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Abstract 

     There have largely been two main approaches for measuring consumer preferences, ad hoc 

conjoint analyses (CAs) or discrete choice experiments (DCEs).  These approaches, while 

successful, also have drawbacks: CAs are limited by assumptions of additive attribute 

utilities, and are not grounded in formal models of human choice behavior.  DCEs, while 

theoretically grounded, require careful experimental design, and preference utilities are 

obtained only by fitting the data with choice models, which also contain limiting 

assumptions. Thus, despite the abundance of preference measurement tools available, there is 

still a need for a normative, theoretically grounded method for measuring preferences 

directly. Here, we introduce such a method, discrete Markov Chain Monte Carlo with People 

(d-MCMP). Under basic assumptions about human choice behaviour, d-MCMCP is 

mathematically guaranteed to converge to the true distribution of utilities over full profiles, or 

a scaled version of this distribution.  We show using both simulation and human experiment 

that d-MCMCP offers a powerful normative tool for measuring preferences that is 

particularly efficient when consumers are selective in their preferences. 
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Introduction 

 

     Consumer preference measurement has been widely and successfully applied to help 

market researchers with product development, pricing, segmentation, positioning, and 

advertising (Green and Krieger 2002; Green and Rao 1971; Green and Srinivasan 1978; 

Green and Srinivasan 1990; Hauser and Rao 2003; Johnson 1974; Louviere, Hensher, and 

Swait 2000; McFadden 1971; Orme 2009; Pekelman and Sen 1979; Rao 2008). There have 

largely been two general paradigms for evaluating consumer preferences.  One tradition, 

broadly known as conjoint analysis (CAs) (Cattin and Wittink 1989) rises from the 

assumption that attribute utilities can be algebraically combined to predict the overall 

preference for a product. CAs may include the use of partial profile ratings (Bradlow, Hu, and 

Ho 2004; Green 1974), self explication methods (Park, Ding, and Rao 2008; Srinivasan 

1988), and hybrid techniques, (Agarwal and Green 1991; Carmone 1987; Green 1984; 

Johnson 1987; Toubia, Hauser, and Garcia 2007).  While widely used, CAs are usually 

constrained by limiting assumptions, such as strictly additive attribute utility functions 

(independence among part-worth attribute utilities), which can result in mischaracterizations 

of actual preference utilities. Additionally, CAs are primarily ad hoc approaches that are not 

theoretically grounded in formal models of human choice behaviour. Thus, their results 

cannot be analyzed in a way that is consistent with neoclassical economic theory, because 

ratings and attribute importance measures do not readily translate into choice or matching. 

Thus CA results are not appropriate for wider use in economic modelling and applied 

economics, such as welfare and policy assessment (Louviere, Flynn, and Carson 2010).  

          In a return to a more theoretically grounded, and ecologically natural approach, 

researchers have also developed choice-based methods known as discrete choice experiments 

(DCE) (Elrod, Louviere, and Davey 1992; Foxall 2007; Foxall 2010; Louviere 1988; 
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Louviere et al. 2000; McFadden 1971; Train 2003). In DCEs, respondents are asked to make 

a series of choices between two or more product profiles, thus using a task that captures the 

comparison based choice behaviour of natural shopping. DCEs are sometimes known as 

choice-based conjoint analysis, though the use of this terminology has also been cautioned 

because, in contrast to CAs, DCEs do have a solid theoretical basis in random utility theory 

(RUT) (see Louviere et al. for further discussion (2010)).  RUT proposes that there exists a 

latent construct of “utility” for each choice alternative, and that these utilities consist of a 

systematic (explainable) component that is based on attributes that differ between the choice 

alternatives and a random (unexplainable) component. More formally this means that, for 

each individual, there exists a utility, Ui=Vi+ɛi, where Vi is the explainable component of 

choice, ɛi is the random component, and Ui is the utility.  A variety of choice modelling 

procedures have been developed assuming that human choice behavior is described by a 

functional form based on these utilities (McFadden 1971; Train 2003). Full product utilities, 

as well as marginal, attribute utilities can then be inferred from these model fits.  

