stationary (WSS), to have
slightly more relaxed requirements but ones that are still enough to provide us with adequate results. In
order to be WSS a random process only needs to meet the following two requirements.

1. X = E [x [n]] = constant
2. E [X (t + τ)] = Rxx (τ)

Note that a second-order (or SSS) stationary process will always be WSS; however, the reverse will not
always hold true.

1.12.3 Random Processes: Mean and Variance97

In order to study the characteristics of a random process (Section 1.12.1), let us look at some of the basic
properties and operations of a random process. Below we will focus on the operations of the random signals
that compose our random processes. We will denote our random process with X and a random variable from
a random process or signal by x.

1.12.3.1 Mean Value

Finding the average value of a set of random signals or random variables is probably the most fundamental
concepts we use in evaluating random processes through any sort of statistical method. The mean of a
random process is the average of all realizations of that process. In order to �nd this average, we must look
at a random signal over a range of time (possible values) and determine our average from this set of values.
The mean, or average, of a random process, x (t), is given by the following equation:

mx (t) = µx (t)

= X

= E [X]

=
∫∞
−∞ xf (x) dx

(1.124)

This equation may seem quite cluttered at �rst glance, but we want to introduce you to the various notations
used to represent the mean of a random signal or process. Throughout texts and other readings, remember
that these will all equal the same thing. The symbol, µx (t), and the X with a bar over it are often used as a
short-hand to represent an average, so you might see it in certain textbooks. The other important notation
used is, E [X], which represents the "expected value of X" or the mathematical expectation. This notation
is very common and will appear again.

If the random variables, which make up our random process, are discrete or quantized values, such as in
a binary process, then the integrals become summations over all the possible values of the random variable.
In this case, our expected value becomes

E [x [n]] =
∑

x

(αPr [x [n] = α]) (1.125)

If we have two random signals or variables, their averages can reveal how the two signals interact. If the
product of the two individual averages of both signals do not equal the average of the product of the two
signals, then the two signals are said to be linearly independent, also referred to as uncorrelated.

In the case where we have a random process in which only one sample can be viewed at a time, then we
will often not have all the information available to calculate the mean using the density function as shown

97This content is available online at <http://cnx.org/content/m10656/2.3/>.

84 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

above. In this case we must estimate the mean through the time-average mean (Section 1.12.3.4: Time
Averages), discussed later. For �elds such as signal processing that deal mainly with discrete signals and
values, then these are the averages most commonly used.

1.12.3.1.1 Properties of the Mean

• The expected value of a constant, α, is the constant:

E [α] = α (1.126)

• Adding a constant, α, to each term increases the expected value by that constant:

E [X + α] = E [X] + α (1.127)

• Multiplying the random variable by a constant, α, multiplies the expected value by that constant.

E [αX] = αE [X] (1.128)

• The expected value of the sum of two or more random variables, is the sum of each individual expected
value.

E [X + Y] = E [X] + E [Y] (1.129)

1.12.3.2 Mean-Square Value

If we look at the second moment of the term (we now look at x2 in the integral), then we will have the
mean-square value of our random process. As you would expect, this is written as

X2 = E
[
X2
]

=
∫∞
−∞ x2f (x) dx

(1.130)

This equation is also often referred to as the average power of a process or signal.

1.12.3.3 Variance

Now that we have an idea about the average value or values that a random process takes, we are often
interested in seeing just how spread out the di�erent random values might be. To do this, we look at the
variance which is a measure of this spread. The variance, often denoted by σ2, is written as follows:

σ2 = V ar (X)

= E
[
(X − E [X])2

]
=

∫∞
−∞

(
x−X

)2
f (x) dx

(1.131)

Using the rules for the expected value, we can rewrite this formula as the following form, which is commonly
seen:

σ2 = X2 −
(
X
)2

= E
[
X2
]
− (E [X])2

(1.132)

1.12.3.3.1 Standard Deviation

Another common statistical tool is the standard deviation. Once you know how to calculate the variance,
the standard deviation is simply the square root of the variance, or σ.

85

1.12.3.3.2 Properties of Variance

• The variance of a constant, α, equals zero:

V ar (α) = σ(α)2

= 0
(1.133)

• Adding a constant, α, to a random variable does not a�ect the variance because the mean increases
by the same value:

V ar (X + α) = σ(X + α)2

= σ(X)2
(1.134)

• Multiplying the random variable by a constant, α, increases the variance by the square of the constant:

V ar (αX) = σ(αX)2

= α2σ(X)2
(1.135)

• The variance of the sum of two random variables only equals the sum of the variances if the variable
are independent.

V ar (X + Y) = σ(X + Y)2

= σ(X)2 + σ(Y)2
(1.136)

Otherwise, if the random variable are not independent, then we must also include the covariance of
the product of the variables as follows:

V ar (X + Y) = σ(X)2 + 2Cov (X, Y) + σ(Y)2 (1.137)

1.12.3.4 Time Averages

In the case where we can not view the entire ensemble of the random process, we must use time averages
to estimate the values of the mean and variance for the process. Generally, this will only give us acceptable
results for independent and ergodic processes, meaning those processes in which each signal or member of
the process seems to have the same statistical behavior as the entire process. The time averages will also
only be taken over a �nite interval since we will only be able to see a �nite part of the sample.

1.12.3.4.1 Estimating the Mean

For the ergodic random process, x (t), we will estimate the mean using the time averaging function de�ned
as

X = E [X]

= 1
T

∫ T

0
X (t) dt

(1.138)

However, for most real-world situations we will be dealing with discrete values in our computations and
signals. We will represent this mean as

X = E [X]

= 1
N

∑N
n=1 (X [n])

(1.139)

86 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

1.12.3.4.2 Estimating the Variance

Once the mean of our random process has been estimated then we can simply use those values in the following
variance equation (introduced in one of the above sections)

σx
2 = X2 −

(
X
)2

(1.140)

1.12.3.5 Example

Let us now look at how some of the formulas and concepts above apply to a simple example. We will just
look at a single, continuous random variable for this example, but the calculations and methods are the same
for a random process. For this example, we will consider a random variable having the probability density
function described below and shown in Figure 1.67 (Probability Density Function).

f (x) =

 1
10 if 10 ≤ x ≤ 20

0 otherwise
(1.141)

Probability Density Function

Figure 1.67: A uniform probability density function.

First, we will use (1.124) to solve for the mean value.

X =
∫ 20

10
x 1

10dx

= 1
10

(
x2

2

)
|20x=10

= 1
10 (200− 50)

= 15

(1.142)

87

Using (1.130) we can obtain the mean-square value for the above density function.

X2 =
∫ 20

10
x2 1

10dx

= 1
10

(
x3

3

)
|20x=10

= 1
10

(
8000

3 − 1000
3

)
= 233.33

(1.143)

And �nally, let us solve for the variance of this function.

σ2 = X2 −
(
X
)2

= 233.33− 152

= 8.33

(1.144)

1.12.4 Correlation and Covariance of a Random Signal98

When we take the expected value (Section 1.12.3), or average, of a random process (Section 1.12.1.2: Random
Process), we measure several important characteristics about how the process behaves in general. This proves
to be a very important observation. However, suppose we have several random processes measuring di�erent
aspects of a system. The relationship between these di�erent processes will also be an important observation.
The covariance and correlation are two important tools in �nding these relationships. Below we will go into
more details as to what these words mean and how these tools are helpful. Note that much of the following
discussions refer to just random variables, but keep in mind that these variables can represent random signals
or random processes.

1.12.4.1 Covariance

To begin with, when dealing with more than one random process, it should be obvious that it would be nice
to be able to have a number that could quickly give us an idea of how similar the processes are. To do this,
we use the covariance, which is analogous to the variance of a single variable.

De�nition 6: Covariance
A measure of how much the deviations of two or more variables or processes match.

For two processes, X and Y , if they are not closely related then the covariance will be small, and if they
are similar then the covariance will be large. Let us clarify this statement by describing what we mean by
"related" and "similar." Two processes are "closely related" if their distribution spreads are almost equal
and they are around the same, or a very slightly di�erent, mean.

Mathematically, covariance is often written as σxy and is de�ned as

cov (X, Y) = σxy

= E
[(

X −X
) (

Y − Y
)] (1.145)

This can also be reduced and rewritten in the following two forms:

σxy = (xy)− (x) (y) (1.146)

σxy =
∫ ∞

−∞

∫ ∞

−∞

(
X −X

) (
Y − Y

)
f (x, y) dxdy (1.147)

98This content is available online at <http://cnx.org/content/m10673/2.3/>.

88 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

1.12.4.1.1 Useful Properties

• If X and Y are independent and uncorrelated or one of them has zero mean value, then

σxy = 0

• If X and Y are orthogonal, then
σxy = − (E [X]E [Y])

• The covariance is symmetric
cov (X, Y) = cov (Y, X)

• Basic covariance identity
cov (X + Y, Z) = cov (X, Z) + cov (Y, Z)

• Covariance of equal variables
cov (X, X) = V ar (X)

1.12.4.2 Correlation

For anyone who has any kind of statistical background, you should be able to see that the idea of de-
pendence/independence among variables and signals plays an important role when dealing with random
processes. Because of this, the correlation of two variables provides us with a measure of how the two
variables a�ect one another.

De�nition 7: Correlation
A measure of how much one random variable depends upon the other.

This measure of association between the variables will provide us with a clue as to how well the value
of one variable can be predicted from the value of the other. The correlation is equal to the average of the
product of two random variables and is de�ned as

cor (X, Y) = E [XY]

=
∫∞
−∞

∫∞
−∞ xyf (x, y) dxdy

(1.148)

1.12.4.2.1 Correlation Coe�cient

It is often useful to express the correlation of random variables with a range of numbers, like a percentage.
For a given set of variables, we use the correlation coe�cient to give us the linear relationship between
our variables. The correlation coe�cient of two variables is de�ned in terms of their covariance and standard
deviations (Section 1.12.3.3.1: Standard Deviation), denoted by σx, as seen below

ρ =
cov (X, Y)

σxσy
(1.149)

where we will always have
−1 ≤ ρ ≤ 1

This provides us with a quick and easy way to view the correlation between our variables. If there is no
relationship between the variables then the correlation coe�cient will be zero and if there is a perfect positive
match it will be one. If there is a perfect inverse relationship, where one set of variables increases while the
other decreases, then the correlation coe�cient will be negative one. This type of correlation is often referred
to more speci�cally as the Pearson's Correlation Coe�cient,or Pearson's Product Moment Correlation.

89

(a) (b)

(c)

Figure 1.68: Types of Correlation (a) Positive Correlation (b) Negative Correlation (c) Uncorrelated
(No Correlation)

note: So far we have dealt with correlation simply as a number relating the relationship between
any two variables. However, since our goal will be to relate random processes to each other,
which deals with signals as a function of time, we will want to continue this study by looking at
correlation functions (Section 1.12.5).

1.12.4.3 Example

Now let us take just a second to look at a simple example that involves calculating the covariance and
correlation of two sets of random numbers. We are given the following data sets:

x = {3, 1, 6, 3, 4}

y = {1, 5, 3, 4, 3}
To begin with, for the covariance we will need to �nd the expected value (Section 1.12.3), or mean, of x and
y.

x =
1
5

(3 + 1 + 6 + 3 + 4) = 3.4

y =
1
5

(1 + 5 + 3 + 4 + 3) = 3.2

xy =
1
5

(3 + 5 + 18 + 12 + 12) = 10

Next we will solve for the standard deviations of our two sets using the formula below (for a review click
here (Section 1.12.3.3: Variance)).

σ =
√

E
[
(X − E [X])2

]

90 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

σx =

√
1
5

(0.16 + 5.76 + 6.76 + 0.16 + 0.36) = 1.625

σy =

√
1
6

(4.84 + 3.24 + 0.04 + 0.64 + 0.04) = 1.327

Now we can �nally calculate the covariance using one of the two formulas found above. Since we calculated
the three means, we will use that formula (1.146) since it will be much simpler.

σxy = 10− 3.4× 3.2 = −0.88

And for our last calculation, we will solve for the correlation coe�cient, ρ.

ρ =
−0.88

1.625× 1.327
= −0.408

1.12.4.3.1 Matlab Code for Example

The above example can be easily calculated using Matlab. Below I have included the code to �nd all of the
values above.

x = [3 1 6 3 4];

y = [1 5 3 4 3];

mx = mean(x)

my = mean(y)

mxy = mean(x.*y)

% Standard Dev. from built-in Matlab Functions

std(x,1)

std(y,1)

% Standard Dev. from Equation Above (same result as std(?,1))

sqrt(1/5 * sum((x-mx).�2))

sqrt(1/5 * sum((y-my).�2))

cov(x,y,1)

corrcoef(x,y)

1.12.5 Autocorrelation of Random Processes99

Before diving into a more complex statistical analysis of random signals and processes (Section 1.12.1),
let us quickly review the idea of correlation (Section 1.12.4). Recall that the correlation of two signals or
variables is the expected value of the product of those two variables. Since our focus will be to discover
more about a random process, a collection of random signals, then imagine us dealing with two samples of

99This content is available online at <http://cnx.org/content/m10676/2.4/>.

91

a random process, where each sample is taken at a di�erent point in time. Also recall that the key property
of these random processes is that they are now functions of time; imagine them as a collection of signals.
The expected value (Section 1.12.3) of the product of these two variables (or samples) will now depend on
how quickly they change in regards to time. For example, if the two variables are taken from almost the
same time period, then we should expect them to have a high correlation. We will now look at a correlation
function that relates a pair of random variables from the same process to the time separations between them,
where the argument to this correlation function will be the time di�erence. For the correlation of signals
from two di�erent random process, look at the crosscorrelation function (Section 1.12.6).

1.12.5.1 Autocorrelation Function

The �rst of these correlation functions we will discuss is the autocorrelation, where each of the random
variables we will deal with come from the same random process.

De�nition 8: Autocorrelation
the expected value of the product of a random variable or signal realization with a time-shifted
version of itself

With a simple calculation and analysis of the autocorrelation function, we can discover a few important
characteristics about our random process. These include:

1. How quickly our random signal or processes changes with respect to the time function
2. Whether our process has a periodic component and what the expected frequency might be

As was mentioned above, the autocorrelation function is simply the expected value of a product. Assume we
have a pair of random variables from the same process, X1 = X (t1) andX2 = X (t2), then the autocorrelation
is often written as

Rxx (t1, t2) = E [X1X2]

=
∫∞
−∞

∫∞
−∞ x1x2f (x1, x2) dx2dx1

(1.150)

The above equation is valid for stationary and nonstationary random processes. For stationary processes
(Section 1.12.2), we can generalize this expression a little further. Given a wide-sense stationary processes, it
can be proven that the expected values from our random process will be independent of the origin of our time
function. Therefore, we can say that our autocorrelation function will depend on the time di�erence and not
some absolute time. For this discussion, we will let τ = t2 − t1, and thus we generalize our autocorrelation
expression as

Rxx (t, t + τ) = Rxx (τ)

= E [X (t) X (t + τ)]
(1.151)

for the continuous-time case. In most DSP course we will be more interested in dealing with real signal
sequences, and thus we will want to look at the discrete-time case of the autocorrelation function. The
formula below will prove to be more common and useful than (1.150):

Rxx [n, n + m] =
∞∑

n=−∞
(x [n]x [n + m]) (1.152)

And again we can generalize the notation for our autocorrelation function as

Rxx [n, n + m] = Rxx [m]

= E [X [n]X [n + m]]
(1.153)

92 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

1.12.5.1.1 Properties of Autocorrelation

Below we will look at several properties of the autocorrelation function that hold for stationary random
processes.

• Autocorrelation is an even function for τ

Rxx (τ) = Rxx (−τ)

• The mean-square value can be found by evaluating the autocorrelation where τ = 0, which gives us

Rxx (0) = X2

• The autocorrelation function will have its largest value when τ = 0. This value can appear again,
for example in a periodic function at the values of the equivalent periodic points, but will never be
exceeded.

Rxx (0) ≥ |Rxx (τ) |

• If we take the autocorrelation of a period function, then Rxx (τ) will also be periodic with the same
frequency.

1.12.5.1.2 Estimating the Autocorrleation with Time-Averaging

Sometimes the whole random process is not available to us. In these cases, we would still like to be able to
�nd out some of the characteristics of the stationary random process, even if we just have part of one sample
function. In order to do this we can estimate the autocorrelation from a given interval, 0 to T seconds, of
the sample function.

xx (τ) =
1

T − τ

∫ T−τ

0

x (t) x (t + τ) dt (1.154)

However, a lot of times we will not have su�cient information to build a complete continuous-time function of
one of our random signals for the above analysis. If this is the case, we can treat the information we do know
about the function as a discrete signal and use the discrete-time formula for estimating the autocorrelation.

xx [m] =
1

N −m

N−m−1∑
n=0

(x [n]x [n + m]) (1.155)

1.12.5.2 Examples

Below we will look at a variety of examples that use the autocorrelation function. We will begin with a
simple example dealing with Gaussian White Noise (GWN) and a few basic statistical properties that will
prove very useful in these and future calculations.

Example 1.33
We will let x [n] represent our GWN. For this problem, it is important to remember the following
fact about the mean of a GWN function:

E [x [n]] = 0

93

n
0

x[n]

Figure 1.69: Gaussian density function. By examination, can easily see that the above statement is
true - the mean equals zero.

Along with being zero-mean, recall that GWN is always independent. With these two facts, we
are now ready to do the short calculations required to �nd the autocorrelation.

Rxx [n, n + m] = E [x [n]x [n + m]]

Since the function, x [n], is independent, then we can take the product of the individual expected
values of both functions.

Rxx [n, n + m] = E [x [n]]E [x [n + m]]

Now, looking at the above equation we see that we can break it up further into two conditions: one
when m and n are equal and one when they are not equal. When they are equal we can combine
the expected values. We are left with the following piecewise function to solve:

Rxx [n, n + m] =

 E [x [n]]E [x [n + m]] if m 6= 0

E
[
x2 [n]

]
if m = 0

We can now solve the two parts of the above equation. The �rst equation is easy to solve as we
have already stated that the expected value of x [n] will be zero. For the second part, you should
recall from statistics that the expected value of the square of a function is equal to the variance.
Thus we get the following results for the autocorrelation:

Rxx [n, n + m] =

 0 if m 6= 0

σ2 if m = 0

Or in a more concise way, we can represent the results as

Rxx [n, n + m] = σ2δ [m]

1.12.6 Crosscorrelation of Random Processes100

Before diving into a more complex statistical analysis of random signals and processes (Section 1.12.1),
let us quickly review the idea of correlation (Section 1.12.4). Recall that the correlation of two signals or
variables is the expected value of the product of those two variables. Since our main focus is to discover
more about random processes, a collection of random signals, we will deal with two random processes in
this discussion, where in this case we will deal with samples from two di�erent random processes. We will
analyze the expected value (Section 1.12.3.1: Mean Value) of the product of these two variables and how they
correlate to one another, where the argument to this correlation function will be the time di�erence. For the
correlation of signals from the same random process, look at the autocorrelation function (Section 1.12.5).

100This content is available online at <http://cnx.org/content/m10686/2.2/>.

94 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

1.12.6.1 Crosscorrelation Function

When dealing with multiple random processes, it is also important to be able to describe the relationship,
if any, between the processes. For example, this may occur if more than one random signal is applied to a
system. In order to do this, we use the crosscorrelation function, where the variables are instances from
two di�erent wide sense stationary random processes.

De�nition 9: Crosscorrelation
if two processes are wide sense stationary, the expected value of the product of a random variable
from one random process with a time-shifted, random variable from a di�erent random process

Looking at the generalized formula for the crosscorrelation, we will represent our two random processes
by allowing U = U (t) and V = V (t− τ). We will de�ne the crosscorrelation function as

Ruv (t, t− τ) = E [UV]

=
∫∞
−∞

∫∞
−∞ uvf (u, v) dvdu

(1.156)

Just as the case with the autocorrelation function, if our input and output, denoted as U (t) and V (t), are
at least jointly wide sense stationary, then the crosscorrelation does not depend on absolute time; it is just
a function of the time di�erence. This means we can simplify our writing of the above function as

Ruv (τ) = E [UV] (1.157)

or if we deal with two real signal sequences, x [n] and y [n], then we arrive at a more commonly seen formula
for the discrete crosscorrelation function. See the formula below and notice the similarities between it and
the convolution (Section 1.3) of two signals:

Rxy (n, n−m) = Rxy (m)

=
∑∞

n=−∞ (x [n] y [n−m])
(1.158)

1.12.6.1.1 Properties of Crosscorrelation

Below we will look at several properties of the crosscorrelation function that hold for two wide sense stationary
(WSS) random processes.

• Crosscorrelation is not an even function; however, it does have a unique symmetry property:

Rxy (−τ) = Ryx (τ) (1.159)

• The maximum value of the crosscorrelation is not always when the shift equals zero; however, we can
prove the following property revealing to us what value the maximum cannot exceed.

|Rxy (τ) | ≤
√

Rxx (0)Ryy (0) (1.160)

• When two random processes are statistically independent then we have

Rxy (τ) = Ryx (τ) (1.161)

95

1.12.6.2 Examples

Exercise 1.9 (Solution on p. 97.)

Let us begin by looking at a simple example showing the relationship between two sequences.
Using (1.158), �nd the crosscorrelation of the sequences

x [n] = {. . . , 0, 0, 2,−3, 6, 1, 3, 0, 0, . . . }

y [n] = {. . . , 0, 0, 1,−2, 4, 1,−3, 0, 0, . . . }

for each of the following possible time shifts: m = {0, 3,−1}.

96 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

Solutions to Exercises in Chapter 1

Solution to Exercise 1.1 (p. 25)
In order to represent x in terms of b0 and b1 we will follow the same steps we used in the above example.

B =

 1 2

3 0


B−1 =

 0 1
2

1
3

−1
6


α = B−1x =

 1
2
3


And now we can write x in terms of b0 and b1.

x = b0 +
2
3
b1

And we can easily substitute in our known values of b0 and b1 to verify our results.

Solution to Exercise 1.2 (p. 28)
In order to calculate the Fourier transform, all we need to use is (1.24) (Continuous-Time Fourier Transform),
complex exponentials101, and basic calculus.

F (Ω) =
∫∞
−∞ f (t) e−(jΩt)dt

=
∫∞
0

e−(αt)e−(jΩt)dt

=
∫∞
0

e(−t)(α+jΩ)dt

= 0− −1
α+jΩ

(1.162)

F (Ω) =
1

α + jΩ
(1.163)

Solution to Exercise 1.3 (p. 28)
Here we will use (1.25) (Inverse CTFT) to �nd the inverse FT given that t 6= 0.

x (t) = 1
2π

∫M

−M
ejΩtdΩ

= 1
2π ejΩt|Ω,Ω=ejw

= 1
πtsin (Mt)

(1.164)

x (t) =
M

π

(
sinc

Mt

π

)
(1.165)

Solution to Exercise 1.4 (p. 29)

S
(
ej2π(f+1)

)
=

∑∞
n=−∞

(
s (n) e−(j2π(f+1)n)

)
=

∑∞
n=−∞

(
e−(j2πn)s (n) e−(j2πfn)

)
=

∑∞
n=−∞

(
s (n) e−(j2πfn)

)
= S

(
ej2πf

) (1.166)

101"The Complex Exponential" <http://cnx.org/content/m10060/latest/>

97

Solution to Exercise 1.5 (p. 32)

α

N+n0−1∑
n=n0

(αn)−
N+n0−1∑

n=n0

(αn) = αN+n0 − αn0

which, after manipulation, yields the geometric sum formula.

Solution to Exercise 1.6 (p. 34)
If the sampling frequency exceeds the Nyquist frequency, the spectrum of the samples equals the analog
spectrum, but over the normalized analog frequency fT . Thus, the energy in the sampled signal equals the
original signal's energy multiplied by T .

Solution to Exercise 1.7 (p. 52)

x [n + N] =???

Solution to Exercise 1.8 (p. 56)
S [n] is N -periodic, so it has the following Fourier Series102:

ck = 1
N

∫ N
2

−(N
2) δ [n] e(−j)2π k

N ndn

= 1
N

(1.167)

S [n] =
∞∑

k=−∞

(
e(−j)2π k

N n
)

(1.168)

where the DTFT of the exponential in the above equation is equal to δ
(
ω − 2πk

N

)
.

Solution to Exercise 1.9 (p. 95)

1. For m = 0, we should begin by �nding the product sequence s [n] = x [n] y [n]. Doing this we get the
following sequence:

s [n] = {. . . , 0, 0, 2, 6, 24, 1,−9, 0, 0, . . . }
and so from the sum in our crosscorrelation function we arrive at the answer of

Rxy (0) = 22

2. For m = 3, we will approach it the same was we did above; however, we will now shift y [n] to the
right. Then we can �nd the product sequence s [n] = x [n] y [n− 3], which yields

s [n] = {. . . , 0, 0, 0, 0, 0, 1,−6, 0, 0, . . . }

and from the crosscorrelation function we arrive at the answer of

Rxy (3) = −6

3. For m = −1, we will again take the same approach; however, we will now shift y [n] to the left. Then
we can �nd the product sequence s [n] = x [n] y [n + 1], which yields

s [n] = {. . . , 0, 0,−4,−12, 6,−3, 0, 0, 0, . . . }

and from the crosscorrelation function we arrive at the answer of

Rxy (−1) = −13

102"Fourier Series: Eigenfunction Approach" <http://cnx.org/content/m10496/latest/>

98 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

Chapter 2

The DFT, FFT, and Practical Spectral

Analysis

2.1 The Discrete Fourier Transform

2.1.1 DFT De�nition and Properties1

2.1.1.1 DFT

The discrete Fourier transform (DFT) (Section 1.10.6) is the primary transform used for numerical computa-
tion in digital signal processing. It is very widely used for spectrum analysis (Section 2.2.1), fast convolution
(Section 2.4), and many other applications. The DFT transforms N discrete-time samples to the same
number of discrete frequency samples, and is de�ned as

X (k) =
N−1∑
n=0

(
x (n) e−(j 2πnk

N)
)

(2.1)

The DFT is widely used in part because it can be computed very e�ciently using fast Fourier transform
(FFT)2 algorithms.

2.1.1.2 IDFT

The inverse DFT (IDFT) transforms N discrete-frequency samples to the same number of discrete-time
samples. The IDFT has a form very similar to the DFT,

x (n) =
1
N

N−1∑
k=0

(
X (k) ej 2πnk

N

)
(2.2)

and can thus also be computed e�ciently using FFTs3.

2.1.1.3 DFT and IDFT properties

2.1.1.3.1 Periodicity

Due to the N -sample periodicity of the complex exponential basis functions ej 2πnk
N in the DFT and IDFT,

the resulting transforms are also periodic with N samples.

1This content is available online at <http://cnx.org/content/m12019/1.5/>.
2The DFT, FFT, and Practical Spectral Analysis <http://cnx.org/content/col10281/latest/>
3The DFT, FFT, and Practical Spectral Analysis <http://cnx.org/content/col10281/latest/>

99

100 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

X (k + N) = X (k)

x (n) = x (n + N)

2.1.1.3.2 Circular Shift

A shift in time corresponds to a phase shift that is linear in frequency. Because of the periodicity induced
by the DFT and IDFT, the shift is circular, or modulo N samples.(

x ((n−m) modN) ⇔ X (k) e−(j 2πkm
N)

)
The modulus operator pmodN means the remainder of p when divided by N . For example,

9mod5 = 4

and
−1mod5 = 4

2.1.1.3.3 Time Reversal

(x ((−n) modN) = x ((N − n) modN) ⇔ X ((N − k) modN) = X ((−k) modN))

Note: time-reversal maps (0 ⇔ 0), (1 ⇔ N − 1), (2 ⇔ N − 2), etc. as illustrated in the �gure below.

(a) (b)

Figure 2.1: Illustration of circular time-reversal (a) Original signal (b) Time-reversed

2.1.1.3.4 Complex Conjugate (
x (n) ⇔ X ((−k) modN)

)

101

2.1.1.3.5 Circular Convolution Property

Circular convolution is de�ned as(
x (n) ∗ h (n) .=

N−1∑
m=0

(x (m) x ((n−m) modN))

)

Circular convolution of two discrete-time signals corresponds to multiplication of their DFTs:

(x (n) ∗ h (n) ⇔ X (k) H (k))

2.1.1.3.6 Multiplication Property

A similar property relates multiplication in time to circular convolution in frequency.(
x (n) h (n) ⇔ 1

N
X (k) ∗H (k)

)

2.1.1.3.7 Parseval's Theorem

Parseval's theorem relates the energy of a length-N discrete-time signal (or one period) to the energy of its
DFT.

N−1∑
n=0

(
(|x (n) |)2

)
=

1
N

N−1∑
k=0

(
(|X (k) |)2

)

2.1.1.3.8 Symmetry

The continuous-time Fourier transform (Section 1.7), the DTFT (2.3), and DFT (2.5) are all de�ned as
transforms of complex-valued data to complex-valued spectra. However, in practice signals are often real-
valued. The DFT of a real-valued discrete-time signal has a special symmetry, in which the real part of
the transform values are DFT even symmetric and the imaginary part is DFT odd symmetric, as
illustrated in the equation and �gure below.

x (n) real ⇔ X (k) = X ((N − k) modN) (This implies X (0), X
(

N
2

)
are real-valued.)

102 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

(a) Real part of X(k) is even

(b) Imaginary part of X(k) is odd

Figure 2.2: DFT symmetry of real-valued signal (a) Even-symmetry in DFT sense (b) Odd-symmetry
in DFT sense

2.2 Spectrum Analysis

2.2.1 Spectrum Analysis Using the Discrete Fourier Transform4

2.2.1.1 Discrete-Time Fourier Transform

The Discrete-Time Fourier Transform (DTFT) (Section 1.8) is the primary theoretical tool for understanding
the frequency content of a discrete-time (sampled) signal. The DTFT (Section 1.8) is de�ned as

X (ω) =
∞∑

n=−∞

(
x (n) e−(jωn)

)
(2.3)

The inverse DTFT (IDTFT) is de�ned by an integral formula, because it operates on a continuous-frequency
DTFT spectrum:

x (n) =
1
2π

∫ π

−π

X (k) ejωndω (2.4)

The DTFT is very useful for theory and analysis, but is not practical for numerically computing a
spectrum digitally, because

4This content is available online at <http://cnx.org/content/m12032/1.6/>.

103

1. in�nite time samples means

• in�nite computation
• in�nite delay

2. The transform is continuous in the discrete-time frequency, ω

For practical computation of the frequency content of real-world signals, the Discrete Fourier Transform
(DFT) is used.

2.2.1.2 Discrete Fourier Transform

The DFT transforms N samples of a discrete-time signal to the same number of discrete frequency samples,
and is de�ned as

X (k) =
N−1∑
n=0

(
x (n) e−(j2πnk

N)
)

(2.5)

The DFT is invertible by the inverse discrete Fourier transform (IDFT):

x (n) =
1
N

N−1∑
k=0

(
X (k) e+j 2πnk

N

)
(2.6)

The DFT (2.5) and IDFT (2.6) are a self-contained, one-to-one transform pair for a length-N discrete-time
signal. (That is, the DFT (2.5) is not merely an approximation to the DTFT (2.3) as discussed next.)
However, the DFT (2.5) is very often used as a practical approximation to the DTFT (2.3).

2.2.1.3 Relationships Between DFT and DTFT

2.2.1.3.1 DFT and Discrete Fourier Series

The DFT (2.5) gives the discrete-time Fourier series coe�cients of a periodic sequence (x (n) = x (n + N))
of period N samples, or

X (ω) =
2π

N

∑(
X (k) δ

(
ω − 2πk

N

))
(2.7)

as can easily be con�rmed by computing the inverse DTFT of the corresponding line spectrum:

x (n) = 1
2π

∫ π

−π

(
2π
N

∑(
X (k) δ

(
ω − 2πk

N

)))
ejωndω

= 1
N

∑N−1
k=0

(
X (k) e+j 2πnk

N

)
= IDFT (X (k))

= x (n)

(2.8)

The DFT can thus be used to exactly compute the relative values of the N line spectral components of the
DTFT of any periodic discrete-time sequence with an integer-length period.

2.2.1.3.2 DFT and DTFT of �nite-length data

When a discrete-time sequence happens to equal zero for all samples except for those between 0 and N − 1,
the in�nite sum in the DTFT (2.3) equation becomes the same as the �nite sum from 0 to N − 1 in the
DFT (2.5) equation. By matching the arguments in the exponential terms, we observe that the DFT values
exactly equal the DTFT for speci�c DTFT frequencies ωk = 2πk

N . That is, the DFT computes exact samples

of the DTFT at N equally spaced frequencies ωk = 2πk
N , or

X

(
ωk =

2πk

N

)
=

∞∑
n=−∞

(
x (n) e−(jωkn)

)
=

N−1∑
n=0

(
x (n) e−(j2πnk

N)
)

= X (k)

104 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

2.2.1.3.3 DFT as a DTFT approximation

In most cases, the signal is neither exactly periodic nor truly of �nite length; in such cases, the DFT of a
�nite block of N consecutive discrete-time samples does not exactly equal samples of the DTFT at speci�c
frequencies. Instead, the DFT (2.5) gives frequency samples of a windowed (truncated) DTFT (2.3)

X̂

(
ωk =

2πk

N

)
=

N−1∑
n=0

(
x (n) e−(jωkn)

)
=

∞∑
n=−∞

(
x (n) w (n) e−(jωkn)

)
= X (k)

where w (n) =

 1 if 0 ≤ n < N

0 if else
Once again, X (k) exactly equals X (ωk) a DTFT frequency sample only

when ∀n, n /∈ [0, N − 1] : (x (n) = 0)

2.2.1.4 Relationship between continuous-time FT and DFT

The goal of spectrum analysis is often to determine the frequency content of an analog (continuous-time)
signal; very often, as in most modern spectrum analyzers, this is actually accomplished by sampling the
analog signal, windowing (truncating) the data, and computing and plotting the magnitude of its DFT. It
is thus essential to relate the DFT frequency samples back to the original analog frequency. Assuming that
the analog signal is bandlimited and the sampling frequency exceeds twice that limit so that no frequency
aliasing occurs, the relationship between the continuous-time Fourier frequency Ω (in radians) and the DTFT
frequency ω imposed by sampling is ω = ΩT where T is the sampling period. Through the relationship
ωk = 2πk

N between the DTFT frequency ω and the DFT frequency index k, the correspondence between the
DFT frequency index and the original analog frequency can be found:

Ω =
2πk

NT

or in terms of analog frequency f in Hertz (cycles per second rather than radians)

f =
k

NT

for k in the range k between 0 and N
2 . It is important to note that k ∈

[
N
2 + 1, N − 1

]
correspond to negative

frequencies due to the periodicity of the DTFT and the DFT.

Exercise 2.1 (Solution on p. 189.)

In general, will DFT frequency values X (k) exactly equal samples of the analog Fourier transform
Xa at the corresponding frequencies? That is, will X (k) = Xa

(
2πk
NT

)
?

2.2.1.5 Zero-Padding

If more than N equally spaced frequency samples of a length-N signal are desired, they can easily be obtained
by zero-padding the discrete-time signal and computing a DFT of the longer length. In particular, if LN
DTFT (2.3) samples are desired of a length-N sequence, one can compute the length-LN DFT (2.5) of a
length-LN zero-padded sequence

z (n) =

 x (n) if 0 ≤ n ≤ N − 1

0 if N ≤ n ≤ LN − 1

X

(
wk =

2πk

LN

)
=

N−1∑
n=0

(
x (n) e−(j 2πkn

LN)
)

=
LN−1∑
n=0

(
z (n) e−(j 2πkn

LN)
)

= DFTLN [z [n]]

105

Note that zero-padding interpolates the spectrum. One should always zero-pad (by about at least a factor
of 4) when using the DFT (2.5) to approximate the DTFT (2.3) to get a clear picture of the DTFT (2.3).
While performing computations on zeros may at �rst seem ine�cient, using FFT (Section 2.3.1) algorithms,
which generally expect the same number of input and output samples, actually makes this approach very
e�cient.

Figure 2.3 (Spectrum without zero-padding) shows the magnitude of the DFT values corresponding to
the non-negative frequencies of a real-valued length-64 DFT of a length-64 signal, both in a "stem" format
to emphasize the discrete nature of the DFT frequency samples, and as a line plot to emphasize its use as
an approximation to the continuous-in-frequency DTFT. From this �gure, it appears that the signal has a
single dominant frequency component.

106 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

Spectrum without zero-padding

(a) Stem plot

(b) Line Plot

Figure 2.3: Magnitude DFT spectrum of 64 samples of a signal with a length-64 DFT (no zero padding)

107

Zero-padding by a factor of two by appending 64 zero values to the signal and computing a length-128 DFT
yields Figure 2.4 (Spectrum with factor-of-two zero-padding). It can now be seen that the signal consists of at
least two narrowband frequency components; the gap between them fell between DFT samples in Figure 2.3
(Spectrum without zero-padding), resulting in a misleading picture of the signal's spectral content. This
is sometimes called the picket-fence e�ect, and is a result of insu�cient sampling in frequency. While
zero-padding by a factor of two has revealed more structure, it is unclear whether the peak magnitudes
are reliably rendered, and the jagged linear interpolation in the line graph does not yet re�ect the smooth,
continuously-di�erentiable spectrum of the DTFT of a �nite-length truncated signal. Errors in the apparent
peak magnitude due to insu�cient frequency sampling is sometimes referred to as scalloping loss.

108 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

Spectrum with factor-of-two zero-padding

(a) Stem plot

(b) Line Plot

Figure 2.4: Magnitude DFT spectrum of 64 samples of a signal with a length-128 DFT (double-length
zero-padding)

109

Zero-padding to four times the length of the signal, as shown in Figure 2.5 (Spectrum with factor-of-four
zero-padding), clearly shows the spectral structure and reveals that the magnitude of the two spectral lines
are nearly identical. The line graph is still a bit rough and the peak magnitudes and frequencies may not be
precisely captured, but the spectral characteristics of the truncated signal are now clear.

110 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

Spectrum with factor-of-four zero-padding

(a) Stem plot

(b) Line Plot

Figure 2.5: Magnitude DFT spectrum of 64 samples of a signal with a length-256 zero-padded DFT
(four times zero-padding)

111

Zero-padding to a length of 1024, as shown in Figure 2.6 (Spectrum with factor-of-sixteen zero-padding)
yields a spectrum that is smooth and continuous to the resolution of the computer screen, and produces a
very accurate rendition of the DTFT of the truncated signal.

112 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

Spectrum with factor-of-sixteen zero-padding

(a) Stem plot

(b) Line Plot

Figure 2.6: Magnitude DFT spectrum of 64 samples of a signal with a length-1024 zero-padded DFT.
The spectrum now looks smooth and continuous and reveals all the structure of the DTFT of a truncated
signal.

113

The signal used in this example actually consisted of two pure sinusoids of equal magnitude. The slight
di�erence in magnitude of the two dominant peaks, the breadth of the peaks, and the sinc-like lesser side
lobe peaks throughout frequency are artifacts of the truncation, or windowing, process used to practically
approximate the DFT. These problems and partial solutions to them are discussed in the following section.

2.2.1.6 E�ects of Windowing

Applying the DTFT multiplication property

ˆX (ωk) =
∞∑

n=−∞

(
x (n) w (n) e−(jωkn)

)
=

1
2π

X (ωk) ∗W (ωk)

we �nd that the DFT (2.5) of the windowed (truncated) signal produces samples not of the true (desired)
DTFT spectrum X (ω), but of a smoothed verson X (ω) ∗W (ω). We want this to resemble X (ω) as closely
as possible, so W (ω) should be as close to an impulse as possible. The window w (n) need not be a simple
truncation (or rectangle, or boxcar) window; other shapes can also be used as long as they limit the
sequence to at most N consecutive nonzero samples. All good windows are impulse-like, and represent
various tradeo�s between three criteria:

1. main lobe width: (limits resolution of closely-spaced peaks of equal height)
2. height of �rst sidelobe: (limits ability to see a small peak near a big peak)
3. slope of sidelobe drop-o�: (limits ability to see small peaks further away from a big peak)

Many di�erent window functions5 have been developed for truncating and shaping a length-N signal
segment for spectral analysis. The simple truncation window has a periodic sinc DTFT, as shown in
Figure 2.7. It has the narrowest main-lobe width, 2π

N at the -3 dB level and 4π
N between the two zeros

surrounding the main lobe, of the common window functions, but also the largest side-lobe peak, at about
-13 dB. The side-lobes also taper o� relatively slowly.

5http://en.wikipedia.org/wiki/Window_function

114 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

(a) Rectangular window

(b) Magnitude of boxcar window spectrum

Figure 2.7: Length-64 truncation (boxcar) window and its magnitude DFT spectrum

115

The Hann window (sometimes also called the hanning window), illustrated in Figure 2.8, takes the

form w [n] = 0.5− 0.5cos
(

2πn
N−1

)
for n between 0 and N − 1. It has a main-lobe width (about 3π

N at the -3

dB level and 8π
N between the two zeros surrounding the main lobe) considerably larger than the rectangular

window, but the largest side-lobe peak is much lower, at about -31.5 dB. The side-lobes also taper o�
much faster. For a given length, this window is worse than the boxcar window at separating closely-spaced
spectral components of similar magnitude, but better for identifying smaller-magnitude components at a
greater distance from the larger components.

116 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

(a) Hann window

(b) Magnitude of Hann window spectrum

Figure 2.8: Length-64 Hann window and its magnitude DFT spectrum

117

The Hamming window, illustrated in Figure 2.9, has a form similar to the Hann window but with

slightly di�erent constants: w [n] = 0.538−0.462cos
(

2πn
N−1

)
for n between 0 and N −1. Since it is composed

of the same Fourier series harmonics as the Hann window, it has a similar main-lobe width (a bit less than
3π
N at the -3 dB level and 8π

N between the two zeros surrounding the main lobe), but the largest side-lobe
peak is much lower, at about -42.5 dB. However, the side-lobes also taper o� much more slowly than with
the Hann window. For a given length, the Hamming window is better than the Hann (and of course the
boxcar) windows at separating a small component relatively near to a large component, but worse than the
Hann for identifying very small components at considerable frequency separation. Due to their shape and
form, the Hann and Hamming windows are also known as raised-cosine windows.

118 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

(a) Hamming window

(b) Magnitude of Hamming window spectrum

Figure 2.9: Length-64 Hamming window and its magnitude DFT spectrum

119

Note: Standard even-length windows are symmetric around a point halfway between the window
samples N

2 − 1 and N
2 . For some applications such as time-frequency analysis (Section 2.2.3), it

may be important to align the window perfectly to a sample. In such cases, a DFT-symmetric
window that is symmetric around the N

2 -th sample can be used. For example, the DFT-symmetric
Hamming window is w [n] = 0.538− 0.462cos

(
2πn
N

)
. A DFT-symmetric window has a purely real-

valued DFT and DTFT. DFT-symmetric versions of windows, such as the Hamming and Hann
windows, composed of few discrete Fourier series terms of period N , have few non-zero DFT terms
(only when not zero-padded) and can be used e�ciently in running FFTs (Section 2.3.2).

