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Abstract

There have largely been two main approacheséasuring consumer preferences, ad hoc
conjoint analyses (CAs) or discrete choice expentéDCESs). These approaches, while
successful, also have drawbacks: CAs are limiteddsymptions of additive attribute
utilities, and are not grounded in formal modelfiofnan choice behavior. DCEs, while
theoretically grounded, require careful experimedésign, and preference utilities are
obtained only by fitting the data with choice maglethich also contain limiting
assumptions. Thus, despite the abundance of preferaeasurement tools available, there is
still a need for a normative, theoretically groudiceethod for measuring preferences
directly. Here, we introduce such a method, digckarkov Chain Monte Carlo with People
(d-MCMP). Under basic assumptions about human ehoéhaviour, d-MCMCP is
mathematically guaranteed to converge to the tisteilsution of utilities over full profiles, or
a scaled version of this distribution. We showngdioth simulation and human experiment
that d-MCMCP offers a powerful normative tool foeasuring preferences that is

particularly efficient when consumers are selectiviheir preferences.
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Introduction

Consumer preference measurement has beenyailsuccessfully applied to help
market researchers with product development, gicgagmentation, positioning, and
advertising (Green and Krieger 2002; Green and4d ; Green and Srinivasan 1978;
Green and Srinivasan 1990; Hauser and Rao 2008sdnH974; Louviere, Hensher, and
Swait 2000; McFadden 1971; Orme 2009; PekelmarSamd1979; Rao 2008). There have
largely been two general paradigms for evaluatmgsamer preferences. One tradition,
broadly known as conjoint analysis (CAs) (Cattinl &Mittink 1989) rises from the
assumption that attribute utilities can be algedaify combined to predict the overall
preference for a product. CAs may include the dgmadial profile ratings (Bradlow, Hu, and
Ho 2004; Green 1974), self explication methodsKPamng, and Rao 2008; Srinivasan
1988), and hybrid techniques, (Agarwal and Greddill@armone 1987; Green 1984;
Johnson 1987; Toubia, Hauser, and Garcia 2007)ileWfdely used, CAs are usually
constrained by limiting assumptions, such as $fraadditive attribute utility functions
(independence among part-worth attribute utiliti@g)ich can result in mischaracterizations
of actual preference utilities. Additionally, CAsegorimarily ad hoc approaches that are not
theoretically grounded in formal models of humanich behaviour. Thus, their results
cannot be analyzed in a way that is consistent mgticlassical economic theory, because
ratings and attribute importance measures do ralilyetranslate into choice or matching.
Thus CA results are not appropriate for wider msecdonomic modelling and applied
economics, such as welfare and policy assessmeunvigre, Flynn, and Carson 2010).

In a return to a more theoretically grded, and ecologically natural approach,
researchers have also developed choice-based rsdthodn as discrete choice experiments

(DCE) (Elrod, Louviere, and Davey 1992; Foxall 20B@xall 2010; Louviere 1988;



Louviere et al. 2000; McFadden 1971; Train 2008 DCEs, respondents are asked to make
a series of choices between two or more produdii@spthus using a task that captures the
comparison based choice behaviour of natural shgpRiCEs are sometimes known as
choice-based conjoint analysis, though the uskistérminology has also been cautioned
because, in contrast to CAs, DCEs do have a dudidrétical basis in random utility theory
(RUT) (see Louviere et al. for further discussi@fX0)). RUT proposes that there exists a
latent construct of “utility” for each choice altative, and that these utilities consist of a
systematic (explainable) component that is baseattoibutes that differ between the choice
alternatives and a random (unexplainable) compoidarte formally this means that, for
each individual, there exists a utilityj=V,+¢;, whereV; is the explainable component of
choice. is the random component, addis the utility. A variety of choice modelling
procedures have been developed assuming that hthoae behavior is described by a
functional form based on these utilities (McFadd8i1; Train 2003). Full product utilities,
as well as marginal, attribute utilities can theniferred from these model fits.

While powerful and successful, DCEs do poseesbmitations. One is that DCEs often
require careful design to ensure the experimeetfisient. Much research has been devoted
to the efficient design of choice experiments (Lieve et al. 2008; Louviere, Pihlens, and
Carson 2011), with the more recent work often eyiplp sophisticated Bayesian modelling
(Johnson 1974; Kanninen 2002; Louviere et al. 2008yiere et al. 2011; Louviere and
Woodworth 1983; Rossi, Allenby, and McCulloch 2083ndor and Wedel 2001; Sandor
and Wedel 2005; Yu, Goos, and Vanderbroek 200@we¥er, these methods are complex
to implement. Furthermore, in order to extractitig (both partial utilities and product
utilities), one has to fit a choice model to théadainherent in these choice models, are a
priori assumptions about the structure of attrilbuiiity dependencies (e.g. attributes are

assumed to be either independent or cont¥inr2correlations). Thus, the accuracy of the



utility values extracted from DCEs largely depemdwhether the appropriate model has been
chosen, the constraints imposed by the chosen fsquehmetric structure, and whether the
data was sufficient for being fitted by the chosmwdel. Furthermore, there may be
circumstances where a researcher wants to obidistribution of utility weights over
complex products directly, without requiring théimstion of part-worth attribute utilities.
Here, the complexity of experimental design and ehéitting required of DCEs, seems
perhaps needlessly cumbersome.