     While powerful and successful, DCEs do pose some limitations. One is that DCEs often 

require careful design to ensure the experiment is efficient. Much research has been devoted 

to the efficient design of choice experiments (Louviere et al. 2008; Louviere, Pihlens, and 

Carson 2011), with the more recent work often employing sophisticated Bayesian modelling 

(Johnson 1974; Kanninen 2002; Louviere et al. 2008; Louviere et al. 2011; Louviere and 

Woodworth 1983; Rossi, Allenby, and McCulloch 2005; Sándor and Wedel 2001; Sándor 

and Wedel 2005; Yu, Goos, and Vanderbroek 2009).  However, these methods are complex 

to implement. Furthermore, in order to extract utilities (both partial utilities and product 

utilities), one has to fit a choice model to the data.  Inherent in these choice models, are a 

priori assumptions about the structure of attribute utility dependencies (e.g. attributes are 

assumed to be either independent or contain 2nd or correlations). Thus, the accuracy of the 
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utility values extracted from DCEs largely depend on whether the appropriate model has been 

chosen, the constraints imposed by the chosen model’s parametric structure, and whether the 

data was sufficient for being fitted by the chosen model. Furthermore, there may be 

circumstances where a researcher wants to obtain the distribution of utility weights over 

complex products directly, without requiring the estimation of part-worth attribute utilities. 

Here, the complexity of experimental design and model fitting required of DCEs, seems 

perhaps needlessly cumbersome. 

     Thus, despite the abundance and variety of preference measurement methods available, 

the field of marketing is still in significant need of a simple, normative method that can 

directly measure preference utilities over complex products, and that is not constrained by 

assumptions about the form of attribute utility dependencies. The importance of normative, 

non-parametric approaches is manifold. First, non-normative approaches (that are not 

grounded in formal theories of choice behaviour) are not guaranteed to measure true 

preferences under most circumstances. Also, an approach grounded in formal theory allows 

for future developments and expansions on the approach that continue to be theoretically 

grounded. Furthermore, the results produced from normative tools will be consistent with 

economic demand theory, and thus can then be then reliably used in applied economics such 

as for welfare and policy assessments.  The advantage of a non-parametric (no assumption 

about attribute utility dependencies) approach is that it allows the data to capture any form of 

nonlinear dependencies among attribute utilities. Though nature of these dependencies will 

still need to be obtained by fitting the data to models of how attribute utilities may combine 

(as with DCEs), the possible attribute interactions captured in the data are no longer limited 

by the a priori design of the experiment. 

     Here we present for the first time, such a normative, theoretically grounded method for 

measuring consumer preferences utilities over a wide array of complex products. The 
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procedure is known as discrete Markov Chain Monte Carlo with People (d-MCMCP) and 

uses a binary choice task on full product profiles. Based on broad, flexible assumptions of 

human binary choice behaviour, which are in accordance with RUT, d-MCMCP is 

mathematically guaranteed to converge to the true distribution of preference utilities, or a 

scaled version of this.  d-MCMCP was recently proposed in the field of mathematical 

psychology as a method of investigating the structure of human categories (Hsu et al. n.d.; 

Martin, Griffiths, and Sanborn 2011; Sanborn, Griffiths, and Shiffrin 2010). However, the 

significance of d-MCMCP in relation to measuring preference utilities has not been 

recognized nor tested. In this work, we first demonstrate how d-MCMCP can be applied to 

measure consumer preferences. We then test its performance using simulations and 

experiment, and show that it is an especially effective method for measuring preferences 

among expert consumers who are selective in their preferences.   

     The advantages that d-MCMCP offers are numerous: First the ability to directly capture 

individual preference distributions using full product profiles means it is easily applied to real 

products, i.e. the precise brand name and model can be used/included in the product profile. 

This is useful because there will be times where a researcher may wish to directly measure 

preferences over a range of real products, such as when predicting sales for a new stock, or in 

a new location. Second, the nonparametric nature of d-MCMCP means that results are not 

heavily dependent on the experimental design.  No a priori assumptions need to be made 

about attribute utility dependencies. This allows the market researcher to obtain data that can 

be flexibly analyzed afterwards to test any number of hypotheses about preference structures 

with any type of dependencies among attribute utilities. For example, after conducting a d-

MCMCP experiment, one could look for market segments of individual wine consumers who 

only want white wines if they are cheap and from Italy, but never would prefer cheap white 

wines otherwise. In contrast, in traditional CA or DCE approaches, this three-way interaction 
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between attributes would have to be hypothesized beforehand and incorporated into the 

experiment design. Finally, d-MCMCP is a highly efficient method, which capitalizes on the 

efficiency of a Markov Chain Monte Carlo algorithm to quickly explore preferences over a 

large range of profile options within a feasible number of binary choice trials. This efficiency 

arises because the algorithm adaptively focuses on offering choice profiles that will most 

effectively measure an individual respondent’s preferences. Thus, individual preferences over 

a wide range of products can be obtained in a survey of feasible length, allowing for effective 

market segmentation analysis. 