The main-lobe width of a window is an inverse function of the window-length N ; for any type of window, a
longer window will always provide better resolution.

Many other windows exist that make various other tradeo�s between main-lobe width, height of largest
side-lobe, and side-lobe rollo� rate. The Kaiser window6 family, based on a modi�ed Bessel function, has an
adjustable parameter that allows the user to tune the tradeo� over a continuous range. The Kaiser window
has near-optimal time-frequency resolution and is widely used. A list of many di�erent windows can be
found here7 .

Example 2.1
Figure 2.10 shows 64 samples of a real-valued signal composed of several sinusoids of various
frequencies and amplitudes.

6http://en.wikipedia.org/wiki/Kaiser_window
7http://en.wikipedia.org/wiki/Window_function

120 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

Figure 2.10: 64 samples of an unknown signal

Figure 2.11 shows the magnitude (in dB) of the positive frequencies of a length-1024 zero-padded
DFT of this signal (that is, using a simple truncation, or rectangular, window).

121

Figure 2.11: Magnitude (in dB) of the zero-padded DFT spectrum of the signal in Figure 2.10 using a
simple length-64 rectangular window

From this spectrum, it is clear that the signal has two large, nearby frequency components with
frequencies near 1 radian of essentially the same magnitude.

Figure 2.12 shows the spectral estimate produced using a length-64 Hamming window applied
to the same signal shown in Figure 2.10.

122 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

Figure 2.12: Magnitude (in dB) of the zero-padded DFT spectrum of the signal in Figure 2.10 using a
length-64 Hamming window

The two large spectral peaks can no longer be resolved; they blur into a single broad peak due
to the reduced spectral resolution of the broader main lobe of the Hamming window. However, the
lower side-lobes reveal a third component at a frequency of about 0.7 radians at about 35 dB lower
magnitude than the larger components. This component was entirely buried under the side-lobes
when the rectangular window was used, but now stands out well above the much lower nearby
side-lobes of the Hamming window.

Figure 2.13 shows the spectral estimate produced using a length-64 Hann window applied to
the same signal shown in Figure 2.10.

123

Figure 2.13: Magnitude (in dB) of the zero-padded DFT spectrum of the signal in Figure 2.10 using a
length-64 Hann window

The two large components again merge into a single peak, and the smaller component observed
with the Hamming window is largely lost under the higher nearby side-lobes of the Hann window.
However, due to the much faster side-lobe rollo� of the Hann window's spectrum, a fourth com-
ponent at a frequency of about 2.5 radians with a magnitude about 65 dB below that of the main
peaks is now clearly visible.

This example illustrates that no single window is best for all spectrum analyses. The best
window depends on the nature of the signal, and di�erent windows may be better for di�erent
components of the same signal. A skilled spectrum analysist may apply several di�erent windows
to a signal to gain a fuller understanding of the data.

2.2.2 Classical Statistical Spectral Estimation8

Many signals are either partly or wholly stochastic, or random. Important examples include human speech,
vibration in machines, and CDMA9 communication signals. Given the ever-present noise in electronic sys-
tems, it can be argued that almost all signals are at least partly stochastic. Such signals may have a

8This content is available online at <http://cnx.org/content/m12014/1.3/>.
9http://en.wikipedia.org/wiki/Cdma

124 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

distinct average spectral structure that reveals important information (such as for speech recognition or
early detection of damage in machinery). Spectrum analysis of any single block of data using window-based
deterministic spectrum analysis (Section 2.2.1), however, produces a random spectrum that may be di�cult
to interpret. For such situations, the classical statistical spectrum estimation methods described in this
module can be used.

The goal in classical statistical spectrum analysis is to estimate E
[
(|X (ω) |)2

]
, the power spectral

density (PSD) across frequency of the stochastic signal. That is, the goal is to �nd the expected (mean,
or average) energy density of the signal as a function of frequency. (For zero-mean signals, this equals the
variance of each frequency sample.) Since the spectrum of each block of signal samples is itself random, we
must average the squared spectral magnitudes over a number of blocks of data to �nd the mean. There are
two main classical approaches, the periodogram (Section 2.2.2.1: Periodogram method) and auto-correlation
(Section 2.2.2.2: Auto-correlation-based approach) methods.

2.2.2.1 Periodogram method

The periodogram method divides the signal into a number of shorter (and often overlapped) blocks of data,
computes the squared magnitude of the windowed (Section 2.2.1.6: E�ects of Windowing) (and usually zero-
padded (Section 2.2.1.5: Zero-Padding)) DFT (2.5), Xi (ωk), of each block, and averages them to estimate the
power spectral density. The squared magnitudes of the DFTs of L possibly overlapped length-N windowed
blocks of signal (each probably with zero-padding (Section 2.2.1.5: Zero-Padding)) are averaged to estimate
the power spectral density:

ˆX (ωk) =
1
L

L∑
i=1

(
(|Xi (ωk) |)2

)
For a �xed total number of samples, this introduces a tradeo�: Larger individual data blocks provides better
frequency resolution due to the use of a longer window, but it means there are less blocks to average, so
the estimate has higher variance and appears more noisy. The best tradeo� depends on the application.
Overlapping blocks by a factor of two to four increases the number of averages and reduces the variance, but
since the same data is being reused, still more overlapping does not further reduce the variance. As with any
window-based spectrum estimation (Section 2.2.1.6: E�ects of Windowing) procedure, the window function
introduces broadening and sidelobes into the power spectrum estimate. That is, the periodogram produces

an estimate of the windowed spectrum ˆX (ω) = E
[
(|X (ω) ∗WM |)2

]
, not of E

[
(|X (ω) |)2

]
.

Example 2.2
Figure 2.14 shows the non-negative frequencies of the DFT (zero-padded to 1024 total samples) of
64 samples of a real-valued stochastic signal.

125

Figure 2.14: DFT magnitude (in dB) of 64 samples of a stochastic signal

With no averaging, the power spectrum is very noisy and di�cult to interpret other than noting
a signi�cant reduction in spectral energy above about half the Nyquist frequency. Various peaks
and valleys appear in the lower frequencies, but it is impossible to say from this �gure whether
they represent actual structure in the power spectral density (PSD) or simply random variation in
this single realization. Figure 2.15 shows the same frequencies of a length-1024 DFT of a length-
1024 signal. While the frequency resolution has improved, there is still no averaging, so it remains
di�cult to understand the power spectral density of this signal. Certain small peaks in frequency
might represent narrowband components in the spectrum, or may just be random noise peaks.

126 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

Figure 2.15: DFT magnitude (in dB) of 1024 samples of a stochastic signal

In Figure 2.16, a power spectral density computed from averaging the squared magnitudes of
length-1024 zero-padded DFTs of 508 length-64 blocks of data (overlapped by a factor of four, or a
16-sample step between blocks) are shown.

127

Figure 2.16: Power spectrum density estimate (in dB) of 1024 samples of a stochastic signal

While the frequency resolution corresponds to that of a length-64 truncation window, the aver-
aging greatly reduces the variance of the spectral estimate and allows the user to reliably conclude
that the signal consists of lowpass broadband noise with a �at power spectrum up to half the
Nyquist frequency, with a stronger narrowband frequency component at around 0.65 radians.

2.2.2.2 Auto-correlation-based approach

The averaging necessary to estimate a power spectral density can be performed in the discrete-time domain,
rather than in frequency, using the auto-correlation method. The squared magnitude of the frequency
response, from the DTFT multiplication and conjugation properties, corresponds in the discrete-time domain
to the signal convolved with the time-reverse of itself,(

(|X (ω) |)2 = X (ω) X∗ (ω) ↔ (x (n) , x∗ (−n)) = r (n)
)

or its auto-correlation
r (n) =

∑
(x (k) x∗ (n + k))

We can thus compute the squared magnitude of the spectrum of a signal by computing the DFT of its
auto-correlation. For stochastic signals, the power spectral density is an expectation, or average, and by

128 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

linearity of expectation can be found by transforming the average of the auto-correlation. For a �nite block
of N signal samples, the average of the autocorrelation values, r (n), is

r (n) =
1

N − n

N−(1−n)∑
k=0

(x (k) x∗ (n + k))

Note that with increasing lag, n, fewer values are averaged, so they introduce more noise into the estimated
power spectrum. By windowing (Section 2.2.1.6: E�ects of Windowing) the auto-correlation before trans-
forming it to the frequency domain, a less noisy power spectrum is obtained, at the expense of less resolution.
The multiplication property of the DTFT shows that the windowing smooths the resulting power spectrum
via convolution with the DTFT of the window:

ˆX (ω) =
M∑

n=−M

(
r (n) w (n) e−(jωn)

)
=
(
E
[
(|X (ω) |)2

])
∗W (ω)

This yields another important interpretation of how the auto-correlation method works: it estimates the
power spectral density by averaging the power spectrum over nearby frequencies, through convolution with
the window function's transform, to reduce variance. Just as with the periodogram approach, there is always
a variance vs. resolution tradeo�. The periodogram and the auto-correlation method give similar results
for a similar amount of averaging; the user should simply note that in the periodogram case, the window
introduces smoothing of the spectrum via frequency convolution before squaring the magnitude, whereas the
periodogram convolves the squared magnitude with W (ω).

2.2.3 Short Time Fourier Transform10

2.2.3.1 Short Time Fourier Transform

The Fourier transforms (FT, DTFT, DFT, etc.) do not clearly indicate how the frequency content of a signal
changes over time.

That information is hidden in the phase - it is not revealed by the plot of the magnitude of the spectrum.

Note: To see how the frequency content of a signal changes over time, we can cut the signal into
blocks and compute the spectrum of each block.

To improve the result,

1. blocks are overlapping
2. each block is multiplied by a window that is tapered at its endpoints.

Several parameters must be chosen:

• Block length, R.
• The type of window.
• Amount of overlap between blocks. (Figure 2.17 (STFT: Overlap Parameter))
• Amount of zero padding, if any.

10This content is available online at <http://cnx.org/content/m10570/2.4/>.

129

STFT: Overlap Parameter

Figure 2.17

The short-time Fourier transform is de�ned as

X (ω, m) = (STFT (x (n)) := DTFT (x (n−m) w (n)))

=
∑∞

n=−∞
(
x (n−m) w (n) e−(jωn)

)
=

∑R−1
n=0

(
x (n−m) w (n) e−(jωn)

) (2.9)

where w (n) is the window function of length R.

130 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

1. The STFT of a signal x (n) is a function of two variables: time and frequency.
2. The block length is determined by the support of the window function w (n).
3. A graphical display of the magnitude of the STFT, |X (ω, m) |, is called the spectrogram of the signal.

It is often used in speech processing.
4. The STFT of a signal is invertible.
5. One can choose the block length. A long block length will provide higher frequency resolution (because

the main-lobe of the window function will be narrow). A short block length will provide higher time
resolution because less averaging across samples is performed for each STFT value.

6. A narrow-band spectrogram is one computed using a relatively long block length R, (long window
function).

7. A wide-band spectrogram is one computed using a relatively short block length R, (short window
function).

2.2.3.1.1 Sampled STFT

To numerically evaluate the STFT, we sample the frequency axis ω in N equally spaced samples from ω = 0
to ω = 2π.

∀k, 0 ≤ k ≤ N − 1 :
(

ωk =
2π

N
k

)
(2.10)

We then have the discrete STFT,(
Xd (k, m) := X

(
2π
N k, m

))
=

∑R−1
n=0

(
x (n−m) w (n) e−(jωn)

)
=

∑R−1
n=0

(
x (n−m) w (n) WN

−(kn)
)

= DFTN

(
x (n−m) w (n) |R−1

n=0 , 0,. . .0
) (2.11)

where 0,. . .0 is N −R.
In this de�nition, the overlap between adjacent blocks is R − 1. The signal is shifted along the window

one sample at a time. That generates more points than is usually needed, so we also sample the STFT along
the time direction. That means we usually evaluate

Xd (k, Lm)

where L is the time-skip. The relation between the time-skip, the number of overlapping samples, and the
block length is

Overlap = R− L

Exercise 2.2 (Solution on p. 189.)

Match each signal to its spectrogram in Figure 2.18.

131

(a)

(b)

Figure 2.18

132 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

2.2.3.1.2 Spectrogram Example

Figure 2.19

133

Figure 2.20

The matlab program for producing the �gures above (Figure 2.19 and Figure 2.20).

% LOAD DATA

load mtlb;

x = mtlb;

figure(1), clf

plot(0:4000,x)

xlabel('n')

ylabel('x(n)')

% SET PARAMETERS

R = 256; % R: block length

window = hamming(R); % window function of length R

N = 512; % N: frequency discretization

L = 35; % L: time lapse between blocks

fs = 7418; % fs: sampling frequency

134 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

overlap = R - L;

% COMPUTE SPECTROGRAM

[B,f,t] = specgram(x,N,fs,window,overlap);

% MAKE PLOT

figure(2), clf

imagesc(t,f,log10(abs(B)));

colormap('jet')

axis xy

xlabel('time')

ylabel('frequency')

title('SPECTROGRAM, R = 256')

135

2.2.3.1.3 E�ect of window length R

Narrow-band spectrogram: better frequency resolution

Figure 2.21

136 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

Wide-band spectrogram: better time resolution

Figure 2.22

Here is another example to illustrate the frequency/time resolution trade-o� (See �gures - Figure 2.21
(Narrow-band spectrogram: better frequency resolution), Figure 2.22 (Wide-band spectrogram: better time
resolution), and Figure 2.23 (E�ect of Window Length R)).

137

E�ect of Window Length R

(a)

(b)

Figure 2.23

138 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

2.2.3.1.4 E�ect of L and N

A spectrogram is computed with di�erent parameters:

L ∈ {1, 10}

N ∈ {32, 256}

• L = time lapse between blocks.
• N = FFT length (Each block is zero-padded to length N .)

In each case, the block length is 30 samples.

Exercise 2.3 (Solution on p. 189.)

For each of the four spectrograms in Figure 2.24 can you tell what L and N are?

139

(a)

(b)

Figure 2.24

140 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

L and N do not e�ect the time resolution or the frequency resolution. They only a�ect the 'pixelation'.

2.2.3.1.5 E�ect of R and L

Shown below are four spectrograms of the same signal. Each spectrogram is computed using a di�erent set
of parameters.

R ∈ {120, 256, 1024}

L ∈ {35, 250}

where

• R = block length
• L = time lapse between blocks.

Exercise 2.4 (Solution on p. 189.)

For each of the four spectrograms in Figure 2.25, match the above values of L and R.

Figure 2.25

141

If you like, you may listen to this signal with the soundsc command; the data is in the �le: stft_data.m.
Here (Figure 2.26) is a �gure of the signal.

Figure 2.26

2.3 Fast Fourier Transform Algorithms

2.3.1 Overview of Fast Fourier Transform (FFT) Algorithms11

A fast Fourier transform12, or FFT13, is not a new transform, but is a computationally e�cient algorithm
for the computing the DFT (Section 2.1.1). The length-N DFT, de�ned as

X (k) =
N−1∑
n=0

(
x (n) e−(j 2πnk

N)
)

(2.12)

where X (k) and x (n) are in general complex-valued and 0 ≤ k, n ≤ N−1, requires N complex multiplies to
compute each X (k). Direct computation of all N frequency samples thus requires N2 complex multiplies and

N (N − 1) complex additions. (This assumes precomputation of the DFT coe�cients
(
Wnk

N
.= e−(j 2πnk

N)
)
;

otherwise, the cost is even higher.) For the large DFT lengths used in many applications, N2 operations may
be prohibitive. (For example, digital terrestrial television broadcast in Europe uses N = 2048 or 8192 OFDM
channels, and the SETI14 project uses up to length-4194304 DFTs.) DFTs are thus almost always computed
in practice by an FFT algorithm15. FFTs are very widely used in signal processing, for applications such as
spectrum analysis (Section 2.2.1) and digital �ltering via fast convolution (Section 2.4).

2.3.1.1 History of the FFT

It is now known that C.F. Gauss16 invented an FFT in 1805 or so to assist the computation of planetary
orbits via discrete Fourier series. Various FFT algorithms were independently invented over the next two
centuries, but FFTs achieved widespread awareness and impact only with the Cooley and Tukey algorithm
published in 1965, which came at a time of increasing use of digital computers and when the vast range of

11This content is available online at <http://cnx.org/content/m12026/1.3/>.
12The DFT, FFT, and Practical Spectral Analysis <http://cnx.org/content/col10281/latest/>
13The DFT, FFT, and Practical Spectral Analysis <http://cnx.org/content/col10281/latest/>
14http://en.wikipedia.org/wiki/SETI
15The DFT, FFT, and Practical Spectral Analysis <http://cnx.org/content/col10281/latest/>
16http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss

142 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

applications of numerical Fourier techniques was becoming apparent. Cooley and Tukey's algorithm spawned
a surge of research in FFTs and was also partly responsible for the emergence of Digital Signal Processing
(DSP) as a distinct, recognized discipline. Since then, many di�erent algorithms have been rediscovered or
developed, and e�cient FFTs now exist for all DFT lengths.

2.3.1.2 Summary of FFT algorithms

The main strategy behind most FFT algorithms is to factor a length-N DFT into a number of shorter-
length DFTs, the outputs of which are reused multiple times (usually in additional short-length DFTs!)
to compute the �nal results. The lengths of the short DFTs correspond to integer factors of the DFT
length, N , leading to di�erent algorithms for di�erent lengths and factors. By far the most commonly
used FFTs select N = 2M to be a power of two, leading to the very e�cient power-of-two FFT algorithms
(Section 2.3.4.1), including the decimation-in-time radix-2 FFT (Section 2.3.4.2.1) and the decimation-in-
frequency radix-2 FFT (Section 2.3.4.2.2) algorithms, the radix-4 FFT (Section 2.3.4.3) (N = 4M), and
the split-radix FFT (Section 2.3.4.4). Power-of-two algorithms gain their high e�ciency from extensive
reuse of intermediate results and from the low complexity of length-2 and length-4 DFTs, which require no
multiplications. Algorithms for lengths with repeated common factors (Section 2.3.6) (such as 2 or 4 in
the radix-2 and radix-4 algorithms, respectively) require extra twiddle factor multiplications between the
short-length DFTs, which together lead to a computational complexity of O (NlogN), a very considerable
savings over direct computation of the DFT.

The other major class of algorithms is the Prime-Factor Algorithms (PFA) (Section 2.3.7). In PFAs,
the short-length DFTs must be of relatively prime lengths. These algorithms gain e�ciency by reuse of
intermediate computations and by eliminating twiddle-factor multiplies, but require more operations than the
power-of-two algorithms to compute the short DFTs of various prime lengths. In the end, the computational
costs of the prime-factor and the power-of-two algorithms are comparable for similar lengths, as illustrated in
Choosing the Best FFT Algorithm (Section 2.7). Prime-length DFTs cannot be factored into shorter DFTs,
but in di�erent ways both Rader's conversion (Section 2.6) and the chirp z-transform (Section 2.5) convert
prime-length DFTs into convolutions of other lengths that can be computed e�ciently using FFTs via fast
convolution (Section 2.4).

Some applications require only a few DFT frequency samples, in which case Goertzel's algorithm (Sec-
tion 2.3.3) halves the number of computations relative to the DFT sum. Other applications involve successive
DFTs of overlapped blocks of samples, for which the running FFT (Section 2.3.2) can be more e�cient than
separate FFTs of each block.

2.3.2 Running FFT17

Some applications need DFT (2.5) frequencies of the most recent N samples on an ongoing basis. One
example is DTMF18 , or touch-tone telephone dialing, in which a detection circuit must constantly monitor
the line for two simultaneous frequencies indicating that a telephone button is depressed. In such cases, most
of the data in each successive block of samples is the same, and it is possible to e�ciently update the DFT
value from the previous sample to compute that of the current sample. Figure 2.27 illustrates successive
length-4 blocks of data for which successive DFT values may be needed. The running FFT algorithm
described here can be used to compute successive DFT values at a cost of only two complex multiplies and
additions per DFT frequency.

17This content is available online at <http://cnx.org/content/m12029/1.5/>.
18http://en.wikipedia.org/wiki/DTMF

143

Figure 2.27: The running FFT e�ciently computes DFT values for successive overlapped blocks of
samples.

The running FFT algorithm is derived by expressing each DFT sample, Xn+1 (ωk), for the next block at
time n + 1 in terms of the previous value, Xn (ωk), at time n.

Xn (ωk) =
N−1∑
p=0

(
x (n− p) e−(jωkp)

)

Xn+1 (ωk) =
N−1∑
p=0

(
x (n + 1− p) e−(jωkp)

)
Let q = p− 1:

Xn+1 (ωk) =
N−2∑
q=−1

(
x (n− q) e−(jωk(q−1))

)
= ejωk

N−2∑
q=0

(
x (n− q) e−(jωkq)

)
+ x (n + 1)

Now let's add and subtract e−(jωk(N−2))x (n−N + 1):

Xn+1 (ωk) = ejωk
∑N−2

q=0

(
x (n− q) e−(jωkq)

)
+ ejωkx (n− (N − 1)) e−(jωk(N−1)) −

e−(jωk(N−2))x (n−N + 1) + x (n + 1) = ejωk
∑N−1

q=0

(
x (n− q) e−(jωk)

)
+ x (n + 1)−

e−(jωk)x (n−N + 1) = ejωkXn (ωk) + x (n + 1)− e−(jωk(N−2))x (n−N + 1)

(2.13)

This running FFT algorithm requires only two complex multiplies and adds per update, rather than N
if each DFT value were recomputed according to the DFT equation. Another advantage of this algorithm
is that it works for any ωk, rather than just the standard DFT frequencies. This can make it advantageous
for applications, such as DTMF detection, where only a few arbitrary frequencies are needed.

Successive computation of a speci�c DFT frequency for overlapped blocks can also be thought of as a
length-N FIR �lter19. The running FFT is an e�cient recursive implementation of this �lter for this special
case. Figure 2.28 shows a block diagram of the running FFT algorithm. The running FFT is one way
to compute DFT �lterbanks (Section 6.6). If a window other than rectangular is desired, a running FFT
requires either a fast recursive implementation of the corresponding windowed, modulated impulse response,
or it must have few non-zero coe�cients so that it can be applied after the running FFT update via frequency-
domain convolution. DFT-symmmetric raised-cosine windows (Section 2.2.1.6: E�ects of Windowing) are
an example.

19Digital Filter Design <http://cnx.org/content/col10285/latest/>

144 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

Figure 2.28: Block diagram of the running FFT computation, implemented as a recursive �lter

2.3.3 Goertzel's Algorithm20

Some applications require only a few DFT frequencies. One example is frequency-shift keying (FSK)21

demodulation, in which typically two frequencies are used to transmit binary data; another example is
DTMF22 , or touch-tone telephone dialing, in which a detection circuit must constantly monitor the line
for two simultaneous frequencies indicating that a telephone button is depressed. Goertzel's algorithm[15]
reduces the number of real-valued multiplications by almost a factor of two relative to direct computation via
the DFT equation (2.5). Goertzel's algorithm is thus useful for computing a few frequency values; if many or
most DFT values are needed, FFT algorithms (Section 2.3.1) that compute all DFT samples in O (NlogN)
operations are faster. Goertzel's algorithm can be derived by converting the DFT equation (Section 2.1.1)
into an equivalent form as a convolution, which can be e�ciently implemented as a digital �lter. For increased

clarity, in the equations below the complex exponential is denoted as e−(j 2πk
N) = W k

N . Note that because
W−Nk

N always equals 1, the DFT equation (Section 2.1.1) can be rewritten as a convolution, or �ltering
operation:

X (k) =
∑N−1

n=0

(
x (n) 1Wnk

N

)
=

∑N−1
n=0

(
x (n) W−Nk

N Wnk
N

)
=

∑N−1
n=0

(
x (n) W

(N−n)(−k)
N

)
=

(((
W−k

N x (0) + x (1)
)
W−k

N + x (2)
)
W−k

N + · · ·+ x (N − 1)
)
W−k

N

(2.14)

Note that this last expression can be written in terms of a recursive di�erence equation (Section 1.11.1)

y (n) = W−k
N y (n− 1) + x (n)

where y (−1) = 0. The DFT coe�cient equals the output of the di�erence equation at time n = N :

X (k) = y (N)

20This content is available online at <http://cnx.org/content/m12024/1.5/>.
21http://en.wikipedia.org/wiki/Frequency-shift_keying
22http://en.wikipedia.org/wiki/DTMF

145

Expressing the di�erence equation as a z-transform (Section 1.11.1) and multiplying both numerator and
denominator by 1−W k

Nz−1 gives the transfer function

Y (z)
X (z)

= H (z) =
1

1−W−k
N z−1

=
1−W k

Nz−1

1−
((

W k
N + W−k

N

)
z−1 − z−2

) =
1−W k

Nz−1

1−
(
2cos

(
2πk
N

)
z−1 − z−2

)
This system can be realized by the structure in Figure 2.29

Figure 2.29

We want y (n) not for all n, but only for n = N . We can thus compute only the recursive part, or
just the left side of the �ow graph in Figure 2.29, for n = [0, 1, . . . , N], which involves only a real/complex
product rather than a complex/complex product as in a direct DFT (2.5), plus one complex multiply to get
y (N) = X (k).

Note: The input x (N) at time n = N must equal 0! A slightly more e�cient alternate imple-
mentation23 that computes the full recursion only through n = N − 1 and combines the nonzero
operations of the �nal recursion with the �nal complex multiply can be found here24 , complete
with pseudocode (for real-valued data).

If the data are real-valued, only real/real multiplications and real additions are needed until the �nal multiply.

cost: The computational cost of Goertzel's algorithm is thus 2N + 2 real multiplies and 4N − 2
real adds, a reduction of almost a factor of two in the number of real multiplies relative to direct
computation via the DFT equation. If the data are real-valued, this cost is almost halved again.

For certain frequencies, additional simpli�cations requiring even fewer multiplications are possible. (For
example, for the DC (k = 0) frequency, all the multipliers equal 1 and only additions are needed.) A corre-
spondence by C.G. Boncelet, Jr.[7] describes some of these additional simpli�cations. Once again, Goertzel's
and Boncelet's algorithms are e�cient for a few DFT frequency samples; if more than logN frequencies are
needed, O (NlogN) FFT algorithms (Section 2.3.1) that compute all frequencies simultaneously will be more
e�cient.

23http://www.mstarlabs.com/dsp/goertzel/goertzel.html
24http://www.mstarlabs.com/dsp/goertzel/goertzel.html

146 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

2.3.4 Power-of-Two FFTs

2.3.4.1 Power-of-two FFTs
25

FFTs of length N = 2M equal to a power of two are, by far, the most commonly used. These algorithms are
very e�cient, relatively simple, and a single program can compute power-of-two FFTs of di�erent lengths.
As with most FFT algorithms, they gain their e�ciency by computing all DFT (Section 2.1.1) points
simultaneously through extensive reuse of intermediate computations; they are thus e�cient when many
DFT frequency samples are needed. The simplest power-of-two FFTs are the decimation-in-time radix-2
FFT (Section 2.3.4.2.1) and the decimation-in-frequency radix-2 FFT (Section 2.3.4.2.2); they reduce the
length-N = 2M DFT to a series of length-2 DFT computations with twiddle-factor complex multiplications
between them. The radix-4 FFT algorithm (Section 2.3.4.3) similarly reduces a length-N = 4M DFT to a
series of length-4 DFT computations with twiddle-factor multiplies in between. Radix-4 FFTs require only
75% as many complex multiplications as the radix-2 algorithms, although the number of complex additions
remains the same. Radix-8 and higher-radix FFT algorithms can be derived using multi-dimensional index
maps (Section 2.3.6) to reduce the computational complexity a bit more. However, the split-radix algorithm
(Section 2.3.4.4) and its recent extensions combine the best elements of the radix-2 and radix-4 algorithms
to obtain lower complexity than either or than any higher radix, requiring only two-thirds as many complex
multiplies as the radix-2 algorithms. All of these algorithms obtain huge savings over direct computation of
the DFT, reducing the complexity from O

(
N2
)
to O (NlogN).

The e�ciency of an FFT implementation depends on more than just the number of computations. E�-
cient FFT programming tricks (Section 2.3.5) can make up to a several-fold di�erence in the run-time of FFT
programs. Alternate FFT structures (Section 2.3.4.2.3) can lead to a more convenient data �ow for certain
hardware. As discussed in choosing the best FFT algorithm (Section 2.7), certain hardware is designed for,
and thus most e�cient for, FFTs of speci�c lengths or radices.

2.3.4.2 Radix-2 Algorithms

2.3.4.2.1 Decimation-in-time (DIT) Radix-2 FFT
26

The radix-2 decimation-in-time and decimation-in-frequency (Section 2.3.4.2.2) fast Fourier transforms
(FFTs) are the simplest FFT algorithms (Section 2.3.1). Like all FFTs, they gain their speed by reusing the
results of smaller, intermediate computations to compute multiple DFT frequency outputs.

2.3.4.2.1.1 Decimation in time

The radix-2 decimation-in-time algorithm rearranges the discrete Fourier transform (DFT) equation (Sec-
tion 2.1.1) into two parts: a sum over the even-numbered discrete-time indices n = [0, 2, 4, . . . , N − 2] and a
sum over the odd-numbered indices n = [1, 3, 5, . . . , N − 1] as in (2.15):

X (k) =
∑N−1

n=0

(
x (n) e−(j 2πnk

N)
)

=
∑N

2 −1
n=0

(
x (2n) e−(j

2π(2n)k
N)

)
+
∑N

2 −1
n=0

(
x (2n + 1) e−(j

2π(2n+1)k
N)

)
=

∑N
2 −1

n=0

(
x (2n) e

−
„

j 2πnk
N
2

«)
+ e−(j 2πk

N)∑N
2 −1

n=0

(
x (2n + 1) e

−
„

j 2πnk
N
2

«)
= DFT N

2
[[x (0) , x (2) , . . . , x (N − 2)]] + W k

NDFT N
2

[[x (1) , x (3) , . . . , x (N − 1)]]

(2.15)

The mathematical simpli�cations in (2.15) reveal that all DFT frequency outputs X (k) can be computed as
the sum of the outputs of two length-N

2 DFTs, of the even-indexed and odd-indexed discrete-time samples,
respectively, where the odd-indexed short DFT is multiplied by a so-called twiddle factor term W k

N =
e−(j 2πk

N). This is called a decimation in time because the time samples are rearranged in alternating

25This content is available online at <http://cnx.org/content/m12059/1.2/>.
26This content is available online at <http://cnx.org/content/m12016/1.7/>.

147

groups, and a radix-2 algorithm because there are two groups. Figure 2.30 graphically illustrates this form
of the DFT computation, where for convenience the frequency outputs of the length-N

2 DFT of the even-
indexed time samples are denoted G (k) and those of the odd-indexed samples as H (k). Because of the
periodicity with N

2 frequency samples of these length-N
2 DFTs, G (k) and H (k) can be used to compute two

of the length-N DFT frequencies, namely X (k) and X
(
k + N

2

)
, but with a di�erent twiddle factor. This

reuse of these short-length DFT outputs gives the FFT its computational savings.

Figure 2.30: Decimation in time of a length-N DFT into two length-N
2
DFTs followed by a combining

stage.

Whereas direct computation of all N DFT frequencies according to the DFT equation (Section 2.1.1)
would require N2 complex multiplies and N2 −N complex additions (for complex-valued data), by reusing
the results of the two short-length DFTs as illustrated in Figure 2.30, the computational cost is now

New Operation Counts

• 2
(

N
2

)2
+ N = N2

2 + N complex multiplies

• 2N
2

(
N
2 − 1

)
+ N = N2

2 complex additions

This simple reorganization and reuse has reduced the total computation by almost a factor of two over direct
DFT (Section 2.1.1) computation!

2.3.4.2.1.2 Additional Simpli�cation

A basic butter�y operation is shown in Figure 2.31, which requires only N
2 twiddle-factor multiplies

per stage. It is worthwhile to note that, after merging the twiddle factors to a single term on the lower
branch, the remaining butter�y is actually a length-2 DFT! The theory of multi-dimensional index maps

148 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

(Section 2.3.6) shows that this must be the case, and that FFTs of any factorable length may consist of
successive stages of shorter-length FFTs with twiddle-factor multiplications in between.

(a) (b)

Figure 2.31: Radix-2 DIT butter�y simpli�cation: both operations produce the same outputs

2.3.4.2.1.3 Radix-2 decimation-in-time FFT

The same radix-2 decimation in time can be applied recursively to the two length N
2 DFT (Section 2.1.1)s to

save computation. When successively applied until the shorter and shorter DFTs reach length-2, the result
is the radix-2 DIT FFT algorithm (Figure 2.32).

Figure 2.32: Radix-2 Decimation-in-Time FFT algorithm for a length-8 signal

149

The full radix-2 decimation-in-time decomposition illustrated in Figure 2.32 using the simpli�ed butter-
�ies (Figure 2.31) involves M = log2N stages, each with N

2 butter�ies per stage. Each butter�y requires 1
complex multiply and 2 adds per butter�y. The total cost of the algorithm is thus

Computational cost of radix-2 DIT FFT

• N
2 log2N complex multiplies

• Nlog2N complex adds

This is a remarkable savings over direct computation of the DFT. For example, a length-1024 DFT would
require 1048576 complex multiplications and 1047552 complex additions with direct computation, but only
5120 complex multiplications and 10240 complex additions using the radix-2 FFT, a savings by a factor of
100 or more. The relative savings increase with longer FFT lengths, and are less for shorter lengths.

Modest additional reductions in computation can be achieved by noting that certain twiddle factors,

namely Using special butter�ies for W 0
N , W

N
2

N , W
N
4

N , W
N
8

N , W
3N
8

N , require no multiplications, or fewer real
multiplies than other ones. By implementing special butter�ies for these twiddle factors as discussed in FFT
algorithm and programming tricks, the computational cost of the radix-2 decimation-in-time FFT can be
reduced to

• 2Nlog2N − 7N + 12 real multiplies
• 3Nlog2N − 3N + 4 real additions

Note: In a decimation-in-time radix-2 FFT as illustrated in Figure 2.32, the input is in bit-
reversed order (hence "decimation-in-time"). That is, if the time-sample index n is written as a
binary number, the order is that binary number reversed. The bit-reversal process is illustrated for
a length-N = 8 example below.

Example 2.3: N=8

In-order index In-order index in binary Bit-reversed binary Bit-reversed index

0 000 000 0

1 001 100 4

2 010 010 2

3 011 110 6

4 100 001 1

5 101 101 5

6 110 011 3

7 111 111 7

It is important to note that, if the input signal data are placed in bit-reversed order before beginning the
FFT computations, the outputs of each butter�y throughout the computation can be placed in the same
memory locations from which the inputs were fetched, resulting in an in-place algorithm that requires no
extra memory to perform the FFT. Most FFT implementations are in-place, and overwrite the input data
with the intermediate values and �nally the output.

2.3.4.2.1.4 Example FFT Code

The following function, written in the C programming language, implements a radix-2 decimation-in-time
FFT. It is designed for computing the DFT of complex-valued inputs to produce complex-valued outputs,

150 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

with the real and imaginary parts of each number stored in separate double-precision �oating-point arrays. It
is an in-place algorithm, so the intermediate and �nal output values are stored in the same array as the input
data, which is overwritten. After initializations, the program �rst bit-reverses the discrete-time samples, as
is typical with a decimation-in-time algorithm (but see alternate FFT structures (Section 2.3.4.2.3) for DIT
algorithms with other input orders), then computes the FFT in stages according to the above description.

Ihis FFT program (p. 150) uses a standard three-loop structure for the main FFT computation. The
outer loop steps through the stages (each column in Figure 2.32); the middle loop steps through "�ights"
(butter�ies with the same twiddle factor from each short-length DFT at each stage), and the inner loop
steps through the individual butter�ies. This ordering minimizes the number of fetches or computations of
the twiddle-factor values. Since the bit-reverse of a bit-reversed index is the original index, bit-reversal can
be performed fairly simply by swapping pairs of data.

Note: While of O (NlogN) complexity and thus much faster than a direct DFT, this simple
program is optimized for clarity, not for speed. A speed-optimized program making use of additional
e�cient FFT algorithm and programming tricks (Section 2.3.5) will compute a DFT several times
faster on most machines.

/**/

/* fft.c */

/* (c) Douglas L. Jones */

/* University of Illinois at Urbana-Champaign */

/* January 19, 1992 */

/* */

/* fft: in-place radix-2 DIT DFT of a complex input */

/* */

/* input: */

/* n: length of FFT: must be a power of two */

/* m: n = 2**m */

/* input/output */

/* x: double array of length n with real part of data */

/* y: double array of length n with imag part of data */

/* */

/* Permission to copy and use this program is granted */

/* under a Creative Commons "Attribution" license */

/* http://creativecommons.org/licenses/by/1.0/ */

/**/

fft(n,m,x,y)

int n,m;

double x[],y[];

{

int i,j,k,n1,n2;

double c,s,e,a,t1,t2;

j = 0; /* bit-reverse */

n2 = n/2;

for (i=1; i < n - 1; i++)

{

n1 = n2;

while (j >= n1)

151

{

j = j - n1;

n1 = n1/2;

}

j = j + n1;

if (i < j)

{

t1 = x[i];

x[i] = x[j];

x[j] = t1;

t1 = y[i];

y[i] = y[j];

y[j] = t1;

}

}

n1 = 0; /* FFT */

n2 = 1;

for (i=0; i < m; i++)

{

n1 = n2;

n2 = n2 + n2;

e = -6.283185307179586/n2;

a = 0.0;

for (j=0; j < n1; j++)

{

c = cos(a);

s = sin(a);

a = a + e;

for (k=j; k < n; k=k+n2)

{

t1 = c*x[k+n1] - s*y[k+n1];

t2 = s*x[k+n1] + c*y[k+n1];

x[k+n1] = x[k] - t1;

y[k+n1] = y[k] - t2;

x[k] = x[k] + t1;

y[k] = y[k] + t2;

}

}

}

return;

}

152 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

2.3.4.2.2 Decimation-in-Frequency (DIF) Radix-2 FFT
27

The radix-2 decimation-in-frequency and decimation-in-time (Section 2.3.4.2.1) fast Fourier transforms
(FFTs) are the simplest FFT algorithms (Section 2.3.1). Like all FFTs, they compute the discrete Fourier
transform (DFT) (Section 2.1.1)

X (k) =
∑N−1

n=0

(
x (n) e−(j 2πnk

N)
)

=
∑N−1

n=0

(
x (n) Wnk

N

) (2.16)

where for notational convenience W k
N = e−(j 2πk

N). FFT algorithms gain their speed by reusing the results
of smaller, intermediate computations to compute multiple DFT frequency outputs.

2.3.4.2.2.1 Decimation in frequency

The radix-2 decimation-in-frequency algorithm rearranges the discrete Fourier transform (DFT) equa-
tion (2.16) into two parts: computation of the even-numbered discrete-frequency indices X (k) for
k = [0, 2, 4, . . . , N − 2] (or X (2r) as in (2.17)) and computation of the odd-numbered indices k =
[1, 3, 5, . . . , N − 1] (or X (2r + 1) as in (2.18))

X (2r) =
∑N−1

n=0

(
x (n) W 2rn

N

)
=

∑N
2 −1

n=0

(
x (n) W 2rn

N

)
+
∑N

2 −1
n=0

(
x
(
n + N

2

)
W

2r(n+ N
2)

N

)
=

∑N
2 −1

n=0

(
x (n) W 2rn

N

)
+
∑N

2 −1
n=0

(
x
(
n + N

2

)
W 2rn

N 1
)

=
∑N

2 −1
n=0

((
x (n) + x

(
n + N

2

))
W rn

N
2

)
= DFT N

2

[
x (n) + x

(
n + N

2

)]
(2.17)

X (2r + 1) =
∑N−1

n=0

(
x (n) W

(2r+1)n
N

)
=

∑N
2 −1

n=0

((
x (n) + W

N
2

N x
(
n + N

2

))
W

(2r+1)n
N

)
=

∑N
2 −1

n=0

(((
x (n)− x

(
n + N

2

))
Wn

N

)
W rn

N
2

)
= DFT N

2

[(
x (n)− x

(
n + N

2

))
Wn

N

]
(2.18)

The mathematical simpli�cations in (2.17) and (2.18) reveal that both the even-indexed and odd-indexed
frequency outputs X (k) can each be computed by a length-N

2 DFT. The inputs to these DFTs are sums or
di�erences of the �rst and second halves of the input signal, respectively, where the input to the short DFT

producing the odd-indexed frequencies is multiplied by a so-called twiddle factor termW k
N = e−(j 2πk

N). This
is called a decimation in frequency because the frequency samples are computed separately in alternating
groups, and a radix-2 algorithm because there are two groups. Figure 2.33 graphically illustrates this form
of the DFT computation. This conversion of the full DFT into a series of shorter DFTs with a simple
preprocessing step gives the decimation-in-frequency FFT its computational savings.

27This content is available online at <http://cnx.org/content/m12018/1.6/>.

153

Figure 2.33: Decimation in frequency of a length-N DFT into two length-N
2

DFTs preceded by a
preprocessing stage.

Whereas direct computation of all N DFT frequencies according to the DFT equation (Section 2.1.1)
would require N2 complex multiplies and N2−N complex additions (for complex-valued data), by breaking
the computation into two short-length DFTs with some preliminary combining of the data, as illustrated in
Figure 2.33, the computational cost is now

New Operation Counts

• 2
(

N
2

)2
+ N = N2

2 + N
2 complex multiplies

• 2N
2

(
N
2 − 1

)
+ N = N2

2 complex additions

This simple manipulation has reduced the total computational cost of the DFT by almost a factor of two!
The initial combining operations for both short-length DFTs involve parallel groups of two time samples,

x (n) and x
(
n + N

2

)
. One of these so-called butter�y operations is illustrated in Figure 2.34. There are N

2
butter�ies per stage, each requiring a complex addition and subtraction followed by one twiddle-factor

multiplication by Wn
N = e−(j 2πn

N) on the lower output branch.

154 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

Figure 2.34: DIF butter�y: twiddle factor after length-2 DFT

It is worthwhile to note that the initial add/subtract part of the DIF butter�y is actually a length-2
DFT! The theory of multi-dimensional index maps (Section 2.3.6) shows that this must be the case, and
that FFTs of any factorable length may consist of successive stages of shorter-length FFTs with twiddle-factor
multiplications in between. It is also worth noting that this butter�y di�ers from the decimation-in-time
radix-2 butter�y (Figure 2.31) in that the twiddle factor multiplication occurs after the combining.