Thus, despite the abundance and variety dépmece measurement methods available,
the field of marketing is still in significant neefla simple, normative method that can
directly measure preference utilities over comgeducts, and that is not constrained by
assumptions about the form of attribute utility elieggencies. The importance of normative,
non-parametric approaches is manifold. First, nomaative approaches (that are not
grounded in formal theories of choice behavioue) ot guaranteed to measure true
preferences under most circumstances. Also, arbapprgrounded in formal theory allows
for future developments and expansions on the @gprthat continue to be theoretically
grounded. Furthermore, the results produced frormative tools will be consistent with
economic demand theory, and thus can then be #tiably used in applied economics such
as for welfare and policy assessments. The adyamtha non-parametric (no assumption
about attribute utility dependencies) approachas it allows the data to capture any form of
nonlinear dependencies among attribute utilitigmugh nature of these dependencies will
still need to be obtained by fitting the data tod®ls of how attribute utilities may combine
(as with DCESs), the possible attribute interactioagtured in the data are no longer limited
by the a priori design of the experiment.

Here we present for the first time, such amadive, theoretically grounded method for

measuring consumer preferences utilities over &wrday of complex products. The



procedure is known as discrete Markov Chain MorggddOwith People (d-MCMCP) and
uses a binary choice task on full product profigassed on broad, flexible assumptions of
human binary choice behaviour, which are in acamdavith RUT, d-MCMCP is
mathematically guaranteed to converge to the tistelglition of preference utilities, or a

scaled version of this. d-MCMCP was recently psgabin the field of mathematical
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Martin, Griffiths, and Sanborn 2011; Sanborn, Gthf§, and Shiffrin 2010). However, the
significance of d-MCMCP in relation to measuringference utilities has not been
recognized nor tested. In this work, we first destmate how d-MCMCP can be applied to
measure consumer preferences. We then test i@rpenfice using simulations and
experiment, and show that it is an especially ¢ffeanethod for measuring preferences
among expert consumers who are selective in thefepences.

The advantages that d-MCMCP offers are nungeréiust the ability to directly capture
individual preference distributions using full prod profiles means it is easily applied to real
products, i.e. the precise brand name and moddbearsed/included in the product profile.
This is useful because there will be times wheresaarcher may wish to directly measure
preferences over a range of real products, suglhan predicting sales for a new stock, or in
a new location. Second, the nonparametric natuleMEMCP means that results are not
heavily dependent on the experimental design. Nidcei assumptions need to be made
about attribute utility dependencies. This allotws inarket researcher to obtain data that can
be flexibly analyzed afterwards to test any nundfdrypotheses about preference structures
with any type of dependencies among attributetiesli For example, after conducting a d-
MCMCP experiment, one could look for market segm@ftindividual wine consumers who
only want white wines if they are cheap and froafyitbut never would prefer cheap white

wines otherwise. In contrast, in traditional CARCE approaches, this three-way interaction



between attributes would have to be hypothesizéoréleand and incorporated into the
experiment design. Finally, d-MCMCP is a highlyig#nt method, which capitalizes on the
efficiency of a Markov Chain Monte Carlo algorithimquickly explore preferences over a
large range of profile options within a feasiblewher of binary choice trials. This efficiency
arises because the algorithm adaptively focusesfering choice profiles that will most
effectively measure an individual respondent’s grerfices. Thus, individual preferences over
a wide range of products can be obtained in a gwi/éasible length, allowing for effective
market segmentation analysis.

The outline of this paper is as follows. Firs introduce the key ideas and
methodological details behind the d-MCMCP method show how the method can be used
to measure preferences. Next, we test the suitabiflid-MCMCP for preference
measurement by testing its convergence propentiesnoulated choice data in the example
domain of wine preferences. Note that we have ahtis=domain of wine preferences as it is
a complex product of many attributes and levelswvéleer, we would expect that the
simulation results apply to any domain with a samgtructure of attribute level utilities. In
order to more clearly illustrate how d-MCMCP work& will compare its performance to
that of its naive alternative, which is to estimiue distribution of profile utilities by
constructing a histogram over random pair-wise @i Finally, we then apply the d-
MCMCP method in an online experiment to measurkmaman wine preferences. Again,
we compare the d-MCMCP results with the random-wée choice method. We show that
d-MCMCEP is particularly useful for capturing prefipreferences which arise from more
selective attribute utilities, e.g. preferencesd@elect few, potentially correlated, attribute

levels.

Discrete Markov Chain Monte Carlo with People



The d-MCMCP method is based on the Metrogdéistings algorithm (Hastings 1970), a
Markov Chain Monte Carlo (MCMC) sampling algorittariginally developed in statistical
physics to sample from complex, intractable distiitns. Recently, researchers in
mathematical psychology have adapted MCMC sampliathod so that is can be used with

people to measure mental representations of cadsgordconcepts (e.g. a dog, or a happy
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difference between MCMCP and d-MCMCP is that d-MOMi@as been adapted to handle
discrete sets of items. MCMCP and d-MCMCP meadineselative strengths to which
items in a large choice set are representativeeo€oncept in question (e.g. how strongly an

image is indicative of a happy face). Here we olisénat the discrete version, d-MCMCP,
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of product profiles. In contrast to the previouskvim psychology, we now are measuring
how strongly an item is representative of a preféproduct rather than a category.
Overview of a d-MCMCP experiment

The overview in this section applies equatittte continuous version, MCMCP, and the
discrete version, d-MCMCP. However, d-MCMCP is meuitable to measuring preferences
over real products, which are a discrete set ohsteand which are usually not readily
represented in a continuous space. Thus, we hatedi#CMCP in this work, and we will
just make references to d-MCMCP here. In a d-MCMg&Rice experiment, a human
participant is asked to make pair-wise choices betwitems over many trials. During each
trial, participants are presented with two itemsirthe choice set. How these two items are

chosen is a key feature of the method and will glagned below. Participants are then
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preferencesthis criterion will be “which is the preferredqutuct?” The chosen item in each
trial is recorded, eventually resulting in a longt lof choices made across the many trials.
With enough trials, the relative frequency with athian item is chosen becomes proportional
to the strength of preference for that item retativ others in the choice set.