     The outline of this paper is as follows. First we introduce the key ideas and 

methodological details behind the d-MCMCP method, and show how the method can be used 

to measure preferences. Next, we test the suitability of d-MCMCP for preference 

measurement by testing its convergence properties on simulated choice data in the example 

domain of wine preferences. Note that we have chosen the domain of wine preferences as it is 

a complex product of many attributes and levels. However, we would expect that the 

simulation results apply to any domain with a similar structure of attribute level utilities. In 

order to more clearly illustrate how d-MCMCP works, we will compare its performance to 

that of its naïve alternative, which is to estimate the distribution of profile utilities by 

constructing a histogram over random pair-wise choices. Finally, we then apply the d-

MCMCP method in an online experiment to measure real human wine preferences. Again, 

we compare the d-MCMCP results with the random pair-wise choice method. We show that 

d-MCMCP is particularly useful for capturing profile preferences which arise from more 

selective attribute utilities, e.g. preferences for a select few, potentially correlated, attribute 

levels.  

 

Discrete Markov Chain Monte Carlo with People 
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     The d-MCMCP method is based on the Metropolis Hastings algorithm (Hastings 1970), a 

Markov Chain Monte Carlo (MCMC) sampling algorithm originally developed in statistical 

physics to sample from complex, intractable distributions. Recently, researchers in 

mathematical psychology have adapted MCMC sampling method so that is can be used with 

people to measure mental representations of categories and concepts (e.g. a dog, or a happy 

face)  (Hsu et al. n.d.; Martin et al. 2011; Sanborn et al. 2010).  These are known as MCMCP 

and d-MCMCP, which measure continuous and discrete sets of items respectively.  The only 

difference between MCMCP and d-MCMCP is that d-MCMCP has been adapted to handle 

discrete sets of items. MCMCP and d-MCMCP measures the relative strengths to which 

items in a large choice set are representative of the concept in question (e.g. how strongly an 

image is indicative of a happy face). Here we observe that the discrete version, d-MCMCP, 

extends naturally to the measurement of people’s preference utilities over a large choice set 

of product profiles. In contrast to the previous work in psychology, we now are measuring 

how strongly an item is representative of a preferred product rather than a category.  

Overview of a d-MCMCP experiment 

     The overview in this section applies equally to the continuous version, MCMCP, and the 

discrete version, d-MCMCP.  However, d-MCMCP is more suitable to measuring preferences 

over real products, which are a discrete set of items, and which are usually not readily 

represented in a continuous space. Thus, we have used d-MCMCP in this work, and we will 

just make references to d-MCMCP here.  In a d-MCMCP choice experiment, a human 

participant is asked to make pair-wise choices between items over many trials. During each 

trial, participants are presented with two items from the choice set. How these two items are 

chosen is a key feature of the method and will be explained below. Participants are then 

asked to choose one of the two items under a choice criterion. For the purposes of measuring 
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preferences, this criterion will be “which is the preferred product?” The chosen item in each 

trial is recorded, eventually resulting in a long list of choices made across the many trials. 

With enough trials, the relative frequency with which an item is chosen becomes proportional 

to the strength of preference for that item relative to others in the choice set.  

     A way to gain intuition for how d-MCMCP works is to first consider the more naïve 

approach of obtaining preferences through randomly presented pair-wise choices. In this 

approach, preferences can be obtained by showing many randomly chosen pairs of items and 

constructing a preference histogram over all chosen items. However, such an approach is 

limited because it is usually desirable to explore a choice set containing a large range of 

items, and it is not practical to show all possible pair-wise combinations, (e.g. to show every 

possible pair in a database of 2000 items would require about 2 million trials).  d-MCMCP 

overcomes this problem by introducing an efficient way of exploring a large number of items: 

the algorithm focuses on accumulating choices over high preference regions and quickly 

moves away from regions of low preference. Additionally, choices over randomly chosen 

pairs of items is not mathematically guaranteed to converge to the correct distribution of 

actual relative preference strengths over the choice set, and indeed under most circumstances 

is unlikely to. In contrast,  d-MCMCP, under simple general assumptions about human binary 

choice behaviour, have been mathematically shown to converge either to the true distribution 

over profile utilities, or a scaled version of this distribution (Sanborn et al. 2010). 

      d-MCMCP works by building a list of chosen items. For each trial there is a “current 

item”, IC, and a “proposal item”, IP.  d-MCMCP starts with an initial “current item”, IC, 

typically chosen at random and a “proposal item” that is chosen to be “nearby” to the current 

item (e.g. a similar facial image). The human participant is then asked to choose whether IC 

or IP. is more preferred. The chosen item is recorded. If item IP is chosen, it becomes the new 

current item (IC). If Ic is chosen, it remains as current item for the next trial.  A new trial 
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begins in which a new “nearby” proposal item is chosen based on the current item. The 

participant is again asked to choose between current and proposed items, the choice is 

recorded, and so forth.  