2.3.4.2.2.2 Radix-2 decimation-in-frequency algorithm

The same radix-2 decimation in frequency can be applied recursively to the two length-N
2 DFT (Sec-

tion 2.1.1)s to save additional computation. When successively applied until the shorter and shorter DFTs
reach length-2, the result is the radix-2 decimation-in-frequency FFT algorithm (Figure 2.35).

Figure 2.35: Radix-2 decimation-in-frequency FFT for a length-8 signal

155

The full radix-2 decimation-in-frequency decomposition illustrated in Figure 2.35 requires M = log2N
stages, each with N

2 butter�ies per stage. Each butter�y requires 1 complex multiply and 2 adds per butter�y.
The total cost of the algorithm is thus

Computational cost of radix-2 DIF FFT

• N
2 log2N complex multiplies

• Nlog2N complex adds

This is a remarkable savings over direct computation of the DFT. For example, a length-1024 DFT would
require 1048576 complex multiplications and 1047552 complex additions with direct computation, but only
5120 complex multiplications and 10240 complex additions using the radix-2 FFT, a savings by a factor
of 100 or more. The relative savings increase with longer FFT lengths, and are less for shorter lengths.
Modest additional reductions in computation can be achieved by noting that certain twiddle factors, namely

W 0
N , W

N
2

N , W
N
4

N , W
N
8

N , W
3N
8

N , require no multiplications, or fewer real multiplies than other ones. By
implementing special butter�ies for these twiddle factors as discussed in FFT algorithm and programming
tricks (Section 2.3.5), the computational cost of the radix-2 decimation-in-frequency FFT can be reduced to

• 2Nlog2N − 7N + 12 real multiplies
• 3Nlog2N − 3N + 4 real additions

The decimation-in-frequency FFT is a �ow-graph reversal of the decimation-in-time (Section 2.3.4.2.1) FFT:
it has the same twiddle factors (in reverse pattern) and the same operation counts.

Note: In a decimation-in-frequency radix-2 FFT as illustrated in Figure 2.35, the output is in
bit-reversed order (hence "decimation-in-frequency"). That is, if the frequency-sample index n is
written as a binary number, the order is that binary number reversed. The bit-reversal process is
illustrated here (Example 2.3: N=8).

It is important to note that, if the input data are in order before beginning the FFT computations, the
outputs of each butter�y throughout the computation can be placed in the same memory locations from
which the inputs were fetched, resulting in an in-place algorithm that requires no extra memory to perform
the FFT. Most FFT implementations are in-place, and overwrite the input data with the intermediate values
and �nally the output.

2.3.4.2.3 Alternate FFT Structures
28

Bit-reversing (Section 2.3.4.2.1) the input in decimation-in-time (DIT) FFTs (Section 2.3.4.2.1) or the output
in decimation-in-frequency (DIF) FFTs (Section 2.3.4.2.2) can sometimes be inconvenient or ine�cient. For
such situations, alternate FFT structures have been developed. Such structures involve the same mathemat-
ical computations as the standard algorithms, but alter the memory locations in which intermediate values
are stored or the order of computation of the FFT butter�ies (Section 2.3.4.2.1).

The structure in Figure 2.36 computes a decimation-in-frequency FFT (Section 2.3.4.2.2), but remaps
the memory usage so that the input is bit-reversed (Section 2.3.4.2.1), and the output is in-order as in the
conventional decimation-in-time FFT (Section 2.3.4.2.1). This alternate structure is still considered a DIF
FFT because the twiddle factors (Section 2.3.4.2.1) are applied as in the DIF FFT (Section 2.3.4.2.2). This
structure is useful if for some reason the DIF butter�y is preferred but it is easier to bit-reverse the input.

28This content is available online at <http://cnx.org/content/m12012/1.6/>.

156 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

Figure 2.36: Decimation-in-frequency radix-2 FFT (Section 2.3.4.2.2) with bit-reversed input. This
is an in-place (Section 2.3.4.2.1) algorithm in which the same memory can be reused throughout the
computation.

There is a similar structure for the decimation-in-time FFT (Section 2.3.4.2.1) with in-order inputs and
bit-reversed frequencies. This structure can be useful for fast convolution (Section 2.4) on machines that favor
decimation-in-time algorithms because the �lter can be stored in bit-reverse order, and then the inverse FFT
returns an in-order result without ever bit-reversing any data. As discussed in E�cient FFT Programming
Tricks (Section 2.3.5), this may save several percent of the execution time.

The structure in Figure 2.37 implements a decimation-in-frequency FFT (Section 2.3.4.2.2) that has both
input and output in order. It thus avoids the need for bit-reversing altogether. Unfortunately, it destroys the
in-place (Section 2.3.4.2.1) structure somewhat, making an FFT program more complicated and requiring
more memory; on most machines the resulting cost exceeds the bene�ts. This structure can be computed in
place if two butter�ies are computed simultaneously.

157

Figure 2.37: Decimation-in-frequency radix-2 FFT with in-order input and output. It can be computed
in-place if two butter�ies are computed simultaneously.

The structure in Figure 2.38 has a constant geometry; the connections between memory locations are
identical in each FFT stage (Section 2.3.4.2.1). Since it is not in-place and requires bit-reversal, it is
inconvenient for software implementation, but can be attractive for a highly parallel hardware implementation
because the connections between stages can be hardwired. An analogous structure exists that has bit-reversed
inputs and in-order outputs.

158 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

Figure 2.38: This constant-geometry structure has the same interconnect pattern from stage to stage.
This structure is sometimes useful for special hardware.

2.3.4.3 Radix-4 FFT Algorithms
29

The radix-4 decimation-in-time (Section 2.3.4.2.1) and decimation-in-frequency (Section 2.3.4.2.2) fast
Fourier transforms (FFTs) (Section 2.3.1) gain their speed by reusing the results of smaller, intermedi-
ate computations to compute multiple DFT frequency outputs. The radix-4 decimation-in-time algorithm
rearranges the discrete Fourier transform (DFT) equation (Section 2.1.1) into four parts: sums over all groups
of every fourth discrete-time index n = [0, 4, 8, . . . , N − 4], n = [1, 5, 9, . . . , N − 3], n = [2, 6, 10, . . . , N − 2]
and n = [3, 7, 11, . . . , N − 1] as in (2.19). (This works out only when the FFT length is a multiple of four.)
Just as in the radix-2 decimation-in-time FFT (Section 2.3.4.2.1), further mathematical manipulation shows
that the length-N DFT can be computed as the sum of the outputs of four length-N

4 DFTs, of the even-
indexed and odd-indexed discrete-time samples, respectively, where three of them are multiplied by so-called

twiddle factors W k
N = e−(j 2πk

N), W 2k
N , and W 3k

N .

29This content is available online at <http://cnx.org/content/m12027/1.4/>.

159

X (k) =
∑N−1

n=0

(
x (n) e−(j 2πnk

N)
)

=
∑N

4
−1

n=0

(
x (4n) e−(j

2π(4n)k
N)

)
+∑N

4
−1

n=0

(
x (4n + 1) e−(j

2π(4n+1)k
N)

)
+

∑N
4
−1

n=0

(
x (4n + 2) e−(j

2π(4n+2)k
N)

)
+∑N

4
−1

n=0

(
x (4n + 3) e−(j

2π(4n+3)k
N)

)
= DFT N

4
[x (4n)] + W k

NDFT N
4

[x (4n + 1)] +

W 2k
N DFT N

4
[x (4n + 2)] + W 3k

N DFT N
4

[x (4n + 3)]

(2.19)

This is called a decimation in time because the time samples are rearranged in alternating groups,
and a radix-4 algorithm because there are four groups. Figure 2.39 (Radix-4 DIT structure) graphically
illustrates this form of the DFT computation.

160 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

Radix-4 DIT structure

Figure 2.39: Decimation in time of a length-N DFT into four length-N
4
DFTs followed by a combining

stage.

161

Due to the periodicity with N
4 of the short-length DFTs, their outputs for frequency-sample k are reused

to compute X (k), X
(
k + N

4

)
, X

(
k + N

2

)
, and X

(
k + 3N

4

)
. It is this reuse that gives the radix-4 FFT

its e�ciency. The computations involved with each group of four frequency samples constitute the radix-
4 butter�y, which is shown in Figure 2.40. Through further rearrangement, it can be shown that this
computation can be simpli�ed to three twiddle-factor multiplies and a length-4 DFT! The theory of multi-
dimensional index maps (Section 2.3.6) shows that this must be the case, and that FFTs of any factorable
length may consist of successive stages of shorter-length FFTs with twiddle-factor multiplications in between.
The length-4 DFT requires no multiplies and only eight complex additions (this e�cient computation can
be derived using a radix-2 FFT (Section 2.3.4.2.1)).

(a) (b)

Figure 2.40: The radix-4 DIT butter�y can be simpli�ed to a length-4 DFT preceded by three
twiddle-factor multiplies.

If the FFT length N = 4M , the shorter-length DFTs can be further decomposed recursively in the same
manner to produce the full radix-4 decimation-in-time FFT. As in the radix-2 decimation-in-time FFT
(Section 2.3.4.2.1), each stage of decomposition creates additional savings in computation. To determine the

total computational cost of the radix-4 FFT, note that there are M = log4N = log2N
2 stages, each with N

4
butter�ies per stage. Each radix-4 butter�y requires 3 complex multiplies and 8 complex additions. The
total cost is then

Radix-4 FFT Operation Counts

• 3N
4

log2N
2 = 3

8Nlog2N complex multiplies (75% of a radix-2 FFT)

• 8N
4

log2N
2 = Nlog2N complex adds (same as a radix-2 FFT)

The radix-4 FFT requires only 75% as many complex multiplies as the radix-2 (Section 2.3.4.2.1) FFTs,
although it uses the same number of complex additions. These additional savings make it a widely-used
FFT algorithm.

The decimation-in-time operation regroups the input samples at each successive stage of decomposition,
resulting in a "digit-reversed" input order. That is, if the time-sample index n is written as a base-4 number,
the order is that base-4 number reversed. The digit-reversal process is illustrated for a length-N = 64
example below.

Example 2.4: N = 64 = 4�3

162 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

Original Number Original Digit Order Reversed Digit Order Digit-Reversed Number

0 000 000 0

1 001 100 16

2 002 200 32

3 003 300 48

4 010 010 4

5 011 110 20
...

...
...

...

It is important to note that, if the input signal data are placed in digit-reversed order before beginning the
FFT computations, the outputs of each butter�y throughout the computation can be placed in the same
memory locations from which the inputs were fetched, resulting in an in-place algorithm that requires
no extra memory to perform the FFT. Most FFT implementations are in-place, and overwrite the input
data with the intermediate values and �nally the output. A slight rearrangement within the radix-4 FFT
introduced by Burrus[5] allows the inputs to be arranged in bit-reversed (Section 2.3.4.2.1) rather than
digit-reversed order.

A radix-4 decimation-in-frequency (Section 2.3.4.2.2) FFT can be derived similarly to the radix-2 DIF
FFT (Section 2.3.4.2.2), by separately computing all four groups of every fourth output frequency sample.
The DIF radix-4 FFT is a �ow-graph reversal of the DIT radix-4 FFT, with the same operation counts
and twiddle factors in the reversed order. The output ends up in digit-reversed order for an in-place DIF
algorithm.

Exercise 2.5 (Solution on p. 189.)

How do we derive a radix-4 algorithm when N = 4M2?

2.3.4.4 Split-radix FFT Algorithms
30

The split-radix algorithm, �rst clearly described and named by Duhamel and Hollman[11] in 1984, required
fewer total multiply and add operations operations than any previous power-of-two algorithm. (Yavne[31]
�rst derived essentially the same algorithm in 1968, but the description was so atypical that the work was
largely neglected.) For a time many FFT experts thought it to be optimal in terms of total complexity, but
even more e�cient variations have more recently been discovered by Johnson and Frigo[21].

The split-radix algorithm can be derived by careful examination of the radix-2 (Section 2.3.4.2.1) and
radix-4 (Section 2.3.4.3) �owgraphs as in Figure 1 below. While in most places the radix-4 (Section 2.3.4.3)
algorithm has fewer nontrivial twiddle factors, in some places the radix-2 (Section 2.3.4.2.1) actually lacks
twiddle factors present in the radix-4 (Section 2.3.4.3) structure or those twiddle factors simplify to multi-
plication by −j, which actually requires only additions. By mixing radix-2 (Section 2.3.4.2.1) and radix-4
(Section 2.3.4.3) computations appropriately, an algorithm of lower complexity than either can be derived.

30This content is available online at <http://cnx.org/content/m12031/1.5/>.

163

Motivation for split-radix algorithm

(a) radix-2 (b) radix-4

Figure 2.41: See Decimation-in-Time (DIT) Radix-2 FFT (Section 2.3.4.2.1) and Radix-4 FFT Algo-
rithms (Section 2.3.4.3) for more information on these algorithms.

An alternative derivation notes that radix-2 butter�ies of the form shown in Figure 2 can merge twiddle
factors from two successive stages to eliminate one-third of them; hence, the split-radix algorithm requires
only about two-thirds as many multiplications as a radix-2 FFT.

(a) (b)

Figure 2.42: Note that these two butter�ies are equivalent

164 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

The split-radix algorithm can also be derived by mixing the radix-2 (Section 2.3.4.2.1) and radix-4
(Section 2.3.4.3) decompositions.

DIT Split-radix derivation

X (k) =
∑N

2
−1

n=0

(
x (2n) e−(j

2π(2n)k
N)

)
+
∑N

4
−1

n=0

(
x (4n + 1) e−(j

2π(4n+1)k
N)

)
+∑N

4
−1

n=0

(
x (4n + 3) e−(j

2π(4n+3)k
N)

)
= DFT N

2
[x (2n)] + W k

NDFT N
4
x (4n + 1) +

W 3k
N DFT N

4
x (4n + 3)

(2.20)

Figure 3 illustrates the resulting split-radix butter�y.

Decimation-in-Time Split-Radix Butter�y

Figure 2.43: The split-radix butter�y mixes radix-2 and radix-4 decompositions and is L-shaped

Further decomposition of the half- and quarter-length DFTs yields the full split-radix algorithm. The
mix of di�erent-length FFTs in di�erent parts of the �owgraph results in a somewhat irregular algorithm;
Sorensen et al.[18] show how to adjust the computation such that the data retains the simpler radix-2
bit-reverse order. A decimation-in-frequency split-radix FFT can be derived analogously.

165

Figure 2.44: The split-radix transform has L-shaped butter�ies

The multiplicative complexity of the split-radix algorithm is only about two-thirds that of the radix-2
FFT, and is better than the radix-4 FFT or any higher power-of-two radix as well. The additions within
the complex twiddle-factor multiplies are similarly reduced, but since the underlying butter�y tree remains
the same in all power-of-two algorithms, the butter�y additions remain the same and the overall reduction
in additions is much less.

Operation Counts

Complex M/As Real M/As (4/2) Real M/As (3/3)

Multiplies O
[

N
3 log2N

]
4
3Nlog2N − 38

9 N + 6 + 2
9 (−1)M

Nlog2N − 3N + 4

Additions O [Nlog2N] 8
3Nlog2N − 16

9 N + 2 + 2
9 (−1)M 3Nlog2N − 3N + 4

Comments

166 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

• The split-radix algorithm has a somewhat irregular structure. Successful progams have been written
(Sorensen[18]) for uni-processor machines, but it may be di�cult to e�ciently code the split-radix
algorithm for vector or multi-processor machines.

• G. Bruun's algorithm[2] requires only N − 2 more operations than the split-radix algorithm and has a
regular structure, so it might be better for multi-processor or special-purpose hardware.

• The execution time of FFT programs generally depends more on compiler- or hardware-friendly soft-
ware design than on the exact computational complexity. See E�cient FFT Algorithm and Program-
ming Tricks (Section 2.3.5) for further pointers and links to good code.

2.3.5 E�cient FFT Algorithm and Programming Tricks31

The use of FFT algorithms (Section 2.3.1) such as the radix-2 decimation-in-time (Section 2.3.4.2.1) or
decimation-in-frequency (Section 2.3.4.2.2) methods result in tremendous savings in computations when
computing the discrete Fourier transform (Section 2.1.1). While most of the speed-up of FFTs comes from
this, careful implementation can provide additional savings ranging from a few percent to several-fold in-
creases in program speed.

2.3.5.1 Precompute twiddle factors

The twiddle factor (Section 2.3.4.2.1), or W k
N = e−(j 2πk

N), terms that multiply the intermediate data in
the FFT algorithms (Section 2.3.1) consist of cosines and sines that each take the equivalent of several
multiplies to compute. However, at most N unique twiddle factors can appear in any FFT or DFT algorithm.
(For example, in the radix-2 decimation-in-time FFT (Section 2.3.4.2.1), only N

2 twiddle factors ∀k, k ={
0, 1, 2, . . . , N

2 − 1
}

:
(
WN

k
)
are used.) These twiddle factors can be precomputed once and stored in an

array in computer memory, and accessed in the FFT algorithm by table lookup. This simple technique
yields very substantial savings and is almost always used in practice.

2.3.5.2 Compiler-friendly programming

On most computers, only some of the total computation time of an FFT is spent performing the FFT
butter�y computations; determining indices, loading and storing data, computing loop parameters and
other operations consume the majority of cycles. Careful programming that allows the compiler to generate
e�cient code can make a several-fold improvement in the run-time of an FFT. The best choice of radix in
terms of program speed may depend more on characteristics of the hardware (such as the number of CPU
registers) or compiler than on the exact number of computations. Very often the manufacturer's library
codes are carefully crafted by experts who know intimately both the hardware and compiler architecture and
how to get the most performance out of them, so use of well-written FFT libraries is generally recommended.
Certain freely available programs and libraries are also very good. Perhaps the best current general-purpose
library is the FFTW32 package; information can be found at http://www.�tw.org33 . A paper by Frigo and
Johnson[13] describes many of the key issues in developing compiler-friendly code.

2.3.5.3 Program in assembly language

While compilers continue to improve, FFT programs written directly in the assembly language of a speci�c
machine are often several times faster than the best compiled code. This is particularly true for DSP
microprocessors, which have special instructions for accelerating FFTs that compilers don't use. (I have
myself seen di�erences of up to 26 to 1 in favor of assembly!) Very often, FFTs in the manufacturer's or
high-performance third-party libraries are hand-coded in assembly. For DSP microprocessors, the codes

31This content is available online at <http://cnx.org/content/m12021/1.6/>.
32http://www.�tw.org
33http://www.�tw.org

167

developed by Meyer, Schuessler, and Schwarz[24] are perhaps the best ever developed; while the particular
processors are now obsolete, the techniques remain equally relevant today. Most DSP processors provide
special instructions and a hardware design favoring the radix-2 decimation-in-time algorithm, which is thus
generally fastest on these machines.

2.3.5.4 Special hardware

Some processors have special hardware accelerators or co-processors speci�cally designed to accelerate FFT
computations. For example, AMI Semiconductor's34 Toccata35 ultra-low-power DSP microprocessor family,
which is widely used in digital hearing aids, have on-chip FFT accelerators; it is always faster and more
power-e�cient to use such accelerators and whatever radix they prefer.

In a surprising number of applications, almost all of the computations are FFTs. A number of special-
purpose chips are designed to speci�cally compute FFTs, and are used in specialized high-performance
applications such as radar systems. Other systems, such as OFDM36 -based communications receivers, have
special FFT hardware built into the digital receiver circuit. Such hardware can run many times faster, with
much less power consumption, than FFT programs on general-purpose processors.

2.3.5.5 E�ective memory management

Cache misses or excessive data movement between registers and memory can greatly slow down an FFT
computation. E�cient programs such as the FFTW package37 are carefully designed to minimize these
ine�ciences. In-place algorithms (Section 2.3.4.2.1) reuse the data memory throughout the transform, which
can reduce cache misses for longer lengths.

2.3.5.6 Real-valued FFTs

FFTs of real-valued signals require only half as many computations as with complex-valued data. There are
several methods for reducing the computation, which are described in more detail in Sorensen et al.[19]

1. Use DFT symmetry properties (Section 2.1.1) to do two real-valued DFTs at once with one FFT
program

2. Perform one stage of the radix-2 decimation-in-time (Section 2.3.4.2.1) decomposition and compute
the two length-N

2 DFTs using the above approach.
3. Use a direct real-valued FFT algorithm; see H.V. Sorensen et.al.[19]

2.3.5.7 Special cases

Occasionally only certain DFT frequencies are needed, the input signal values are mostly zero, the sig-
nal is real-valued (as discussed above), or other special conditions exist for which faster algorithms can be
developed. Sorensen and Burrus[27] describe slightly faster algorithms for pruned38 or zero-padded (Sec-
tion 2.2.1.5: Zero-Padding) data. Goertzel's algorithm (Section 2.3.3) is useful when only a few DFT outputs
are needed. The running FFT (Section 2.3.2) can be faster when DFTs of highly overlapped blocks of data
are needed, as in a spectrogram (Section 2.2.3).

2.3.5.8 Higher-radix algorithms

Higher-radix algorithms, such as the radix-4 (Section 2.3.4.3), radix-8, or split-radix (Section 2.3.4.4) FFTs,
require fewer computations and can produce modest but worthwhile savings. Even the split-radix FFT

34http://www.amis.com
35http://www.amis.com/products/dsp/toccata_plus.html
36http://en.wikipedia.org/wiki/OFDM
37http://www.�tw.org
38http://www.�tw.org/pruned.html

168 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

(Section 2.3.4.4) reduces the multiplications by only 33% and the additions by a much lesser amount relative
to the radix-2 FFTs (Section 2.3.4.2.1); signi�cant improvements in program speed are often due to implicit
loop-unrolling39 or other compiler bene�ts than from the computational reduction itself!

2.3.5.9 Fast bit-reversal

Bit-reversing (Section 2.3.4.2.1) the input or output data can consume several percent of the total run-time
of an FFT program. Several fast bit-reversal algorithms have been developed that can reduce this to two
percent or less, including the method published by D.M.W. Evans[12].

2.3.5.10 Trade additions for multiplications

When FFTs �rst became widely used, hardware multipliers were relatively rare on digital computers, and
multiplications generally required many more cycles than additions. Methods to reduce multiplications,
even at the expense of a substantial increase in additions, were often bene�cial. The prime factor algorithms
(Section 2.3.7) and the Winograd Fourier transform algorithms (Section 2.6), which required fewer multiplies
and considerably more additions than the power-of-two-length algorithms (Section 2.3.4.1), were developed
during this period. Current processors generally have high-speed pipelined hardware multipliers, so trading
multiplies for additions is often no longer bene�cial. In particular, most machines now support single-cycle
multiply-accumulate (MAC) operations, so balancing the number of multiplies and adds and combining them
into single-cycle MACs generally results in the fastest code. Thus, the prime-factor and Winograd FFTs are
rarely used today unless the application requires FFTs of a speci�c length.

It is possible to implement a complex multiply with 3 real multiplies and 5 real adds rather than the
usual 4 real multiplies and 2 real adds:

(C + jS) (X + jY) = CX − SY + j (CY + SX)

but alernatively
Z = C (X − Y)

D = C + S

E = C − S

CX − SY = EY + Z

CY + SX = DX − Z

In an FFT, D and E come entirely from the twiddle factors, so they can be precomputed and stored in a
look-up table. This reduces the cost of the complex twiddle-factor multiply to 3 real multiplies and 3 real
adds, or one less and one more, respectively, than the conventional 4/2 computation.

2.3.5.11 Special butter�ies

Certain twiddle factors, namely W 0
N = 1, W

N
2

N , W
N
4

N , W
N
8

N , W
3N
8

N , etc., can be implemented with no additional
operations, or with fewer real operations than a general complex multiply. Programs that specially implement
such butter�ies in the most e�cient manner throughout the algorithm can reduce the computational cost
by up to several N multiplies and additions in a length-N FFT.

39http://en.wikipedia.org/wiki/Loop_unrolling

169

2.3.5.12 Practical Perspective

When optimizing FFTs for speed, it can be important to maintain perspective on the bene�ts that can be
expected from any given optimization. The following list categorizes the various techniques by potential
bene�t; these will be somewhat situation- and machine-dependent, but clearly one should begin with the
most signi�cant and put the most e�ort where the pay-o� is likely to be largest.

Methods to speed up computation of DFTs

• Tremendous Savings -

1. FFT (N
log2N savings)

• Substantial Savings - (≥ 2)

1. Table lookup of cosine/sine
2. Compiler tricks/good programming
3. Assembly-language programming
4. Special-purpose hardware
5. Real-data FFT for real data (factor of 2)
6. Special cases

• Minor Savings -

1. radix-4 (Section 2.3.4.3), split-radix (Section 2.3.4.4) (-10% - +30%)
2. special butter�ies
3. 3-real-multiplication complex multiply
4. Fast bit-reversal (up to 6%)

fact: On general-purpose machines, computation is only part of the total run time. Address
generation, indexing, data shu�ing, and memory access take up much or most of the cycles.

fact: A well-written radix-2 (Section 2.3.4.2.1) program will run much faster than a poorly
written split-radix (Section 2.3.4.4) program!

2.3.6 Multidimensional Index Maps40

2.3.6.1 Multidimensional Index Maps for DIF and DIT algorithms

2.3.6.1.1 Decimation-in-time algorithm

Radix-2 DIT (Section 2.3.4.2.1):

X (k) =
N−1∑
n=0

(
x (n) Wnk

N

)
=

N
2 −1∑
n=0

(
x (2n) W 2nk

N

)
+

N
2 −1∑
n=0

(
x (2n + 1) W

(2n+1)k
N

)
Formalization: Let n = n1 + 2n2: n1 = [0, 1]: n2 =

[
0, 1, 2, . . . , N

2 − 1
]

X (k) =
N−1∑
n=0

(
x (n) Wnk

N

)
=

1∑
n1=0

N
2 −1∑

n2=0

(
x (n1 + 2n2) W

(n1+2n2)k
N

)
Also, let k = N

2 k1 + k2: k1 = [0, 1]: k2 =
[
0, 1, 2, . . . , N

2 − 1
]

Note: As long as there is a one-to-one correspondence between the original indices [n, k] =
[0, 1, 2, . . . , N − 1] and the n, k generated by the index map, the computation is the same; only the
order in which the sums are done is changed.

40This content is available online at <http://cnx.org/content/m12025/1.3/>.

170 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

Rewriting the DFT (2.5) formula in terms of index map n = n1 + 2n2, k = N
2 k1 + k2:

X (k) = X
(

N
2 k1 + k2

)
=

∑N−1
n=0

(
x (n) W

n(N
2 k2+k2)

N

)
=

∑1
n1=0

(∑N
2 −1

n2=0

(
x (n1 + 2n2) W

(n1+n2)(N
2 k1+k2)

N

)
=

∑1
n1=0

(∑N
2 −1

n2=0

(
x ([n1, n2])W

N
2 n1k2

N Wn1k2
N WNn2k1

N W 2n2k2
N

))
=

∑1
n1=0

(∑N
2 −1

n2=0

(
x ([n1, n2])Wn1k2

2 Wn1k2
N 1Wn2k2

N
2

))
=

∑1
n1=0

(
Wn1k2

2

(
Wn1k2

N

∑N
2 1

n2=0

(
x ([n1, n2])Wn2k2

N
2

)))
(2.21)

Note: Key to FFT is choosing index map so that one of the cross-terms disappears!

Exercise 2.6
What is an index map for a radix-4 (Section 2.3.4.3) DIT algorithm?

Exercise 2.7
What is an index map for a radix-4 (Section 2.3.4.3) DIF algortihm?

Exercise 2.8
What is an index map for a radix-3 DIT algorithm? (N a multiple of 3)

For arbitrary composite N = N1N2, we can de�ne an index map

n = n1 + N1n2

k = N2k1 + k2

n1 = [0, 1, 2, . . . , N1 − 1]

k1 = [0, 1, 2, . . . , N1 − 1]

n2 = [0, 1, 2, . . . , N2 − 1]

k2 = [0, 1, 2, . . . , N2 − 1]

X (k) = X (k1, k2)

=
∑N1−1

n1=0

(∑N2−1
n2=0

(
x (n1, n2) WN2n1k1

N Wn1k2
N WNk1n2

N WN1n2k2
N

))
=

∑N1−1
n1=0

(∑N2−1
n2=0

(
x (n1, n2) Wn1k1

N1
Wn1k2

N 1Wn2k2
N2

))
= DFTn1,N1

[
Wn1k2

N DFTn2,N2 [x (n1, n2)]
] (2.22)

Computational cost in multipliesl "Common Factor Algorithm (CFA)"

• N1 length-N2 DFTs ⇒ N1N2
2

• N twiddle factors ⇒ N
• N2 length-N1 DFTs ⇒ N2N1

2

• Total - N1N2
2 + N1N2 + N2N1

2 = N (N1 + N2 + 1)

171

"Direct": N2 = N (N1N2)

Example 2.5

N1 = 16

N2 = 15

N = 240

direct = 2402 = 57600

CFA = 7680

Tremendous saving for any composite N

172 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

Pictorial Representations

(a) Emphasizes Multi-dimensional structure

(b) Emphasizes computer memory organization

(c) Easy to draw

Figure 2.45: n = n1 + 5n2, k = 3k1 + k2

173

Exercise 2.9
Can the composite CFAs be implemented in-place?

Exercise 2.10
What do we do with N = N1N2N3?

2.3.7 The Prime Factor Algorithm41

2.3.7.1 General Index Maps

n = (K1n1 + K2n2) modN

n = (K3k1 + K4k2) modN

n1 = [0, 1, . . . , N1 − 1]

k1 = [0, 1, . . . , N1 − 1]

n2 = [0, 1, . . . , N2 − 1]

k2 = [0, 1, . . . , N2 − 1]

The basic ideas is to simply reorder the DFT (2.5) computation to expose the redundancies in the DFT
(2.5), and exploit these to reduce computation!

Three conditions must be satis�ed to make this map (p. 173) serve our purposes

1. Each map must be one-to-one from 0 to N − 1, because we want to do the same computation, just in
a di�erent order.

2. The map must be cleverly chosen so that computation is reduced
3. The map should be chosen to make the short-length transforms be DFTs (2.5). (Not essential, since

fast algorithms for short-length DFT (2.5)-like computations could be developed, but it makes our
work easier.)

2.3.7.1.1 Conditions for one-to-oneness of general index map

2.3.7.1.1.1 Case I

N1, N2 relatively prime (greatest common denominator = 1) i.e. gcd (N1, N2) = 1
K1 = aN2 and/or K2 = bN1 and gcd (K1, N1) = 1, gcd (K2, N2) = 1

2.3.7.1.1.2 Case II

N1, N2 not relatively prime: gcd (N1, N2) > 1
K1 = aN2 and K2 6= bN1 and gcd (a,N1) = 1, gcd (K2, N2) = 1 or K1 6= aN2 and K2 = bN1 and

gcd (K1, N1) = 1, gcd (b, N2) = 1 where K1, K2, K3, K4, N1, N2, a, b integers

proof: Requires number-theory/abstract-algebra concepts. Reference: C.S. Burrus[3]

Note: Conditions of one-to-oneness must apply to both k and n

41This content is available online at <http://cnx.org/content/m12033/1.3/>.

174 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

2.3.7.1.2 Conditions for arithmetic savings

X (k1, k2) =
∑N1−1

n1=0

(∑N2−1
n2=0

(
x (n1, n2) W

(K1n1+K2n2)(K3k1+K4k2)
N

)
=

∑N1−1
n1=0

(∑N2−1
n2=0

(
x (n1, n2) WK1K3n1k1

N WK1K4n1k2
N WK2K3n2k1

N WK2K4n2k2
N

)) (2.23)

• (K1K4) modN = 0 exclusive or (K2K3) modN = 0 ⇒ Common Factor Algorithm (CFA). Then

X (k) = DFTNi [twiddle factorsDFTNj [x (n1, n2)]]

• (K1K4) modN and (K2K3) modN = 0 ⇒ Prime Factor Algorithm (PFA).

X (k) = DFTNi [DFTNj]

No twiddle factors!

fact: A PFA exists only and always for relatively prime N1, N2

2.3.7.1.3 Conditions for short-length transforms to be DFTs

(K1K3) modN = N2 and (K2K4) modN = N1

Note: Convenient choice giving a PFA

K1 = N2, K2 = N1, K3 = N2

((
N2

−1
)
modN1

)
modN1, K4 = N1

((
N1

−1
)
modN2

)
modN2 where(

N1
−1
)
modN2 is an integer such that

(
N1N1

−1
)
mod = 1

Example 2.6
N1 = 3, N2 = 5 N = 15

n = (5n1 + 3n2) mod15

k = (10k1 + 6k2) mod15

1. Checking Conditions for one-to-oneness -

5 = K1 = aN2 = 5a

3 = K2 = bN1 = 3b

gcd (5, 3) = 1

gcd (3, 5) = 1

10 = K3 = aN2 = 5a

6 = K4 = bN1 = 3b

gcd (10, 3) = 1

gcd (6, 5) = 1

175

2. Checking conditions for reduced computation -

(K1K4) mod15 = (5× 6) mod15 = 0

(K2K3) mod15 = (3× 10) mod15 = 0

3. Checking Conditions for making the short-length transforms be DFTS -

(K1K3) mod15 = (5× 10) mod15 = 5 = N2

(K2K4) mod15 = (3× 6) mod15 = 3 = N1

Therefore, this is a prime factor map.

2-D map

Figure 2.46: n = (5n1 + 3n2) mod15 and k = (10k1 + 6k2) mod15

Operation Counts

• N2 length- N1 DFTs +N1 length- N2 DFTs

N2N1
2 + N1N2

2 = N (N1 + N2)

complex multiplies

176 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

• Suppose N = N1N2N3 . . . NM

N (N1 + N2 + · · ·+ NM)

Complex multiplies

Different Strategies: radix-2 (Section 2.3.4.2.1), radix-4 (Section 2.3.4.3) eliminate all mul-
tiplies in short-length DFTs, but have twiddle factors: PFA eliminates all twiddle factors, but ends
up with multiplies in short-length DFTs (2.5). Surprisingly, total operation counts end up being
very similar for similar lengths.

2.4 Fast Convolution42

2.4.1 Fast Circular Convolution

Since,
N−1∑
m=0

(x (m) (h (n−m))modN) = y (n) isequivalenttoY (k) = X (k) H (k)

y (n) can be computed as y (n) = IDFT [DFT [x (n)]DFT [h (n)]]
Cost

• Direct

· N2 complex multiplies.
· N (N − 1) complex adds.

Via FFTs
• · 3 FFTs + N multipies.

· N + 3N
2 log2N complex multiplies.

· 3 (Nlog2N) complex adds.

If H (k) can be precomputed, cost is only 2 FFts + N multiplies.

2.4.2 Fast Linear Convolution

DFT (2.5) produces cicular convolution. For linear convolution, we must zero-pad sequences so that circular
wrap-around always wraps over zeros.

42This content is available online at <http://cnx.org/content/m12022/1.5/>.

177

Figure 2.47

To achieve linear convolution using fast circular convolution, we must use zero-padded DFTs of length
N ≥ L + M − 1

Figure 2.48

Choose shortest convenient N (usually smallest power-of-two greater than or equal to L + M − 1)

y (n) = IDFTN [DFTN [x (n)]DFTN [h (n)]]

note: There is some ine�ciency when compared to circular convolution due to longer zero-padded

178 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

DFTs (2.5). Still, O
(

N
log2N

)
savings over direct computation.

2.4.3 Running Convolution

Suppose L = ∞, as in a real time �lter application, or (L � M). There are e�cient block methods for
computing fast convolution.

2.4.3.1 Overlap-Save (OLS) Method

Note that if a length-M �lter h (n) is circularly convulved with a length-N segment of a signal x (n),

Figure 2.49

the �rst M − 1 samples are wrapped around and thus is incorrect. However, for M − 1 ≤ n ≤ N − 1,the
convolution is linear convolution, so these samples are correct. Thus N −M + 1 good outputs are produced
for each length-N circular convolution.

The Overlap-Save Method: Break long signal into successive blocks of N samples, each block overlapping
the previous block by M − 1 samples. Perform circular convolution of each block with �lter h (m). Discard
�rst M − 1 points in each output block, and concatenate the remaining points to create y (n).

179

Figure 2.50

Computation cost for a length-N equals 2n FFT per output sample is (assuming precomputed H (k)) 2
FFTs and N multiplies

2
(

N
2 log2N

)
+ N

N −M + 1
=

N (log2N + 1)
N −M + 1

complexmultiplies

180 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

2 (Nlog2N)
N −M + 1

=
2Nlog2N

N −M + 1
complexadds

Compare to M mults, M − 1 adds per output point for direct method. For a given M , optimal N can
be determined by �nding N minimizing operation counts. Usualy, optimal N is 4M ≤ Nopt ≤ 8M .

2.4.3.2 Overlap-Add (OLA) Method

Zero-pad length-L blocks by M − 1 samples.

Figure 2.51

Add successive blocks, overlapped by M−1 samples, so that the tails sum to produce the complete linear
convolution.

181

Figure 2.52

Computational Cost: Two length N = L + M − 1 FFTs and M mults and M − 1 adds per L output
points; essentially the sames as OLS method.

2.5 Chirp-z Transform43

Let zk = AW−k, where A = Aoe
jθo , W = Woe

−(jφo).

43This content is available online at <http://cnx.org/content/m12013/1.4/>.

182 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

We wish to compute M samples, k = [0, 1, 2, . . . ,M − 1] of

X (zk) =
N−1∑
n=0

(
x (n) zk

−n
)

=
N−1∑
n=0

(
x (n) A−nWnk

)

Figure 2.53

Note that (k − n)2 = n2 − 2nk + k2 ⇒ nk = 1
2

(
n2 + k2 − (k − n)2

)
, So

X (zk) =
N−1∑
n=0

(
x (n) A−nW

n2
2 W

k2
2 W

−((k−n)2)
2

)

183

= W
k2
2

N−1∑
n=0

(
x (n) A−nW

n2
2 W

−((k−n)2)
2

)
Thus, X (zk) can be compared by

1. Premultiply x (n) by AnW
n2
2 , n = [0, 1, . . . , N − 1] to make y (n)

2. Linearly convolve with W
−((k−n)2)

2

3. Post multiply by to get W
k2
2 to get X (zk).

1. (list, item 1, p. 183) and 3. (list, item 3, p. 183) require N and M operations respectively. 2. (list,
item 2, p. 183) can be performed e�ciently using fast convolution.

Figure 2.54

W
−
“

n2
2

”
is required only for − (N − 1) ≤ n ≤ M −1, so this linear convolution can be implemented with

L ≥ N + M − 1 FFTs.

note: Wrap W
−
“

n2
2

”
around L when implementing with circular convolution.

So, a weird-length DFT can be implemented relatively e�ciently using power-of-two algorithms via the
chirp-z transform.

Also useful for "zoom-FFTs".

2.6 FFTs of prime length and Rader's conversion44

The power-of-two FFT algorithms (Section 2.3.4.1), such as the radix-2 (Section 2.3.4.2.1) and radix-4
(Section 2.3.4.3) FFTs, and the common-factor (Section 2.3.6) and prime-factor (Section 2.3.7) FFTs, achieve
great reductions in computational complexity of the DFT (Section 2.1.1) when the length, N , is a composite

44This content is available online at <http://cnx.org/content/m12023/1.3/>.

184 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

number. DFTs of prime length are sometimes needed, however, particularly for the short-length DFTs in
common-factor or prime-factor algorithms. The methods described here, along with the composite-length
algorithms, allow fast computation of DFTs of any length.

There are two main ways of performing DFTs of prime length:

1. Rader's conversion, which is most e�cient, and the
2. Chirp-z transform (Section 2.5), which is simpler and more general.

Oddly enough, both work by turning prime-length DFTs into convolution! The resulting convolutions can
then be computed e�ciently by either

1. fast convolution (Section 2.4) via composite-length FFTs (simpler) or by
2. Winograd techniques (more e�cient)

2.6.1 Rader's Conversion

Rader's conversion is a one-dimensional index-mapping (Section 2.3.6) scheme that turns a length-N DFT
(2.5) (N prime) into a length-(N − 1) convolution and a few additions. Rader's conversion works only for
prime-length N .

An index map simply rearranges the order of the sum operation in the DFT de�nition (Section 2.1.1).
Because addition is a commutative operation, the same mathematical result is produced from any order, as
long as all of the same terms are added once and only once. (This is the condition that de�nes an index map.)
Unlike the multi-dimensional index maps (Section 2.3.6) used in deriving common factor (Section 2.3.6) and
prime-factor FFTs (Section 2.3.7), Rader's conversion uses a one-dimensional index map in a �nite group of
N integers: k = (rm) modN

2.6.1.1 Fact from number theory

If N is prime, there exists an integer "r" called a primitive root, such that the index map k = (rm) modN ,
m = [0, 1, 2, . . . , N − 2], uniquely generates all elements k = [1, 2, 3, . . . , N − 1]

Example 2.7
N = 5, r = 2 (

20
)
mod5 = 1

(
21
)
mod5 = 2

(
22
)
mod5 = 4

(
23
)
mod5 = 3

2.6.1.2 Another fact from number theory

For N prime, the inverse of r (i.e.
(
r−1r

)
modN = 1 is also a primitive root (call it r−1).

Example 2.8
N = 5, r = 2 r−1 = 3

(2× 3) mod5 = 1

185

(
30
)
mod5 = 1

(
31
)
mod5 = 3

(
32
)
mod5 = 4

(
33
)
mod5 = 2

So why do we care? Because we can use these facts to turn a DFT (2.5) into a convolution!

2.6.1.3 Rader's Conversion

Let ∀mn, m = [0, 1, . . . , N − 2] ∧ n ∈ [1, 2, . . . , N − 1] : (n = (r−m) modN), ∀pk, p = [0, 1, . . . , N − 2] ∧ k ∈
[1, 2, . . . , N − 1] : (k = (rp) modN)

X (k) =
N−1∑
n=0

(
x (n) Wnk

N

)
=

 x (0) +
∑N−1

n=1

(
x (n) Wnk

N

)
if k 6= 0∑N−1

n=0 (x (n)) if k = 0

where for convenience Wnk
N = e−(j 2πnk

N) in the DFT equation. For k 6= 0

X ((rp) modN) =
∑N−2

m=0

(
x ((r−m) modN) W rpr−m

)
+ x (0)

=
∑N−2

m=0

(
x ((r−m) modN) W rp−m

)
+ x (0)

= x (0) + x
((

r−l
)
modN

)
∗W rl

(2.24)

where l = [0, 1, . . . , N − 2]

Example 2.9
N = 5, r = 2, r−1 = 3 

X (0)

X (1)

X (2)

X (3)

X (4)


=



0 0 0 0 0

0 1 2 3 4

0 2 4 1 3

0 3 1 4 2

0 4 3 2 1





x (0)

x (1)

x (2)

x (3)

x (4)




X (0)

X (1)

X (2)

X (4)

X (3)


=



0 0 0 0 0

0 1 3 4 2

0 2 1 3 4

0 4 2 1 1

0 3 4 2 3





x (0)

x (1)

x (3)

x (4)

x (2)



186 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

where for visibility the matrix entries represent only the power, m of the corresponding DFT term
Wm

N Note that the 4-by-4 circulant matrix45
1 3 4 2

2 1 3 4

4 2 1 1

3 4 2 3


corresponds to a length-4 circular convolution.