A way to gain intuition for how d-MCMCP works to first consider the more naive
approach of obtaining preferences through randgpngsented pair-wise choices. In this
approach, preferences can be obtained by showimyg naamdomly chosen pairs of items and
constructing a preference histogram over all chasams. However, such an approach is
limited because it is usually desirable to explarehoice set containing a large range of
items, and it is not practical to show all possibér-wise combinations, (e.g. to show every
possible pair in a database of 2000 items wouldirecabout 2 million trials). d-MCMCP
overcomes this problem by introducing an efficiealy of exploring a large number of items:
the algorithm focuses on accumulating choices dwgh preference regions and quickly
moves away from regions of low preference. Addiibn choices over randomly chosen
pairs of items is not mathematically guaranteectdoverge to the correct distribution of
actual relative preference strengths over the ehgét, and indeed under most circumstances
is unlikely to. In contrast, d-MCMCP, under simpleneral assumptions about human binary
choice behaviour, have been mathematically shovaotwerge either to the true distribution
over profile utilities, or a scaled version of tlistribution (Sanborn et al. 2010).

d-MCMCP works by building a list of choseerits. For each trial there is a “current
item”, lIc, and a “proposal item’lp. d-MCMCP starts with an initial “current itemig,
typically chosen at random and a “proposal itendt fls chosen to be “nearby” to the current
item (e.g. a similar facial image). The human pgstint is then asked to choose whether
or lp. is more preferred. The chosen item is recorddter Ip is chosen, it becomes the new

current item k). If Ic is chosen, it remains as current item for the neat. A new trial



begins in which a new “nearby” proposal item is s# based on the current item. The
participant is again asked to choose between duaed proposed items, the choice is
recorded, and so forth.

Mathematical Details

Again, for the interest of clarity we will jugefer to d-MCMCP, while most of the
mathematical details described below apply equalthe continuous version, MCMCP. The
only difference between MCMCP and d-MCMCP arisetha&nsubsectioproposing nearby
states This is because continuous MCMCP makes randons€kauproposals on a
continuous space, whereas d-MCMCP has been adapteake proposals in a discrete
space.

Metropolis MCMC Algorithmd-MCMCP works based on the convergence propesfies
the Markov Chain Monte Carlo (MCMC) algorithm knowas the Metropolis Hastings
algorithm. MCMC algorithms are a class of methaatsgenerating samples from complex
probability distributions by constructing Markovaihs that converge to those distributions
over time (see (ref 9)). If we want to draw a saafpbm the probability distributiop(x), we
define a Markov chain such that the stationaryrithigtion of that chain ip(x), and sample a
sequence of states from that chain. If the sequisroag enough, the states of the chain can
be treated similarly to samples frgrtx). The Metropolis algorithm (Hastings 1970) is ofie o
the most popular methods for constructing such &kMachain. The sequence of states is
initialized with an arbitrary value. The next value in the sequence is generated tvi@a
step process. First, a candidate for the next yaliiés chosen by sampling from an arbitrary
proposal distribution conditioned ahthat is specified by the designer of the algorithm
g(x";x"). Second, a decision is made as to whether thabpeapvalue will be accepted using

a valid acceptance function which is a functiohef relative probability of x and »nder
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the target distributiop(x). An example of a valid acceptance function isBaeker function

(Barker 1965) which specifies the acceptance pritibhato be:

0= 260+ poey

and defines a Markov chain that converges(tg provided the proposal distributiggx’; x")
is symmetric, witlg(x’; x") = q(x"; x").

From MCMC to d-MCMCP.d-MCMCP method is based on a correspondence betwee
human choice behaviour and the Barker acceptammtidn (equation 1). If a task can be
constructed in which people are offered a choidedenx=x" andx= x’ and choos&’ with

u(x)
u(x") +u(x)

probability P, ;..(X') = (2)

then this provides a valid acceptance functiorafdfarkov chain that will converge tgx),
up to a normalization constant. Thus, based orctirisespondence between d-MCMCP and
the Metropolis algorithm, people’s choices can therused to determine which proposals are
accepted (Sanborn et al. 2010). In a standard ienpet, people would be asked to make a
series of pair-wise decisions in which they areedslo choose the best category member
from two proposed stimuli. The stimuli that aregmeted in each decision correspond to the
valuesx andx'’ in the Metropolis algorithm, and the choices fhebple make determine
which proposals are accepted. With enough decisidddlCMCP will converge to samples
from the probability distribution associated wittat category, and individual stimuli will be
encountered with probability given logx) (up to normalization constanilhe proposal
distribution can be selected by the experiment@vyiged it is symmetric in the way required
by the Barker acceptance rule. For the case afwnar preferencegx) will be the utility
for the itemx.