Rader's conversion turns a prime-length DFT (2.5) into a few adds and a composite-length (N − 1) circular
convolution, which can be computed e�ciently using either

1. fast convolution (Section 2.4) via FFT and IFFT
2. index-mapped convolution algorithms and short Winograd convolution alogrithms. (Rather compli-

cated, and trades fewer multiplies for many more adds, which may not be worthwile on most modern
processors.) See R.C. Agarwal and J.W. Cooley [1]

2.6.2 Winograd minimum-multiply convolution and DFT algorithms

S. Winograd has proved that a length-N circular or linear convolution or DFT (2.5) requires less than
2N multiplies (for real data), or 4N real multiplies for complex data. (This doesn't count multiplies by
rational fractions, like 3 or 1

N or 5
17 , which can be computed with additions and one overall scaling factor.)

Furthermore, Winograd showed how to construct algorithms achieving these counts. Winograd prime-length
DFTs and convolutions have the following characteristics:

1. Extremely e�cient for small N (N < 20)
2. The number of adds becomes huge for large N .

Thus Winograd's minimum-multiply FFT's are useful only for small N . They are very important for Prime-
Factor Algorithms (Section 2.3.7), which generally use Winograd modules to implement the short-length
DFTs. Tables giving the multiplies and adds necessary to compute Winograd FFTs for various lengths can
be found in C.S. Burrus (1988)[4]. Tables and FORTRAN and TMS32010 programs for these short-length
transforms can be found in C.S. Burrus and T.W. Parks (1985)[6]. The theory and derivation of these
algorithms is quite elegant but requires substantial background in number theory and abstract algebra.
Fortunately for the practitioner, all of the short algorithms one is likely to need have already been derived
and can simply be looked up without mastering the details of their derivation.

2.6.3 Winograd Fourier Transform Algorithm (WFTA)

The Winograd Fourier Transform Algorithm (WFTA) is a technique that recombines the short Winograd
modules in a prime-factor FFT (Section 2.3.7) into a composite-N structure with fewer multiplies but more
adds. While theoretically interesting, WFTAs are complicated and di�erent for every length, and on modern
processors with hardware multipliers the trade of multiplies for many more adds is very rarely useful in
practice today.

45http://en.wikipedia.org/wiki/Circulant_matrix

187

2.7 Choosing the Best FFT Algorithm46

2.7.1 Choosing an FFT length

The most commonly used FFT algorithms by far are the power-of-two-length FFT (Section 2.3.4.1) algo-
rithms. The Prime Factor Algorithm (PFA) (Section 2.3.7) and Winograd Fourier Transform Algorithm
(WFTA) (Section 2.6.3: Winograd Fourier Transform Algorithm (WFTA)) require somewhat fewer multi-
plies, but the overall di�erence usually isn't su�cient to warrant the extra di�culty. This is particularly
true now that most processors have single-cycle pipelined hardware multipliers, so the total operation count
is more relevant. As can be seen from the following table, for similar lengths the split-radix algorithm is
comparable in total operations to the Prime Factor Algorithm, and is considerably better than the WFTA,
although the PFA and WTFA require fewer multiplications and more additions. Many processors now sup-
port single cycle multiply-accumulate (MAC) operations; in the power-of-two algorithms all multiplies can
be combined with adds in MACs, so the number of additions is the most relevant indicator of computational
cost.

Representative FFT Operation Counts

FFT length Multiplies (real) Adds(real) Mults + Adds

Radix 2 1024 10248 30728 40976

Split Radix 1024 7172 27652 34824

Prime Factor Alg 1008 5804 29100 34904

Winograd FT Alg 1008 3548 34416 37964

The Winograd Fourier Transform Algorithm (Section 2.6.3: Winograd Fourier Transform Algorithm
(WFTA)) is particularly di�cult to program and is rarely used in practice. For applications in which the
transform length is somewhat arbitrary (such as fast convolution or general spectrum analysis), the length
is usually chosen to be a power of two. When a particular length is required (for example, in the USA
each carrier has exactly 416 frequency channels in each band in the AMPS47 cellular telephone standard), a
Prime Factor Algorithm (Section 2.3.7) for all the relatively prime terms is preferred, with a Common Factor
Algorithm (Section 2.3.6) for other non-prime lengths. Winograd's short-length modules (Section 2.6) should
be used for the prime-length factors that are not powers of two. The chirp z-transform (Section 2.5) o�ers a
universal way to compute any length DFT (Section 2.2.1) (for example, Matlab48 reportedly uses this method
for lengths other than a power of two), at a few times higher cost than that of a CFA or PFA optimized
for that speci�c length. The chirp z-transform (Section 2.5), along with Rader's conversion (Section 2.6.1:
Rader's Conversion), assure us that algorithms of O (NlogN) complexity exist for any DFT length N .

2.7.2 Selecting a power-of-two-length algorithm

The choice of a power-of-two algorithm may not just depend on computational complexity. The latest
extensions of the split-radix algorithm (Section 2.3.4.4) o�er the lowest known power-of-two FFT operation
counts, but the 10%-30% di�erence may not make up for other factors such as regularity of structure or data
�ow, FFT programming tricks (Section 2.3.5), or special hardware features. For example, the decimation-
in-time radix-2 FFT (Section 2.3.4.2.1) is the fastest FFT on Texas Instruments'49 TMS320C54x DSP
microprocessors, because this processor family has special assembly-language instructions that accelerate this
particular algorithm. On other hardware, radix-4 algorithms (Section 2.3.4.3) may be more e�cient. Some

46This content is available online at <http://cnx.org/content/m12060/1.3/>.
47http://en.wikipedia.org/wiki/AMPS
48http://www.mathworks.com/products/matlab/
49http://www.ti.com/

188 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

devices, such as AMI Semiconductor's50 Toccata51 ultra-low-power DSP microprocessor family, have on-chip
FFT accelerators; it is always faster and more power-e�cient to use these accelerators and whatever radix
they prefer. For fast convolution (Section 2.4), the decimation-in-frequency (Section 2.3.4.2.2) algorithms
may be preferred because the bit-reversing can be bypassed; however, most DSP microprocessors provide
zero-overhead bit-reversed indexing hardware and prefer decimation-in-time algorithms, so this may not
be true for such machines. Good, compiler- or hardware-friendly programming always matters more than
modest di�erences in raw operation counts, so manufacturers' or good third-party FFT libraries are often the
best choice. The module FFT programming tricks (Section 2.3.5) references some good, free FFT software
(including the FFTW52 package) that is carefully coded to be compiler-friendly; such codes are likely to be
considerably faster than codes written by the casual programmer.

2.7.3 Multi-dimensional FFTs

Multi-dimensional FFTs pose additional possibilities and problems. The orthogonality and separability of
multi-dimensional DFTs allows them to be e�ciently computed by a series of one-dimensional FFTs along
each dimension. (For example, a two-dimensional DFT can quickly be computed by performing FFTs of
each row of the data matrix followed by FFTs of all columns, or vice-versa.) Vector-radix FFTs have
been developed with higher e�ciency per sample than row-column algorithms. Multi-dimensional datasets,
however, are often large and frequently exceed the cache size of the processor, and excessive cache misses may
increase the computational time greatly, thus overwhelming any minor complexity reduction from a vector-
radix algorithm. Either vector-radix FFTs must be carefully programmed to match the cache limitations
of a speci�c processor, or a row-column approach should be used with matrix transposition in between to
ensure data locality for high cache utilization throughout the computation.

2.7.4 Few time or frequency samples

FFT algorithms gain their e�ciency through intermediate computations that can be reused to compute
many DFT frequency samples at once. Some applications require only a handful of frequency samples to
be computed; when that number is of order less than O (logN), direct computation of those values via
Goertzel's algorithm (Section 2.3.3) is faster. This has the additional advantage that any frequency, not just
the equally-spaced DFT frequency samples, can be selected. Sorensen and Burrus[28] developed algorithms
for when most input samples are zero or only a block of DFT frequencies are needed, but the computational
cost is of the same order.

Some applications, such as time-frequency analysis via the short-time Fourier transform (Section 2.2.3) or
spectrogram (Section 2.2.3), require DFTs of overlapped blocks of discrete-time samples. When the step-size
between blocks is less than O (logN), the running FFT (Section 2.3.2) will be most e�cient. (Note that any
window must be applied via frequency-domain convolution, which is quite e�cient for sinusoidal windows
such as the Hamming window.) For step-sizes of O (logN) or greater, computation of the DFT of each
successive block via an FFT is faster.

50http://www.amis.com
51http://www.amis.com/products/dsp/toccata_plus.html
52http://www.�tw.org/

189

Solutions to Exercises in Chapter 2

Solution to Exercise 2.1 (p. 104)
In general, NO. The DTFT exactly corresponds to the continuous-time Fourier transform only when the
signal is bandlimited and sampled at more than twice its highest frequency. The DFT frequency values
exactly correspond to frequency samples of the DTFT only when the discrete-time signal is time-limited.
However, a bandlimited continuous-time signal cannot be time-limited, so in general these conditions cannot
both be satis�ed.

It can, however, be true for a small class of analog signals which are not time-limited but happen to
exactly equal zero at all sample times outside of the interval n ∈ [0, N − 1]. The sinc function with a
bandwidth equal to the Nyquist frequency and centered at t = 0 is an example.

Solution to Exercise 2.2 (p. 130)

Solution to Exercise 2.3 (p. 138)

Solution to Exercise 2.4 (p. 140)

Solution to Exercise 2.5 (p. 162)
Perform a radix-2 decomposition for one stage, then radix-4 decompositions of all subsequent shorter-length
DFTs.

190 CHAPTER 2. THE DFT, FFT, AND PRACTICAL SPECTRAL ANALYSIS

Chapter 3

Digital Filter Design

3.1 Overview of Digital Filter Design1

Advantages of FIR �lters

1. Straight forward conceptually and simple to implement
2. Can be implemented with fast convolution
3. Always stable
4. Relatively insensitive to quantization
5. Can have linear phase (same time delay of all frequencies)

Advantages of IIR �lters

1. Better for approximating analog systems
2. For a given magnitude response speci�cation, IIR �lters often require much less computation than an

equivalent FIR, particularly for narrow transition bands

Both FIR and IIR �lters are very important in applications.

Generic Filter Design Procedure

1. Choose a desired response, based on application requirements
2. Choose a �lter class
3. Choose a quality measure
4. Solve for the �lter in class 2 optimizing criterion in 3

3.1.1 Perspective on FIR �ltering

Most of the time, people do L∞ optimal design, using the Parks-McClellan algorithm (Section 3.2.4). This
is probably the second most important technique in "classical" signal processing (after the Cooley-Tukey
(radix-2 (Section 2.3.4.2.1)) FFT).

Most of the time, FIR �lters are designed to have linear phase. The most important advantage of FIR
�lters over IIR �lters is that they can have exactly linear phase. There are advanced design techniques for
minimum-phase �lters, constrained L2 optimal designs, etc. (see chapter 8 of text). However, if only the
magnitude of the response is important, IIR �lers usually require much fewer operations and are typically
used, so the bulk of FIR �lter design work has concentrated on linear phase designs.

1This content is available online at <http://cnx.org/content/m12776/1.2/>.

191

192 CHAPTER 3. DIGITAL FILTER DESIGN

3.2 FIR Filter Design

3.2.1 Linear Phase Filters2

In general, for −π ≤ ω ≤ π
H (ω) = |H (ω) |e−(jθ(ω))

Strictly speaking, we say H (ω) is linear phase if

H (ω) = |H (ω) |e−(jωK)e−(jθ0)

Why is this important? A linear phase response gives the same time delay for ALL frequencies! (Remember
the shift theorem.) This is very desirable in many applications, particularly when the appearance of the
time-domain waveform is of interest, such as in an oscilloscope. (see Figure 3.1)

Figure 3.1

3.2.1.1 Restrictions on h(n) to get linear phase

2This content is available online at <http://cnx.org/content/m12802/1.2/>.

193

H (ω) =
∑M−1

h=0

(
h (n) e−(jωn)

)
= h (0) + h (1) e−(jω) + h (2) e−(j2ω) + · · · +

h (M − 1) e−(jω(M−1)) = e−(jω M−1
2)
(
h (0) ejω M−1

2 + · · ·+ h (M − 1) e−(jω M−1
2)
)

=

e−(jω M−1
2) ((h (0) + h (M − 1)) cos

(
M−1

2
ω
)

+ (h (1) + h (M − 2)) cos
(

M−3
2

ω
)

+ · · ·+ j
(
(h (0)− h (M − 1)) sin

(
M−1

2
ω
)

+ . . .
))

(3.1)

For linear phase, we require the right side of (3.1) to be e−(jθ0)(real,positive function of ω). For θ0 = 0,
we thus require

h (0) + h (M − 1) = real number

h (0)− h (M − 1) = pure imaginary number

h (1) + h (M − 2) = pure real number

h (1)− h (M − 2) = pure imaginary number

...

Thus h (k) = h∗ (M − 1− k) is a necessary condition for the right side of (3.1) to be real valued, for θ0 = 0.
For θ0 = π

2 , or e−(jθ0) = −j, we require

h (0) + h (M − 1) = pure imaginary

h (0)− h (M − 1) = pure real number

...

⇒ h (k) = − (h∗ (M − 1− k))

Usually, one is interested in �lters with real-valued coe�cients, or see Figure 3.2 and Figure 3.3.

Figure 3.2: θ0 = 0 (Symmetric Filters). h (k) = h (M − 1− k).

194 CHAPTER 3. DIGITAL FILTER DESIGN

Figure 3.3: θ0 = π
2
(Anti-Symmetric Filters). h (k) = − (h (M − 1− k)).

Filter design techniques are usually slightly di�erent for each of these four di�erent �lter types. We will
study the most common case, symmetric-odd length, in detail, and often leave the others for homework
or tests or for when one encounters them in practice. Even-symmetric �lters are often used; the anti-
symmetric �lters are rarely used in practice, except for special classes of �lters, like di�erentiators or Hilbert
transformers, in which the desired response is anti-symmetric.

So far, we have satis�ed the condition that H (ω) = A (ω) e−(jθ0)e−(jω M−1
2) where A (ω) is real-valued.

However, we have not assured that A (ω) is non-negative. In general, this makes the design techniques much
more di�cult, so most FIR �lter design methods actually design �lters with Generalized Linear Phase:

H (ω) = A (ω) e−(jω M−1
2), where A (ω) is real-valued, but possible negative. A (ω) is called the amplitude

of the frequency response.

excuse: A (ω) usually goes negative only in the stopband, and the stopband phase response is
generally unimportant.

note: |H (ω) | = ±A (ω) = A (ω) e−(jπ 1
2 (1−signA(ω))) where signx =

 1 if x > 0

−1 if x < 0

Example 3.1
Lowpass Filter

195

Desired |H(ω)|

Figure 3.4

Desired ∠H(ω)

Figure 3.5: The slope of each line is −
`

M−1
2

´
.

Actual |H(ω)|

Figure 3.6: A (ω) goes negative.

196 CHAPTER 3. DIGITAL FILTER DESIGN

Actual ∠H(ω)

Figure 3.7: 2π phase jumps due to periodicity of phase. π phase jumps due to sign change in A (ω).

Time-delay introduces generalized linear phase.

note: For odd-length FIR �lters, a linear-phase design procedure is equivalent to a zero-phase
design procedure followed by an M−1

2 -sample delay of the impulse response3. For even-length �lters,
the delay is non-integer, and the linear phase must be incorporated directly in the desired response!

3.2.2 Window Design Method4

The truncate-and-delay design procedure is the simplest and most obvious FIR design procedure.

Exercise 3.1 (Solution on p. 223.)

Is it any Good?

3.2.2.1 L2 optimization criterion

�nd ∀n, 0 ≤ n ≤ M − 1 : (h [n]), maximizing the energy di�erence between the desired response and the
actual response: i.e., �nd

minh[n]

{∫ π

−π

(|Hd (ω)−H (ω) |)2dω

}
by Parseval's relationship5

minh[n]

{∫ π

−π
(|Hd (ω)−H (ω) |)2dω

}
= 2π

∑∞
n=−∞

(
(|hd [n]− h [n] |)2) =

2π
(∑−1

n=−∞
(
(|hd [n]− h [n] |)2)+

∑M−1
n=0

(
(|hd [n]− h [n] |)2)+

∑∞
n=M

(
(|hd [n]− h [n] |)2))(3.2)

Since ∀n, n < 0n ≥ M : (= h [n]) this becomes

minh[n]

{∫ π

−π
(|Hd (ω)−H (ω) |)2dω

}
=

∑−1
h=−∞

(
(|hd [n] |)2) +∑M−1

n=0

(
(|h [n]− hd [n] |)2)+

∑∞
n=M

(
(|hd [n] |)2)

3"Impulse Response of a Linear System" <http://cnx.org/content/m12041/latest/>
4This content is available online at <http://cnx.org/content/m12790/1.2/>.
5"Parseval's Theorem" <http://cnx.org/content/m0047/latest/>

197

Note: h [n] has no in�uence on the �rst and last sums.

The best we can do is let

h [n] =

 hd [n] if 0 ≤ n ≤ M − 1

0 if else

Thus h [n] = hd [n]w [n],

w [n] =

 1 if 0 ≤ n (M − 1)

0 if else

is optimal in a least-total-sqaured-error (L2, or energy) sense!

Exercise 3.2 (Solution on p. 223.)

Why, then, is this design often considered undersirable?

For desired spectra with discontinuities, the least-square designs are poor in a minimax (worst-case, or L∞)
error sense.

3.2.2.2 Window Design Method

Apply a more gradual truncation to reduce "ringing" (Gibb's Phenomenon6)

∀n0 ≤ n ≤ M − 1h [n] = hd [n]w [n]

Note: H (ω) = Hd (ω) ∗W (ω)

The window design procedure (except for the boxcar window) is ad-hoc and not optimal in any usual sense.
However, it is very simple, so it is sometimes used for "quick-and-dirty" designs of if the error criterion is
itself heurisitic.

3.2.3 Frequency Sampling Design Method for FIR �lters7

Given a desired frequency response, the frequency sampling design method designs a �lter with a frequency
response exactly equal to the desired response at a particular set of frequencies ωk.

Procedure

∀k, k = [o, 1, . . . , N − 1] :

(
Hd (ωk) =

M−1∑
n=0

(
h (n) e−(jωkn)

))
(3.3)

Note: Desired Response must incluce linear phase shift (if linear phase is desired)

Exercise 3.3 (Solution on p. 223.)

What is Hd (ω) for an ideal lowpass �lter, coto� at ωc?

Note: This set of linear equations can be written in matrix form

Hd (ωk) =
M−1∑
n=0

(
h (n) e−(jωkn)

)
(3.4)

6"Gibbs's Phenomena" <http://cnx.org/content/m10092/latest/>
7This content is available online at <http://cnx.org/content/m12789/1.2/>.

198 CHAPTER 3. DIGITAL FILTER DESIGN


Hd (ω0)

Hd (ω1)
...

Hd (ωN−1)

 =


e−(jω00) e−(jω01) . . . e−(jω0(M−1))

e−(jω10) e−(jω11) . . . e−(jω1(M−1))

...
...

...
...

e−(jωM−10) e−(jωM−11) . . . e−(jωM−1(M−1))




h (0)

h (1)
...

h (M − 1)

 (3.5)

or
Hd = Wh

So

h = W−1Hd (3.6)

Note: W is a square matrix for N = M , and invertible as long as ωi 6= ωj + 2πl, i 6= j

3.2.3.1 Important Special Case

What if the frequencies are equally spaced between 0 and 2π, i.e. ωk = 2πk
M + α

Then

Hd (ωk) =
M−1∑
n=0

(
h (n) e−(j 2πkn

M)e−(jαn)
)

=
M−1∑
n=0

((
h (n) e−(jαn)

)
e−(j 2πkn

M)
)

= DFT!

so

h (n) e−(jαn) =
1
M

M−1∑
k=0

(
Hd (ωk) e+j 2πnk

M

)
or

h [n] =
ejαn

M

M−1∑
k=0

(
Hd [ωk] ej 2πnk

M

)
= ejαnIDFT [Hd [ωk]]

3.2.3.2 Important Special Case #2

h [n] symmetric, linear phase, and has real coe�cients. Since h [n] = h [−1], there are only M
2 degrees of

freedom, and only M
2 linear equations are required.

H [ωk] =
∑M−1

n=0

(
h [n] e−(jωkn)

)
=


∑M

2 −1
n=0

(
h [n]

(
e−(jωkn) + e−(jωk(M−n−1))

))
if M even∑M− 3

2
n=0

(
+h [n]

(
e−(jωkn) + e−(jωk(M−n−1))

) (
h
[

M−1
2

]
e−(jωk

M−1
2)
))

if M odd

=

 e−(jωk
M−1

2)2
∑M

2 −1
n=0

(
h [n] cos

(
ωk

(
M−1

2 − n
)))

if M even

e−(jωk
M−1

2)2
∑M− 3

2
n=0

(
h [n] cos

(
ωk

(
M−1

2 − n
))

+ h
[

M−1
2

])
if M odd

(3.7)

Removing linear phase from both sides yields

A (ωk) =

 2
∑M

2 −1
n=0

(
h [n] cos

(
ωk

(
M−1

2 − n
)))

if M even

2
∑M− 3

2
n=0

(
h [n] cos

(
ωk

(
M−1

2 − n
))

+ h
[

M−1
2

])
if M odd

Due to symmetry of response for real coe�cients, only M
2 ωk on ω ∈ [0, π) need be speci�ed, with the

frequencies −ωk thereby being implicitly de�ned also. Thus we have M
2 real-valued simultaneous linear

equations to solve for h [n].

199

3.2.3.2.1 Special Case 2a

h [n] symmetric, odd length, linear phase, real coe�cients, and ωk equally spaced: ∀k, 0 ≤ k ≤ M − 1 :(
ωk = nπk

M

)
h [n] = IDFT [Hd (ωk)]

= 1
M

∑M−1
k=0

(
A (ωk) e−(j 2πk

M) M−1
2 ej 2πnk

M

)
= 1

M

∑M−1
k=0

(
A (k) ej(2πk

M (n−M−1
2))

) (3.8)

To yield real coe�cients, A (ω) mus be symmetric

A (ω) = A (−ω) ⇒ A [k] = A [M − k]

h [n] = 1
M

(
A (0) +

∑M−1
2

k=1

(
A [k]

(
ej 2πk

M (n−M−1
2) + e−(j2πk(n−M−1

2))
)))

= 1
M

(
A (0) + 2

∑M−1
2

k=1

(
A [k] cos

(
2πk
M

(
n− M−1

2

))))
= 1

M

(
A (0) + 2

∑M−1
2

k=1

(
A [k] (−1)k

cos
(

2πk
M

(
n + 1

2

)))) (3.9)

Simlar equations exist for even lengths, anti-symmetric, and α = 1
2 �lter forms.

3.2.3.3 Comments on frequency-sampled design

This method is simple conceptually and very e�cient for equally spaced samples, since h [n] can be computed
using the IDFT.

H (ω) for a frequency sampled design goes exactly through the sample points, but it may be very far o�
from the desired response for ω 6= ωk. This is the main problem with frequency sampled design.

Possible solution to this problem: specify more frequency samples than degrees of freedom, and minimize
the total error in the frequency response at all of these samples.

3.2.3.4 Extended frequency sample design

For the samples H (ωk) where 0 ≤ k ≤ M − 1 and N > M , �nd h [n], where 0 ≤ n ≤ M − 1 minimizing
‖ Hd (ωk)−H (ωk) ‖

For ‖ l ‖∞ norm, this becomes a linear programming problem (standard packages availble!)
Here we will consider the ‖ l ‖2 norm.

To minimize the ‖ l ‖2 norm; that is,
∑N−1

n=0 (|Hd (ωk)−H (ωk) |), we have an overdetermined set of linear
equations: 

e−(jω00) . . . e−(jω0(M−1))

...
...

...

e−(jωN−10) . . . e−(jωN−1(M−1))

h =


Hd (ω0)

Hd (ω1)
...

Hd (ωN−1)


or

Wh = Hd

The minimum error norm solution is well known to be h =
(
WW

)−1
WHd;

(
WW

)−1
W is well known as

the pseudo-inverse matrix.

Note: Extended frequency sampled design discourages radical behavior of the frequency response
between samples for su�ciently closely spaced samples. However, the actual frequency response
may no longer pass exactly through any of the Hd (ωk).

200 CHAPTER 3. DIGITAL FILTER DESIGN

3.2.4 Parks-McClellan FIR Filter Design8

The approximation tolerances for a �lter are very often given in terms of the maximum, or worst-case,
deviation within frequency bands. For example, we might wish a lowpass �lter in a (16-bit) CD player to
have no more than 1

2 -bit deviation in the pass and stop bands.

H (ω) =

 1− 1
217 ≤ |H (ω) | ≤ 1 + 1

217 if |ω| ≤ ωp

1
217 ≥ |H (ω) | if ωs ≤ |ω| ≤ π

The Parks-McClellan �lter design method e�ciently designs linear-phase FIR �lters that are optimal in
terms of worst-case (minimax) error. Typically, we would like to have the shortest-length �lter achieving
these speci�cations. Figure Figure 3.8 illustrates the amplitude frequency response of such a �lter.

Figure 3.8: The black boxes on the left and right are the passbands, the black boxes in the middle
represent the stop band, and the space between the boxes are the transition bands. Note that overshoots
may be allowed in the transition bands.

Exercise 3.4 (Solution on p. 223.)

Must there be a transition band?

8This content is available online at <http://cnx.org/content/m12799/1.3/>.

201

3.2.4.1 Formal Statement of the L-∞ (Minimax) Design Problem

For a given �lter length (M) and type (odd length, symmetric, linear phase, for example), and a relative
error weighting function W (ω), �nd the �lter coe�cients minimizing the maximum error

argmin
h

argmax
ω∈F

|E (ω) | = argmin
h
‖ E (ω) ‖∞

where
E (ω) = W (ω) (Hd (ω)−H (ω))

and F is a compact subset of ω ∈ [0, π] (i.e., all ω in the passbands and stop bands).

Note: Typically, we would often rather specify ‖ E (ω) ‖∞ ≤ δ and minimize over M and h;
however, the design techniques minimize δ for a given M . One then repeats the design procedure
for di�erent M until the minimum M satisfying the requirements is found.

We will discuss in detail the design only of odd-length symmetric linear-phase FIR �lters. Even-length
and anti-symmetric linear phase FIR �lters are essentially the same except for a slightly di�erent implicit
weighting function. For arbitrary phase, exactly optimal design procedures have only recently been developed
(1990).

3.2.4.2 Outline of L-∞ Filter Design

The Parks-McClellan method adopts an indirect method for �nding the minimax-optimal �lter coe�cients.

1. Using results from Approximation Theory, simple conditions for determining whether a given �lter is
L∞ (minimax) optimal are found.

2. An iterative method for �nding a �lter which satis�es these conditions (and which is thus optimal) is
developed.

That is, the L∞ �lter design problem is actually solved indirectly.

3.2.4.3 Conditions for L-∞ Optimality of a Linear-phase FIR Filter

All conditions are based on Chebyshev's "Alternation Theorem," a mathematical fact from polynomial
approximation theory.

3.2.4.3.1 Alternation Theorem

Let F be a compact subset on the real axis x, and let P (x) be and Lth-order polynomial

P (x) =
L∑

k=0

(
akxk

)
Also, let D (x) be a desired function of x that is continuous on F , and W (x) a positive, continuous weighting
function on F . De�ne the error E (x) on F as

E (x) = W (x) (D (x)− P (x))

and
‖ E (x) ‖∞ = argmax

x∈F
|E (x) |

A necessary and su�cient condition that P (x) is the unique Lth-order polynomial minimizing ‖ E (x) ‖∞ is
that E (x) exhibits at least L + 2 "alternations;" that is, there must exist at least L + 2 values of x, xk ∈ F ,
k = [0, 1, . . . , L + 1], such that x0 < x1 < · · · < xL+2 and such that E (xk) = − (E (xk+1)) = ± (‖ E ‖∞)

Exercise 3.5 (Solution on p. 223.)

What does this have to do with linear-phase �lter design?

202 CHAPTER 3. DIGITAL FILTER DESIGN

3.2.4.4 Optimality Conditions for Even-length Symmetric Linear-phase Filters

For M even,

A (ω) =
L∑

n=0

(
h (L− n) cos

(
ω

(
n +

1
2

)))
where L = M

2 − 1 Using the trigonometric identity cos (α + β) = cos (α− β) + 2cos (α) cos (β) to pull out
the ω

2 term and then using the other trig identities (p. 223), it can be shown that A (ω) can be written as

A (ω) = cos
(ω

2

) L∑
k=0

(
αkcosk (ω)

)
Again, this is a polynomial in x = cos (ω), except for a weighting function out in front.

E (ω) = W (ω) (Ad (ω)−A (ω))

= W (ω)
(
Ad (ω)− cos

(
ω
2

)
P (ω)

)
= W (ω) cos

(
ω
2

)(Ad(ω)

cos(ω
2) − P (ω)

) (3.10)

which implies
E (x) = W ' (x)

(
A'

d (x)− P (x)
)

(3.11)

where

W ' (x) = W
(
(cos (x))−1

)
cos

(
1
2
(cos (x))−1

)
and

A'

d (x) =
Ad

(
(cos (x))−1

)
cos
(

1
2 (cos (x))−1

)
Again, this is a polynomial approximation problem, so the alternation theorem holds. If E (ω) has at least
L + 2 = M

2 + 1 alternations, the even-length symmetric �lter is optimal in an L∞ sense.
The prototypical �lter design problem:

W =

 1 if |ω| ≤ ωp

δs

δp
if |ωs| ≤ |ω|

See Figure 3.9.

203

Figure 3.9

3.2.4.5 L-∞ Optimal Lowpass Filter Design Lemma

1. The maximum possible number of alternations for a lowpass �lter is L + 3: The proof is that the
extrema of a polynomial occur only where the derivative is zero: ∂

∂xP (x) = 0. Since P ′ (x) is an
(L− 1)th-order polynomial, it can have at most L − 1 zeros. However, the mapping x = cos (ω)
implies that ∂

∂ω A (ω) = 0 at ω = 0 and ω = π, for two more possible alternation points. Finally, the
band edges can also be alternations, for a total of L− 1 + 2 + 2 = L + 3 possible alternations.

2. There must be an alternation at either ω = 0 or ω = π.
3. Alternations must occur at ωp and ωs. See Figure 3.9.
4. The �lter must be equiripple except at possibly ω = 0 or ω = π. Again see Figure 3.9.

Note: The alternation theorem doesn't directly suggest a method for computing the optimal
�lter. It simply tells us how to recognize that a �lter is optimal, or isn't optimal. What we need is
an intelligent way of guessing the optimal �lter coe�cients.

204 CHAPTER 3. DIGITAL FILTER DESIGN

In matrix form, these L + 2 simultaneous equations become

1 cos (ω0) cos (2ω0) ... cos (Lω0) 1
W (ω0)

1 cos (ω1) cos (2ω1) ... cos (Lω1) −1
W (ω1)

...
...

.
...

...
...

...
...

. . .
...

...
...

...
... ...

. . .
...

1 cos (ωL+1) cos (2ωL+1) ... cos (LωL+1) ±1
W (ωL+1)





h (L)

h (L− 1)
...

h (1)

h (0)

δ


=



Ad (ω0)

Ad (ω1)
...
...
...

Ad (ωL+1)


or

W

 h

δ

 = Ad

So, for the given set of L+2 extremal frequencies, we can solve for h and δ via (h, δ)T = W−1Ad. Using the
FFT, we can compute A (ω) of h (n), on a dense set of frequencies. If the old ωk are, in fact the extremal
locations of A (ω), then the alternation theorem is satis�ed and h (n) is optimal. If not, repeat the process
with the new extremal locations.

3.2.4.6 Computational Cost

O
(
L3
)
for the matrix inverse and Nlog2N for the FFT (N ≥ 32L, typically), per iteration!

This method is expensive computationally due to the matrix inverse.
A more e�cient variation of this method was developed by Parks and McClellan (1972), and is based on

the Remez exchange algorithm. To understand the Remez exchange algorithm, we �rst need to understand
Lagrange Interpoloation.

Now A (ω) is an Lth-order polynomial in x = cos (ω), so Lagrange interpolation can be used to exactly
compute A (ω) from L + 1 samples of A (ωk), k = [0, 1, 2, ..., L].

Thus, given a set of extremal frequencies and knowing δ, samples of the amplitude response A (ω) can
be computed directly from the

A (ωk) =
(−1)k(+1)

W (ωk)
δ + Ad (ωk) (3.12)

without solving for the �lter coe�cients!
This leads to computational savings!
Note that (3.12) is a set of L + 2 simultaneous equations, which can be solved for δ to obtain (Rabiner,

1975)

δ =
∑L+1

k=0 (γkAd (ωk))∑L+1
k=0

(
(−1)k(+1)γk

W (ωk)

) (3.13)

where

γk =
L+1∏
i=0
i6=k

(
1

cos (ωk)− cos (ωi)

)

The result is the Parks-McClellan FIR �lter design method, which is simply an application of the Remez
exchange algorithm to the �lter design problem. See Figure 3.10.

205

Figure 3.10: The initial guess of extremal frequencies is usually equally spaced in the band. Computing
δ costs O

`
L2

´
. Using Lagrange interpolation costs O (16LL) ≈ O

`
16L2

´
. Computing h (n) costs O

`
L3

´
,

but it is only done once!

206 CHAPTER 3. DIGITAL FILTER DESIGN

The cost per iteration is O
(
16L2

)
, as opposed to O

(
L3
)
; much more e�cient for large L. Can also

interpolate to DFT sample frequencies, take inverse FFT to get corresponding �lter coe�cients, and zeropad
and take longer FFT to e�ciently interpolate.

3.2.5 Lagrange Interpolation9

Lagrange's interpolation method is a simple and clever way of �nding the unique Lth-order polynomial that
exactly passes through L + 1 distinct samples of a signal. Once the polynomial is known, its value can
easily be interpolated at any point using the polynomial equation. Lagrange interpolation is useful in many
applications, including Parks-McClellan FIR Filter Design (Section 3.2.4).

3.2.5.1 Lagrange interpolation formula

Given an Lth-order polynomial

P (x) = a0 + a1x + ... + aLxL =
L∑

k=0

(
akxk

)
and L+1 values of P (xk) at di�erent xk, k ∈ {0, 1, ..., L}, xi 6= xj , i 6= j, the polynomial can be written as

P (x) =
L∑

k=0

(
P (xk)

(x− x1) (x− x2) ... (x− xk−1) (x− xk+1) ... (x− xL)
(xk − x1) (xk − x2) ... (xk − xk−1) (xk − xk+1) ... (xk − xL)

)
The value of this polynomial at other x can be computed via substitution into this formula, or by expanding
this formula to determine the polynomial coe�cients ak in standard form.

3.2.5.2 Proof

Note that for each term in the Lagrange interpolation formula above,

L∏
i=0,i 6=k

(
x− xi

xk − xi

)
=

 1 if x = xk

0 if x = xj ∧ j 6= k

and that it is an Lth-order polynomial in x. The Lagrange interpolation formula is thus exactly equal to
P (xk) at all xk, and as a sum of Lth-order polynomials is itself an Lth-order polynomial.

It can be shown that the Vandermonde matrix10

1 x0 x0
2 ... x0

L

1 x1 x1
2 ... x1

L

1 x2 x2
2 ... x2

L

...
...

...
. . .

...

1 xL xL
2 ... xL

L





a0

a1

a2

...

aL


=



P (x0)

P (x1)

P (x2)
...

P (xL)


has a non-zero determinant and is thus invertible, so the Lth-order polynomial passing through all L + 1
sample points xj is unique. Thus the Lagrange polynomial expressions, as an Lth-order polynomial passing
through the L + 1 sample points, must be the unique P (x).

9This content is available online at <http://cnx.org/content/m12812/1.2/>.
10http://en.wikipedia.org/wiki/Vandermonde_matrix

207

3.3 IIR Filter Design

3.3.1 Overview of IIR Filter Design11

3.3.1.1 IIR Filter

y (n) = −

(
M−1∑
k=1

(aky (n− k))

)
+

M−1∑
k=0

(bkx (n− k))

H (z) =
b0 + b1z

−1 + b2z
−2 + ... + bMz−M

1 + a1z−1 + a2z−2 + ... + aMz−M

3.3.1.2 IIR Filter Design Problem

Choose {ai}, {bi} to best approximate some desired |Hd (w) | or, (occasionally), Hd (w).
As before, di�erent design techniques will be developed for di�erent approximation criteria.

3.3.1.3 Outline of IIR Filter Design Material

• Bilinear Transform - Maps ‖ L ‖∞ optimal (and other) analog �lter designs to ‖ L ‖∞ optimal
digital IIR �lter designs.

• Prony's Method - Quasi-‖ L ‖2 optimal method for time-domain �tting of a desired impulse response
(ad hoc).

• Lp Optimal Design - ‖ L ‖p optimal �lter design (1 < p < ∞) using non-linear optimization tech-
niques.

3.3.1.4 Comments on IIR Filter Design Methods

The bilinear transform method is used to design "typical" ‖ L ‖∞ magnitude optimal �lters. The ‖ L ‖p

optimization procedures are used to design �lters for which classical analog prototype solutions don't ex-
ist. The program by Deczky (DSP Programs Book, IEEE Press) is widely used. Prony/Linear Prediction
techniques are used often to obtain initial guesses, and are almost exclusively used in data modeling, system
identi�cation, and most applications involving the �tting of real data (for example, the impulse response of
an unknown �lter).

3.3.2 Prototype Analog Filter Design12

3.3.2.1 Analog Filter Design

Laplace transform:

H (s) =
∫ ∞

−∞
ha (t) e−(st)dt

Note that the continuous-time Fourier transform (Section 1.7) is H (jλ) (the Laplace transform evaluated
on the imaginary axis).

Since the early 1900's, there has been a lot of research on designing analog �lters of the form

H (s) =
b0 + b1s + b2s

2 + ... + bMsM

1 + a1s + a2s2 + ... + aMsM

11This content is available online at <http://cnx.org/content/m12758/1.2/>.
12This content is available online at <http://cnx.org/content/m12763/1.2/>.

208 CHAPTER 3. DIGITAL FILTER DESIGN

A causal13 IIR �lter cannot have linear phase (no possible symmetry point), and design work for analog �lters
has concentrated on designing �lters with equiriplle (‖ L ‖∞) magnitude responses. These design problems
have been solved. We will not concern ourselves here with the design of the analog prototype �lters, only
with how these designs are mapped to discrete-time while preserving optimality.

An analog �lter with real coe�cients must have a magnitude response of the form

(|H (λ) |)2 = B
(
λ2
)

H (jλ) H (jλ) = b0+b1jλ+b2(jλ)2+b3(jλ)3+...

1+a1jλ+a2(jλ)2+...
H (jλ)

=
b0−b2λ2+b4λ4+...+jλ(b1−b3λ2+b5λ4+...)
1−a2λ2+a4λ4+...+jλ(a1−a3λ2+a5λ4+...)

b0−b2λ2+b4λ4+...+jλ(b1−b3λ2+b5λ4+...)
1−a2λ2+a4λ4+...+jλ(a1−a3λ2+a5λ4+...)

= (b0−b2λ2+b4λ4+...)2
+λ2(b1−b3λ2+b5λ4+...)2

(1−a2λ2+a4λ4+...)2+λ2(a1−a3λ2+a5λ4+...)2

= B
(
λ2
)

(3.14)

Let s = jλ, note that the poles and zeros of B
(
−
(
s2
))

are symmetric around both the real and imaginary
axes: that is, a pole at p1 implies poles at p1, p1, −p1, and − (p1), as seen in Figure 3.11 (s-plane).

s-plane

Figure 3.11

Recall that an analog �lter is stable and causal if all the poles are in the left half-plane, LHP, and is
minimum phase if all zeros and poles are in the LHP.

s = jλ: B
(
λ2
)

= B
(
−
(
s2
))

= H (s) H (−s) = H (jλ) H (− (jλ)) = H (jλ) H (jλ) we can factor

B
(
−
(
s2
))

into H (s) H (−s), where H (s) has the left half plane poles and zeros, and H (−s) has the RHP
poles and zeros.

(|H (s) |)2 = H (s) H (−s) for s = jλ, so H (s) has the magnitude response B
(
λ2
)
. The trick to analog

�lter design is to design a good B
(
λ2
)
, then factor this to obtain a �lter with that magnitude response.

13"Properties of Systems": Section Causality <http://cnx.org/content/m2102/latest/#causality>

209

The traditional analog �lter designs all take the form B
(
λ2
)

= (|H (λ) |)2 = 1
1+F (λ2) , where F is a

rational function in λ2.

Example 3.2

B
(
λ2
)

=
2 + λ2

1 + λ4

B
(
−
(
s2
))

=
2− s2

1 + s4
=

(√
2− s

) (√
2 + s

)
(s + α) (s− α) (s + α) (s− α)

where α = 1+j√
2
.

Note: Roots of 1 + sN are N points equally spaced around the unit circle (Figure 3.12).

Figure 3.12

Take H (s) = LHP factors:

H (s) =
√

2 + s

(s + α) (s + α)
=

√
2 + s

s2 +
√

2s + 1

3.3.2.2 Traditional Filter Designs

3.3.2.2.1 Butterworth

B
(
λ2
)

=
1

1 + λ2M

Note: Remember this for homework and rest problems!

210 CHAPTER 3. DIGITAL FILTER DESIGN

"Maximally smooth" at λ = 0 and λ = ∞ (maximum possible number of zero derivatives). Figure 3.13.

B
(
λ2
)

= (|H (λ) |)2

Figure 3.13

3.3.2.2.2 Chebyshev

B
(
λ2
)

=
1

1 + ε2CM
2 (λ)

where CM
2 (λ) is an M th order Chebyshev polynomial. Figure 3.14.

211

(a)

(b)

Figure 3.14

3.3.2.2.3 Inverse Chebyshev

Figure 3.15.