Equation 2 has a long history as a model afidmuchoice probabilities, where it is known

as Luce’s choice rule or the ratio rule (Luce 19@3iis rule has been shown to provide a
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good fit to human data when people choose betweestimuli based on a particular
property (Bradley 1954; Clarke 1957; Hopkins 19%4der more general assumptions for
human binary choice behaviour, such as the logitragtion often used in consumer choice
modelling, the Markov chain will converge to a sthizersion of the distribution as long as

people’s choices scale monotonically with equaBid®anborn et al. 2010). In particular if

f(u(x))

o) =G0 + 1)

then the choices are guaranteed to converge tarbplss from the distributioffu(x)). So
for example, if choices were assumed to followraaby logit model, with utilitied)’=A x'+e
andU=Ax+e, whereeis an independent and identically distributedeaxie valued random

exp(Ax)
exp(AX) +exp(A(x"))

noise term with zero mean, théj,,...(X') = +e and the choices are

guaranteed to converge to the distributgomp(u(x))(the random noise will average out), in
which casei(x) can be recovered by taking the log of the distidou In general, if the shape
of f(x) is unknown, as long as it's a monotonic functitwe, converged distribution can be
taken to be a scaled version of the actual digichu

Proposing nearby statel order for d-MCMCP to most efficiently exploreet space of
items, one has to have an appropriate method oifingak‘nearby” proposal. A key
assumption in using the Barker acceptance fundsitimat the proposals must be symmetric.
That is the probability of choosing a proposal eadiiven a current value is the same if the
proposal and current values were reversed. Thugaich profile item, one must identify a set
of “neighbors” in such a way that the neighbor tielaship is symmetric, i.e. ik’ is a
neighbor of x”, then X" is a neighbor ofx. To achieve this one does the following: First,
apply a similarity measure to every pair of iterms$hie choice set. Any reasonable measure of

similarity can be used, for example the numbentwibaite levels in common between two
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items. Next, we need to build an interconnecteglytzetween items in the choice-set such
that each item is connected by a fixed number syidmetric neighbors. This is an instance
of the maximum weight b-matching problem (Papadimitand Steiglitz 1998) . Exact
algorithms exist for solving this problem, suchlaes blossom algorithm but these are
impractical for large-scale applications (Edmon@65). Consequently, we use an
approximate algorithm based on max-product messagging to find a b-matching (Jebara
and Shchogolev 2006). Given a graph on stimuliighatb-matching, proposals for d-
MCMCP can be made in a variety of ways. The sedepteposal method is held constant
throughout the experiment. The most straightforwaaposal method, which we use here, is
to choose a proposal uniformly from hlheighbors, where the value lofs chosen at the

experimenter’s discretion, leaving a small probgbdf choosing uniformly from all of the
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When the chosen measure of similarity and \whaearby” matches the notion of nearby
in a human respondent’s preference space (andrpaéy profiles with more overlapping
attributes will be more similar in preference) thlka d-MCMCP algorithm will move away
from profiles lower in preference and towards explg item profiles that are higher in
preference. If the definition of similarity is nimtatched to psychological preference
similarity, then the algorithm is still guaranteedconverge but somewhat more slowly. In
practice, our simulations below show that even wieneighbors are used, and all proposals
are chosen uniformly from all possible profilesneergence rates are not much slower (see
simulations below).

Summary of implementing d-MCMQOHgure 1 illustrates the sequence of steps involved
in implementing d-MCMCP using the example domaimvofe profiles, which we will use in
our simulations and human experiments. The fiegt & to create a choice set of product

profiles, over which the distribution of relativegerence strengths will be estimated (figure
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1la). The second step is to compute the similagtyben all possible pairs of profiles (figure
1b). The third step is to feed these similaritigs ia b-matching algorithm to construct a
symmetric graph of connections with fixed numbeneighbors (figure 1c). The neighboring
connections on this graph are then used to ddfim@toposal distribution used in d-
MCMCP. Finally, a d-MCMCP experiment is conductelglene respondents are asked to
choose between two profiles, corresponding to eeatiiand proposal state (figure 1d).
(These states are unlabelled for the respondendi@nanly kept track of in the computer.)
The profile chosen by the participant becomes #wve current state, and a new proposal is
chosen for the next trial. The chain of choserestatill then converge to being samples from
the distribution of preferred profiles. In practiceultiple d-MCMCP chains are interwoven
randomly among trials. This has the advantagefi@fimg for multiple chains with multiple
random starting states, and also the respondestraiesee the same previously chosen state

over and over.

Simulations

Here we apply d-MCMCP to simulated choice datassess its ability to recover the pre-
defined distribution of preference strengths oberchoice set. For our simulations we will
use the domain of wine preferences. We simulatecebdoased on relative preference
strengths that are constructed from pre-definetate level utilities. Note, our simulation
results are not specific only to wine attributed aould apply as readily to any domain that
has similar attribute level structures. As mentbabove, we will compare the convergence
results from the d-MCMCP method to that of the pailternative of estimating preferences
from randomly presented pair-wise choices. By caingad-MCMCP with the more

intuitively transparent pair-wise method, we aindénonstrate how d-MCMCP works, and
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when it may be most useful. In our simulations finst compare two example sets of
attribute utilities, one in which attribute utiés are independent, and the other where there
are correlations among attribute utilities. Here,will examine how d-MCMCP and random
pair-wise methods are able to recover the origligttibution of profile utilities as a function
of the number of trials. Next, for a fixed numbétraals, we will apply d-MCMCP and
random pair-wise methods to six different prefegesitength distributions, arising from six
respective sets of pre-defined attribute utilitM& show that the advantage of the d-
MCMCP method lies in its ability to recover utilitystributions that are more selective
(preferences are clustered mainly among a smalbeuwf items in the choice set).

Two Attribute Sets and Varying Proposals

Stimuli For the profiles in our choice set, we used H# wines that are commonly sold
in a major UK supermarket. For our simulation wask chose to characterize these wines in
terms of the attributes of price (cheap 0-£5, medib-10, expensive-£10+), color (Red,
Rose, White), and Country (Argentina, Australiajl€hrance, Germany, Italy, New
Zealand, Portugal, South Africa, Spain, USA). Clatiens between attributes in our list of
100 wines did not exceed .25.

Defining Preference Strength Distributios preference strength distribution is obtained
by first defining utilities on attribute levels. &h based on these attribute utilities, preference
strengths can be calculated for each wine prafiltaé choice set. In particular, for a setNof
wines,W1, W2, W3...WNach wine can be represented as a binary vectoindices
corresponding to all the attribute levels represeim its profile. The binary vector for each
wine will contain a 1 for all attribute levels whidescribe the wine and 0 otherwise. Figure
2a shows an example of such a binary vector ftreag, French, red wine. The profile utility
U(WKk)for thek’th wine WKkis calculated based on the wine’s attribute aediéfined

attribute utilities plus random noise.
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Here we examine two different wine distribascof utilities over profiles. Our first
distribution of profile utilities is constructedoim linear attribute utilities. Linear attribute
utilities can be represented by a ved&drand we arbitrarily assigned utilities of 1,1,32 t
the attribute levels of Cheap, French, White, dtaliespectively (see figure 2b). Based on
these linear attribute utilities, we can calculd profile utility for wineW1, Uai(W1),as
follows: Uay (WD)= Y W1AL +¢, wheree is random noise with mean zero. We then obtain
the distribution of preference strengths over atlesUa;(W), by repeating this for all00
wines in the choice s&V: W1, W2, ...W100see figure 3a). For illustration purposes
preference strengths are shown normalized suclptbefgrences sum to one. In practice,
because we are simulating choices based on Lukeiserule (equation 2), only the relative
strengths contribute the probability of choosirgj\een profile, normalization does not make
a difference. (Note, if we were to simulate usirlggit choice rule, then the scale would have
to be determined).

For our second distribution of profile utilisiewe defined correlated attribute utilities, by
assigning utilities of 1 and 2, for white-Italiarings, and cheap-French wines respectively.
These nonlinear utilities can be represented wcadimensional matriXA2 (see figure 2c).
Using these attribute utilities we calculate pmofitilities over the 100 wines in our choice set
as follows:Ua2 (W1)=3; >iWILA2Z W] +e, wheree is random noise with mean zeWde use
this to obtain the distribution of preference stytis over all wine& (W) (see figure 3c)
Again, the preference utilities are shown normalittesum to one, though under the
assumption of Luce’s Choice rule for the binaryichdehavior, the normalization does not
affect our simulation.

From Preference Strengths to ChoicEsr a given distribution of preference strengths
over all wines, e.dJai(W), we can then define the probability of choosing arnne, e.qg.

W1, out of a pair of wines, e.g. W1 and W2, usingjit respective strengths, elgn,(W1)
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andUa;(W2), and Luce’s Choice rule (equation 2). Now, for gayr of wine profiles, we can
simulate a stochastic choice decision. For ouren@em ¢, we used Gaussian noise of
standard deviation .2 and mean 0.

Simulating d-MCMCP and Random Pair-wise Experimers d-MCMCP, we
quantified a similarity between each pair of wiimesur choice set based on the number of
attributes levels the pair of wines had in commafe. then input these similarity measures
into a b-matching algorithm (Jebara and Shchoga0®6), which we fixed at 10 neighbors.
Proposals were made by randomly choosing unifofroly all profiles with probability
Puniform, @nd uniformly from one of the 10 neighbors of tinee 1pyniform Of the time. In order
to demonstrate the sensitivity of the d-MCMCP ailtyon to the method of choosing
proposals, we implement our d-MCMCP simulationsviglues ofpyniorm Set to 0, .33, .66, 1.
Note, that d-MCMCP withpunitorm=1 is not the same as random pair-wise selectioauss
MCMC chains are still being formed where the prasily chosen state becomes the new
current stateFor the random pair-wise experiment, instead aigisurrent and proposal
states, two randomly chosen wines were presenteaamtrial. For all simulations,
estimated distributions of profile utilities (thestogram of choices computed over all wine
profiles in our choice set) were evaluated at 20 increments from 20-200 trials. Because
the simulations are stochastic, we repeated tisgglure 100 times. The mean and standard
error of these 100 repetitions are shown in theltes

Simulation ResultsTo quantify how well the methods recovered thei@aunderlying
preference strength distributions, we computedisrson’s correlation between between
the predefined and estimated preference strengtfitditions over the 100 wines. Figure
3b,d show the mean and standard errors of cowakats a function of number of trials, for
d-MCMCP with four different values @ niiormand the random pair-wise method. In general,

the value opuniform, does not drastically change performance. Thetymrformances were



17

for the extreme values @fnior=0 and 1. Intuitively this makes sense because these
represent proposals that are either explore theespat widely enough, or too widely,
respectively. However, we note thmtiom=1 does not fare much worse than the more
optimal puniforni=-33 and .66, thus suggesting that the d-MCMCP dtgaormay be usefully
implemented even without the use of nearest neighland by merely choosing proposals
uniformly at random from all profiles in the choiset.

We see that for preferences constructed fineat attribute utilitie®\1, which feature
fairly widely distributed preference strengths, €@MCP and random pair-wise methods
perform roughly similarly in their ability to recevthe original preference strength
distribution. Note, that d-MCMCP is still guarandel® eventually converge to the correct
distribution of profile utilities (i.e. at sufficie number of trials, the correlation will approach
one), whereas a random pair-wise sampling is onranteed to converge if the actual
distribution were uniform. In contrast &d, for A2, where the preference strength
distribution is highly peaked and selective fortigatar wines, d-MCMCP is more effective
than random pair-wise choice at recovering theitlistion of profile utilities. This makes
intuitive sense because d-MCMCP explores the chsgtén a systematic manner, which is
what enables d-MCMCP to efficiently explore thegamf profiles and focusing on offering
choices between profiles with high preference gfifesi(i.e. profiles that neighbor previously
chosen profiles). In contrast, when the distrimuthpproaches that of having no preferences
(a uniform distribution of preferences), then agiyirandom pair-wise sampling method will
be equally efficient.