212 CHAPTER 3. DIGITAL FILTER DESIGN

Figure 3.15

3.3.2.2.4 Elliptic Function Filter (Cauer Filter)

B
(
λ2
)

=
1

1 + ε2JM
2 (λ)

where JM is the "Jacobi Elliptic Function." Figure 3.16.

Figure 3.16

The Cauer �lter is ‖ L ‖∞ optimum in the sense that for a given M , δp, δs, and λp, the transition
bandwidth is smallest.

213

That is, it is ‖ L ‖∞ optimal.

3.3.3 IIR Digital Filter Design via the Bilinear Transform14

A bilinear transform maps an analog �lter Ha (s) to a discrete-time �lter H (z) of the same order.
If only we could somehow map these optimal analog �lter designs to the digital world while preserving the

magnitude response characteristics, we could make use of the already-existing body of knowledge concerning
optimal analog �lter design.

3.3.3.1 Bilinear Transformation

The Bilinear Transform is a nonlinear (C → C) mapping that maps a function of the complex variable s to
a function of a complex variable z. This map has the property that the LHP in s (< (s) < 0) maps to the
interior of the unit circle in z, and the jλ = s axis maps to the unit circle ejω in z.

Bilinear transform:

s = α
z − 1
z + 1

H (z) = Ha

(
s = α

z − 1
z + 1

)
Note: jλ = α ejω−1

ejω+1 = α
(ejω−1)(e−(jω)+1)
(ejω+1)(e−(jω)+1) = 2jsin(ω)

2+2cos(ω) = jαtan
(

ω
2

)
, so λ ≡ αtan

(
ω
2

)
, ω ≡

2arctan
(

λ
α

)
. Figure 3.17.

Figure 3.17

14This content is available online at <http://cnx.org/content/m12757/1.2/>.

214 CHAPTER 3. DIGITAL FILTER DESIGN

The magnitude response doesn't change in the mapping from λ to ω, it is simply warped nonlinearly
according to H (ω) = Ha

(
αtan

(
ω
2

))
, Figure 3.18.

(a)

(b)

Figure 3.18: The �rst image implies the second one.

Note: This mapping preserves ‖ L ‖∞ errors in (warped) frequency bands. Thus optimal Cauer
(‖ L ‖∞) �lters in the analog realm can be mapped to ‖ L ‖∞ optimal discrete-time IIR �lters
using the bilinear transform! This is how IIR �lters with ‖ L ‖∞ optimal magnitude responses are
designed.

215

Note: The parameter α provides one degree of freedom which can be used to map a single λ0 to
any desired ω0:

λ0 = αtan
(ω0

2

)
or

α =
λ0

tan
(

ω0
2

)
This can be used, for example, to map the pass-band edge of a lowpass analog prototype �lter to
any desired pass-band edge in ω. Often, analog prototype �lters will be designed with λ = 1 as a
band edge, and α will be used to locate the band edge in ω. Thus an M th order optimal lowpass
analog �lter prototype can be used to design any M th order discrete-time lowpass IIR �lter with
the same ripple speci�cations.

3.3.3.2 Prewarping

Given speci�cations on the frequency response of an IIR �lter to be designed, map these to speci�cations in
the analog frequency domain which are equivalent. Then a satisfactory analog prototype can be designed
which, when transformed to discrete-time using the bilinear transformation, will meet the speci�cations.

Example 3.3
The goal is to design a high-pass �lter, ωs = ωs, ωp = ωp, δs = δs, δp = δp; pick up some α = α0.
In Figure 3.19 the δi remain the same and the band edges are mapped by λi = α0tan

(
ωi

2

)
.

(a)

(b)

Figure 3.19: Where λs = α0tan
`

ωs
2

´
and λp = α0tan

` ωp

2

´
.

216 CHAPTER 3. DIGITAL FILTER DESIGN

3.3.4 Impulse-Invariant Design15

Pre-classical, adhoc-but-easy method of converting an analog prototype �lter to a digital IIR �lter. Does
not preserve any optimality.

Impulse invariance means that digital �lter impulse response exactly equals samples of the analog proto-
type impulse response:

∀n : (h (n) = ha (nT))

How is this done?
The impulse response of a causal, stable analog �lter is simply a sum of decaying exponentials:

Ha (s) =
b0 + b1s + b2s

2 + ... + bps
p

1 + a1s + a2s2 + ... + apsp
=

A1

s− s1
+

A2

s− s2
+ ... +

Ap

s− sp

which implies
ha (t) =

(
A1e

s1t + A2e
s2t + ... + Ape

spt
)
u (t)

For impulse invariance, we desire

h (n) = ha (nT) =
(
A1e

s1nT + A2e
s2nT + ... + Ape

spnT
)
u (n)

Since

Ake(skT)nu (n) ≡ Akz

z − eskT

where |z| > |eskT |, and

H (z) =
p∑

k=1

(
Ak

z

z − eskT

)
where |z| > maxk

{
|eskT |

}
.

This technique is used occasionally in digital simulations of analog �lters.

Exercise 3.6 (Solution on p. 224.)

What is the main problem/drawback with this design technique?

3.3.5 Digital-to-Digital Frequency Transformations16

Given a prototype digital �lter design, transformations similar to the bilinear transform can also be developed.
Requirements on such a mapping z−1 = g

(
z−1
)
:

1. points inside the unit circle stay inside the unit circle (condition to preserve stability)
2. unit circle is mapped to itself (preserves frequency response)

This condition (list, item 2, p. 216) implies that e−(jω1) = g
(
e−(jω)

)
= |g (ω) |ej∠(g(ω)) requires that

|g
(
e−(jω)

)
| = 1 on the unit circle!

Thus we require an all-pass transformation:

g
(
z−1
)

=
p∏

k=1

(
z−1 − αk

1− αkz−1

)
15This content is available online at <http://cnx.org/content/m12760/1.2/>.
16This content is available online at <http://cnx.org/content/m12759/1.2/>.

217

where |αK | < 1, which is required to satisfy this condition (list, item 1, p. 216).

Example 3.4: Lowpass-to-Lowpass

z1
−1 =

z−1 − a

1− az−1

which maps original �lter with a cuto� at ωc to a new �lter with cuto� ω′c,

a =
sin
(

1
2 (ωc − ω′c)

)
sin
(

1
2 (ωc + ω′c)

)
Example 3.5: Lowpass-to-Highpass

z1
−1 =

z−1 + a

1 + az−1

which maps original �lter with a cuto� at ωc to a frequency reversed �lter with cuto� ω′c,

a =
cos
(

1
2 (ωc − ω′c)

)
cos
(

1
2 (ωc + ω′c)

)
(Interesting and occasionally useful!)

3.3.6 Prony's Method17

Prony's Method is a quasi-least-squares time-domain IIR �lter design method.
First, assume H (z) is an "all-pole" system:

H (z) =
b0

1 +
∑M

k=1 (akz−k)
(3.15)

and

h (n) = −

(
M∑

k=1

(akh (n− k))

)
+ b0δ (n)

where h (n) = 0, n < 0 for a causal system.

Note: For h = 0, h (0) = b0.

Let's attempt to �t a desired impulse response (let it be causal, although one can extend this technique when
it isn't) hd (n).

A true least-squares solution would attempt to minimize

ε2 =
∞∑

n=0

(
(|hd (n)− h (n) |)2

)
where H (z) takes the form in (3.15). This is a di�cult non-linear optimization problem which is known
to be plagued by local minima in the error surface. So instead of solving this di�cult non-linear problem,
we solve the deterministic linear prediction problem, which is related to, but not the same as, the true
least-squares optimization.

The deterministic linear prediction problem is a linear least-squares optimization, which is easy to solve,
but it minimizes the prediction error, not the (|desired− actual|)2 response error.

17This content is available online at <http://cnx.org/content/m12762/1.2/>.

218 CHAPTER 3. DIGITAL FILTER DESIGN

Notice that for n > 0, with the all-pole �lter

h (n) = −

(
M∑

k=1

(akh (n− k))

)
(3.16)

the right hand side of this equation (3.16) is a linear predictor of h (n) in terms of the M previous samples
of h (n).

For the desired reponse hd (n), one can choose the recursive �lter coe�cients ak to minimize the squared
prediction error

εp
2 =

∞∑
n=1

(|hd (n) +
M∑

k=1

(akhd (n− k)) |

)2


where, in practice, the ∞ is replaced by an N .
In matrix form, that's

hd (0) 0 ... 0

hd (1) hd (0) ... 0
...

...
. . .

...

hd (N − 1) hd (N − 2) ... hd (N −M)




a1

a2

...

aM

 ≈ −


hd (1)

hd (2)
...

hd (N)


or

Hda ≈ −hd

The optimal solution is

alp = −
((

Hd
HHd

)−1
Hd

Hhd

)
Now suppose H (z) is an M th-order IIR (ARMA) system,

H (z) =
∑M

k=0

(
bkz−k

)
1 +

∑M
k=1 (akz−k)

or

h (n) = −
(∑M

k=1 (akh (n− k))
)

+
∑M

k=0 (bkδ (n− k))

=

 −
(∑M

k=1 (akh (n− k))
)

+ bn if 0 ≤ n ≤ M

−
(∑M

k=1 (akh (n− k))
)
if n > M

(3.17)

For n > M , this is just like the all-pole case, so we can solve for the best predictor coe�cients as before:
hd (M) hd (M − 1) ... hd (1)

hd (M + 1) hd (M) ... hd (2)
...

...
. . .

...

hd (N − 1) hd (N − 2) ... hd (N −M)




a1

a2

...

aM

 ≈


hd (M + 1)

hd (M + 2)
...

hd (N)


or

Ĥda ≈ ĥd

and

aopt =
((

Ĥd

)H

Hd

)−1

Hd
H ĥd

219

Having determined the a's, we can use them in (3.17) to obtain the bn's:

bn =
M∑

k=1

(akhd (n− k))

where hd (n− k) = 0 for n− k < 0.
For N = 2M , Ĥd is square, and we can solve exactly for the ak's with no error. The bk's are also chosen

such that there is no error in the �rst M + 1 samples of h (n). Thus for N = 2M , the �rst 2M + 1 points of
h (n) exactly equal hd (n). This is called Prony's Method. Baron de Prony invented this in 1795.

For N > 2M , hd (n) = h (n) for 0 ≤ n ≤ M , the prediction error is minimized for M + 1 < n ≤ N , and
whatever for n ≥ N + 1. This is called the Extended Prony Method.

One might prefer a method which tries to minimize an overall error with the numerator coe�cients,
rather than just using them to exactly �t hd (0) to hd (M).

3.3.6.1 Shank's Method

1. Assume an all-pole model and �t hd (n) by minimizing the prediction error 1 ≤ n ≤ N .
2. Compute v (n), the impulse response of this all-pole �lter.
3. Design an all-zero (MA, FIR) �lter which �ts v (n) ∗ hz (n) ≈ hd (n) optimally in a least-squares sense

(Figure 3.20).

Figure 3.20: Here, h (n) ≈ hd (n).

The �nal IIR �lter is the cascade of the all-pole and all-zero �lter.
This (list, item 3, p. 219) is is solved by

minbk


N∑

n=0

(|hd (n)−
M∑

k=0

(bkv (n− k)) |

)2


or in matrix form

v (0) 0 0 ... 0

v (1) v (0) 0 ... 0

v (2) v (1) v (0) ... 0
...

...
...

. . .
...

v (N) v (N − 1) v (N − 2) ... v (N −M)





b0

b1

b2

...

bM


≈



hd (0)

hd (1)

hd (2)
...

hd (N)



220 CHAPTER 3. DIGITAL FILTER DESIGN

Which has solution:
bopt =

(
V HV

)−1
V Hh

Notice that none of these methods solve the true least-squares problem:

mina,b

{ ∞∑
n=0

(
(|hd (n)− h (n) |)2

)}

which is a di�cult non-linear optimization problem. The true least-squares problem can be written as:

minα,β


∞∑

n=0

(|hd (n)−
M∑
i=1

(
αie

βin
)
|

)2


since the impulse response of an IIR �lter is a sum of exponentials, and non-linear optimization is then used
to solve for the αi and βi.

3.3.7 Linear Prediction18

Recall that for the all-pole design problem, we had the overdetermined set of linear equations:
hd (0) 0 ... 0

hd (1) hd (0) ... 0
...

...
. . .

...

hd (N − 1) hd (N − 2) ... hd (N −M)




a1

a2

...

aM

 ≈ −


hd (1)

hd (2)
...

hd (N)


with solution a =

(
Hd

HHd

)−1
Hd

Hhd

Let's look more closely at Hd
HHd = R. rij is related to the correlation of hd with itself:

rij =
N−max{ i,j }∑

k=0

(hd (k) hd (k + |i− j|))

Note also that:

Hd
Hhd =



rd (1)

rd (2)

rd (3)
...

rd (M)


where

rd (i) =
N−i∑
n=0

(hd (n) hd (n + i))

so this takes the form aopt = −
(
RHrd

)
, or Ra = −r, where R is M ×M , a is M × 1, and r is also M × 1.

18This content is available online at <http://cnx.org/content/m12761/1.2/>.

221

Except for the changing endpoints of the sum, rij ≈ r (i− j) = r (j − i). If we tweak the problem slightly
to make rij = r (i− j), we get:

r (0) r (1) r (2) ... r (M − 1)

r (1) r (0) r (1) ...
...

r (2) r (1) r (0) ...
...

...
...

...
. . .

...

r (M − 1) r (0)





a1

a2

a3

...

aM


= −



r (1)

r (2)

r (3)
...

r (M)


The matrix R is Toeplitz (diagonal elements equal), and a can be solved for with O

(
M2
)
computations

using Levinson's recursion.

3.3.7.1 Statistical Linear Prediction

Used very often for forecasting (e.g. stock market).
Given a time-series y (n), assumed to be produced by an auto-regressive (AR) (all-pole) system:

y (n) = −

(
M∑

k=1

(aky (n− k))

)
+ u (n)

where u (n) is a white Gaussian noise sequence which is stationary and has zero mean.
To determine the model parameters {ak} minimizing the variance of the prediction error, we seek

minak

{
E

[(
y (n) +

∑M
k=1 (aky (n− k))

)2
]}

= minak

{
E
[
y2 (n) + 2

∑M
k=1 (aky (n) y (n− k)) +

(∑M
k=1 (aky (n− k))

)∑M
l=1 (aly (n− l))

]}
=

minak

{
E [y2 (n)] + 2

∑M
k=1 (akE [y (n) y (n− k)]) +

∑M
k=1

(∑M
l=1 (akalE [y (n− k) y (n− l)])

)}(3.18)

Note: The mean of y (n) is zero.

ε2 = r (0) + 2
(

r (1) r (2) r (3) ... r (M)
)


a1

a2

a3

.

.

.

aM


+

(
a1 a2 a3 ... aM

)


r (0) r (1) r (2) ... r (M − 1)

r (1) r (0) r (1) ...
.

.

.

r (2) r (1) r (0) ...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

r (M − 1) r (0)



(3.19)

222 CHAPTER 3. DIGITAL FILTER DESIGN

∂

∂a

(
ε2
)

= 2r + 2Ra (3.20)

Setting (3.20) equal to zero yields: Ra = −r These are called the Yule-Walker equations. In practice,
given samples of a sequence y (n), we estimate r (n) as

ˆr (n) =
1
N

N−n∑
k=0

(y (n) y (n + k)) ≈ E [y (k) y (n + k)]

which is extremely similar to the deterministic least-squares technique.

223

Solutions to Exercises in Chapter 3

Solution to Exercise 3.1 (p. 196)
Yes; in fact it's optimal! (in a certain sense)

Solution to Exercise 3.2 (p. 197): Gibbs Phenomenon

(a) (b)

Figure 3.21: (a) A (ω), small M (b) A (ω), large M

Solution to Exercise 3.3 (p. 197) e−(jω M−1
2) if − ωc ≤ ω ≤ ωc

0 if − π ≤ ω < −ωc ∨ ωc < ω ≤ π

Solution to Exercise 3.4 (p. 200)
Yes, when the desired response is discontinuous. Since the frequency response of a �nite-length �lter must
be continuous, without a transition band the worst-case error could be no less than half the discontinuity.

Solution to Exercise 3.5 (p. 201)
It's the same problem! To show that, consider an odd-length, symmetric linear phase �lter.

H (ω) =
∑M−1

n=0

(
h (n) e−(jωn)

)
= e−(jω M−1

2)
(
h
(

M−1
2

)
+ 2

∑L
n=1

(
h
(

M−1
2 − n

)
cos (ωn)

)) (3.21)

A (ω) = h (L) + 2
L∑

n=1

(h (L− n) cos (ωn)) (3.22)

Where
(
L

.= M−1
2

)
.

Using trigonometric identities (such as cos (nα) = 2cos ((n− 1) α) cos (α) − cos ((n− 2) α)), we can
rewrite A (ω) as

A (ω) = h (L) + 2
L∑

n=1

(h (L− n) cos (ωn)) =
L∑

k=0

(
αkcosk (ω)

)
where the αk are related to the h (n) by a linear transformation. Now, let x = cos (ω). This is a one-to-one
mapping from x ∈ [−1, 1] onto ω ∈ [0, π]. Thus A (ω) is an Lth-order polynomial in x = cos (ω)!

implication: The alternation theorem holds for the L∞ �lter design problem, too!

224 CHAPTER 3. DIGITAL FILTER DESIGN

Therefore, to determine whether or not a length-M , odd-length, symmetric linear-phase �lter is optimal in
an L∞ sense, simply count the alternations in E (ω) = W (ω) (Ad (ω)−A (ω)) in the pass and stop bands.
If there are L + 2 = M+3

2 or more alternations, h (n), 0 ≤ n ≤ M − 1 is the optimal �lter!

Solution to Exercise 3.6 (p. 216)
Since it samples the non-bandlimited impulse response of the analog prototype �lter, the frequency response
aliases. This distorts the original analog frequency and destroys any optimal frequency properties in the
resulting digital �lter.

Chapter 4

Digital Filter Structures and

Quantization Error Analysis

4.1 Filter Structures

4.1.1 Filter Structures1

A realizable �lter must require only a �nite number of computations per output sample. For linear, causal,
time-Invariant �lters, this restricts one to rational transfer functions of the form

H (z) =
b0 + b1z

−1 + · · ·+ bmz−m

1 + a1z−1 + a2z−2 + · · ·+ anz−n

Assuming no pole-zero cancellations, H (z) is FIR if ∀i, i > 0 : (ai = 0), and IIR otherwise. Filter structures
usually implement rational transfer functions as di�erence equations.

Whether FIR or IIR, a given transfer function can be implemented with many di�erent �lter structures.
With in�nite-precision data, coe�cients, and arithmetic, all �lter structures implementing the same transfer
function produce the same output. However, di�erent �lter strucures may produce very di�erent errors with
quantized data and �nite-precision or �xed-point arithmetic. The computational expense and memory usage
may also di�er greatly. Knowledge of di�erent �lter structures allows DSP engineers to trade o� these factors
to create the best implementation.

4.1.2 FIR Filter Structures2

Consider causal FIR �lters: y (n) =
∑M−1

k=0 (h (k) x (n− k)); this can be realized using the following structure

1This content is available online at <http://cnx.org/content/m11917/1.3/>.
2This content is available online at <http://cnx.org/content/m11918/1.2/>.

225

226
CHAPTER 4. DIGITAL FILTER STRUCTURES AND QUANTIZATION

ERROR ANALYSIS

Figure 4.1

or in a di�erent notation

Figure 4.2

227

(a)

(b)

(c)

Figure 4.3

This is called the direct-form FIR �lter structure.
There are no closed loops (no feedback) in this structure, so it is called a non-recursive structure.

Since any FIR �lter can be implemented using the direct-form, non-recursive structure, it is always possible
to implement an FIR �lter non-recursively. However, it is also possible to implement an FIR �lter recursively,
and for some special sets of FIR �lter coe�cients this is much more e�cient.

Example 4.1

y (n) =
M−1∑
k=0

(x (n− k))

where

h (k) =

0, 0, 1
[U+2303][U+FE00]

k=0

, 1, . . . , 1, 1
[U+2303][U+FE00]

k=M−1

, 0, 0, 0, . . .


But note that

y (n) = y (n− 1) + x (n)− x (n−M)

This can be implemented as

228
CHAPTER 4. DIGITAL FILTER STRUCTURES AND QUANTIZATION

ERROR ANALYSIS

Figure 4.4

Instead of costing M − 1 adds/output point, this comb �lter costs only two adds/output.

Exercise 4.1
Is this stable, and if not, how can it be made so?

IIR �lters must be implemented with a recursive structure, since that's the only way a �nite number of
elements can generate an in�nite-length impulse response in a linear, time-invariant (LTI) system. Recursive
structures have the advantages of being able to implement IIR systems, and sometimes greater computational
e�ciency, but the disadvantages of possible instability, limit cycles, and other deletorious e�ects that we will
study shortly.

4.1.2.1 Transpose-form FIR �lter structures

The �ow-graph-reversal theorem says that if one changes the directions of all the arrows, and inputs at
the output and takes the output from the input of a reversed �ow-graph, the new system has an identical
input-output relationship to the original �ow-graph.

Direct-form FIR structure

Figure 4.5

229

reverse = transpose-form FIR �lter structure

Figure 4.6

or redrawn

Figure 4.7

4.1.2.1.1 Cascade structures

The z-transform of an FIR �lter can be factored into a cascade of short-length �lters

b0 + b1z
−1 + b2z

−3 + · · ·+ bmz−m = b0

(
1− z1z

−1
) (

1− z2z
−1
)
. . .
(
1− zmz−1

)
where the zi are the zeros of this polynomial. Since the coe�cients of the polynomial are usually real,
the roots are usually complex-conjugate pairs, so we generally combine

(
1− ziz

−1
) (

1− ziz
−1
)
into one

quadratic (length-2) section with real coe�cients(
1− ziz

−1
) (

1− ziz
−1
)

= 1− 2< (zi) z−1 + (|zi|)2z−2 = Hi (z)

The overall �lter can then be implemented in a cascade structure.

230
CHAPTER 4. DIGITAL FILTER STRUCTURES AND QUANTIZATION

ERROR ANALYSIS

Figure 4.8

This is occasionally done in FIR �lter implementation when one or more of the short-length �lters can
be implemented e�ciently.

4.1.2.1.2 Lattice Structure

It is also possible to implement FIR �lters in a lattice structure: this is sometimes used in adaptive �ltering

Figure 4.9

4.1.3 IIR Filter Structures3

IIR (In�nite Impulse Response) �lter structures must be recursive (use feedback); an in�nite number of
coe�cients could not otherwise be realized with a �nite number of computations per sample.

H (z) =
N (z)
D (z)

=
b0 + b1z

−1 + b2z
−2 + · · ·+ bMz−M

1 + a1z−1 + a2z−2 + · · ·+ aNz−N

The corresponding time-domain di�erence equation is

y (n) = − (a1y (n− 1))− a2y (n− 2) + · · · − aNy (n−N) + b0x (0) + b1x (n− 1) + · · ·+ bMx (n−M)

4.1.3.1 Direct-form I IIR Filter Structure

The di�erence equation above is implemented directly as written by the Direct-Form I IIR Filter Structure.

3This content is available online at <http://cnx.org/content/m11919/1.2/>.

231

Figure 4.10

Note that this is a cascade of two systems, N (z) and 1
D(z) . If we reverse the order of the �lters, the

overall system is unchanged: The memory elements appear in the middle and store identical values, so they
can be combined, to form the Direct-Form II IIR Filter Structure.

232
CHAPTER 4. DIGITAL FILTER STRUCTURES AND QUANTIZATION

ERROR ANALYSIS

4.1.3.2 Direct-Form II IIR Filter Structure

Figure 4.11

233

This structure is canonic: (i.e., it requires the minimum number of memory elements).
Flowgraph reversal gives the

234
CHAPTER 4. DIGITAL FILTER STRUCTURES AND QUANTIZATION

ERROR ANALYSIS

4.1.3.3 Transpose-Form IIR Filter Structure

Figure 4.12

235

Usually we design IIR �lters with N = M , but not always.
Obviously, since all these structures have identical frequency response, �lter structures are not unique.

We consider many di�erent structures because

1. Depending on the technology or application, one might be more convenient than another
2. The response in a practical realization, in which the data and coe�cients must be quantized, may

di�er substantially, and some structures behave much better than others with quantization.

The Cascade-Form IIR �lter structure is one of the least sensitive to quantization, which is why it is the
most commonly used IIR �lter structure.

4.1.3.4 IIR Cascade Form

The numerator and denominator polynomials can be factored

H (z) =
b0 + b1z

−1 + · · ·+ bMz−m

1 + a1z−1 + · · ·+ aNz−N
=

b0

∏M
k=1 (z − zk)

zM−N
∏N

i=1 (z − pk)

and implemented as a cascade of short IIR �lters.

Figure 4.13

Since the �lter coe�cients are usually real yet the roots are mostly complex, we actually implement these
as second-order sections, where comple-conjugate pole and zero pairs are combined into second-order sections
with real coe�cients. The second-order sections are usually implemented with either the Direct-Form II or
Transpose-Form structure.

4.1.3.5 Parallel form

A rational transfer function can also be written as

b0 + b1z
−1 + · · ·+ bMz−m

1 + a1z−1 + · · ·+ aNz−N
= c0

′ + c1
′z−1 + · · ·+ A1

z − p1
+

A2

z − p2
+ · · ·+ AN

z − pN

which by linearity can be implemented as

236
CHAPTER 4. DIGITAL FILTER STRUCTURES AND QUANTIZATION

ERROR ANALYSIS

Figure 4.14

As before, we combine complex-conjugate pole pairs into second-order sections with real coe�cients.
The cascade and parallel forms are of interest because they are much less sensitive to coe�cient quanti-

zation than higher-order structures, as analyzed in later modules in this course.

4.1.3.6 Other forms

There are many other structures for IIR �lters, such as wave digital �lter structures, lattice-ladder, all-
pass-based forms, and so forth. These are the result of extensive research to �nd structures which are
computationally e�cient and insensitive to quantization error. They all represent various tradeo�s; the best
choice in a given context is not yet fully understood, and may never be.

4.1.4 State-Variable Representation of Discrete-Time Systems4

4.1.4.1 State and the State-Variable Representation

De�nition 10: State
the minimum additional information at time n, which, along with all current and future input
values, is necessary to compute all future outputs.

4This content is available online at <http://cnx.org/content/m11920/1.2/>.

237

Essentially, the state of a system is the information held in the delay registers in a �lter structure or
signal �ow graph.

fact: Any LTI (linear, time-invariant) system of �nite order M can be represented by a state-
variable description

x (n + 1) = Ax (n) + Bu (n)

y (n) = Cx (n) + Du (n)

where x is an (Mx1) "state vector," u (n) is the input at time n, y (n) is the output at time n; A
is an (MxM) matrix, B is an (Mx1) vector, C is a (1xM) vector, and D is a (1x1) scalar.

One can always obtain a state-variable description of a signal �ow graph.

Example 4.2: 3rd-Order IIR

y (n) = − (a1y (n− 1))− a2y (n− 2)− a3y (n− 3) + b0x (n) + b1x (n− 1) + b2x (n− 2) + b3x (n− 3)

Figure 4.15

238
CHAPTER 4. DIGITAL FILTER STRUCTURES AND QUANTIZATION

ERROR ANALYSIS


x1 (n + 1)

x2 (n + 1)

x3 (n + 1)

 =


0 1 0

0 0 1

−a3 −a2 −a1




x1 (n)

x2 (n)

x3 (n)

+


0

0

1

u (n)

y (n) =
(
− (a3b0) − (a2b0) − (a1b0)

)
x1 (n)

x2 (n)

x3 (n)

+
(

b0

)
u (n)

Exercise 4.2
Is the state-variable description of a �lter H (z) unique?
Exercise 4.3
Does the state-variable description fully describe the signal �ow graph?

4.1.4.2 State-Variable Transformation

Suppose we wish to de�ne a new set of state variables, related to the old set by a linear transformation:
q (n) = Tx (n), where T is a nonsingular (MxM) matrix, and q (n) is the new state vector. We wish the
overall system to remain the same. Note that x (n) = T−1q (n), and thus(

x (n + 1) = Ax (n) + Bu (n) ⇒ T−1q (n) = AT−1q (n) + Bu (n) ⇒ q (n) = TAT−1q (n) + TBu (n)
)

(
y (n) = Cx (n) + Du (n) ⇒ y (n) = CT−1q (n) + Du (n)

)
This de�nes a new state system with an input-output behavior identical to the old system, but with di�erent
internal memory contents (states) and state matrices.

q (n) = Âq (n) + B̂u (n)

y (n) = Ĉq (n) + D̂u (n)

Â = TAT−1, B̂ = TB, Ĉ = CT−1, D̂ = D
These transformations can be used to generate a wide variety of alternative stuctures or implementations

of a �lter.

4.1.4.3 Transfer Function and the State-Variable Description

Taking the z transform of the state equations

Z [x (n + 1)] = Z [Ax (n) + Bu (n)]

Z [y (n)] = Z [Cx (n) + Du (n)]

⇓

zX (z) = AX (z) + BU (z)

Note: X (z) is a vector of scalar z-transforms (X (z))T =
(

X1 (z) X2 (z) . . .
)

239

Y (z) = CX (n) + DU (n)

(
(zI −A)X (z) = BU (z) ⇒ X (z) = (zI −A)−1

BU (z)
)

so

Y (z) = C(zI −A)−1
BU (z) + DU (z)

=
(
C(− (zI))−1

B + D
)

U (z)
(4.1)

and thus
H (z) = C(zI −A)−1

B + D

Note that since (zI −A)−1 = (±det(zI−A)red)
T

det(z(I)−A) , this transfer function is an Mth-order rational fraction in z.

The denominator polynomial is D (z) = det (zI −A). A discrete-time state system is thus stable if the M
roots of det (zI −A) (i.e., the poles of the digital �lter) are all inside the unit circle.

Consider the transformed state system with Â = TAT−1, B̂ = TB, Ĉ = CT−1, D̂ = D:

H (z) = Ĉ
(
zI − Â

)−1

B̂ + D̂

= CT−1
(
zI − TAT−1

)−1
TB + D

= CT−1
(
T (zI −A) T−1

)−1
TB + D

= CT−1
(
T−1

)−1(zI −A)−1
T−1TB + D

= C(zI −A)−1
B + D

(4.2)

This proves that state-variable transformation doesn't change the transfer function of the underlying system.
However, it can provide alternate forms that are less sensitive to coe�cient quantization or easier to analyze,
understand, or implement.

State-variable descriptions of systems are useful because they provide a fairly general tool for analyzing
all systems; they provide a more detailed description of a signal �ow graph than does the transfer function
(although not a full description); and they suggest a large class of alternative implementations. They are
even more useful in control theory, which is largely based on state descriptions of systems.

4.2 Fixed-Point Numbers

4.2.1 Fixed-Point Number Representation5

Fixed-point arithmetic is generally used when hardware cost, speed, or complexity is important. Finite-
precision quantization issues usually arise in �xed-point systems, so we concentrate on �xed-point quanti-
zation and error analysis in the remainder of this course. For basic signal processing computations such as
digital �lters and FFTs, the magnitude of the data, the internal states, and the output can usually be scaled
to obtain good performance with a �xed-point implementation.

4.2.1.1 Two's-Complement Integer Representation

As far as the hardware is concerned, �xed-point number systems represent data as B-bit integers. The
two's-complement number system is usually used:

k =

 binary integer representation if 0 ≤ k ≤ 2B−1 − 1

bit− by − bitinverse (−k) + 1 if −
(
2B−1

)
≤ k ≤ 0

5This content is available online at <http://cnx.org/content/m11930/1.2/>.

240
CHAPTER 4. DIGITAL FILTER STRUCTURES AND QUANTIZATION

ERROR ANALYSIS

Figure 4.16

The most signi�cant bit is known at the sign bit; it is 0 when the number is non-negative; 1 when the
number is negative.

4.2.1.2 Fractional Fixed-Point Number Representation

For the purposes of signal processing, we often regard the �xed-point numbers as binary fractions between
[−1, 1), by implicitly placing a decimal point after the sign bit.

Figure 4.17

or

x = −b0 +
B−1∑
i=1

(
bi2−i

)
This interpretation makes it clearer how to implement digital �lters in �xed-point, at least when the coe�-
cients have a magnitude less than 1.

4.2.1.3 Truncation Error

Consider the multiplication of two binary fractions

Figure 4.18

Note that full-precision multiplication almost doubles the number of bits; if we wish to return the product
to a B-bit representation, we must truncate the B − 1 least signi�cant bits. However, this introduces
truncation error (also known as quantization error, or roundo� error if the number is rounded to the
nearest B-bit fractional value rather than truncated). Note that this occurs after multiplication.

4.2.1.4 Over�ow Error

Consider the addition of two binary fractions;

241

Figure 4.19

Note the occurence of wraparound over�ow; this only happens with addition. Obviously, it can be a
bad problem.

There are thus two types of �xed-point error: roundo� error, associated with data quantization and
multiplication, and over�ow error, associated with data quantization and additions. In �xed-point systems,
one must strike a balance between these two error sources; by scaling down the data, the occurence of
over�ow errors is reduced, but the relative size of the roundo� error is increased.

Note: Since multiplies require a number of additions, they are especially expensive in terms of
hardware (with a complexity proportional to BxBh, where Bx is the number of bits in the data,
and Bh is the number of bits in the �lter coe�cients). Designers try to minimize both Bx and Bh,
and often choose Bx 6= Bh!

4.2.2 Fixed-Point Quantization6

The fractional B-bit two's complement number representation evenly distributes 2B quantization levels
between −1 and 1− 2−(B−1). The spacing between quantization levels is then(

2
2B

= 2−(B−1) .= ∆B

)
Any signal value falling between two levels is assigned to one of the two levels.

XQ = Q [x] is our notation for quantization. e = Q [x]− x is then the quantization error.
One method of quantization is rounding, which assigns the signal value to the nearest level. The

maximum error is thus ∆B

2 = 2−B .

(a) (b)

Figure 4.20

6This content is available online at <http://cnx.org/content/m11921/1.2/>.

242
CHAPTER 4. DIGITAL FILTER STRUCTURES AND QUANTIZATION

ERROR ANALYSIS

Another common scheme, which is often easier to implement in hardware, is truncation. Q [x] assigns
x to the next lowest level.

(a) (b)

Figure 4.21

The worst-case error with truncation is ∆ = 2−(B−1), which is twice as large as with rounding. Also, the
error is always negative, so on average it may have a non-zero mean (i.e., a bias component).

Over�ow is the other problem. There are two common types: two's complement (or wraparound)
over�ow, or saturation over�ow.

(a) wraparound (b) saturation

Figure 4.22

Obviously, over�ow errors are bad because they are typically large; two's complement (or wraparound)
over�ow introduces more error than saturation, but is easier to implement in hardware. It also has the
advantage that if the sum of several numbers is between [−1, 1), the �nal answer will be correct even if
intermediate sums over�ow! However, wraparound over�ow leaves IIR systems susceptible to zero-input
large-scale limit cycles, as discussed in another module. As usual, there are many tradeo�s to evaluate, and
no one right answer for all applications.

243

4.3 Quantization Error Analysis

4.3.1 Finite-Precision Error Analysis7

4.3.1.1 Fundamental Assumptions in �nite-precision error analysis

Quantization is a highly nonlinear process and is very di�cult to analyze precisely. Approximations and
assumptions are made to make analysis tractable.

4.3.1.1.1 Assumption #1

The roundo� or truncation errors at any point in a system at each time are random, stationary, and statis-
tically independent (white and independent of all other quantizers in a system).

That is, the error autocorrelation function is re [k] = E [enen+k] = σq
2δ [k]. Intuitively, and con�rmed

experimentally in some (but not all!) cases, one expects the quantization error to have a uniform distribution
over the interval

[
−
(

∆
2

)
, ∆

2

)
for rounding, or (−∆, 0] for truncation.

In this case, rounding has zero mean and variance

E [Q [xn]− xn] = 0

σQ
2 = E

[
en

2
]

=
∆B

2

12
and truncation has the statistics

E [Q [xn]− xn] = −
(

∆
2

)

σQ
2 =

∆B
2

12
Please note that the independence assumption may be very bad (for example, when quantizing a sinusoid

with an integer period N). There is another quantizing scheme called dithering, in which the values are
randomly assigned to nearby quantization levels. This can be (and often is) implemented by adding a small
(one- or two-bit) random input to the signal before a truncation or rounding quantizer.

Figure 4.23

This is used extensively in practice. Altough the overall error is somewhat higher, it is spread evenly over
all frequencies, rather than being concentrated in spectral lines. This is very important when quantizing
sinusoidal or other periodic signals, for example.

7This content is available online at <http://cnx.org/content/m11922/1.2/>.

244
CHAPTER 4. DIGITAL FILTER STRUCTURES AND QUANTIZATION

ERROR ANALYSIS

4.3.1.1.2 Assumption #2

Pretend that the quantization error is really additive Gaussian noise with the same mean and variance as
the uniform quantizer. That is, model

(a)

(b) as

Figure 4.24

This model is a linear system, which our standard theory can handle easily. We model the noise as Gaus-
sian because it remains Gaussian after passing through �lters, so analysis in a system context is tractable.

4.3.1.2 Summary of Useful Statistical Facts

• correlation function - (rx [k] .= E [xnxn+k])
• power spectral density - (Sx (w) .= DTFT [rx [n]])
• Note rx [0] = σx

2 = 1
2π

∫ π

−π
Sx (w) dw

• (rxy [k] .= E [x∗ [n] y [n + k]])
• cross-spectral density - Sxy (w) = DTFT [rxy [n]]
• For y = h ∗ x:

Syx (w) = H (w) Sx (w)

Syy (w) = (|H (w) |)2Sx (w)

• Note that the output noise level after �ltering a noise sequence is

σy
2 = ryy [0] =

1
π

∫ π

−π

(|H (w) |)2Sx (w) dw

so post�ltering quantization noise alters the noise power spectrum and may change its variance!
• For x1, x2 statistically independent

rx1+x2 [k] = rx1 [k] + rx2 [k]

Sx1+x2 (w) = Sx1 (w) + Sx2 (w)

245

• For independent random variables
σx1+x2

2 = σx1
2 + σx2

2

4.3.2 Input Quantization Noise Analysis8

All practical analog-to-digital converters (A/D) must quantize the input data. This can be modeled as an
ideal sampler followed by a B-bit quantizer.

Figure 4.25

The signal-to-noise ratio (SNR) of an A/D is

SNR = 10log10

(
Px

Pn

)
= 10log10Px − 10log10

(
∆B

2

12

)
= 10log10Px + 4.77 + 6.02B

(4.3)

where Px is the power in the signal and Pn is the power of the quantization noise, which equals its variance
if it has a zero mean. The SNR increases by 6dB with each additional bit.

4.3.3 Quantization Error in FIR Filters9

In digital �lters, both the data at various places in the �lter, which are continually varying, and the coef-
�cients, which are �xed, must be quantized. The e�ects of quantization on data and coe�cients are quite
di�erent, so they are analyzed separately.

4.3.3.1 Data Quantization

Typically, the input and output in a digital �lter are quantized by the analog-to-digital and digital-to-analog
converters, respectively. Quantization also occurs at various points in a �lter structure, usually after a
multiply, since multiplies increase the number of bits.

4.3.3.1.1 Direct-form Structures

There are two common possibilities for quantization in a direct-form FIR �lter structure: after each multiply,
or only once at the end.

8This content is available online at <http://cnx.org/content/m11923/1.2/>.
9This content is available online at <http://cnx.org/content/m11924/1.2/>.

246
CHAPTER 4. DIGITAL FILTER STRUCTURES AND QUANTIZATION

ERROR ANALYSIS

(a)

(b)

Figure 4.26: (a) Single-precision accumulate; total variance = M ∆2

12
(b) Double-precision accumulate;

variance = ∆2

12

In the latter structure, a double-length accumulator adds all 2B − 1 bits of each product into the accu-
mulating sum, and truncates only at the end. Obviously, this is much preferred, and should always be used
wherever possible. All DSP microprocessors and most general-pupose computers support double-precision
accumulation.

4.3.3.1.2 Transpose-form

Similarly, the transpose-form FIR �lter structure presents two common options for quantization: after each
multiply, or once at the end.

247

(a)

(b) or

Figure 4.27: (a) Quantize at each stage before storing intermediate sum. Output variance = M ∆2

12

(b) Store double-precision partial sums. Costs more memory, but variance = ∆2

12

The transpose form is not as convenient in terms of supporting double-precision accumulation, which is
a signi�cant disadvantage of this structure.

4.3.3.2 Coe�cient Quantization

Since a quantized coe�cient is �xed for all time, we treat it di�erently than data quantization. The funda-
mental question is: how much does the quantization a�ect the frequency response of the �lter?

The quantized �lter frequency response is

DTFT [hQ] = DTFT [hinf.prec. + e] = Hinf.prec. (w) + He (w)

Assuming the quantization model is correct, He (w) should be fairly random and white, with the error spread
fairly equally over all frequencies w ∈ [−π, π); however, the randomness of this error destroys any equiripple
property or any in�nite-precision optimality of a �lter.

Exercise 4.4
What quantization scheme minimizes the L2 quantization error in frequency (minimizes∫ π

−π
(|H (w)−HQ (w) |)2dw)? On average, how big is this error?

Ideally, if one knows the coe�cients are to be quantized to B bits, one should incorporate this directly
into the �lter design problem, and �nd the M B-bit binary fractional coe�cients minimizing the maximum
deviation (L∞ error). This can be done, but it is an integer program, which is known to be np-hard (i.e.,
requires almost a brute-force search). This is so expensive computationally that it's rarely done. There are
some sub-optimal methods that are much more e�cient and usually produce pretty good results.

248
CHAPTER 4. DIGITAL FILTER STRUCTURES AND QUANTIZATION

ERROR ANALYSIS

4.3.4 Data Quantization in IIR Filters10

Finite-precision e�ects are much more of a concern with IIR �lters than with FIR �lters, since the e�ects
are more di�cult to analyze and minimize, coe�cient quantization errors can cause the �lters to become
unstable, and disastrous things like large-scale limit cycles can occur.

4.3.4.1 Roundo� noise analysis in IIR �lters

Suppose there are several quantization points in an IIR �lter structure. By our simplifying assumptions
about quantization error and Parseval's theorem, the quantization noise variance σy,i

2 at the output of the
�lter from the ith quantizer is

σy,i
2 = 1

2π

∫ π

−π
(|Hi (w) |)2Sni (w) dw

= σni
2

2π

∫ π

−π
(|Hi (w) |)2dw

= σni
2
∑∞

n=−∞
(
hi

2 (n)
) (4.4)

where σni
2 is the variance of the quantization error at the ith quantizer, Sni

(w) is the power spectral
density of that quantization error, and Hi (w) is the transfer function from the ith quantizer to the output
point. Thus for P independent quantizers in the structure, the total quantization noise variance is

σy
2 =

1
2π

P∑
i=1

(
σni

2

∫ π

−π

(|Hi (w) |)2dw

)
Note that in general, each Hi (w), and thus the variance at the output due to each quantizer, is di�erent;
for example, the system as seen by a quantizer at the input to the �rst delay state in the Direct-Form II IIR
�lter structure to the output, call it n4, is

10This content is available online at <http://cnx.org/content/m11925/1.2/>.