Simulations for Six Sets of Attribute Utilities

Here we repeat the analysis we did aboveitadifferent preference strength

distributions, chosen for their varying amount$saiectivity” over wines (see figure 4a). For

these simulations, we fix the number of trials @ 2ndpynitorm =.33. These six distributions
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were constructed from the varying combinationsraddr and nonlinear attributes shown in

Table 1.

---insert Table 1 here---

One way of quantifying the spread of a disedistribution is it's entropy which is given

as:
Entropy= p(j)Xjlog(p()) (3)

Wherep(j) is the probability of the valuye Thus, to quantify the spread of a profile utilit
distribution, we use the normalized profile utdglJ (W) for p(j). For this analysis we also
use a typically employed method in MCMP experimewtsich is to run several chains in the
same experiment and average the results of thesesdogether. This allows us construct
chains from multiple starting states. Thus the @MCMCP trials consisted of five 40-trial
chains. The random pair-wise experiment was corduas before, also for 200 trials. As a
way of quantifying the selectivity of the distribar, we calculated the entropy for our six
different preference strength distributions. Thedothe entropy, the more selective the
distribution is. As before, performance was quadiby the correlations between estimated
and actual distribution of profile utilities. As thithe first set of simulations, we repeated
simulations 100 times for each set of attributéti&s. Figure 4b shows the mean and
standard error correlation, averaged over 100 tedesaimulations, plotted against the
entropy of the profile utility distribution (lowemtropy means increasing selectivity). Again,
our simulation results show that as the profilétytdistribution becomes more selective

(lower entropy), the advantage of d-MCMCP over mangair-wise samples increases.

Human Experiment
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Here we assess the ability of d-MCMCP to estinteal human preference strength
distributions using an online experiment. As witle simulations, we compare the results
between the two. In order to test how well prefeeestrength distributions are being
estimated, we introduce 10 novel wines, which vepsticipants to rank order in terms of
preference at the end of the experiment. A noalimeodel is fitted to the preference
strength distributions obtained from each experimamd these models are then used to
predict the participants’ rank ordering of preferemfor the 10 novel wines from the two
experiments. Spearman’s rank correlation betwsémated rankings and actual rankings is
used as our approximate of how well we were abkstinate a person’s wine preference
strength distribution. Because our simulationsasttbthat d-MCMCP becomes more
advantageous as preferences become more seleativgpothesize that d-MCMCP will
perform better for participants who claim to be entpvine drinkers (i.e. more selective
preferences) over those who claim to be non-exgieetdess selective preferences).

Method

Participants.400 online participants were recruited via the Wabes online panel
(http://lwww.maximiles.co.uk). Participants weredamly assigned to complete an
experiment conducted using either the d-MCMCP erreimdom pair-wise method (200 for
each method). Because the experiment was estirttatalde at least 20 minutes, participants
who took less than this time were discarded froenahalysis. This left 187 participants in

the d-MCMCP method, and 189 in the random pair-ms¢hod.

Procedure.
Participants were asked to remember the last thene went to a supermarket to shop for

wine. To refresh their memory they had to statetype of wine they purchased, the wine’s
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attributes that were important for them at thattims well as the occasion they bought the
wine for. They were then instructed to imagine edimg that same wine shopping mission at
a large national wine chain called ‘Jones’s Winer&tand to indicate their preferences in a
series of pair-wise choices between wines. Weiafeomed them that the wines shown in
this task were both common brands and the stome'stirand wines, which were presented
as ‘Jones’s Own'.

For this human experiment we again use the samedf@only purchased wines from a
major UK supermarket used in the above simulatiddecause we were interested consumer
preferences of these wines themselves, in the hxgeriment we also included
information about the Grape, Producer, Wine Ma&éwsure type, and Alcohol content as
well as the Price, Color, and Country in the winefiles. We also provided exact prices and
the name of the wine. All own-branded wines webkelked as ‘Jones’s Own’ in accordance
with the cover story. An example screen shot ofetkgeriment is shown in figure 5.

For the d-MCMCP experiment, we used 10 neighlbad a probability of choosing
uniformly from all wines of .33. Also, as done fbe 2 set of simulations, and is the typical
protocol in previous d-MCMCP studies (ref), we mteaved five d-MCMCP chains of 40
trials each for a total of 200 trials. This is etfeely like running five separate d-MCMCP
experiments of 40 trials, but with the questionstfi@se chains interweaved randomly among
each other. Along with the advantage of having iplaltstarting states, this method
minimizes the number of times the human participeltsee his previously chosen state in
the next trial, which would always happen if onlyead-MCMCP chain was being
constructed. For the random pair-wise method, 208rH choices between randomly
selected pairs were used. Under both methods xfierienental screen for participants
looked exactly the same, except the only differemas that participants in the d-MCMCP

were answering questions that formed interleavefiCdACP chains, which meant they
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might see more immediate repetition of the winey tthose in previous trials. An additional
change we introduced in the human experiment watsritorder to encourage more
probabilistic, graded responses, participants \wsked to indicate their degree of preference
using a slider. Participants were asked “Which wirelld you be more likely to purchase?”
and asked to position their answer between two ehdsslider that said “Definitely wine A”
and “Definitely wine B”. The proportion to whichée slider was adjusted towards a given
wine X was taken to bpchoicd X').