249

Figure 4.28

with a transfer function

H4 (z) =
z−2

1 + a1z−1 + a2z−2

which can be evaluated at z = ejw to obtain the frequency response.
A general approach to �nd Hi (w) is to write state equations for the equivalent structure as seen by ni,

and to determine the transfer function according to H (z) = C(zI −A)−1
B + d.

250
CHAPTER 4. DIGITAL FILTER STRUCTURES AND QUANTIZATION

ERROR ANALYSIS

Figure 4.29

Exercise 4.5
The above �gure illustrates the quantization points in a typical implementation of a Direct-Form II
IIR second-order section. What is the total variance of the output error due to all of the quantizers
in the system?

By making the assumption that each Qi represents a noise source that is white, independent of the other
sources, and additive,

251

Figure 4.30

the variance at the output is the sum of the variances at the output due to each noise source:

σy
2 =

4∑
i=1

(
σy,i

2
)

The variance due to each noise source at the output can be determined from 1
2π

∫ π

−π
(|Hi (w) |)2Sni (w) dw;

note that Sni
(w) = σni

2 by our assumptions, and Hi (w) is the transfer function from the noise source to
the output.

4.3.5 IIR Coe�cient Quantization Analysis11

Coe�cient quantization is an important concern with IIR �lters, since straigthforward quantization often
yields poor results, and because quantization can produce unstable �lters.

4.3.5.1 Sensitivity analysis

The performance and stability of an IIR �lter depends on the pole locations, so it is important to know how
quantization of the �lter coe�cients ak a�ects the pole locations pj . The denominator polynomial is

D (z) = 1 +
N∑

k=1

(
akz−k

)
=

N∏
i=1

(
1− piz

−1
)

We wish to know ∂
∂ak

(pi), which, for small deviations, will tell us that a δ change in ak yields an ε = δ ∂
∂ak

(pi)
change in the pole location. ∂

∂ak
(pi) is the sensitivity of the pole location to quantization of ak. We can

�nd ∂
∂ak

(pi) using the chain rule.

∂

∂ak
A (z) |z=pi

=
∂

∂z
A (z)

∂

∂ak
(z) |z=pi

⇓

∂

∂ak
(pi) =

∂
∂ak

A (zi) |z=pi

∂
∂z A (zi) |z=pi

11This content is available online at <http://cnx.org/content/m11926/1.2/>.

252
CHAPTER 4. DIGITAL FILTER STRUCTURES AND QUANTIZATION

ERROR ANALYSIS

which is
∂

∂ak
(pi) = z−k

−

z−1
QN

j=1
j 6=i

(1−pjz−1)

! |z=pi

=
−(pi

N−k)QN
j=1
j 6=i

(pj−pi)

(4.5)

Note that as the poles get closer together, the sensitivity increases greatly. So as the �lter order increases and
more poles get stu�ed closer together inside the unit circle, the error introduced by coe�cient quantization
in the pole locations grows rapidly.

How can we reduce this high sensitivity to IIR �lter coe�cient quantization?

4.3.5.1.1 Solution

Cascade (Section 4.1.3.4: IIR Cascade Form) or parallel form (Section 4.1.3.5: Parallel form) implemen-
tations! The numerator and denominator polynomials can be factored o�-line at very high precision and
grouped into second-order sections, which are then quantized section by section. The sensitivity of the quan-
tization is thus that of second-order, rather than N -th order, polynomials. This yields major improvements
in the frequency response of the overall �lter, and is almost always done in practice.

Note that the numerator polynomial faces the same sensitivity issues; the cascade form also improves
the sensitivity of the zeros, because they are also factored into second-order terms. However, in the parallel
form, the zeros are globally distributed across the sections, so they su�er from quantization of all the blocks.
Thus the cascade form preserves zero locations much better than the parallel form, which typically means
that the stopband behavior is better in the cascade form, so it is most often used in practice.

Note on FIR Filters: On the basis of the preceding analysis, it would seem important to use
cascade structures in FIR �lter implementations. However, most FIR �lters are linear-phase and
thus symmetric or anti-symmetric. As long as the quantization is implemented such that the �lter
coe�cients retain symmetry, the �lter retains linear phase. Furthermore, since all zeros o� the unit
circle must appear in groups of four for symmetric linear-phase �lters, zero pairs can leave the unit
circle only by joining with another pair. This requires relatively severe quantizations (enough to
completely remove or change the sign of a ripple in the amplitude response). This "reluctance" of
pole pairs to leave the unit circle tends to keep quantization from damaging the frequency response
as much as might be expected, enough so that cascade structures are rarely used for FIR �lters.

Exercise 4.6 (Solution on p. 259.)

What is the worst-case pole pair in an IIR digital �lter?

4.3.5.2 Quantized Pole Locations

In a direct-form (Section 4.1.3.1: Direct-form I IIR Filter Structure) or transpose-form (Section 4.1.3.3:
Transpose-Form IIR Filter Structure) implementation of a second-order section, the �lter coe�cients are
quantized versions of the polynomial coe�cients.

D (z) = z2 + a1z + a2 = (z − p) (z − p)

p =

(
−a1 ±

√
a1

2 − 4a2

)
2

p = rejθ

D (z) = z2 − 2rcos (θ) + r2

253

So
a1 = − (2rcos (θ))

a2 = r2

Thus the quantization of a1 and a2 to B bits restricts the radius r to r =
√

k∆B , and a1 = − (2< (p)) = k∆B

The following �gure shows all stable pole locations after four-bit two's-complement quantization.

Figure 4.31

Note the nonuniform distribution of possible pole locations. This might be good for poles near r = 1,
θ = π

2 , but not so good for poles near the origin or the Nyquist frequency.
In the "normal-form" structures, a state-variable (De�nition: "State", p. 236) based realization, the

poles are uniformly spaced.

254
CHAPTER 4. DIGITAL FILTER STRUCTURES AND QUANTIZATION

ERROR ANALYSIS

Figure 4.32

This can only be accomplished if the coe�cients to be quantized equal the real and imaginary parts of
the pole location; that is,

α1 = rcos (θ) = < (r)

α2 = rsin (θ) = = (p)

This is the case for a 2nd-order system with the state matrix (Section 4.1.4.1: State and the State-Variable

Representation) A =

 α1 α2

−α1 α1

: The denominator polynomial is
det (zI −A) = (z − α1)

2 + α2
2

= z2 − 2α1z + α1
2 + α2

2

= z2 − 2rcos (θ) z + r2
(
cos2 (θ) + sin2 (θ)

)
= z2 − 2rcos (θ) z + r2

(4.6)

Given any second-order �lter coe�cient set, we can write it as a state-space system (Section 4.1.4.1: State
and the State-Variable Representation), �nd a transformation matrix (Section 4.1.4.2: State-Variable Trans-

255

formation) T such that Â = T−1AT is in normal form, and then implement the second-order section using
a structure corresponding to the state equations.

The normal form has a number of other advantages; both eigenvalues are equal, so it minimizes the norm
of Ax, which makes over�ow less likely, and it minimizes the output variance due to quantization of the state
values. It is sometimes used when minimization of �nite-precision e�ects is critical.

Exercise 4.7 (Solution on p. 259.)

What is the disadvantage of the normal form?

4.4 Over�ow Problems and Solutions

4.4.1 Limit Cycles12

4.4.1.1 Large-scale limit cycles

When over�ow occurs, even otherwise stable �lters may get stuck in a large-scale limit cycle, which is a
short-period, almost full-scale persistent �lter output caused by over�ow.

Example 4.3
Consider the second-order system

H (z) =
1

1− z−1 + 1
2z−2

Figure 4.33

with zero input and initial state values z0 [0] = 0.8, z1 [0] = −0.8. Note y [n] = z0 [n + 1].
The �lter is obviously stable, since the magnitude of the poles is 1√

2
= 0.707, which is well inside

the unit circle. However, with wraparound over�ow, note that y [0] = z0 [1] = 4
5 −

1
2

(
−
(

4
5

))
= 6

5 =

12This content is available online at <http://cnx.org/content/m11928/1.2/>.

256
CHAPTER 4. DIGITAL FILTER STRUCTURES AND QUANTIZATION

ERROR ANALYSIS

−
(

4
5

)
, and that z0 [2] = y [1] = −

(
4
5

)
− 1

2
4
5 = −

(
6
5

)
= 4

5 , so y [n] = −
(

4
5

)
, 4

5 ,−
(

4
5

)
, 4

5 , . . . even
with zero input.

Clearly, such behavior is intolerable and must be prevented. Saturation arithmetic has been proved to
prevent zero-input limit cycles, which is one reason why all DSP microprocessors support this feature. In
many applications, this is considered su�cient protection. Scaling to prevent over�ow is another solution, if
as well the inital state values are never initialized to limit-cycle-producing values. The normal-form structure
also reduces the chance of over�ow.

4.4.1.2 Small-scale limit cycles

Small-scale limit cycles are caused by quantization. Consider the system

Figure 4.34

Note that when αz0 > z0− ∆B

2 , rounding will quantize the output to the current level (with zero input),
so the output will remain at this level forever. Note that the maximum amplitude of this "small-scale limit
cycle" is achieved when

αz0 = z0 −
∆B

2
=⇒= zmax =

∆B

2 (1− α)
In a higher-order system, the small-scale limit cycles are oscillatory in nature. Any quantization scheme that
never increases the magnitude of any quantized value prevents small-scale limit cycles.

Note: Two's-complement truncation does not do this; it increases the magnitude of negative
numbers.

However, this introduces greater error and bias. Since the level of the limit cycles is proportional to ∆B ,
they can be reduced by increasing the number of bits. Poles close to the unit circle increase the magnitude
and likelihood of small-scale limit cycles.

4.4.2 Scaling13

Over�ow is clearly a serious problem, since the errors it introduces are very large. As we shall see, it is also
responsible for large-scale limit cycles, which cannot be tolerated. One way to prevent over�ow, or to render

13This content is available online at <http://cnx.org/content/m11927/1.2/>.

257

it acceptably unlikely, is to scale the input to a �lter such that over�ow cannot (or is su�ciently unlikely
to) occur.

Figure 4.35

In a �xed-point system, the range of the input signal is limited by the fractional �xed-point number
representation to |x [n] | ≤ 1. If we scale the input by multiplying it by a value β, 0 < β < 1, then
|βx [n] | ≤ β.

Another option is to incorporate the scaling directly into the �lter coe�cients.

Figure 4.36

4.4.2.1 FIR Filter Scaling

What value of β is required so that the output of an FIR �lter cannot over�ow (∀n : (|y (n) | ≤ 1), ∀n :
(|x (n) | ≤ 1))?

|y (n) | = |
M−1∑
k=0

(h (k) βx (n− k)) | ≤
M−1∑
k=0

(|h (k) ||β||x (n− k) |) ≤ β

M−1∑
k=0

(|h (k) |1)

⇓

β <

M−1∑
k=0

(|h (k) |)

Alternatively, we can incorporate the scaling directly into the �lter, and require that

M−1∑
k=0

(|h (k) |) < 1

to prevent over�ow.

258
CHAPTER 4. DIGITAL FILTER STRUCTURES AND QUANTIZATION

ERROR ANALYSIS

4.4.2.2 IIR Filter Scaling

To prevent the output from over�owing in an IIR �lter, the condition above still holds: (M = ∞)

|y (n) | <
∞∑

k=0

(|h (k) |)

so an initial scaling factor β < 1P∞
k=0(|h(k)|) can be used, or the �lter itself can be scaled.

However, it is also necessary to prevent the states from over�owing, and to prevent over�ow at any point
in the signal �ow graph where the arithmetic hardware would thereby produce errors. To prevent the states
from over�owing, we determine the transfer function from the input to all states i, and scale the �lter such
that ∀i : (

∑∞
k=0 (|hi (k) |) ≤ 1)

Although this method of scaling guarantees no over�ows, it is often too conservative. Note that a worst-
case signal is x (n) = sign (h (−n)); this input may be extremely unlikely. In the relatively common situation
in which the input is expected to be mainly a single-frequency sinusoid of unknown frequency and amplitude
less than 1, a scaling condition of

∀w : (|H (w) | ≤ 1)

is su�cient to guarantee no over�ow. This scaling condition is often used. If there are several potential
over�ow locations i in the digital �lter structure, the scaling conditions are

∀i, w : (|Hi (w) | ≤ 1)

where Hi (w) is the frequency response from the input to location i in the �lter.
Even this condition may be excessively conservative, for example if the input is more-or-less random, or

if occasional over�ow can be tolerated. In practice, experimentation and simulation are often the best ways
to optimize the scaling factors in a given application.

For �lters implemented in the cascade form, rather than scaling for the entire �lter at the beginning,
(which introduces lots of quantization of the input) the �lter is usually scaled so that each stage is just
prevented from over�owing. This is best in terms of reducing the quantization noise. The scaling factors are
incorporated either into the previous or the next stage, whichever is most convenient.

Some heurisitc rules for grouping poles and zeros in a cascade implementation are:

1. Order the poles in terms of decreasing radius. Take the pole pair closest to the unit circle and group
it with the zero pair closest to that pole pair (to minimize the gain in that section). Keep doing this
with all remaining poles and zeros.

2. Order the section with those with highest gain (argmax|Hi (w) |) in the middle, and those with lower
gain on the ends.

Leland B. Jackson[20] has an excellent intuitive discussion of �nite-precision problems in digital �lters.
The book by Roberts and Mullis[26] is one of the most thorough in terms of detail.

259

Solutions to Exercises in Chapter 4

Solution to Exercise 4.6 (p. 252)
The pole pair closest to the real axis in the z-plane, since the complex-conjugate poles will be closest together
and thus have the highest sensitivity to quantization.

Solution to Exercise 4.7 (p. 255)
It requires more computation. The general state-variable equation (De�nition: "State", p. 236) requires
nine multiplies, rather than the �ve used by the Direct-Form II (Section 4.1.3.2: Direct-Form II IIR Filter
Structure) or Transpose-Form (Section 4.1.3.3: Transpose-Form IIR Filter Structure) structures.

260
CHAPTER 4. DIGITAL FILTER STRUCTURES AND QUANTIZATION

ERROR ANALYSIS

Chapter 5

Adaptive Filters and Applications

5.1 Introduction to Adaptive Filters1

In many applications requiring �ltering, the necessary frequency response may not be known beforehand, or
it may vary with time. (Example; suppression of engine harmonics in a car stereo.) In such applications,
an adaptive �lter which can automatically design itself and which can track system variations in time is
extremely useful. Adaptive �lters are used extensively in a wide variety of applications, particularly in
telecommunications.

Outline of adaptive �lter material

1. Wiener Filters - L2 optimal (FIR) �lter design in a statistical context
2. LMS algorithm - simplest and by-far-the-most-commonly-used adaptive �lter algorithm
3. Stability and performance of the LMS algorithm - When and how well it works
4. Applications of adaptive �lters - Overview of important applications
5. Introduction to advanced adaptive �lter algorithms - Techniques for special situations or faster

convergence

5.2 Wiener Filter Algorithm

5.2.1 Discrete-Time, Causal Wiener Filter2

Stochastic L2 optimal (least squares) FIR �lter design problem: Given a wide-sense stationary (WSS) input
signal xk and desired signal dk (WSS ⇔ E [yk] = E [yk+d], ryz (l) = E [ykzk+l], ∀k, l : (ryy (0) < ∞))

1This content is available online at <http://cnx.org/content/m11535/1.3/>.
2This content is available online at <http://cnx.org/content/m11825/1.1/>.

261

262 CHAPTER 5. ADAPTIVE FILTERS AND APPLICATIONS

Figure 5.1

The Wiener �lter is the linear, time-invariant �lter minimizing E
[
ε2
]
, the variance of the error.

As posed, this problem seems slightly silly, since dk is already available! However, this idea is useful in a
wide cariety of applications.

Example 5.1
active suspension system design

Figure 5.2

Note: optimal system may change with di�erent road conditions or mass in car, so an adaptive
system might be desirable.

Example 5.2
System identi�cation (radar, non-destructive testing, adaptive control systems)

263

Figure 5.3

Exercise 5.1
Usually one desires that the input signal xk be "persistently exciting," which, among other things,
implies non-zero energy in all frequency bands. Why is this desirable?

5.2.1.1 Determining the optimal length-N causal FIR Weiner �lter

Note: for convenience, we will analyze only the causal, real-data case; extensions are straightfor-
ward.

yk =
M−1∑
l=0

(wlxk−l)

argmin
wl

E [ε2] = E
[
(dk − yk)

2] = E

[(
dk −

∑M−1
l=0 (wlxk−l)

)2
]

= E
[
dk

2
]
−

2
∑M−1

l=0 (wlE [dkxk−l]) +
∑M−1

l=0

(∑M−1
m=0 ((wlwmE [xk−lxk−m]))

)
E
[
ε2
]

= rdd (0)− 2
M−1∑
l=0

(wlrdx (l)) +
M−1∑
l=0

(
M−1∑
m=0

(wlwmrxx (l −m))

)
where

rdd (0) = E
[
dk

2
]

rdx (l) = E [dkXk−l]

rxx (l −m) = E [xkxk+l−m]

264 CHAPTER 5. ADAPTIVE FILTERS AND APPLICATIONS

This can be written in matrix form as

E
[
ε2
]

= rdd (0)− 2PWT + WT RW

where

P =


rdx (0)

rdx (1)
...

rdx (M − 1)



R =



rxx (0) rxx (1) rxx (M − 1)

rxx (1) rxx (0)
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . rxx (0) rxx (1)

rxx (M − 1) rxx (1) rxx (0)


To solve for the optimum �lter, compute the gradient with respect to the top weights vector W∇ .=


∂

∂w0

(
ε2
)

∂
∂w1

(
ε2
)

...

∂
∂wM−1

(
ε2
)




∇ = − (2P) + 2RW

(recall d
dW

(
AT W

)
= AT , d

dW (WMW) = 2MW for symmetric M) setting the gradient equal to zero ⇒(
WoptR = P ⇒ Wopt = R−1P

)
Since R is a correlation matrix, it must be non-negative de�nite, so this is a minimizer. For R positive
de�nite, the minimizer is unique.

5.2.2 Practical Issues in Wiener Filter Implementation3

The weiner-�lter, Wopt = R−1P, is ideal for many applications. But several issues must be addressed to use
it in practice.

Exercise 5.2 (Solution on p. 288.)

In practice one usually won't know exactly the statistics of xk and dk (i.e. R and P) needed to
compute the Weiner �lter.

How do we surmount this problem?

Exercise 5.3 (Solution on p. 288.)

In many applications, the statistics of xk, dk vary slowly with time.
How does one develop an adaptive system which tracks these changes over time to keep the

system near optimal at all times?

Exercise 5.4 (Solution on p. 288.)

How can ˆrk
xx (l) be computed e�ciently?

3This content is available online at <http://cnx.org/content/m11824/1.1/>.

265

Exercise 5.5
how does one choose N?

5.2.2.1 Tradeo�s

Larger N → more accurate estimates of the correlation values → better Ŵopt. However, larger N leads to
slower adaptation.

Note: The success of adaptive systems depends on x, d being roughly stationary over at least
N samples, N > M . That is, all adaptive �ltering algorithms require that the underlying system
varies slowly with respect to the sampling rate and the �lter length (although they can tolerate
occasional step discontinuities in the underlying system).

5.2.2.2 Computational Considerations

As presented here, an adaptive �lter requires computing a matrix inverse at each sample. Actually, since the
matrix R is Toeplitz, the linear system of equations can be sovled with O

(
M2
)
computations using Levinson's

algorithm, where M is the �lter length. However, in many applications this may be too expensive, especially
since computing the �lter output itself requires O (M) computations. There are two main approaches to
resolving the computation problem

1. Take advantage of the fact that Rk+1 is only slightly changed from Rk to reduce the computation to
O (M); these algorithms are called Fast Recursive Least Squareds algorithms; all methods proposed so
far have stability problems and are dangerous to use.

2. Find a di�erent approach to solving the optimization problem that doesn't require explicit inversion
of the correlation matrix.

Note: Adaptive algorithms involving the correlation matrix are called Recursive least Squares
(RLS) algorithms. Historically, they were developed after the LMS algorithm, which is the slimplest
and most widely used approach O (M). O

(
M2
)
RLS algorithms are used in applications requiring

very fast adaptation.

5.2.3 Quadratic Minimization and Gradient Descent4

5.2.3.1 Quadratic minimization problems

The least squares optimal �lter design problem is quadratic in the �lter coe�cients:

E
[
ε2
]

= rdd (0)− 2PT W + WT RW

If R is positive de�nite, the error surface E
[
ε2
]
(w0, w1, . . . , wM−1) is a unimodal "bowl" in RN .

4This content is available online at <http://cnx.org/content/m11826/1.2/>.

266 CHAPTER 5. ADAPTIVE FILTERS AND APPLICATIONS

Figure 5.4

The problem is to �nd the bottom of the bowl. In an adaptive �lter context, the shape and bottom of
the bowl may drift slowly with time; hopefully slow enough that the adaptive algorithm can track it.

For a quadratic error surface, the bottom of the bowl can be found in one step by computing R−1P.
Most modern nonlinear optimization methods (which are used, for example, to solve the LP optimal IIR
�lter design problem!) locally approximate a nonlinear function with a second-order (quadratic) Taylor series
approximation and step to the bottom of this quadratic approximation on each iteration. However, an older
and simpler appraoch to nonlinear optimaztion exists, based on gradient descent.

Contour plot of ε-squared

Figure 5.5

The idea is to iteratively �nd the minimizer by computing the gradient of the error function: E∇ =

267

∂
∂wi

(
E
[
ε2
])
. The gradient is a vector in RM pointing in the steepest uphill direction on the error surface at

a given point Wi, with ∇ having a magnitude proportional to the slope of the error surface in this steepest
direction.

By updating the coe�cient vector by taking a step opposite the gradient direction : Wi+1 = Wi−µ∇i,
we go (locally) "downhill" in the steepest direction, which seems to be a sensible way to iteratively solve a
nonlinear optimization problem. The performance obviously depends on µ; if µ is too large, the iterations
could bounce back and forth up out of the bowl. However, if µ is too small, it could take many iterations to
approach the bottom. We will determine criteria for choosing µ later.

In summary, the gradient descent algorithm for solving the Weiner �lter problem is:

Guess W 0

do i = 1,∞

∇i = − (2P) + 2RW i

W i+1 = W i − µ∇i

repeat

Wopt = W∞

The gradient descent idea is used in the LMS adaptive �tler algorithm. As presented, this alogrithm costs
O
(
M2
)
computations per iteration and doesn't appear very attractive, but LMS only requires O (M) com-

putations and is stable, so it is very attractive when computation is an issue, even thought it converges more
slowly then the RLS algorithms we have discussed so far.

5.3 The LMS Adaptive Filter Algorithm

5.3.1 The LMS Adaptive Filter Algorithm5

Recall the Weiner �lter problem

Figure 5.6

5This content is available online at <http://cnx.org/content/m11829/1.1/>.

268 CHAPTER 5. ADAPTIVE FILTERS AND APPLICATIONS

{xk}, {dk} jointly wide sense stationary
Find W minimizing E

[
εk

2
]

εk = dk − yk = dk −
M−1∑
i=0

(wixk−i) = dk −XkT
W k

Xk =


xk

xk−1

...

xk−M+1



W k =


wk

0

wk
1

...

wk
M−1


The superscript denotes absolute time, and the subscript denotes time or a vector index.

the solution can be found by setting the gradient = 0

∇k = ∂
∂W

(
E
[
εk

2
])

= E
[
2εk

(
−Xk

)]
= E

[
−2
(
dk −XkT

Wk

)
Xk
]

= −
(
2E
[
dkXk

])
+
(
E
[
XkT

])
W

= −2P + 2RW

(5.1)

⇒
(
Wopt = R−1P

)
Alternatively, Wopt can be found iteratively using a gradient descent technique

W k+1 = W k − µ∇k

In practice, we don't know R and P exactly, and in an adaptive context they may be slowly varying with
time.

To �nd the (approximate) Wiener �lter, some approximations are necessary. As always, the key is to
make the right approximations!

Good idea: Approximate R and P : ⇒ RLS methods, as discussed last time.

Better idea: Approximate the gradient!

∇k =
∂

∂W

(
E
[
εk

2
])

Note that εk
2 itself is a very noisy approximation to E

[
εk

2
]
. We can get a noisy approximation to the

gradient by �nding the gradient of εk
2! Widrow and Ho� �rst published the LMS algorithm, based on this

clever idea, in 1960.

∇̂k =
∂

∂W

(
εk

2
)

= 2εk
∂

∂W

(
dk −W kT

Xk
)

= 2εk

(
−Xk

)
= −

(
2εkXk

)
This yields the LMS adaptive �lter algorithm

Example 5.3: The LMS Adaptive Filter Algorithm

269

1. yk = W kT
Xk =

∑M−1
i=0

(
wk

i xk−i

)
2. εk = dk − yk

3. W k+1 = W k − µ∇̂k = W k − µ
(
−2εkXk

)
= W k + 2µεkXk (wk+1

i = wk
i + 2µεkxk−i)

The LMS algorithm is often called a stochastic gradient algorithm, since ∇̂k is a noisy gradient. This is
by far the most commonly used adaptive �ltering algorithm, because

1. it was the �rst
2. it is very simple
3. in practice it works well (except that sometimes it converges slowly)
4. it requires relatively litle computation
5. it updates the tap weights every sample, so it continually adapts the �lter
6. it tracks slow changes in the signal statistics well

5.3.1.1 Computational Cost of LMS

To Compute ⇒ yk εk W k+1 = Total

multiplies M 0 M + 1 2M + 1

adds M − 1 1 M 2M

So the LMS algorithm is O (M) per sample. In fact, it is nicely balanced in that the �lter computation
and the adaptation require the same amount of computation.

Note that the parameter µ plays a very important role in the LMS algorithm. It can also be varied with
time, but usually a constant µ ("convergence weight facor") is used, chosen after experimentation for a given
application.

5.3.1.1.1 Tradeo�s

large µ: fast convergence, fast adaptivity
small µ: accurate W → less misadjustment error, stability

5.3.2 First Order Convergence Analysis of the LMS Algorithm6

5.3.2.1 Analysis of the LMS algorithm

It is important to analyze the LMS algorithm to determine under what conditions it is stable, whether or
not it converges to the Wiener solution, to determine how quickly it converges, how much degredation is
su�ered due to the noisy gradient, etc. In particular, we need to know how to choose the parameter µ.

5.3.2.1.1 Mean of W

does W k, k →∞ approach the Wiener solution? (since W k is always somewhat random in the approximate
gradient-based LMS algorithm, we ask whether the expected value of the �lter coe�cients converge to the
Wiener solution)

E
[
W k+1

]
= W k+1

= E
[
W k + 2µεkXk

]
= W k + 2µE

[
dkXk

]
+ 2µE

[
−
((

W kT
Xk
)

Xk
)]

= W k + 2µP +
(
−
(
2µE

[(
W kT

Xk
)

Xk
])) (5.2)

6This content is available online at <http://cnx.org/content/m11830/1.1/>.

270 CHAPTER 5. ADAPTIVE FILTERS AND APPLICATIONS

5.3.2.1.1.1 Patently False Assumption

Xk and Xk−i, Xk and dk−i, and dk and dk−i are statistically independent, i 6= 0. This assumption is
obviously false, since Xk−1 is the same as Xk except for shifting down the vector elements one place and
adding one new sample. We make this assumption because otherwise it becomes extremely di�cult to
analyze the LMS algorithm. (First good analysis not making this assumption: Macchi and Eweda[23]) Many
simulations and much practical experience has shown that the results one obtains with analyses based on
the patently false assumption above are quite accurate in most situations

With the independence assumption, W k (which depends only on previous Xk−i, dk−i) is statitically

independent of Xk, and we can simplify E
[(

W kT
Xk
)

Xk
]

Now
(
W kT

Xk
)

Xk is a vector, and

E
[(

W kT
Xk
)

Xk
]

= E




...(∑M−1
i=0

(
wk

i xk−i

))
xk−j

...




=


...∑M−1

i=0

(
E
[
wk

i xk−ixk−j

])
...



=


...∑M−1

i=0

((
wk

i

)
E [xk−ixk−j]

)
...



=


...∑M−1

i=0

(
wk

i rxx (i− j)
)

...


= RW k

(5.3)

where R = E
[
XkXkT

]
is the data correlation matrix.

Putting this back into our equation

W k+1 = W k + 2µP +
(
−
(
2µRW k

))
= (I − 2µR) W k + 2µP

(5.4)

Now if W k→∞ converges to a vector of �nite magnitude ("convergence in the mean"), what does it converge
to?

If W k converges, then as k →∞, W k+1 ≈ W k, and

W∞ = (I − 2µR) W∞ + 2µP

2µRW∞ = 2µP

RW∞ = P

271

or
Wopt = R−1P

the Wiener solution!
So the LMS algorithm, if it converges, gives �lter coe�cients which on average are the Wiener coe�cients!

This is, of course, a desirable result.

5.3.2.1.2 First-order stability

But does W k converge, or under what conditions?
Let's rewrite the analysis in term of V k, the "mean coe�cient error vector" V k = W k − Wopt, where

Wopt is the Wiener �lter

W k+1 = W k − 2µRW k + 2µP

W k+1 −Wopt = W k −Wopt +
(
−
(
2µRW k

))
+ 2µRWopt − 2µRWopt + 2µP

V k+1 = V k − 2µRV k + (− (2µRWopt)) + 2µP

Now Wopt = R−1, so

V k+1 = V k − 2µRV k +
(
−
(
2µRR−1P

))
+ 2µP = (I − 2µR) V k

We wish to know under what conditions V k→∞ → 0?

5.3.2.1.2.1 Linear Algebra Fact

Since R is positive de�nite, real, and symmetric, all the eigenvalues are real and positive. Also, we can write
R as

(
Q−1ΛQ

)
, where Λ is a diagonal matrix with diagonal entries λi equal to the eigenvalues of R, and Q

is a unitary matrix with rows equal to the eigenvectors corresponding to the eigenvalues of R.
Using this fact,

V k+1 =
(
I − 2µ

(
Q−1ΛQ

))
V k

multiplying both sides through on the left by Q: we get

QV k+1 = (Q− 2µΛQ) V k = (1− 2µΛ) QV k

Let V ' = QV :
V 'k+1 = (1− 2µΛ) V 'k

Note that V ' is simply V in a rotated coordinate set in Rm, so convergence of V ' implies convergence of V .
Since 1− 2µΛ is diagonal, all elements of V ' evolve independently of each other. Convergence (stability)

bolis down to whether all M of these scalar, �rst-order di�erence equations are stable, and thus → 0.

∀i, i = [1, 2, . . . ,M] :
(
V 'k+1

i = (1− 2µλi) V 'k
i

)
These equations converge to zero if |1 − 2µλi| < 1, or ∀i : (|µλi| < 1) µ and λi are positive, so we require

∀i :
(
µ < 1

λi

)
so for convergence in the mean of the LMS adaptive �lter, we require

µ <
1

λmax
(5.5)

This is an elegant theoretical result, but in practice, we may not know λmax, it may be time-varying, and
we certainly won't want to compute it. However, another useful mathematical fact comes to the rescue...

tr (R) =
M∑
i=1

rii =
M∑
i=1

λi ≥ λmax

272 CHAPTER 5. ADAPTIVE FILTERS AND APPLICATIONS

Since the eigenvalues are all positive and real.
For a correlation matrix, ∀i, i ∈ {1,M} : (rii = r (0)). So tr (R) = Mr (0) = ME [xkxk]. We can easily

estimate r (0) with O (1) computations/sample, so in practice we might require

µ <
1

M ˆr (0)

as a conservative bound, and perhaps adapt µ accordingly with time.

5.3.2.1.3 Rate of convergence

Each of the modes decays as
(1− 2µλi)

k

Good news: The initial rate of convergence is dominated by the fastest mode 1− 2µλmax. This
is not surprising, since a dradient descent method goes "downhill" in the steepest direction

Bad news: The �nal rate of convergence is dominated by the slowest mode 1 − 2µλmin. For
small λmin, it can take a long time for LMS to converge.

Note that the convergence behavior depends on the data (via R). LMS converges relatively quickly for
roughly equal eigenvalues. Unequal eigenvalues slow LMS down a lot.

5.3.3 Second-order Convergence Analysis of the LMS Algorithm and Misadjust-
ment Error7

Convergence of the mean (�rst-order analysis) is insu�cient to guarantee desirable behavior of the LMS
algorithm; the variance could still be in�nite. It is important to show that the variance of the �lter coe�cients
is �nite, and to determine how close the average squared error is to the minimum possible error using an
exact Wiener �lter.

E
[
εk

2
]

= E

[(
dk −W kT

Xk
)2
]

= E
[
dk

2 − 2dkXkT
W k −W kT

XkXkT
W k
]

= rdd (0)− 2W kT
P + W kT

RW k

(5.6)

The minimum error is obtained using the Wiener �lter

Wopt = R−1P

εmin
2 = E

[
ε2
]

=
(
rdd (0)− 2PT R−1P + PT R−1RR−1P

)
= rdd (0)− PT R−1P

(5.7)

To analyze the average error in LMS, write (5.6) in terms of V ' = Q [W −Wopt], where Q−1ΛQ = R

E [εk
2] = rdd (0) − 2W kT

P + W kT
RW k + −

(
W kT

RWopt

)
− Wopt

T RW k +

Wopt
T RWopt + W kT

RWopt + Wopt
T RW k − Wopt

T RWopt = rdd (0) + V kT
RV k −

P T R−1P = εmin
2 + V kT

RV k = εmin
2 + V kT

Q−1QRQ−1QV k = εmin
2 + V 'kT

ΛV 'k

(5.8)

7This content is available online at <http://cnx.org/content/m11831/1.2/>.

273

E
[
εk

2
]

= εmin
2 +

N−1∑
j=0

(
λjE

[
v'kj

2
])

So we need to know E
[
v'kj

2
]
, which are the diagonal elements of the covariance matrix of V 'k, or E

[
V 'kV 'kT

]
.

From the LMS update equation
W k+1 = W k + 2µεkXk

we get
V 'k+1 = W 'k + 2µεkQXk

V k+1 = E
[
V 'k+1V 'k+1T

]
= E

[
4µ2εk

2QXkXkT
QT
]

= V k + 2µ
(
εkQXkV 'kT

)
+ 2µ

(
εkV 'kXkT

QT
)

+ 4µ2E
[
εk

2QXkXkT
QT
] (5.9)

Note that
εk = dk −W kT

Xk = dk −Wopt
T − V 'kT

QXk

so

E
[
εkQXkV 'kT

]
= E

[
dkQXkV 'kT −Wopt

T XkQXkV 'kT − V 'kT
QXkV 'kT

]
= 0 + 0−

(
QXkXkT

QT V 'kV 'kT
)

= −
(
QE

[
XkXkT

]
QT E

[
V 'kV 'kT

])
= −

(
ΛV k

)
(5.10)

Note that the Patently False independence Assumption was invoked here.

To analyze E
[
εk

2QXkXkT
QT
]
, we make yet another obviously false assumptioon that εk

2 and Xk are

statistically independent. This is obviously false, since εk = dk − W kT
Xk. Otherwise, we get 4th-order

terms in X in the product. These can be dealt with, at the expense of a more complicated analysis, if a
particular type of distribution (such as Gaussian) is assumed. See, for example Gardner[14]. A questionable
justi�cation for this assumption is that as W k ≈ Wopt, W k becomes uncorrelated with Xk (if we invoke
the original independence assumption), which tends to randomize the error signal relative to Xk. With this
assumption,

E
[
εk

2QXkXkT
QT
]

= E
[
εk

2
]
E
[
QXkXkT

QT
]

= E
[
εk

2
]
Λ

Now
εk

2 = εmin
2 + V 'kT

ΛV 'k

so

E
[
εk

2
]

= εmin
2 + E

[∑(
λjV

'k
j

2
)]

= εmin
2 +

∑(
λjV k

jj

) (5.11)

Thus, (5.9) becomes

V k+1 = (I − 4µΛ) V k + 4µ2
∑(

λjV
k

jjΛ
)

+ 4µ2εmin
2Λ (5.12)

Now if this system is stable and converges, it converges to V ∞ = V ∞+1

⇒
(
4µΛV ∞ = 4µ2

(∑
(λjVjj) + εmin

2
)

Λ
)

⇒
(
V ∞ = µ

(∑
(λjVjj) + εmin

2
)

I
)

274 CHAPTER 5. ADAPTIVE FILTERS AND APPLICATIONS

So it is a diagonal matrix with all elements on the diagonal equal:
Then

V ∞
ii = µ

(
V ∞

ii

∑
λj + εmin

2
)

V ∞
ii

(
1− µ

∑
λj

)
= µεmin

2

V ∞
ii =

µεmin
2

1− µ
∑

λj

Thus the error in the LMS adaptive �lter after convergence is

E
[
ε∞

2
]

= εmin
2 + E

[
V '∞λV '∞]

= εmin
2 + µεmin

2P(λj)
1−µ

P
λj

= εmin
2 1

1−µ
P

λj

= εmin
2 1

1−µtr(R)

= εmin
2 1

1−µrxx(0)N

(5.13)

E
[
ε∞

2
]

= εmin
2 1
1− µNσx

2
(5.14)

1− µNσx
2 is called the misadjustment factor. Oftern, one chooses µ to select a desired misadjustment

factor, such as an error 10% higher than the Wiener �lter error.

5.3.3.1 2nd-Order Convergence (Stability)

To determine the range for µ for which (5.12) converges, we must determine the µ for which the matrix
di�erence equation converges.

V k+1 = (I − 4µΛ) V k + 4µ2
∑(

λjV
k

jjΛ
)

+ 4µ2εmin
2Λ

The o�-diagonal elements each evolve independently according to V k+1
ij = 1 − 4µλiV k

ij These terms will

decay to zero if ∀i : (4µλi < 2), or µ < 1
2λmax

The diagonal terms evolve according to

V k+1
ii = (1− 4µλi) V k

ii + 4µ2λi

(∑
λj

)
V k

jj + 4µ2εmin
2λi

For the homoegeneous equation

V k+1
ii = (1− 4µλi) V k

ii + 4µ2λi

(∑
λj

)
V k

jj

for 1− 4µλi positive,

V k+1
ii ≤ (1− 4µλi) V k

iimax + 4µ2λi

(∑
λj

)
V k

jjmax =
(
1− 4µλi + 4µ2λi

∑
λj

)
V k

jjmax (5.15)

V k+1
ii will be strictly less than V k

jjmax for

1− 4µλi + 4µ2λi

∑
λj < 1

or
4µ2λi

∑
λj < 4µλi

275

or

µ < 1P
λj

= 1
tr(R)

= 1
Nrxx(0)

= 1
Nσx

2

(5.16)

This is a more rigorous bound than the �rst-order bounds. Ofter engineers choose µ a few times smaller
than this, since more rigorous analyses yield a slightly smaller bound. µ = µ

3Nσx
2 is derived in some analyses

assuming Gaussian xk, dk.

5.4 Applications of Adaptive Filters

5.4.1 Applications of Adaptive Filters8

Adaptive �lters can be con�gured in a surprisingly large variety of ways for application in a large number
of applications. The same LMS algorithm can be used to adapt the �lter coe�cients in most of these
con�gurations; only the "plumbing" changes.

5.4.2 Adaptive System Identi�cation9

goal: To approximate an unknown system (or the behavior of that system) as closely as possible

Figure 5.7

The optimal solution is R−1P = W

8This content is available online at <http://cnx.org/content/m11536/1.1/>.
9This content is available online at <http://cnx.org/content/m11906/1.1/>.

276 CHAPTER 5. ADAPTIVE FILTERS AND APPLICATIONS

Suppose the unknown system is a causal, linear time-invariant �lter:

dk = xk ∗ hk =
∞∑

i=0

(xk−ihi)

Now

P =
(

E [dkxk−j]
)

=
(

E [(
∑∞

i=0 (xk−ihi)) xk−j]
)

=(∑∞
i=0 (hiE [xk−ixk−j])

)
=

(∑∞
i=0 (rxx (j − i))

)
=

rxx (0) r (1) r (M − 1) | r (M) r (M + 1) . . .

r (1) r (0)
.

.

.

.

.

.

.

.

. | .

.

.

.

.

. . . .

r (2) r (1)
.

.

.

.

.

.

.

.

. | .

.

.

.

.

. . . .
.

.

.

.

.

. . . . r (0) r (1) | r (2) r (3) . . .

r (M − 1) r (M − 2) . . . r (1) r (0) | r (1) r (2) . . .




h (0)

h (1)

h (2)
.

.

.



(5.17)

If the adaptive �lter H is a length-M FIR �lter (h (m) = h (m + 1) = · · · = 0), this reduces to

P = Rh−1

and
Wopt = R−1P = R−1 (Rh) = h

FIR adaptive system identi�cation thus converges in the mean to the corresponding M samples of the impulse
response of the unknown system.

5.4.3 Adaptive Equalization10

goal: Design an approximate inverse �lter to cancel out as much distortion as possible.

10This content is available online at <http://cnx.org/content/m11907/1.1/>.

277

Figure 5.8

In principle, WH ≈ z−∆, or W ≈ z−∆

H , so that the overall response of the top path is approximately
δ (n−∆). However, limitations on the form of W (FIR) and the presence of noise cause the equalization to
be imperfect.

5.4.3.1 Important Application

Channel equalization in a digital communication system.

Figure 5.9

If the channel distorts the pulse shape, the matched �lter will no longer be matched, intersymbol inter-
ference may increase, and the system performance will degrade.

An adaptive �lter is often inserted in front of the matched �lter to compensate for the channel.

278 CHAPTER 5. ADAPTIVE FILTERS AND APPLICATIONS

Figure 5.10

This is, of course, unrealizable, since we do not have access to the original transmitted signal, sk.
There are two common solutions to this problem:

1. Periodically broadcast a known training signal. The adaptation is switched on only when the training
signal is being broadcast and thus sk is known.

2. Decision-directed feedback: If the overall system is working well, then the output ŝk−∆0 should almost
always equal sk−∆0 . We can thus use our received digital communication signal as the desired signal,
since it has been cleaned of noise (we hope) by the nonlinear threshold device!

Decision-directed equalizer

Figure 5.11

As long as the error rate in ŝk is not too high (say < 75%), this method works. Otherwise, dk is so
inaccurate that the adaptive �lter can never �nd the Wiener solution. This method is widely used in
the telephone system and other digital communication networks.

5.4.4 Adaptive Interference (Noise) Cancellation11

Goal: Automatically eliminate unwanted interference in a signal.

11This content is available online at <http://cnx.org/content/m11835/1.1/>.

279

Figure 5.12

The object is to subtract out as much of the noise as possible.

Example 5.4: Engine noise cancellation in automobiles

Figure 5.13

The �rewall attenuates and �lters the noise reaching the listener's ear, so it is not the same
as n'

k. There is also a delay due to acoustic propagation in the air. For maximal cancellation, an
adaptive �lter is thus needed to make n'

k as similar as possible to the delayed nk.

280 CHAPTER 5. ADAPTIVE FILTERS AND APPLICATIONS

Figure 5.14

Exercise 5.6
What conditions must we impose upon the microphone locations for this to work? (Think causality
and physics!)

5.4.4.1 Analysis of the interference cancellor

Figure 5.15

E
[
εk

2
]

= E
[
(sk + nk − yk)2

]
= E

[
sk

2
]
+ 2E [sk (nk − yk)] + E

[
(nk − yk)2

]
We assume sk, nk, and n'

k are zero-mean signals, and that sk is independent of nk and n'

k. Then

E [sk (nk − yk)] = E [sk]E [nk − yk] = 0

281

E
[
εk

2
]

= E
[
sk

2
]
+ E

[
(nk − yk)2

]
Since the input signal has no information about sk in it, minimizing E

[
εk

2
]
can only a�ect the second term,

which is the standard Wiener �ltering problem, with solution

W = Rn'n'

−1Pnn'

5.4.5 Adaptive Echo Cancellation12

An adaptive echo canceller is a speci�c type of adaptive interference canceller that removes echos. Adaptive
echo cancellers are found in all modern telephone systems.

Figure 5.16

The hybrid is supposed to split the opposite-going waves, but typically achieves only about 15dB of
suppression. This signal will eventually reach the other end and be coupled back, with a long delay, to the
original source, which gives a very annoying echo.

12This content is available online at <http://cnx.org/content/m11909/1.1/>.

282 CHAPTER 5. ADAPTIVE FILTERS AND APPLICATIONS

Echo canceller

Figure 5.17

Because the input to the adaptive echo canceller contains only the signal from the far end that will echo
o� of the hybrid, it cancels the echo while passing the near-end signal as desired.

5.4.5.1 Narrowband interference canceller

Figure 5.18

A sinusoid is predictable ∆ samples ahead, whereas sk may not be, so the sinusoid can be cancelled using the
adaptive system in the Figure. This is another special case of the adaptive interference canceller in which
the noise reference input is a delayed version of the primary (signal plus noise) input. Note that ∆ must be
large enough so that sk and sk−∆ are uncorrelated, or some of the signal will be cancelled as well!

Exercise 5.7
How would you construct an "adaptive line enhancer" that preserves the sinusoids but cancels the
uncorrelated noise?

283

Other Applications

• Adaptive array processing
• Adaptive control
• etc...

5.5 Other Adaptive Filter Algorithms

5.5.1 Beyond LMS: an overview of other adaptive �lter algorithms13

5.5.1.1 RLS algorithms

FIR adaptive �lter algorithms with faster convergence. Since the Wiener solution can be obtained on one
step by computing Wopt = R−1P , most RLS algorithms attept to estimate R−1 and P and compute Wopt

from these.
There are a number of O

(
N2
)
algorithms which are stable and converge quickly. A number of O (N)

algorithms have been proposed, but these are all unstable except for the lattice �lter method. This is
described to some extent in the text. The adaptive lattice �lter converges quickly and is stable, but reportedly
has a very high noise �oor.

Many of these approaches can be thought of as attempting to "orthogonalize" R, or to rotate the data
or �lter coe�cients to a domain where R is diagonal, then doing LMS in each dimension separately, so that
a fast-converging step size can be chosen in all directions.

5.5.1.2 Frequency-domain methods

Frequency-domain methods implicitly attempt to do this:

Figure 5.19

If QRQ−1 is a diagonal matrix, this yields a fast algorithm. If Q is chosen as an FFT matrix, each
channel becomes a di�erent frequency bin. Since R is Toeplitz and not a circulant, the FFT matrix will not
exactly diagonalize R, but in many cases it comes very close and frequency domain methods converge very
quickly. However, for some R they perform no better than LMS. By using an FFT, the transformation Q
becomes inexpensive O (NlogN). If one only updates on a block-by-block basis (once per N samples), the
frequency domain methods only cost O (logN) computations per sample. which can be important for some
applications with large N . (Say 16,000,000)

13This content is available online at <http://cnx.org/content/m11911/1.1/>.

284 CHAPTER 5. ADAPTIVE FILTERS AND APPLICATIONS

5.5.2 Adaptive IIR �lters14

Adaptive IIR �lters are attractive for the same reasons that IIR �lters are attractive: many fewer coe�cients
may be needed to achieve the desired performance in some applications. However, it is more di�cult
to develop stable IIR algorithms, they can converge very slowly, and they are susceptible to local minima.
Nonetheless, adaptive IIR algorithms are used in some applications (such as low frequency noise cancellation)
in which the need for IIR-type responses is great. In some cases, the exact algorithm used by a company is
a tightly guarded trade secret.

Most adaptive IIR algorithms minimize the prediction error, to linearize the estimation problem, as in
deterministic or block linear prediction.

yk =
L∑

n=1

(
vk

nyk−n

)
+

L∑
n=0

(
wk

nxk−n

)
Thus the coe�cient vector is

Wk =



vk
1

vk
2

...

vk
L

wk
0

wk
1

...

wk
L


and the "signal" vector is

Uk =



yk−1

yk−2

...

yk−L

xk

xk−1

...

xk−L


The error is

εk = dk − yk = dk −Wk
T Uk

14This content is available online at <http://cnx.org/content/m11912/1.1/>.

285

An LMS algorithm can be derived using the approximation E
[
εk

2
]

= εk
2 or

∇̂k =
∂

∂Wk

(
εk

2
)

= 2εk
∂

∂Wk
(εk) = 2εk



∂
∂vk

1
(εk)
...

∂
∂εk

(
wk

1

)
...

 = −2εk



∂
∂vk

1
(yk)
...

∂
∂vk

L

(yk)
∂

∂wk
0

(yk)
...

∂
∂wk

L

(yk)


Now

∂

∂vk
i

(yk) =
∂

∂vk
i

(
L∑

n=1

(
vk

nyk−n

)
+

L∑
n=0

(
wk

nxk−n

))
= yk−n +

L∑
n=1

(
vk

n

∂

∂vk
i

(yk−n)
)

+ 0

∂

∂wk
i

(yk) =
∂

∂wk
i

(
L∑

n=1

(
vk

nyk−n

)
+

L∑
n=0

(
wk

nxk−n

))
=

L∑
n=1

(
vk

n

∂

∂wk
i

(yk−n)
)

+ xk−n

Note that these are di�erence equations in ∂
∂vk

i

(yk), ∂
∂wk

i

(yk): call them αk
i = ∂

∂wk
i

(yk), βk
i = ∂

∂vk
i

(yk), then

∇̂k =
(

βk
1 βk

2 . . . βk
L αk

0 . . . αk
L

)T

, and the IIR LMS algorithm becomes

yk = Wk
T Uk

αk
i = xk−i +

L∑
j=1

(
vk

j αk−j
i

)

βk
i = yk−i +

L∑
j=1

(
vk

j βk−j
i

)
∇̂k = −2εk

(
βk

1 βk
2 . . . αk

0 αk
1 . . . αk

L

)T

and �nally
Wk+1 = Wk − U∇̂k

where the µ may be di�erent for the di�erent IIR coe�cients. Stability and convergence rate depends on
these choices, of course. There are a number of variations on this algorithm.

Due to the slow convergence and the di�culties in tweaking the algorithm parameters to ensure stability,
IIR algorithms are used only if there is an overriding need for an IIR-type �lter.

5.5.3 The Constant-Modulus Algorithm and the Property-Restoral Principle15

The adaptive �lter con�gurations that we have examined so far require a "desired signal" dk. There are
many clever ways to obtain such a signal, but in some potential applications a desired signal is simply not
available. However, a "property-restoral algorithm" can sometimes circumvent this problem.

If the uncorrupted signal has special properties that are characteristic of the signal and not of the
distortion or interference, an algorithm can be constructed which attempts to cause the output of the
adaptive �lter to exhibit that property. Hopefully, the adapting �lter will restore that property by removing
the distortion or interference!

15This content is available online at <http://cnx.org/content/m11913/1.1/>.

286 CHAPTER 5. ADAPTIVE FILTERS AND APPLICATIONS

Example 5.5: the Constant-Modulus Algorithm (CMA)
Certain communication modulation schemes, such as PSK and FSK, transmit a sinusoid of a
constant analytic magnitude. Only the frequency or phase change with time. The constant modulus
algorithm tries to drive the output signal to one having a constant amplitude:

εk = (|yk|)2 −A2

One can derive an LMS (or other) algorithm that seeks a Wiener �lter minimizing this error. In
practice, this works very well for equalization of PSK and FSK communication channels.

Figure 5.20

CMA is simpler than decision-directed feedback, and can work for high initial error rates!
This property-restoral idea can be used in any context in which a property-related error can be

de�ned.

5.5.4 Complex LMS16

LMS for complex data and coe�cients (such as quadrature communication systems) takes the form

yk = WH
k Xk

ek = dk − yk

Wk+1 = Wk + 2µe∗kXk

It is derived in exactly the same way as LMS, using the following complex vector di�erentiation formulas

d

dW

(
PHW

)
= 0

d

dW

(
WHP

)
= 2P

d

dW

(
WHRW

)
= 2RW

or by di�erentiating with respect to the real and imaginary parts separately and recombining the results.

16This content is available online at <http://cnx.org/content/m11914/1.3/>.

287

5.5.5 Normalized LMS17

In "normalized" LMS, the gradient step factor µ is normalized by the energy of the data vector:

µNLMS =
α

XH
k Xk + σ

where α is usually 1
2 and σ is a very small number introduced to prevent division by zero if XH

k Xk is very
small.

Wk+1 = Wk +
1

XHX
ekXk

The normalization has several interpretations

1. corresponds to the 2nd-order convergence bound
2. makes the algorithm independent of signal scalings
3. adjusts Wk+1 to give zero error with current input: Wk+1Xk = dk

4. minimizes mean e�ort at time k + 1

NLMS usually convergesmuchmore quickly than LMS at very little extra cost; NLMS is very commonly used.
In some applications, normalization is so universal that "we use the LMS algorithm" implies normalization
as well.

5.6 Summary of Adaptive Filtering Methods18

1. LMS - remains the simplest and best algorithm when slow convergence is not a serious issue (typically
used) O (N)

2. NLMS - simple extension of the LMS with much faster convergence in many cases (very commonly
used) O (N)

3. Frequency-domain methods - o�er computational savings (O (logN)) for long �lters and usually
o�er faster convergence, too (sometimes used; very commonly used when there are already FFTs in
the system)

4. Lattice methods - are stable and converge quickly, but cost substantially more than LMS and have
higher residual EMSE than many methods (very occasionally used) O (N)

5. RLS - algorithms that converge quickly and are stable exist. However, they are considerably more
expensive than LMS. (almost never used) O (N)

6. Block RLS - (least squares) methods exist and can be pretty e�cient in some cases. (occasionally
used) O (logN), O (N), O

(
N2
)

7. IIR - methods are di�cult to implement successfully and pose certain di�culties, but are sometimes
used in some applications, for example noise cancellation of low frequency noise (very occasionally
used)

8. CMA - very useful when applicable (blind equalization); CMA is the method for blind equalizer
initialization (commonly used in a few speci�c equalization applications) O (N)

Note: In general, getting adaptive �lters to work well in an application is much more challenging
than, say, FFTs or IIR �lters; they generally require lots of tweaking!

17This content is available online at <http://cnx.org/content/m11915/1.2/>.
18This content is available online at <http://cnx.org/content/m11916/1.1/>.

288 CHAPTER 5. ADAPTIVE FILTERS AND APPLICATIONS

Solutions to Exercises in Chapter 5

Solution to Exercise 5.2 (p. 264)
Estimate the statistics

ˆrxx (l) ≈ 1
N

N−1∑
k=0

(xkxk+l)

ˆrxd (l) ≈ 1
N

N−1∑
k=0

(dkxk−l)

then solve Ŵopt = ˆR−1 = P̂

Solution to Exercise 5.3 (p. 264)
Use short-time windowed estiamtes of the correlation functions.

Equation in Question: (
ˆrxx (l)

)k

=
1
N

N−1∑
m=0

(xk−mxk−m−l)

(
ˆrdx (l)
)k

=
1
N

N−1∑
m=0

(xk−m−ldk−m)

and Wopt
k ≈

(
R̂k

)−1

P̂k

Solution to Exercise 5.4 (p. 264)
Recursively!

rk
xx (l) = rk−1

xx (l) + xkxk−l − xk−Nxk−N−l

This is critically stable, so people usually do

(1− α) rxx
k (l) = αrk−1

xx (l) + xkxk−l

Chapter 6

Multirate Signal Processing

6.1 Overview of Multirate Signal Processing1

Digital transformation of the sampling rate of signals, or signal processing with di�erent sampling rates in
the system.

6.1.1 Applications

1. Sampling-rate conversion - CD to DAT format change, for example.
2. Improved D/A, A/D conversion - oversampling converters; which reduce performance require-

ments on anti-aliasing or reconstruction �lters
3. FDM channel modulation and processing - bandwidth of individual channels is much less than

the overall bandwidth
4. Subband coding of speech and images - Eyes and ears are not as sensitive to errors in higher

frequency bands, so many coding schemes split signals into di�erent frequency bands and quantize
higher-frequency bands with much less precision.

6.1.2 Outline of Multirate DSP material

1. General Rate-changing System (Section 6.1.3: General Rate-Changing Procedure)
2. Integer-factor Interpolation and Decimation and Rational-factor Rate Changing (Section 6.2)
3. E�cient Multirate Filter Structures (Section 6.3)
4. Optimal Filter Design for Multirate Systems (Section 6.4)
5. Multi-stage Multirate Systems (Section 6.5)
6. Oversampling D/As (Section 6.6)
7. Perfect-Reconstruction Filter Banks and Quadrature Mirror Filters (Section 6.7)

6.1.3 General Rate-Changing Procedure

This procedure is motivated by an analog-based method: one conceptually simple method to change the
sampling rate is to simply convert a digital signal to an analog signal and resample it! (Figure 6.1)

1This content is available online at <http://cnx.org/content/m12777/1.2/>.

289

290 CHAPTER 6. MULTIRATE SIGNAL PROCESSING

Figure 6.1

Haa (Ω) =

 1 if |Ω| < π
T1

0 otherwise

haa (t) =
sin
(

π
T1

t
)

π
T1

t

Recall the ideal D/A:

x′a (t) =
∞∑

n=−∞

x0 (n)
sin
(

π(t−nT0)
T0

)
π(t−nT0)

T0

 (6.1)

The problems with this scheme are:

1. A/D, D/A, �lters cost money
2. imperfections in these devices introduce errors

Digital implementation of rate-changing according to this formula has three problems:

1. In�nite sum: The solution is to truncate. Consider sinct ≈ 0 for t < t1, t > t2: Then mT1 − nT0 < t1
and mT1 − nT0 > t2 which implies

N1 = dmT1 − t2
T0

e

N2 = bmT1 − t1
T0

c

x1 (m) =
N2∑

n=N1

(x0 (n) sincT ′ (mT1 − nT0))

note: This is essentially lowpass �lter design using a boxcar window: other �nite-length
�lter design methods could be used for this.

2. Lack of causality2: The solution is to delay by max { |N | } samples. The mathematics of the analog
portions of this system can be implemented digitally.

x1 (m) = haa (t) ∗ x′a (t) |t=mT1

=
∫∞
−∞

(∑∞
n=−∞

(
x0 (n)

sin
“

π(mT1−τ−nT0)
T0

”
π(mT1−τ−nT0)

T0

))
sin
“

πτ
T1

”
πτ
T1

dτ
(6.2)

2"Properties of Systems": Section Causality <http://cnx.org/content/m2102/latest/#causality>

291

x1 (m) =
∑∞

n=−∞

(
x0 (n)

sin(π
T ′ (mT1−nT0))

π
T ′ (mT1−nT0)

)
|T ′=max{T0,T1 }

=
∑∞

n=−∞ (x0 (n) sincT ′ (mT1 − nT0))
(6.3)

So we have an all-digital formula for exact digital-to-digital rate changing!
3. Cost of computing sincT ′ (mT1 − nT0): The solution is to precompute the table of sinc (t) values.

However, if T1
T0

is not a rational fraction, an in�nite number of samples will be needed, so some
approximation will have to be tolerated.

note: Rate transformation of any rate to any other rate can be accomplished digitally with
arbitrary precision (if some delay is acceptable). This method is used in practice in many
cases. We will examine a number of special cases and computational improvements, but in
some sense everything that follows are details; the above idea is the central idea in multirate
signal processing.

Useful references for the traditional material (everything except PRFBs) are Crochiere and Rabiner,
1981[9] and Crochiere and Rabiner, 1983[10]. A more recent tutorial is Vaidyanathan[29]; see also Rioul and
Vetterli[25]. References to most of the original papers can be found in these tutorials.

6.2 Interpolation, Decimation, and Rate Changing by Integer
Fractions3

6.2.1 Interpolation: by an integer factor L

Interpolation means increasing the sampling rate, or �lling in in-between samples. Equivalent to sampling
a bandlimited analog signal L times faster. For the ideal interpolator,

X1 (ω) =

 X0 (Lω) if |ω| < π
L

0 if π
L ≤ |ω| ≤ π

(6.4)

We wish to accomplish this digitally. Consider (6.5) and Figure 6.2.

y (m) =

 X0

(
m
L

)
if m = {0,±L,± (2L) , . . . }

0 otherwise
(6.5)

3This content is available online at <http://cnx.org/content/m12801/1.2/>.

292 CHAPTER 6. MULTIRATE SIGNAL PROCESSING

Figure 6.2

The DTFT of y (m) is

Y (ω) =
∑∞

m=−ω

(
y (m) e−(jωm)

)
=

∑∞
n=−∞

(
x0 (n) e−(jωLn)

)
=

∑∞
n=−∞

(
x (n) e−(jωLn)

)
= X0 (ωL)

(6.6)

SinceX0 (ω′) is periodic with a period of 2π, X0 (Lω) = Y (ω) is periodic with a period of 2π
L (see Figure 6.3).

Figure 6.3

By inserting zero samples between the samples of x0 (n), we obtain a signal with a scaled frequency
response that simply replicates X0 (ω′) L times over a 2π interval!

Obviously, the desired x1 (m) can be obtained simply by lowpass �ltering y (m) to remove the replicas.

x1 (m) = y (m) ∗ hL (m) (6.7)

Given

HL (m) =

 1 if |ω| < π
L

0 if π
L ≤ |ω| ≤ π

In practice, a �nite-length lowpass �lter is designed using any of the methods studied so far (Figure 6.4
(Interpolator Block Diagram)).

293

Interpolator Block Diagram

Figure 6.4

6.2.2 Decimation: sampling rate reduction (by an integer factor M)

Let y (m) = x0 (Lm) (Figure 6.5)

Figure 6.5

That is, keep only every Lth sample (Figure 6.6)

Figure 6.6

294 CHAPTER 6. MULTIRATE SIGNAL PROCESSING

In frequency (DTFT):

Y (ω) =
∑∞

m=−∞
(
y (m) e−(jωm)

)
=

∑∞
m=−∞

(
x0 (Mm) e−(jωm)

)
=

∑∞
n=−∞

(
x0 (n)

(∑∞
k=−∞ (δ (n−Mk))

)
e−(jω n

M)
)
|n=Mm

=
∑∞

n=−∞

(
x0 (n)

(∑∞
k=−∞ (δ (n−Mk))

)
e−(jω′n)

)
|ω′= ω

M

= DTFT [x0 (n)] ∗DTFT [
∑

(δ (n−Mk))]

(6.8)

Now DTFT [
∑

(δ (n−Mk))] = 2π
∑M−1

k=0

(
X (k) δ

(
ω′ − 2πk

M

))
for |ω| < π as shown in homework

#1 , where X (k) is the DFT of one period of the periodic sequence. In this case, X (k) = 1 for

k ∈ {0, 1, . . . ,M − 1} and DTFT [
∑

(δ (n−Mk))] = 2π
∑M−1

k=0

(
δ
(
ω′ − 2πk

M

))
.

DTFT [x0 (n)] ∗DTFT [
∑

(δ (n−Mk))] = X0 (ω′) ∗ 2π
∑M−1

k=0

(
δ
(
ω′ − 2πk

M

))
= 1

2π

∫ π

−π
X0 (µ′)

(
2π
∑M−1

k=0

(
δ
(
ω′ − µ′ − 2πk

M

)))
dµ′

=
∑M−1

k=0

(
X0

(
ω′ − 2πk

M

)) (6.9)

so Y (ω) =
∑M−1

k=0

(
X0

(
ω
M − 2πk

M

))
i.e., we get digital aliasing.(Figure 6.7)

Figure 6.7

Usually, we prefer not to have aliasing, so the downsampler is preceded by a lowpass �lter to remove all
frequency components above |ω| < π

M (Figure 6.8).

295

Figure 6.8

6.2.3 Rate-Changing by a Rational Fraction L/M

This is easily accomplished by interpolating by a factor of L, then decimating by a factor of M (Figure 6.9).

Figure 6.9

The two lowpass �lters can be combined into one LP �lter with the lower cuto�,

H (ω) =

 1 if |ω| < π
max{L,M }

0 if π
max{L,M } ≤ |ω| ≤ π

Obviously, the computational complexity and simplicity of implementation will depend on L
M : 2/3 will be

easier to implement than 1061/1060!

6.3 E�cient Multirate Filter Structures4

Rate-changing appears expensive computationally, since for both decimation and interpolation the lowpass
�lter is implemented at the higher rate. However, this is not necessary.

6.3.1 Interpolation

For the interpolator, most of the samples in the upsampled signal are zero, and thus require no computation.
(Figure 6.10)

4This content is available online at <http://cnx.org/content/m12800/1.2/>.

296 CHAPTER 6. MULTIRATE SIGNAL PROCESSING

Figure 6.10

For m = Lbm
L c+ mmodL and p = mmodL,

x1 (m) =
∑N2

m=N1
(hLp (m) y (m))

=
∑N2

L

k=
N1
L

(
gp (k) x0

(
bm

L c − k
)) (6.10)

gp (n) = h (Ln + p)

Pictorially, this can be represented as in Figure 6.11.

297

Figure 6.11

These are called polyphase structures, and the gp (n) are called polyphase �lters.
Computational cost
If h (m) is a length-N �lter:

• No simpli�cation: N
T1

= LN
T0

computations
sec

• Polyphase structure:
(
L L

N
1

T o
0

)
computations

sec = N
T0

where L is the number of �lters, N
L is the taps/�lter,

and 1
T0

is the rate.

Thus we save a factor of L by not being dumb.

note: For a given precision, N is proportional to L, (why?), so the computational cost does
increase with the interpolation rate.

question: Can similar computational savings be obtained with IIR structures?

6.3.2 E�cient Decimation Structures

We only want every Mth output, so we compute only the outputs of interest. (Figure 6.12 (Polyphase
Decimation Structure))

x1 (m) =
N2∑

k=N1

(x0 (Lm− k) h (k))

298 CHAPTER 6. MULTIRATE SIGNAL PROCESSING

Polyphase Decimation Structure

Figure 6.12

The decimation structures are �ow-graph reversals of the interpolation structure. Although direct imple-
mentation of the full �lter for every Mth sample is obvious and straightforward, these polyphase structures
give some idea as to how one might evenly partition the computation over M cycles.

6.3.3 E�cient L/M rate changers

Interpolate by L and decimate by M (Figure 6.13).

Figure 6.13

Combine the lowpass �lters (Figure 6.14).

Figure 6.14

We can couple the lowpass �lter either to the interpolator or the decimator to implement it e�ciently
(Figure 6.15).

299

Figure 6.15

Of course we only compute the polyphase �lter output selected by the decimator.
Computational Cost
Every T1 = M

L T0seconds, compute one polyphase �lter of length N
L , or

N
L

T1
=

N
L

M
L T0

=
N

MT0

multiplies

second

However, note that N is proportional to max {L,M }.

6.4 Filter Design for Multirate Systems5

The �lter design techniques6 learned earlier can be applied to the design of �lters in multirate systems, with
a few twists.

Example 6.1
Design a factor-of-L interpolator for use in a CD player, we might wish that the out-of-band error
be below the least signi�cant bit, or 96dB down, and < 0.05% error in the passband, so these
speci�cations could be used for optimal L∞ �lter design.

In a CD player, the sampling rate is 44.1kHz, corresponding to a Nyquist frequency of 22.05kHz, but
the sampled signal is bandlimited to 20kHz. This leaves a small transition band, from 20kHz to 24.1kHz.
However, note that in any case where the signal spectrum is zero over some band, this introduces other zero
bands in the scaled, replicated spectrum (Figure 6.16).

5This content is available online at <http://cnx.org/content/m12773/1.2/>.
6Digital Filter Design <http://cnx.org/content/col10285/latest/>

300 CHAPTER 6. MULTIRATE SIGNAL PROCESSING

Figure 6.16

So we need only control the �lter response in the stopbands over the frequency regions with nonzero
energy. (Figure 6.17)

Figure 6.17

The extra "don't care" bands allow a given set of speci�cations to be satis�ed with a shorter-length �lter.

6.4.1 Direct polyphase �lter design

Note that in an integer-factor interpolator, each set of output samples x1 (Ln + p), p = {0, 1, . . . , L− 1},
is created by a di�erent polyphase �lter gp (n), which has no interaction with the other polyphase �lters
except in that they each interpolate the same signal. We can thus treat the design of each polyphase �lter
independently, as an N

L -length �lter design problem. (Figure 6.18)

Figure 6.18

301

Each gp (n) produces samples x1 (Ln + p) = x0

(
n + p

L

)
, where n + p

L is not an integer. That is, gp (n) is
to produce an output signal (at a T0 rate) that is x0 (n) time-advanced by a non-integer advance p

L .
The desired response of this polyphase �lter is thus

HDp (ω) = e
jωp

L

for |ω| ≤ π, an all-pass �lter with a linear, non-integer, phase. Each polyphase �lter can be designed
independently to approximate this response according to any of the design criteria developed so far.

Exercise 6.1 (Solution on p. 312.)

What should the polyphase �lter for p = 0 be?

Example 6.2: Least-squares Polyphase Filter Design

Deterministic x(n) - Minimize

∞∑
n=−∞

(
(|x (n)− xd (n) |)2

)
Given x (n) = x (n) ∗ h (n) and xd (n) = x (n) ∗ hd (n). Using Parseval's theorem, this
becomes

min
{∑∞

n=−∞

(
(|x (n)− xd (n) |)2

)}
= min

{
1
2π

∫ π

−π
(|X (ω) H (ω)−X (ω) Hd (ω) |)2dω

}
= min

{
1
2π

∫ π

−π
|H (ω)−Hd (ω) |(|X (ω) |)2dω

}
(6.11)

This is simply weighted least squares design, with (|X (ω) |)2 as the weighting function.
stochastic X(ω) -

min
{

E
[
(|x (n)− xd (n) |)2

]}
= E

[
(|x (n) ∗ (h (n)− hd (n)) |)2

]
= min

{
1
2π

∫ π

−π
(|Hd (ω)−H (ω) |)2Sxx (ω) dω

} (6.12)

Sxx (ω) is the power spectral density of x.

Sxx (ω) = DTFT [rxx (k)]

rxx (k) = E
[
x (k + l) x (l)

]
Again, a weighted least squares �lter design problem.

Problem
Is it feasible to use IIR polyphase �lters?

Solution
The recursive feedback of previous outputs means that portions of each IIR polyphase �lter must
be computed for every input sample; this usually makes IIR �lters more expensive than FIR im-
plementations.

302 CHAPTER 6. MULTIRATE SIGNAL PROCESSING

6.5 Multistage Multirate Systems7

Multistage multirate systems are often more e�cient. Suppose one wishes to decimate a signal by an integer
factor M , where M is a composite integer M = M1M2 . . .Mp =

∏p
i=1 Mi. A decimator can be implemented

in a multistage fashion by �rst decimating by a factor M1 , then decimating this signal by a factor M2 , etc.
(Figure 6.19 (Multistage decimator))

Multistage decimator

Figure 6.19

Multistage implementations are of signi�cant practical interest only if they o�er signi�cant computational
savings. In fact, they often do!

The computational cost of a single-stage interpolator is:

N

MT0

taps

sec

The computational cost of a multistage interpolator is:

N1

M1T0
+

N2

M1M2T0
+ · · ·+ Np

MT0

The �rst term is the most signi�cant, since the rate is highest. Since (Ni ∝ Mi) for a lowpass �lter, it is not
immediately clear that a multistage system should require less computation. However, the multistage struc-
ture relaxes the requirements on the �lters, which reduces their length and makes the overall computation
less.

6.5.1 Filter design for Multi-stage Structures

Ostensibly, the �rst-stage �lter must be a lowpass �lter with a cuto� at π
M1

, to prevent aliasing after the
downsampler. However, note that aliasing outside the �nal overall passband |ω| < π

M is of no concern, since
it will be removed by later stages. We only need prevent aliasing into the band |ω| < π

M ; thus we need only

specify the passband over the interval |ω| < π
M , and the stopband over the intervals ω ∈

[
2πk
M1

− π
M , 2πk

M1
+ π

M

]
,

for k ∈ {1, . . . ,M − 1}. (Figure 6.20)
7This content is available online at <http://cnx.org/content/m12803/1.2/>.

303

Figure 6.20

Of course, we don't want gain in the transition bands, since this would need to be suppressed later,
but otherwise we don't care about the response in those regions. Since the transition bands are so large,
the required �lter turns out to be quite short. The �nal stage has no "don't care" regions; however, it is
operating at a low rate, so it is relatively unimportant if the �nal �lter turns out to be rather long!

6.5.2 L-in�nity Tolerances on the Pass and Stopbands

The overall response is a cascade of multiple �lters, so the worst-case overall passband deviation, assuming
all the peaks just happen to line up, is

1 + δpov =
p∏

i=1

(1 + δpi)

1− δpov =
p∏

i=1

(1− δpi)

So one could choose all �lters to have equal speci�cations and require for each-stage �lter. For (δpov � 1),

1 + δ+
pi
≤ p
√

1 + δpov
≈ 1 + p−1δpov

1− δ−pi
≤ p
√

1− δpov
≈ 1− p−1δpov

Alternatively, one can design later stages (at lower computation rates) to compensate for the passband ripple
in earlier stages to achieve exceptionally accurate passband response.

δs remains essentially unchanged, since the worst-case scenario is for the error to alias into the passband
and undergo no further suppression in subsequent stages.

6.5.3 Interpolation

Interpolation is the �ow-graph reversal of the multi-stage decimator. The �rst stage has a cuto� at π
L

(Figure 6.21):

Figure 6.21

304 CHAPTER 6. MULTIRATE SIGNAL PROCESSING

However, all subsequent stages have large bands without signal energy, due to the earlier stages (Fig-
ure 6.22):

Figure 6.22

The order of the �lters is reversed, but otherwise the �lters are identical to the decimator �lters.

6.5.4 E�cient Narrowband Lowpass Filtering

A very narrow lowpass �lter requires a very long FIR �lter to achieve reasonable resolution in the frequency
response. However, were the input sampled at a lower rate, the cuto� frequency would be correspondingly
higher, and the �lter could be shorter!

The transition band is also broader, which helps as well. Thus, Figure 6.23 can be implemented as
Figure 6.24.

Figure 6.23

Figure 6.24

and in practice the inner lowpass �lter can be coupled to the decimator or interpolator �lters. If the dec-
imator and interpolator are implemented as multistage structures, the overall algorithm can be dramatically
more e�cient than direct implementation!

305

6.6 DFT-Based Filterbanks8

One common application of multirate processing arises in multirate, multi-channel �lter banks (Figure 6.25).

Figure 6.25

One application is separating frequency-division-multiplexed channels. If the �lters are narrowband, the
output channels can be decimated without signi�cant aliasing.

Such structures are especially attractive when they can be implemented e�ciently. For example, if

the �lters are simply frequency modulated (by e−(j 2πk
L n)) versions of each other, they can be e�ciently

implemented using FFTs!
Furthermore, there are classes of �lters called perfect reconstruction �lters which are of �nite length

but from which the signal can be reconstructed exactly (using all M channels), even though the output of
each channel experiences aliasing in the decimation step. These types of �lterbanks have received a lot of
research attention, culminating in wavelet theory and techniques.

6.6.1 Uniform DFT Filter Banks

Suppose we wish to split a digital input signal into N frequency bands, uniformly spaced at center frequencies

ωk = 2πk
N , for 0 ≤ k ≤ N − 1. Consider also a lowpass �lter h (n), H (ω) ≈

 1 if |ω| < π
N

0 otherwise
. Bandpass

�lters can be constructed which have the frequency response

Hk (ω) = H

(
ω +

2πk

N

)
from

hk (n) = h (n) e−(j 2πkn
N)

The output of the kth bandpass �lter is simply (assume h (n) are FIR)

x (n) ∗ hk (n) =
∑M−1

m=0

(
x (n−m) h (m) e−(j 2πkm

N)
)

= yk (n)
(6.13)

This looks suspiciously like a DFT, except that M 6= N , in general. However, if we �x M =
N , then we can compute all yk (n) outputs simultaneously using an FFT of x (n−m) h (m): The

8This content is available online at <http://cnx.org/content/m12771/1.2/>.

306 CHAPTER 6. MULTIRATE SIGNAL PROCESSING

kth FFT frequency output = yk (n)! So the cost of computing all of these �lter banks outputs is O [NlogN],
rather than N2, per a given n. This is very useful for e�cient implementation of transmultiplexors (FDM
to TDM).

Exercise 6.2 (Solution on p. 312.)

How would we implement this e�ciently if we wanted to decimate the individual channels yk (n)
by a factor of N , to their approximate Nyquist bandwidth?

Exercise 6.3 (Solution on p. 312.)

Do you expect signi�cant aliasing? If so, how do you propose to combat it? E�ciently?

Exercise 6.4 (Solution on p. 312.)

How might one convert from N input channels into an FDM signal e�ciently? (Figure 6.26)

Figure 6.26

note: Such systems are used throughout the telephone system, satellite communication links,
etc.

6.7 Quadrature Mirror Filterbanks (QMF)9

Although the DFT �lterbanks are widely used, there is a problem with aliasing in the decimated channels. At
�rst glance, one might think that this is an insurmountable problem and must simply be accepted. Clearly,
with FIR �lters and maximal decimation, aliasing will occur. However, a simple example will show that it
is possible to exactly cancel out aliasing under certain conditions!!!

Consider the following trivial �lterbank system, with two channels. (Figure 6.27)

Figure 6.27

9This content is available online at <http://cnx.org/content/m12770/1.2/>.

307

Note x̂ (n) = x (n) with no error whatsoever, although clearly aliasing occurs in both channels! Note
that the overall data rate is still the Nyquist rate, so there are clearly enough degrees of freedom available
to reconstruct the data, if the �lterbank is designed carefully. However, this isn't splitting the data into
separate frequency bands, so one questions whether something other than this trivial example could work.

Let's consider a general two-channel �lterbank, and try to determine conditions under which aliasing can
be cancelled, and the signal can be reconstructed perfectly (Figure 6.28).

Figure 6.28

Let's derive x̂ (n), using z-transforms, in terms of the components of this system. Recall (Figure 6.29) is
equivalent to

Y (z) = H (z) X (z)

Y (ω) = H (ω) X (ω)

Figure 6.29

and note that (Figure 6.30) is equivalent to

Y (z) =
∞∑

m=−∞

(
x (m) z−(Lm)

)
= x

(
zL
)

Y (ω) = X (Lω)

Figure 6.30

and (Figure 6.31) is equivalent to

Y (z) =
1
M

M−1∑
k=0

(
X
(
z

1
M W k

M

))

308 CHAPTER 6. MULTIRATE SIGNAL PROCESSING

Y (ω) =
1
M

M−1∑
k=0

(
X

(
ω

M
+

2πk

M

))

Figure 6.31

Y (z) is derived in the downsampler as follows:

Y (z) =
∞∑

m=−∞

(
x (Mm) z−m

)
Let n = Mm and m = n

M , then

Y (z) =
∞∑

n=−∞

(
x (n)

(∞∑
p=−∞

(δ (n−Mp))

)
z−(n

M)
)

Now

x (n)
∑∞

p=−∞ (δ (n−Mp)) = IDFT
[
x (ω) ∗ 2π

M

∑M−1
k=0

(
δ
(
ω − 2πk

M

))]
= IDFT

[
2π
M

∑M−1
k=0

(
X
(
ω − 2πk

M

))]
= 1

M

∑M−1
k=0

(
X (n) W−nk

M

)
|
WM=e

−(j2π
M)

(6.14)

so

Y (z) =
∑∞

n=−∞

((
1
M

∑M−1
k=0

(
x (n) W−nk

M

))
z−(n

M)
)

= 1
M

∑M−1
k=0

(
x (n)

(
W+k

M z+ 1
M

)−n
)

= 1
M

∑M−1
k=0

(
X
(
z

1
M W k

M

)) (6.15)

Armed with these results, let's determine
(
X̂ (z) ⇔ x̂ (n)

)
. (Figure 6.32)

Figure 6.32

Note
U1 (z) = X (z) H0 (z)

309

U2 (z) =
1
2

1∑
k=0

(
X
(
z

1
2 e−(j2πk

2)
)

H0

(
z

1
2 e−(jπk)

))
=

1
2
X
(
z

1
2

)
H0

(
z

1
2

)
+

1
2
X
(
−
(
z

1
2

))
H0

(
−
(
z

1
2

))
U3 (z) =

1
2
X (z) H0 (z) +

1
2
X (−z) H0 (−z)

U4 (z) =
1
2
F0 (z) H0 (z) X (z) +

1
2
F0 (z) H0 (−z) X (−z)

and

L4 (z) =
1
2
F1 (z) H1 (z) X (z) +

1
2
F1 (z) H1 (−z) X (−z) =

1
2
F1 (z) H1 (z) X (z) +

1
2
F1 (z) H1 (−z) X (−z)

Finally then,

X̂ (z) = U4 (z)+L4 (z) = 1
2
(H0 (z) F0 (z) X (z) + H0 (−z) F0 (z) X (−z) + H1 (z) F1 (z) X (z) + H1 (−z) F1 (z) X (−z)) =

1
2
(H0 (z) F0 (z) + H1 (z) F1 (z)) X (z) + 1

2
(H0 (−z) F0 (z) + H1 (−z) F1 (z)) X (−z)

(6.16)

Note that the (X (−z) → X (ω + π)) corresponds to the aliasing terms!
There are four things we would like to have:

1. No aliasing distortion
2. No phase distortion (overall linear phase → simple time delay)
3. No amplitude distortion
4. FIR �lters

No aliasing distortion
By insisting that H0 (−z) F0 (z) + H1 (−z) F1 (z) = 0, the X (−z) component of X̂ (z) can be removed, and
all aliasing will be eliminated! There may be many choices for H0, H1, F0, F1 that eliminate aliasing, but
most research has focused on the choice

F0 (z) = H1 (−z) : F1 (z) = − (H0 (−z))

We will consider only this choice in the following discussion.
Phase distortion

The transfer function of the �lter bank, with aliasing cancelled, becomes T (z) =
1
2 (H0 (z) F0 (z) + H1 (z) F1 (z)), which with the above choice becomes T (z) =
1
2 (H0 (z) H1 (−z)−H1 (z) H0 (−z)). We would like T (z) to correspond to a linear-phase �lter to
eliminate phase distortion: Call

P (z) = H0 (z) H1 (−z)

Note that

T (z) =
1
2

(P (z)− P (−z))

Note that (P (−z) ⇔ (−1)n
p (n)), and that if p (n) is a linear-phase �lter, (−1)n

p (n) is also (perhaps of the
opposite symmetry). Also note that the sum of two linear-phase �lters of the same symmetry (i.e., length of
p (n) must be odd) is also linear phase, so if p (n) is an odd-length linear-phase �lter, there will be no phase
distortion. Also note that

Z−1 (p (z)− p (−z)) = p (n)− (−1)n
p (n) =

 2p (n) if n is odd

0 if n is even

310 CHAPTER 6. MULTIRATE SIGNAL PROCESSING

means p (n) = 0, when n is even. If we choose h0 (n) and h1 (n) to be linear phase, p (n) will also be linear
phase. Thus by choosing h0 (n) and h1 (n) to be FIR linear phase, we eliminate phase distortion and get
FIR �lters as well (condition 4).
Amplitude distortion
Assuming aliasing cancellation and elimination of phase distortion, we might also desire no amplitude
distortion (|T (ω) | = 1). All of these conditions require

T (z) =
1
2

(H0 (z) H1 (−z)−H1 (z) H0 (−z)) = cz−D

where c is some constant and D is a linear phase delay. c = 1 for |T (ω) | = 1. It can be shown by considering
that the following can be satis�ed!T (z) = P (z)− P (−z) = 2cz−D ⇔

 2p (z) = 2cδ (n−D) if n is odd

p (n) = anything if n is even


Thus we require

P (z) =
N ′∑

n=0

(
p (2n) z−(2n)

)
+ z−D

Any factorization of a P (z) of this form, P (z) = A (z) B (z) can lead to a Perfect Reconstruction �lter bank
of the form

H0 (z) = A (z)

H1 (−z) = B (z)

[This result is attributed to Vetterli.] A well-known special case (Smith and Barnwell)

H1 (z) = −
(
z−(2D)+1H0

(
−
(
z−1
)))

Design techniques exist for optimally choosing the coe�cients of these �lters, under all of these constraints.

Quadrature Mirror Filters

(H1 (z) = H0 (−z) ⇔ H1 (ω) = H0 (π + ω) = H∗
0 (π − ω)) (6.17)

for real-valued �lters. The frequency response is "mirrored" around ω = π
2 . This choice leads to T (z) =

H0
2 (z)−H0

2 (−z): it can be shown that this can be a perfect reconstruction system only if

H0 (z) = c0z
−(2n0) + c1z

−(2n1)

which isn't a very �exible choice of �lters, and not a very good lowpass! The Smith and Barnwell approach
is more commonly used today.

6.8 M-Channel Filter Banks10

The theory of M-band QMFBs and PRFBs has been investigated recently. Some results are available.

10This content is available online at <http://cnx.org/content/m12775/1.2/>.