At the end of both d-MCMCP and random pairenéxperiments, participants were
presented with ten additional novel wines that veebgtrarily made up to span the range of
possible wine attributes. For this question, figd and five white wines were generated by
randomly picking sensible attribute levels from #8® wines used in the main experiment.
When deciding which attribute levels were sensibleas taken care to avoid obvious
conflicting combinations of attributes, such astatevgrape varieties for a red wine.

After rating these novel wines participantsevasked for their self-reported degree of
wine expertise by rating their agreement on a S#p&xale (ranging from ‘Strongly
Disagree’, ‘Somewhat Disagree’, ‘Neutral’, ‘Somewhagree’, ‘Strongly Agree’) to the
following three statements: 1) | definitely know ri@vourite wines, where they come from
and what grape variety they are. 2) | do not relaligw much about wine, such as the
different regions or grape varieties. 3) | knovoadbout wine. Participants’ wine expertise
were scored by recoding their answers to the nus2e+1,0,1,2 for questions 1 and 3 and to
2,1,0,-1,-2 for question 2. Thus, the higher tt@ra, the more wine expertise the participant
was deemed.

Model Fitting and PredictionsAfter the data was collected, distributions of geof
utilities, U(W), were estimated by computing the histogram ofcti@ices made by each

participant. For each participant, based on traimatedU(W), nonlinear model fits were
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performed using the nonlinear least squares fundiiofit in Matlab for the following
equation; xAL +Y; >ixA2;x.=U () where the independent variablesere the binary
vectors describing each wine profile in the chaieg whereAl andA2 are the linear and
correlated attribute utilities respectively. Whike had presented participants the additional
attributes of wine maker, producer, exact pricgpger, and alcohol content, in order to limit
the number of free parameters in the model fittimg kept our model parameters to the
original simulation attributes of three levels oice, country, and colour, which ha8d 1,
and3 levels respectively. Allowing for both linear aodrrelated utilities, this leaves us
3+11+3 + 3*11+3*3+11*3 =92 parameters to fit. The fitted parameters®bandA2 were
then used to predict the rank order of each ppeitis preferences for the 10 novel wines.
Spearman’s rank correlation was used to quantéyctirrespondence between the estimated
ranking by the fitted model and the actual ranldgghe participants.
Results

Participants’ rank correlation between preztichnd actual rankings for the 10 novel
wines were analyzed in a two-way ANOVA looking la¢ factors of wine expertise (experts
versus non-expert) and experimental method (MCM@&RBus random pair-wise).
Participants were labelled as experts if they olgihian average scored >0 in response to the
three wine expertise questions. There were 86 &xpad 101 non-experiments in the d-
MCMCP experiment, and 88 experts and 101 non-exjrethe random pair-wise
experiment. An unbalanced two-way ANOVA showed igmi§icant main effects of
experimental method (F(1,372)=.64, MSE=.06g-or expertise (F(1,372)=.06,
MSE=.006,p59) on correlation between predicted and actual ragscfor the 10 test wines.
However, as predicted from our simulations, wefdid a significant interaction between the
factors of method and expertise (F(1,372)=5.07, M p=.025). An individual t-test

showed that among expert wine drinkers, the d-MCM&®hod had significantly higher
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correlation in predictions (M= 0.39, SD=.0033)rtlthe random pair-wise method, (M= .29,
SD=.0039), t(172)=2.07, p<.05 (See figure 6). Basethe assumption that experts have
more selective preferences, this is consistent adthearlier simulation results that showed

that d-MCMCP is more advantageous when preferesigemore selective.

Discussion and Future Work
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The model fitting we presented here, whichapplied directly to the estimated
distribution of profile utilities, is a slight degiare from other choice-based experimental
research, which usually fit models to people’s chsi Because the primary usage of d-
MCMCP is to capture the distribution of profilelities itself, we chose, here, to fit our
models to the estimated preferences directly. Hewevis probable that the model fitting
can also applied fruitfully to the d-MCMCP choicatal. Because d-MCMCP focuses on
presenting profile pairs that are most preferabtbtaus most relevant for determining
preferences, it may serve as a natural adaptieitig for eliciting choices from the
profiles most relevant for assessing preferencdsvaay also be suitable for forms of discrete

choice modelling. We leave for future work to sdeether there are benefits to fitting the
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results, we suggest that the domains in which d-MXBMnay offer particular advantages will
be ones where preferences are expected to beige|edth potential attribute weight
interactions, and for which one would like to dilgobtain a correctly scaled estimate of the
relative utility distribution over a set of prodymbfiles. In consumer research, these domains
are likely to be those with more complex producithwwinany attributes, e.g. mobile phones
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have complex preferences, e.g. wine or music. Eumbre, d-MCMCRbffersa novel L
method for characterising and classifying consurimossegments with similar preference
structures, rather than grouping consumers usilfitgaged attitudinal or engagement
statements such as the expertise ratings used study. Segmenting consumers into

relatively homogenous groups using their utilitpfijes over a set of products could help

marketers identify unfulfilled needs or estimate likely demand for new products.
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Table 1: Attribute levels used in simulation of preference strength distributions

Profile Linear Respective | Nonlinear Respective | Entropy

Utility attribute utilities attribute levels | utilities

Distribution | levels

Ul Red, Cheap| 1,1 none none 4.2

u2 Red 1 none none 3.9

U3 Red 1 French & Cheap,1 3.8
Red & Cheap

u4 none none French & Cheapl,2 2.3
Australian &
Cheap

us none none French & Cheap?,1 2.2
White & Italian

U6 none none French & Cheap 1 1.6

29
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FIGURE 1

STEPS FOR MEASURING PREFERENCES USING MCMCP

a) ] b) W, W, W, W, ... C) d) Experiment screen:
Spat ss10 | [ | We:, Ao Which better describes a wine
s;;;s. ] s w, 3 | 2ot Wy you are likely to purchase?
Fra £10-15 + . W,
R Chitean W, w, Ws
White 2 1|3 212 i W, £10+ £5-10
Wio Sy s Erench Spanish
W, 2(0]|3 | 0 W' FL W ;:ed Red
T Curfént roposal
Assemble W, 1| 1 ‘ 2 ‘ s FioReea
daﬁ?:;i? & o Run ‘B- Run d-MCMCP
: Quantify matching’ to experiment
similarity obtain graph of