311

6.8.1 Tree-structured �lter banks

Once we have a two-band PRFB, we can continue to split the subbands with similar systems! (Figure 6.33)

Figure 6.33

Thus we can recursively decompose a signal into 2p bands, each sampled at 2pth the rate of the original
signal, and reconstruct exactly! Due to the tree structure, this can be quite e�cient, and in fact close to the
e�ciency of an FFT �lter bank, which does not have perfect reconstruction.

6.8.2 Wavelet decomposition

We need not split both the upper-frequency and lower-frequency bands identically. (Figure 6.34)

Figure 6.34

This is good for image coding, because the energy tends to be distributed such that after a wavelet
decomposition, each band has roughly equal energy.

312 CHAPTER 6. MULTIRATE SIGNAL PROCESSING

Solutions to Exercises in Chapter 6

Solution to Exercise 6.1 (p. 301)
A delta function: h0 (n) = δ (n′)

Solution to Exercise 6.2 (p. 306)
Simply step by N time samples between FFTs.

Solution to Exercise 6.3 (p. 306)
Aliasing should be expected. There are two ways to reduce it:

1. Decimate by less ("oversample" the individual channels) such as decimating by a factor of N
2 . This is

e�ciently done by time-stepping by the appropriate factor.
2. Design better (and thus longer) �lters, say of length LN . These can be e�ciently computed by

producing only N (every Lth) FFT outputs using simpli�ed FFTs.

Solution to Exercise 6.4 (p. 306)
Use an FFT and an inverse FFT for the modulation (TDM to FDM) and demodulation (FDM to TDM),
respectively.

GLOSSARY 313

Glossary

A Autocorrelation

the expected value of the product of a random variable or signal realization with a time-shifted
version of itself

C Correlation

A measure of how much one random variable depends upon the other.

Covariance

A measure of how much the deviations of two or more variables or processes match.

Crosscorrelation

if two processes are wide sense stationary, the expected value of the product of a random variable
from one random process with a time-shifted, random variable from a di�erent random process

D di�erence equation

An equation that shows the relationship between consecutive values of a sequence and the
di�erences among them. They are often rearranged as a recursive formula so that a systems
output can be computed from the input signal and past outputs.

Example:

y [n] + 7y [n− 1] + 2y [n− 2] = x [n]− 4x [n− 1] ()

P poles

1. The value(s) for z where Q (z) = 0.

2. The complex frequencies that make the overall gain of the �lter transfer function in�nite.

R random process

A family or ensemble of signals that correspond to every possible outcome of a certain signal
measurement. Each signal in this collection is referred to as a realization or sample function
of the process.

Example: As an example of a random process, let us look at the Random Sinusoidal Process
below. We use f [n] = Asin (ωn + φ) to represent the sinusoid with a given amplitude and
phase. Note that the phase and amplitude of each sinusoid is based on a random number, thus
making this a random process.

S State

the minimum additional information at time n, which, along with all current and future input
values, is necessary to compute all future outputs.

stationary process

a random process where all of its statistical properties do not vary with time

314 GLOSSARY

Z zeros

1. The value(s) for z where P (z) = 0.

2. The complex frequencies that make the overall gain of the �lter transfer function zero.

Bibliography

[1] R.C. Agarwal and J.W. Cooley. New algorithms for digital convolution. IEEE Trans. on Acoustics,
Speech, and Signal Processing, 25:392�410, Oct 1977.

[2] G. Bruun. Z-transform dft �lters and �ts. IEEE Transactions on Signal Processing, 26:56�63, February
1978.

[3] C.S. Burrus. Index mappings for multidimensional formulation of the dft and convolution. ASSP,
25:239�242, June 1977.

[4] C.S. Burrus. E�cient fourier transform and convolution algorithms. In J.S. Lin and A.V. Oppenheim,
editors, Advanced Topics in Signal Processing, chapter Chapter 4. Prentice-Hall, 1988.

[5] C.S. Burrus. Unscrambling for fast dft algorithms. IEEE Transactions on Acoustics, Speech, and Signal
Processing, ASSP-36(7):1086�1089, July 1988.

[6] C.S. Burrus and T.W. Parks. DFT/FFT and Convolution Algorithms. Wiley-Interscience, 1985.

[7] Jr. C.G. Boncelet. A rearranged dft algorithm requiring n^2/6 multiplications. IEEE Trans. on
Acoustics, Speech, and Signal Processing, ASSP-34(6):1658�1659, Dec 1986.

[8] C.F.N. Cowan and P.M. Grant. Adaptive Filters. Prentice-Hall, 1985. Good overview of lots of topics.

[9] R.E. Crochiere and L.R. Rabiner. Interpolation and decimation of digital signals: A tutorial review.
Proc. IEEE, 69(3):300�331, March 1981.

[10] R.E. Crochiere and L.R. Rabiner. Multirate Digital Signal Processing. Prentice-Hall, Englewood Cli�s,
NJ, 1983.

[11] P. Duhamel and H. Hollman. Split-radix �t algorithms. Electronics Letters, 20:14�16, Jan 5 1984.

[12] D.M.W. Evans. An improved digit-reversal permutation algorithm for the fast fourier and hartley
transforms. IEEE Transactions on Signal Processing, 35(8):1120�1125, August 1987.

[13] M. Frigo and S.G. Johnson. The design and implementation of �tw3. Proceedings of the IEEE,
93(2):216�231, February 2005.

[14] W.A. Gardner. Learning characteristics of stochastic-gradient-descent algorithms: A general study,
analysis, and critique. Signal Processing, 6:113�133, 1984.

[15] G Goertzel. An algorithm for the evaluation of �nite trigonomentric series. The American Mathematical
Monthly, 1958.

[16] S. Haykin. Adaptive Filters Theory. Prentice-Hall, 1986. Nice coverage of adaptive �lter theory; Good
reference.

[17] M.L. Honig and D.G. Messerschmidt. Adaptive Filters: Structures, Algorithms, and Applications.
Kluwer, 1984. Good coverage of lattice algorithms.

315

316 BIBLIOGRAPHY

[18] M.T. Heideman H.V. Sorensen and C.S. Burrus. On computing the split-radix �t. IEEE Transactions
on Signal Processing, 34(1):152�156, 1986.

[19] M.T. Heideman H.V. Sorensen, D.L Jones and C.S. Burrus. Real-valued fast fourier transform algo-
rithms. IEEE Transactions on Signal Processing, 35(6):849�863, June 1987.

[20] Leland B. Jackson. Digital Filters and Signal Processing. Kluwer Academic Publishers, 2nd edition
edition, 1989.

[21] S.G Johnson and M. Frigo. A modi�ed split-radix �t with fewer arithmetic operations. IEEE
Transactions on Signal Processing, 54, 2006.

[22] C.R. Johnson J.R. Treichler and M.G. Larimore. Theory and Design of Adaptive Filters. Wiley-
Interscience, 1987. Good introduction to adaptive �ltering, CMA; nice coverage of hardware.

[23] O. Macchi and E. Eweda. Second-order convergence analysis of stochastic adaptive linear �ltering. IEEE
Trans. on Automatic Controls, AC-28 #1:76�85, Jan 1983.

[24] H.W. Schuessler R. Meyer and K. Schwarz. Fft implmentation on dsp chips - theory and practice. IEEE
International Conference on Acoustics, Speech, and Signal Processing, 1990.

[25] O. Rioul and M. Vetterli. Wavelets and signal processing. IEEE Signal Processing Magazine, 8(4):14�38,
October 1991.

[26] Richard A. Roberts and Cli�ord T. Mullis. Digital Signal Processing. Prentice Hall, 1987.

[27] H.V. Sorensen and C.S. Burrus. E�cient computation of the dft with only a subset of input or output
points. IEEE Transactions on Signal Processing, 41(3):1184�1200, March 1993.

[28] H.V. Sorensen and C.S. Burrus. E�cient computation of the dft with only a subset of input or output
points. IEEE Transactions on Signal Processing, 41(3):1184�1200, 1993.

[29] P.P Vaidyanathan. Multirate digital �lters, �lter banks, polyphase networks, and applications: A
tutorial. Proc. IEEE, 78(1):56�93, January 1990.

[30] B. Widrow and S.D. Stearns. Adaptive Signal Processing. Prentice-Hall, 1985. Good on applications,
LMS.

[31] R. Yavne. An economical method for calculating the discrete fourier transform. Proc. AFIPS Fall Joint
Computer Conf.,, 33:115�125, 1968.

INDEX 317

Index of Keywords and Terms

Keywords are listed by the section with that keyword (page numbers are in parentheses). Keywords
do not necessarily appear in the text of the page. They are merely associated with that section. Ex.
apples, � 1.1 (1) Terms are referenced by the page they appear on. Ex. apples, 1

A A/D, � 1.10.6(49), � 1.10.7(58)
adaptive, 262, 264
adaptive interference cancellation, � 5.4.4(278)
adaptive interference canceller, � 5.4.4(278)
adaptive noise cancellation, � 5.4.4(278)
adaptive noise canceller, � 5.4.4(278)
alias, � 3.3.4(216)
aliases, 224
Aliasing, � 1.10.3(40)
all-pass, 216
alphabet, 5
amplitude of the frequency response, 194
analog, � 1.8(29), � 1.10.6(49), � 1.10.7(58)
Applet, � 1.10.3(40)
assembly language, � 2.3.5(166)
auto-correlation, � 2.2.2(123), 127
autocorrelation, � 1.12.2(81), � 1.12.5(90), 91,
91
average, � 1.12.3(83)
average power, 84

B bandlimited, 63
basis, � 1.4(12), 16, � 1.5(22), 23
basis matrix, � 1.5(22), 24
bilateral z-transform, 68
bilinear transform, 213
bit reverse, � 2.3.5(166)
bit-reversed, 149, 155
boxcar, 113
Bruun, � 2.3.4.4(162)
butter�y, 147, 153

C canonic, 233
cascade, 229
cascade form, � 4.1.3(230)
cascade-form structure, � 4.3.5(251)
causal, 77
characteristic polynomial, 67
chirp z-transform, � 2.6(183), � 2.7(187)
circular convolution, � 2.1.1(99)
coe�cient quantization, � 4.3.3(245),
� 4.3.5(251)

coe�cient vector, � 1.5(22), 24
commutative, 6
compiler, � 2.3.5(166)
complement, � 1.4(12), 17
complex, � 1.11.4(74)
complex exponential sequence, 4
continuous frequency, � 1.7(27)
continuous random process, 81
continuous time, � 1.6(26), � 1.7(27)
Continuous-Time Fourier Transform, 27
convolution, � 1.3(6), 7, � 2.4(176)
convolution property, � 2.1.1(99)
convolution sum, 6
Cooley-Tukey, � 2.3.4.2.1(146), � 2.3.4.2.2(151)
correlation, 88, 88, � 1.12.5(90)
correlation coe�cient, 88
correlation function, � 4.3.1(243)
correlation functions, 89
covariance, 87, 87
Crosscorrelation, 94
crosscorrelation function, 94
CT, � 1.10.5(46)
CTFT, � 1.7(27), � 1.10.7(58)

D D/A, � 1.10.6(49), � 1.10.7(58)
data quantization, � 4.3.3(245)
decimation in frequency, � 2.3.4.2.2(151), 152,
� 2.3.4.2.3(155)
decimation in time, � 2.3.4.2.1(146), 146,
� 2.3.4.2.3(155), 159
decimation-in-frequency, � 2.3.4.3(158)
decimation-in-time, � 2.3.4.3(158)
decompose, � 1.5(22), 23
delayed, 5
density function, � 1.12.2(81)
design, � 3.2.4(199)
deterministic, � 1.12.1(78)
deterministic linear prediction, 217
deterministic signals, 79
DFT, � 1.9(34), � 1.10.6(49), � 2.1.1(99),
� 2.2.1(102), � 2.3.1(141), � 2.3.2(142),
� 2.3.3(144), � 2.3.4.3(158), � 2.3.5(166),

318 INDEX

� 2.5(181)
DFT even symmetric, 101
DFT odd symmetric, 101
DFT properties, � 2.1.1(99)
DFT symmetry, � 2.1.1(99)
DFT-symmetric, 119
di�erence equation, � 1.2(5), 6, 64, 65
digital, � 1.8(29), � 1.10.6(49), � 1.10.7(58),
� 3.2.4(199)
digital aliasing, 294
digital signal processing, � (1), � 1.8(29)
direct form, � 4.1.3(230), � 4.3.3(245)
direct method, 67
direct sum, � 1.4(12), 17
direct-form FIR �lter structure, 227
direct-form structure, � 4.3.5(251)
discrete fourier transform, � 1.10.6(49),
� 2.1.1(99)
Discrete Fourier Transform (DFT), 50
discrete random process, 80
discrete time, � 1.3(6), � 1.6(26), � 1.11.3(73)
discrete time fourier transform, � 1.10.6(49)
discrete-time, � 1.8(29)
discrete-time convolution, 6
discrete-time Fourier transform, � 1.8(29)
discrete-time sinc function, 33
discrete-time systems, � 4.1.4(236)
distribution function, � 1.12.2(81)
dithering, � 4.3.1(243), 243
DSP, � 1.8(29), � 1.11.3(73), � 1.12.2(81),
� 1.12.3(83), � 1.12.5(90), � 3.2.2(196),
� 3.2.3(197), � 3.2.4(199)
DT, � 1.3(6)
DTFT, � 1.10.6(49), � 1.10.7(58), � 2.2.1(102)
DTMF, � 2.3.2(142)

E ergodic, 85
Examples, � 1.10.3(40)
Extended Prony Method, 219

F fast, � 2.4(176)
fast Fourier transform, � 2.3.4.2.1(146),
� 2.3.4.2.2(151)
FFT, � 1.9(34), � 2.3.1(141), � 2.3.2(142),
� 2.3.3(144), � 2.3.4.1(146), � 2.3.4.2.1(146),
� 2.3.4.2.2(151), � 2.3.4.2.3(155),
� 2.3.4.3(158), � 2.3.4.4(162), � 2.3.5(166),
� 2.4(176), � 2.7(187)
FFT structures, � 2.3.4.2.3(155)
�lter, � 3.2.3(197), � 3.2.4(199)
�lter structures, � 4.1.1(225)
�lters, � 3.2.2(196)

�nite, 16
�nite dimensional, � 1.4(12), 17
FIR, � 3.2.2(196), � 3.2.3(197), � 3.2.4(199),
� 4.1.2(225)
FIR �lter, � 3.1(191)
FIR �lter design, � 3.2.1(192)
FIR �lters, � 4.3.3(245), � 4.4.2(256)
�rst order stationary, � 1.12.2(81)
�rst-order stationary, 82
�xed point, � 4.2.1(239)
�ights, 150
�ow-graph-reversal theorem, 228
Fourier, � 2.2.1(102)
fourier series, � 1.6(26)
fourier transform, � 1.6(26), � 1.7(27),
� 1.8(29), � 1.10.7(58), � 1.11.2(68), 68
fourier transforms, � 1.10.5(46)
fractional number representation, � 4.2.1(239)
frequency, � 1.10.5(46)
FT, � 1.10.5(46)

G Generalized Linear Phase, 194
geometric series, 30
Goertzel, � 2.3.3(144)
gradient descent, 266

H Hamming window, 117
Hann window, 115
hanning, 115
hilbert, � 1.5(22)
Hilbert Space, � 1.4(12), 20
hilbert spaces, � 1.5(22)
Hold, � 1.10.4(44)
homogeneous solution, 67

I identity matrix, 25
IDFT, � 2.2.1(102)
IIR Filter, � 3.1(191)
IIR �lter quantization, � 4.3.5(251)
IIR Filters, � 4.1.3(230), � 4.3.4(247),
� 4.4.2(256)
Illustrations, � 1.10.3(40)
implementation, � 4.1.2(225)
impulse response, � 1.3(6)
in-order FFT, � 2.3.4.2.3(155)
in-place algorithm, 149, 155, 162
independent, 85
index map, � 2.6(183), 184
indirect method, 67
initial conditions, 65
interpolation, � 3.2.5(206), 291
invertible, � 1.4(12), 22

INDEX 319

J Java, � 1.10.3(40)
joint density function, � 1.12.2(81), 81
joint distribution function, 81

L lag, 128
lagrange, � 3.2.5(206)
laplace transform, � 1.6(26)
large-scale limit cycle, 255
large-scale limit cycles, � 4.4.1(255)
limit cycles, � 4.4.1(255)
linear algebra, � 1.9(34)
linear and time-invariant, 6
Linear discrete-time systems, 5
linear predictor, 218
linear transformation, � 1.4(12), 20
linearly dependent, � 1.4(12), 14
linearly independent, � 1.4(12), 14, 83
live, 40
LTI, 6
LTI Systems, � 1.10.7(58)

M matrix, � 1.9(34)
matrix representation, � 1.4(12), 21
mean, � 1.12.3(83), 83
mean-square value, 84
minimum phase, 208
misadjustment factor, 274
moment, 84
multirate signal processing, � 6.1(289),
� 6.2(291), � 6.3(295), � 6.4(299), � 6.5(302),
� 6.6(305), � 6.7(306), � 6.8(310)

N narrow-band spectrogram, 130
non-recursive structure, 227
nonstationary, � 1.12.2(81), 81
normal form, � 4.3.5(251)
nyquist, � 1.10.5(46)
Nyquist frequency, � 1.8(29)

O optimal, 204
order, 65
orthogonal, � 1.4(12), 19, 22
orthogonal compliment, � 1.4(12), 20
orthonormal, � 1.4(12), 19, � 1.5(22)
orthonormal basis, � 1.5(22), 23
over�ow, � 4.2.1(239), 241, � 4.2.2(241),
� 4.4.1(255), � 4.4.2(256)
Overview, � 1.10.1(36)

P parallel form, � 4.1.3(230)
Parseval's Theorem, � 1.8(29), � 2.1.1(99)
particular solution, 67
pdf, � 1.12.2(81)

Pearson's Correlation Coe�cient, 88
perfect reconstruction �lters, 305
periodogram, � 2.2.2(123)
picket-fence e�ect, 107
pole, � 1.11.4(74)
poles, 74
polynomial, � 3.2.5(206)
polyphase �lters, 297
polyphase structures, 297
power series, 69
power spectral density, � 2.2.2(123),
� 4.3.1(243)
power spectral density (PSD), 124
power spectrum, � 2.2.2(123)
pre-classical, � 3.3.4(216), 216
prediction, 284
prime factor algorithm, � 2.6(183), � 2.7(187)
prime length FFTs, � 2.6(183)
prime-factor algorithm, � 2.3.1(141)
primitive root, 184
probability, � 1.12.2(81)
probability density function (pdf), 81
probability distribution function, 81
probability function, � 1.12.2(81)
Prony's Method, 219
Proof, � 1.10.2(38)

Q quantization, � 4.2.1(239), � 4.3.1(243),
� 4.3.4(247)
quantization error, 240, � 4.2.2(241),
� 4.3.3(245)
quantization noise, � 4.3.2(245)
quantized, 235
quantized pole locations, � 4.3.5(251)

R Rader's conversion, � 2.6(183), 184
radix-2, � 2.3.4.2.1(146), 147, � 2.3.4.2.2(151),
152
radix-2 algorithm, � 2.3.1(141)
radix-2 FFT, � 2.3.4.1(146)
radix-4, � 2.3.4.3(158), 159
radix-4 butter�y, 161
radix-4 decimation-in-time FFT, 161
radix-4 FFT, � 2.3.4.1(146)
raised-cosine windows, 117
random, � 1.12.1(78), � 1.12.3(83), � 1.12.5(90)
random process, � 1.12.1(78), 80, 80, 81,
� 1.12.2(81), � 1.12.3(83), � 1.12.5(90)
random sequence, 80
random signal, � 1.12.1(78), � 1.12.3(83)
random signals, � 1.12.1(78), 79, � 1.12.3(83),
� 1.12.5(90)

320 INDEX

real FFT, � 2.3.5(166)
realization, 313
Reconstruction, � 1.10.2(38), � 1.10.4(44)
rectangle, 113
recursive FFT, � 2.3.2(142)
Recursive least Squares, 265
ROC, � 1.11.2(68), 69
rounding, � 4.2.2(241), 241
roundo� error, � 4.2.1(239), 240, � 4.2.2(241),
� 4.3.1(243)
roundo� noise analysis, � 4.3.4(247)
running FFT, � 2.3.2(142), 142

S sample function, 313
Sampling, � 1.10.1(36), � 1.10.2(38),
� 1.10.3(40), � 1.10.4(44), � 1.10.5(46),
� 1.10.6(49)
saturation, � 4.2.2(241), 242
scale, 257
scaling, � 4.4.2(256)
scalloping loss, 107
second order stationary, � 1.12.2(81)
second-order stationary, 82
sensitivity, 251
sensitivity analysis, � 4.3.5(251)
Shannon, � 1.10.2(38)
shift property, � 2.1.1(99)
shift-invariant, � 1.2(5), 5
short time fourier transform, � 2.2.3(128)
side lobe, 113
sign bit, 240
Signal-to-noise ratio, � 4.3.2(245)
signals, � 1.3(6), � 1.6(26)
signals and systems, � 1.3(6)
small-scale limit cycles, � 4.4.1(255), 256
SNR, � 4.3.2(245)
span, � 1.4(12), 15
spectrogram, 130
split-radix, � 2.3.4.4(162)
split-radix FFT, � 2.3.4.1(146)
SSS, � 1.12.2(81)
stable, 77
stage, 147, 153
standard basis, � 1.4(12), 21, � 1.5(22)
state, � 4.1.4(236), 236
state space, � 4.1.4(236)
state variable representation, � 4.1.4(236)
state variable transformation, � 4.1.4(236)
state variables, � 4.1.4(236)
stationarity, � 1.12.2(81)
stationary, � 1.12.2(81), � 1.12.5(90)
stationary process, 81

stationary processes, 81
statistical spectrum estimation, � 2.2.2(123)
stft, � 2.2.3(128)
stochastic, � 1.12.1(78)
stochastic gradient, 269
stochastic signals, 79
strict sense stationary, � 1.12.2(81)
strict sense stationary (SSS), 82
structures, � 4.1.2(225), � 4.1.3(230)
subspace, � 1.4(12), 14
superposition, � 1.2(5)
System, � 1.10.4(44)
systems, � 1.6(26)

T table lookup, � 2.3.5(166), 166
The stagecoach e�ect, 43
time, � 1.10.5(46)
time reversal, � 2.1.1(99)
time-varying behavior, 61
Toeplitz, 221
training signal, 278
transfer function, 65, � 4.1.1(225)
transform pairs, � 1.11.3(73)
transforms, 26
transmultiplexors, 306
transpose form, � 4.1.3(230), � 4.3.3(245)
transpose-form structure, � 4.3.5(251)
truncation, 113, 113, � 4.2.1(239), � 4.2.2(241),
242
truncation error, 240, � 4.2.2(241), � 4.3.1(243)
twiddle factor, 142, � 2.3.4.2.1(146), 146,
� 2.3.4.2.2(151), 152
twiddle factors, 158
twiddle-factor, 146, 147, 153
two's complement, � 4.2.1(239)

U uncorrelated, 83
unilateral, � 1.11.3(73)
unilateral z-transform, 68
unique, 23
unit sample, 4, 5
unitary, � 1.4(12), 22

V variance, � 1.12.3(83), 84
vector, � 1.9(34)
Vector-radix FFTs, 188
vectors, � 1.4(12), 13

W well-de�ned, � 1.4(12), 17
WFTA, � 2.6(183)
wide sense stationary, � 1.12.2(81)
wide-band spectrogram, 130
wide-sense stationary (WSS), 83

INDEX 321

window, 113
Winograd, � 2.6(183)
Winograd Fourier Transform Algorithm,
� 2.6(183), � 2.7(187)
wraparound, 242
wraparound error, � 4.2.2(241)
WSS, � 1.12.2(81)

Y Yavne, � 2.3.4.4(162)
Yule-Walker, 222

Z z transform, � 1.6(26), � 1.11.3(73)
z-plane, 68, � 1.11.4(74)
z-tranform, � 2.5(181)
z-transform, � 1.11.2(68), 68, � 1.11.3(73)
z-transforms, 73
zero, � 1.11.4(74)
zero-input limit cycles, � 4.4.1(255), 256
zero-padding, 104
zeros, 74

322 ATTRIBUTIONS

Attributions

Collection: Digital Signal Processing: A User's Guide
Edited by: Douglas L. Jones
URL: http://cnx.org/content/col10372/1.2/
License: http://creativecommons.org/licenses/by/2.0/

Module: "Preface for Digital Signal Processing: A User's Guide"
By: Douglas L. Jones
URL: http://cnx.org/content/m13782/1.1/
Pages: 1-2
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/2.0/

Module: "Discrete-Time Signals and Systems"
By: Don Johnson
URL: http://cnx.org/content/m10342/2.13/
Pages: 3-5
Copyright: Don Johnson
License: http://creativecommons.org/licenses/by/1.0

Module: "Systems in the Time-Domain"
By: Don Johnson
URL: http://cnx.org/content/m0508/2.7/
Pages: 5-6
Copyright: Don Johnson
License: http://creativecommons.org/licenses/by/1.0

Module: "Discrete-Time Convolution"
By: Ricardo Radaelli-Sanchez, Richard Baraniuk
URL: http://cnx.org/content/m10087/2.18/
Pages: 6-12
Copyright: Ricardo Radaelli-Sanchez, Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

Module: "Review of Linear Algebra"
By: Clayton Scott
URL: http://cnx.org/content/m11948/1.2/
Pages: 12-22
Copyright: Clayton Scott
License: http://creativecommons.org/licenses/by/1.0

Module: "Orthonormal Basis Expansions"
By: Michael Haag, Justin Romberg
URL: http://cnx.org/content/m10760/2.4/
Pages: 22-26
Copyright: Michael Haag, Justin Romberg
License: http://creativecommons.org/licenses/by/1.0

ATTRIBUTIONS 323

Module: "Fourier Analysis"
By: Richard Baraniuk
URL: http://cnx.org/content/m10096/2.10/
Pages: 26-27
Copyright: Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

Module: "Continuous-Time Fourier Transform (CTFT)"
By: Richard Baraniuk, Melissa Selik
URL: http://cnx.org/content/m10098/2.9/
Pages: 27-29
Copyright: Richard Baraniuk, Melissa Selik
License: http://creativecommons.org/licenses/by/1.0

Module: "Discrete-Time Fourier Transform (DTFT)"
By: Don Johnson
URL: http://cnx.org/content/m10247/2.28/
Pages: 29-34
Copyright: Don Johnson
License: http://creativecommons.org/licenses/by/1.0

Module: "DFT as a Matrix Operation"
By: Robert Nowak
URL: http://cnx.org/content/m10962/2.5/
Pages: 34-36
Copyright: Robert Nowak
License: http://creativecommons.org/licenses/by/1.0

Module: "Introduction"
By: Anders Gjendemsjø
URL: http://cnx.org/content/m11419/1.29/
Pages: 36-38
Copyright: Anders Gjendemsjø
License: http://creativecommons.org/licenses/by/1.0

Module: "Proof"
By: Anders Gjendemsjø
URL: http://cnx.org/content/m11423/1.27/
Pages: 38-40
Copyright: Anders Gjendemsjø
License: http://creativecommons.org/licenses/by/1.0

Module: "Illustrations"
By: Anders Gjendemsjø
URL: http://cnx.org/content/m11443/1.33/
Pages: 40-44
Copyright: Anders Gjendemsjø
License: http://creativecommons.org/licenses/by/1.0

324 ATTRIBUTIONS

Module: "Systems view of sampling and reconstruction"
By: Anders Gjendemsjø
URL: http://cnx.org/content/m11465/1.20/
Pages: 44-46
Copyright: Anders Gjendemsjø
License: http://creativecommons.org/licenses/by/1.0

Module: "Sampling CT Signals: A Frequency Domain Perspective"
By: Robert Nowak
URL: http://cnx.org/content/m10994/2.2/
Pages: 46-49
Copyright: Robert Nowak
License: http://creativecommons.org/licenses/by/1.0

Module: "The DFT: Frequency Domain with a Computer Analysis"
By: Robert Nowak
URL: http://cnx.org/content/m10992/2.3/
Pages: 49-58
Copyright: Robert Nowak
License: http://creativecommons.org/licenses/by/1.0

Module: "Discrete-Time Processing of CT Signals"
By: Robert Nowak
URL: http://cnx.org/content/m10993/2.2/
Pages: 58-64
Copyright: Robert Nowak
License: http://creativecommons.org/licenses/by/1.0

Module: "Di�erence Equation"
By: Michael Haag
URL: http://cnx.org/content/m10595/2.5/
Pages: 64-68
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "The Z Transform: De�nition"
By: Benjamin Fite
URL: http://cnx.org/content/m10549/2.9/
Pages: 68-73
Copyright: Benjamin Fite
License: http://creativecommons.org/licenses/by/1.0

Module: "Table of Common z-Transforms"
By: Melissa Selik, Richard Baraniuk
URL: http://cnx.org/content/m10119/2.13/
Pages: 73-74
Copyright: Melissa Selik, Richard Baraniuk
License: http://creativecommons.org/licenses/by/1.0

ATTRIBUTIONS 325

Module: "Understanding Pole/Zero Plots on the Z-Plane"
By: Michael Haag
URL: http://cnx.org/content/m10556/2.8/
Pages: 74-78
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Introduction to Random Signals and Processes"
By: Michael Haag
URL: http://cnx.org/content/m10649/2.2/
Pages: 78-81
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Stationary and Nonstationary Random Processes"
By: Michael Haag
URL: http://cnx.org/content/m10684/2.2/
Pages: 81-83
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Random Processes: Mean and Variance"
By: Michael Haag
URL: http://cnx.org/content/m10656/2.3/
Pages: 83-87
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Correlation and Covariance of a Random Signal"
By: Michael Haag
URL: http://cnx.org/content/m10673/2.3/
Pages: 87-90
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Autocorrelation of Random Processes"
By: Michael Haag
URL: http://cnx.org/content/m10676/2.4/
Pages: 90-93
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

Module: "Crosscorrelation of Random Processes"
By: Michael Haag
URL: http://cnx.org/content/m10686/2.2/
Pages: 93-95
Copyright: Michael Haag
License: http://creativecommons.org/licenses/by/1.0

326 ATTRIBUTIONS

Module: "DFT De�nition and Properties"
By: Douglas L. Jones
URL: http://cnx.org/content/m12019/1.5/
Pages: 99-102
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Spectrum Analysis Using the Discrete Fourier Transform"
By: Douglas L. Jones
URL: http://cnx.org/content/m12032/1.6/
Pages: 102-123
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Classical Statistical Spectral Estimation"
By: Douglas L. Jones
URL: http://cnx.org/content/m12014/1.3/
Pages: 123-128
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Short Time Fourier Transform"
By: Ivan Selesnick
URL: http://cnx.org/content/m10570/2.4/
Pages: 128-141
Copyright: Ivan Selesnick
License: http://creativecommons.org/licenses/by/1.0

Module: "Overview of Fast Fourier Transform (FFT) Algorithms"
By: Douglas L. Jones
URL: http://cnx.org/content/m12026/1.3/
Pages: 141-142
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Running FFT"
By: Douglas L. Jones
URL: http://cnx.org/content/m12029/1.5/
Pages: 142-144
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Goertzel's Algorithm"
By: Douglas L. Jones
URL: http://cnx.org/content/m12024/1.5/
Pages: 144-145
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

ATTRIBUTIONS 327

Module: "Power-of-two FFTs"
By: Douglas L. Jones
URL: http://cnx.org/content/m12059/1.2/
Pages: 146-146
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Decimation-in-time (DIT) Radix-2 FFT"
By: Douglas L. Jones
URL: http://cnx.org/content/m12016/1.7/
Pages: 146-151
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Decimation-in-Frequency (DIF) Radix-2 FFT"
By: Douglas L. Jones
URL: http://cnx.org/content/m12018/1.6/
Pages: 151-155
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Alternate FFT Structures"
By: Douglas L. Jones
URL: http://cnx.org/content/m12012/1.6/
Pages: 155-158
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Radix-4 FFT Algorithms"
By: Douglas L. Jones
URL: http://cnx.org/content/m12027/1.4/
Pages: 158-162
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Split-radix FFT Algorithms"
By: Douglas L. Jones
URL: http://cnx.org/content/m12031/1.5/
Pages: 162-166
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "E�cient FFT Algorithm and Programming Tricks"
By: Douglas L. Jones
URL: http://cnx.org/content/m12021/1.6/
Pages: 166-169
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

328 ATTRIBUTIONS

Module: "Multidimensional Index Maps"
By: Douglas L. Jones
URL: http://cnx.org/content/m12025/1.3/
Pages: 169-173
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "The Prime Factor Algorithm"
By: Douglas L. Jones
URL: http://cnx.org/content/m12033/1.3/
Pages: 173-176
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Fast Convolution"
By: Douglas L. Jones
URL: http://cnx.org/content/m12022/1.5/
Pages: 176-181
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Chirp-z Transform"
By: Douglas L. Jones
URL: http://cnx.org/content/m12013/1.4/
Pages: 181-183
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "FFTs of prime length and Rader's conversion"
By: Douglas L. Jones
URL: http://cnx.org/content/m12023/1.3/
Pages: 183-186
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Choosing the Best FFT Algorithm"
By: Douglas L. Jones
URL: http://cnx.org/content/m12060/1.3/
Pages: 187-188
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Overview of Digital Filter Design"
By: Douglas L. Jones
URL: http://cnx.org/content/m12776/1.2/
Pages: 191-191
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/2.0/

Module: "Linear Phase Filters"
By: Douglas L. Jones
URL: http://cnx.org/content/m12802/1.2/
Pages: 192-196
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/2.0/

ATTRIBUTIONS 329

Module: "Window Design Method"
By: Douglas L. Jones
URL: http://cnx.org/content/m12790/1.2/
Pages: 196-197
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/2.0/

Module: "Frequency Sampling Design Method for FIR �lters"
By: Douglas L. Jones
URL: http://cnx.org/content/m12789/1.2/
Pages: 197-199
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/2.0/

Module: "Parks-McClellan FIR Filter Design"
By: Douglas L. Jones
URL: http://cnx.org/content/m12799/1.3/
Pages: 199-206
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/2.0/

Module: "Lagrange Interpolation"
By: Douglas L. Jones
URL: http://cnx.org/content/m12812/1.2/
Pages: 206-206
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/2.0/

Module: "Overview of IIR Filter Design"
By: Douglas L. Jones
URL: http://cnx.org/content/m12758/1.2/
Pages: 207-207
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/2.0/

Module: "Prototype Analog Filter Design"
By: Douglas L. Jones
URL: http://cnx.org/content/m12763/1.2/
Pages: 207-213
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/2.0/

Module: "IIR Digital Filter Design via the Bilinear Transform"
By: Douglas L. Jones
URL: http://cnx.org/content/m12757/1.2/
Pages: 213-216
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/2.0/

Module: "Impulse-Invariant Design"
By: Douglas L. Jones
URL: http://cnx.org/content/m12760/1.2/
Pages: 216-216
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/2.0/

330 ATTRIBUTIONS

Module: "Digital-to-Digital Frequency Transformations"
By: Douglas L. Jones
URL: http://cnx.org/content/m12759/1.2/
Pages: 216-217
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/2.0/

Module: "Prony's Method"
By: Douglas L. Jones
URL: http://cnx.org/content/m12762/1.2/
Pages: 217-220
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/2.0/

Module: "Linear Prediction"
By: Douglas L. Jones
URL: http://cnx.org/content/m12761/1.2/
Pages: 220-222
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/2.0/

Module: "Filter Structures"
By: Douglas L. Jones
URL: http://cnx.org/content/m11917/1.3/
Pages: 225-225
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "FIR Filter Structures"
By: Douglas L. Jones
URL: http://cnx.org/content/m11918/1.2/
Pages: 225-230
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "IIR Filter Structures"
By: Douglas L. Jones
URL: http://cnx.org/content/m11919/1.2/
Pages: 230-236
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "State-Variable Representation of Discrete-Time Systems"
By: Douglas L. Jones
URL: http://cnx.org/content/m11920/1.2/
Pages: 236-239
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Fixed-Point Number Representation"
By: Douglas L. Jones
URL: http://cnx.org/content/m11930/1.2/
Pages: 239-241
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

ATTRIBUTIONS 331

Module: "Fixed-Point Quantization"
By: Douglas L. Jones
URL: http://cnx.org/content/m11921/1.2/
Pages: 241-242
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Finite-Precision Error Analysis"
By: Douglas L. Jones
URL: http://cnx.org/content/m11922/1.2/
Pages: 243-245
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Input Quantization Noise Analysis"
By: Douglas L. Jones
URL: http://cnx.org/content/m11923/1.2/
Pages: 245-245
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Quantization Error in FIR Filters"
By: Douglas L. Jones
URL: http://cnx.org/content/m11924/1.2/
Pages: 245-247
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Data Quantization in IIR Filters"
By: Douglas L. Jones
URL: http://cnx.org/content/m11925/1.2/
Pages: 247-251
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "IIR Coe�cient Quantization Analysis"
By: Douglas L. Jones
URL: http://cnx.org/content/m11926/1.2/
Pages: 251-255
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Limit Cycles"
By: Douglas L. Jones
URL: http://cnx.org/content/m11928/1.2/
Pages: 255-256
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Scaling"
By: Douglas L. Jones
URL: http://cnx.org/content/m11927/1.2/
Pages: 256-258
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

332 ATTRIBUTIONS

Module: "Introduction to Adaptive Filters"
By: Douglas L. Jones
URL: http://cnx.org/content/m11535/1.3/
Pages: 261-261
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Discrete-Time, Causal Wiener Filter"
By: Douglas L. Jones
URL: http://cnx.org/content/m11825/1.1/
Pages: 261-264
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Practical Issues in Wiener Filter Implementation"
By: Douglas L. Jones
URL: http://cnx.org/content/m11824/1.1/
Pages: 264-265
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Quadratic Minimization and Gradient Descent"
By: Douglas L. Jones
URL: http://cnx.org/content/m11826/1.2/
Pages: 265-267
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "The LMS Adaptive Filter Algorithm"
By: Douglas L. Jones
URL: http://cnx.org/content/m11829/1.1/
Pages: 267-269
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "First Order Convergence Analysis of the LMS Algorithm"
By: Douglas L. Jones
URL: http://cnx.org/content/m11830/1.1/
Pages: 269-272
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Second-order Convergence Analysis of the LMS Algorithm and Misadjustment Error"
By: Douglas L. Jones
URL: http://cnx.org/content/m11831/1.2/
Pages: 272-275
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Applications of Adaptive Filters"
By: Douglas L. Jones
URL: http://cnx.org/content/m11536/1.1/
Pages: 275-275
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

ATTRIBUTIONS 333

Module: "Adaptive System Identi�cation"
By: Douglas L. Jones
URL: http://cnx.org/content/m11906/1.1/
Pages: 275-276
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Adaptive Equalization"
By: Douglas L. Jones
URL: http://cnx.org/content/m11907/1.1/
Pages: 276-278
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Adaptive Interference (Noise) Cancellation"
By: Douglas L. Jones
URL: http://cnx.org/content/m11835/1.1/
Pages: 278-281
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Adaptive Echo Cancellation"
By: Douglas L. Jones
URL: http://cnx.org/content/m11909/1.1/
Pages: 281-283
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Beyond LMS: an overview of other adaptive �lter algorithms"
By: Douglas L. Jones
URL: http://cnx.org/content/m11911/1.1/
Pages: 283-283
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Adaptive IIR �lters"
By: Douglas L. Jones
URL: http://cnx.org/content/m11912/1.1/
Pages: 283-285
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "The Constant-Modulus Algorithm and the Property-Restoral Principle"
By: Douglas L. Jones
URL: http://cnx.org/content/m11913/1.1/
Pages: 285-286
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

334 ATTRIBUTIONS

Module: "Complex LMS"
By: Douglas L. Jones
URL: http://cnx.org/content/m11914/1.3/
Pages: 286-286
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Normalized LMS"
By: Douglas L. Jones
URL: http://cnx.org/content/m11915/1.2/
Pages: 286-287
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Summary of Adaptive Filtering Methods"
By: Douglas L. Jones
URL: http://cnx.org/content/m11916/1.1/
Pages: 287-287
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/1.0

Module: "Overview of Multirate Signal Processing"
By: Douglas L. Jones
URL: http://cnx.org/content/m12777/1.2/
Pages: 289-291
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/2.0/

Module: "Interpolation, Decimation, and Rate Changing by Integer Fractions"
By: Douglas L. Jones
URL: http://cnx.org/content/m12801/1.2/
Pages: 291-295
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/2.0/

Module: "E�cient Multirate Filter Structures"
By: Douglas L. Jones
URL: http://cnx.org/content/m12800/1.2/
Pages: 295-299
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/2.0/

Module: "Filter Design for Multirate Systems"
By: Douglas L. Jones
URL: http://cnx.org/content/m12773/1.2/
Pages: 299-301
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/2.0/

Module: "Multistage Multirate Systems"
By: Douglas L. Jones
URL: http://cnx.org/content/m12803/1.2/
Pages: 302-304
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/2.0/

ATTRIBUTIONS 335

Module: "DFT-Based Filterbanks"
By: Douglas L. Jones
URL: http://cnx.org/content/m12771/1.2/
Pages: 305-306
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/2.0/

Module: "Quadrature Mirror Filterbanks (QMF)"
By: Douglas L. Jones
URL: http://cnx.org/content/m12770/1.2/
Pages: 306-310
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/2.0/

Module: "M-Channel Filter Banks"
By: Douglas L. Jones
URL: http://cnx.org/content/m12775/1.2/
Pages: 310-311
Copyright: Douglas L. Jones
License: http://creativecommons.org/licenses/by/2.0/

Digital Signal Processing: A User's Guide
Digital Signal Processing: A User's Guide is intended both for the practicing engineer with a basic knowledge
of DSP and for a second course in signal processing at the senior or �rst-year postgraduate level. FFTs,
digital �lter design, adaptive �lters, and multirate signal processing are covered with an emphasis on the
techniques that have found wide use in practice.

About Connexions
Since 1999, Connexions has been pioneering a global system where anyone can create course materials and
make them fully accessible and easily reusable free of charge. We are a Web-based authoring, teaching and
learning environment open to anyone interested in education, including students, teachers, professors and
lifelong learners. We connect ideas and facilitate educational communities.

Connexions's modular, interactive courses are in use worldwide by universities, community colleges, K-12
schools, distance learners, and lifelong learners. Connexions materials are in many languages, including
English, Spanish, Chinese, Japanese, Italian, Vietnamese, French, Portuguese, and Thai. Connexions is part
of an exciting new information distribution system that allows for Print on Demand Books. Connexions
has partnered with innovative on-demand publisher QOOP to accelerate the delivery of printed course
materials and textbooks into classrooms worldwide at lower prices than traditional academic publishers.