N neighbours

Figure 1: a) Assemble the profiles in the choidel®eQuantify similarity (using a suitably
chosen metric such as number of attributes in comfo all item pairs in the choice set. ¢)
Enter similarity matrix into a B-matching algorithim obtain a graph where each item is
connected by its N neighbors. d) Run d-MCMCP expernit using the neighbors as “nearby”

proposals.
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FIGURE 2

CALCULATION OF PROFILE UTILTIES FROM MARGINAL ATTRBUTE UTILITIES

W1
At A2
a) Cheap French b) | . ¢) . _

Red Wine )LlnearWelghtS Nonlinear Weights
Red [ 1 0 00000000000000000
Rose | O 0 0000000000000Q0O00D0
White | 0 3 00000000010000000
Argentina| 0 0 p0oO0O0OOOOOOOOOOOOO
Australia' | 0 0 000O0O0OOOOOOOODOOODO
Chile | 0 0 00000000000000000
France | 1 1 00000000000000200
Germany | 0 0 00000000000000000
ltaly | O 2 00000000000000000
New Zealand | 0 0 00010000000000000
Portugal | O 0 00000000000000000
South Africa | 0 0 00000000000000000
Spain| O 0 00o0O0O0O0OOOOOOOOOOOO
Usa| o 0 00000000000000000
Cheap | 1 1 00000020000000000
Moderate | 0 0 po0O0O0OOOOOOOOOOOOD
Expensive | 0 0 00000000000000000

d) U, (WhH=5 WI1A1 =2 Upo W) (= 2, 2 WTAZ2 W1, =1

Figure 2: lllustration of how profile utilities anstructed from attribute utilities for our
simulations. a) Each wine is represented as airentor based on its attribute levels. b)
Linear marginal attribute utilities are representéth a vector with weight values assigned to
the relevant attribute levels. ¢) Correlated maabattribute utilities are represented as a
matrix with weight values assigned to the row aoldimin that correspond to the correlated
attribute levels. d) Calculation of profile utilifgr wine shown in a) for under linear and

correlated attribute weights, respectively.
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FIGURE 3

SIMULATION RESULTS FOR TWO WINE UTILITY PROFILES
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Figure 3: d-MCMCP versus random pair-wise resuttsveo simulated profile utility
distributions. a) U1, distribution of profile utiles over 100 wines for linear marginal
attribute utilities, normalized to sum to one. r@lations between the predefined and
estimated preference strength distribution of @ Wines, as a function of number of choice
trials. Different lines correspond to different imads of estimating the profile utility
distributions: d-MCMCP implemented with varying pedilities ofpynitorm, the probability of
choosing proposals randomly from all possible wifvessus from one of the neighbors), and
the random pair-wise method. Each point shows th@mstandard error of correlations over
100 stochastic simulation runs. ¢) U2, distributidmprofile utilities over 100 wines for
correlated marginal attribute utilities, normalizedsum to one. d) same as b) but for the

simulated profile utility distribution shown in c).
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FIGURE 4

SIMULATION RESULTS FOR SIX WINE DISTRIBUTION PROFES

Distribution of Preferences Entropy
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Figure 4: d-MCMCP versus random pair-wise estimatewofile utilities for six different
profile utility distributions of varying selectivit a) Six simulated profile utility distributions
over 100 wines. The marginal attribute utilitiesyttwere constructed from are listed in table
1. b) Correlation between estimated and actuallprofility distributions plotted as function
of entropy of the actual profile utility distribota (higher entropy means more selective
distribution). Each point shows the mean standenat ©f correlations over 100 stochastic
simulation runs fixed at 200 trials. d-MCMCP estigsaused five chains of 40 trials each

Wlth puniforn']:.ss.



FIGURE 5

EXPERIMENT SCREEN SHOT

Which wine would you be more likely to purchase?

Oyster Bay Sauvignon Blanc Marlborough

e £9.49
White
v New Zealand
= Sauvignen Blanc
1 Delegat's Wine Estate
er- Michael Ivicevich
csure: Screwcap

I 13%

Definitely wine A

Jones's Own Argentinian Shiraz Reserve

o £3.29
Red
v Argentina
:pe: Shiraz
Bodegas Esmeralda SA
1 Gerardo Cirrincione
ure: Screwcap

1wl 13%

Definitely wine B

=

Figure 5: Example screen shot seen by participarddMCMCP and random pair-wise

experiments.
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FIGURE 6

Predicted versus Actual Rankings of 10 Novel Wines
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Figure 6: The profile utility distributions estiteal from d-MCMCP and random pair-wise
methods were fit to a non-linear least squares mdtiés model fit was then used to make
predictions about the participants’ rankings otds€t wines. Participants were split into
expert or non-expert groups based on self repovied expertise. The bar graphs show the
mean and standard error of rank correlation betwreepredicted rankings of 10 novel test
wines from both experimental methods, for expesti-expert and all wine drinkers. For
expert wine drinkers, the d-MCMCP method was sigaiftly more predictive of

participants’ rankings of the 10 test wines comgavéh the random pair-wise method.