Mathematical Details 

     Again, for the interest of clarity we will just refer to d-MCMCP, while most of the 

mathematical details described below apply equally to the continuous version, MCMCP.  The 

only difference between MCMCP and d-MCMCP arises in the subsection proposing nearby 

states. This is because continuous MCMCP makes random Gaussian proposals on a 

continuous space, whereas d-MCMCP has been adapted to make proposals in a discrete 

space. 

     Metropolis MCMC Algorithm. d-MCMCP works based on the convergence properties of 

the Markov Chain Monte Carlo (MCMC) algorithm known as the Metropolis Hastings 

algorithm. MCMC algorithms are a class of methods for generating samples from complex 

probability distributions by constructing Markov chains that converge to those distributions 

over time (see (ref 9)). If we want to draw a sample from the probability distribution p(x), we 

define a Markov chain such that the stationary distribution of that chain is p(x), and sample a 

sequence of states from that chain. If the sequence is long enough, the states of the chain can 

be treated similarly to samples from p(x). The Metropolis algorithm (Hastings 1970) is one of 

the most popular methods for constructing such a Markov chain. The sequence of states is 

initialized with an arbitrary value, x′. The next value in the sequence is generated via a two-

step process. First, a candidate for the next value, x′′, is chosen by sampling from an arbitrary 

proposal distribution conditioned on x′ that is specified by the designer of the algorithm, 

q(x′′;x′). Second, a decision is made as to whether that proposed value will be accepted using 

a valid acceptance function which is a function of the relative probability of x and x′ under 
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the target distribution p(x). An example of a valid acceptance function is the Barker function 

(Barker 1965) which specifies the acceptance probability to be: 
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and defines a Markov chain that converges to p(x) provided the proposal distribution q(x′; x′′) 

is symmetric, with q(x′; x′′) = q(x′′; x′).  

     From MCMC to  d-MCMCP.  d-MCMCP method is based on a correspondence between 

human choice behaviour and the Barker acceptance function (equation 1). If a task can be 

constructed in which people are offered a choice between x=x′′ and x= x′ and choose x′ with 

probability 
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then this provides a valid acceptance function for a Markov chain that will converge to u(x), 

up to a normalization constant. Thus, based on this correspondence between  d-MCMCP and 

the Metropolis algorithm, people’s choices can then be used to determine which proposals are 

accepted (Sanborn et al. 2010). In a standard experiment, people would be asked to make a 

series of pair-wise decisions in which they are asked to choose the best category member 

from two proposed stimuli. The stimuli that are presented in each decision correspond to the 

values x and x′ in the Metropolis algorithm, and the choices that people make determine 

which proposals are accepted. With enough decisions,  d-MCMCP will converge to samples 

from the probability distribution associated with that category, and individual stimuli will be 

encountered with probability given by u(x) (up to normalization constant). The proposal 

distribution can be selected by the experimenter, provided it is symmetric in the way required 

by the Barker acceptance rule.  For the case of consumer preferences u(x) will be the utility 

for the item x. 

     Equation 2 has a long history as a model of human choice probabilities, where it is known 

as Luce’s choice rule or the ratio rule (Luce 1963). This rule has been shown to provide a 
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good fit to human data when people choose between two stimuli based on a particular 

property (Bradley 1954; Clarke 1957; Hopkins 1954). Under more general assumptions for 

human binary choice behaviour, such as the logit assumption often used in consumer choice 

modelling, the Markov chain will converge to a scaled version of the distribution as long as 

people’s choices scale monotonically with equation 2 (Sanborn et al. 2010).  In particular if 

))''(())'((

))'((
)'(

xufxuf

xuf
xPchoice +

=  

 

then the choices are guaranteed to converge to be samples from the distribution f(u(x)).  So 

for example, if choices were assumed to follow a binary logit model, with utilities U’=A x′+e 

and U=Ax+e, where e is an independent and identically distributed extreme valued random 

noise term with zero mean, then 
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guaranteed to converge to the distribution exp(u(x)) (the random noise will average out), in 

which case u(x) can be recovered by taking the log of the distribution. In general, if the shape 

of f(x) is unknown, as long as it’s a monotonic function, the converged distribution can be 

taken to be a scaled version of the actual distribution. 

     Proposing nearby states. In order for  d-MCMCP to most efficiently explore the space of 

items, one has to have an appropriate method of making a “nearby” proposal. A key 

assumption in using the Barker acceptance function is that the proposals must be symmetric. 

That is the probability of choosing a proposal value given a current value is the same if the 

proposal and current values were reversed. Thus, for each profile item, one must identify a set 

of “neighbors” in such a way that the neighbor relationship is symmetric, i.e. if  x′ is a 

neighbor of  x′′, then  x′′ is a neighbor of  x′. To achieve this one does the following: First, 

apply a similarity measure to every pair of items in the choice set. Any reasonable measure of 

similarity can be used, for example the number of attribute levels in common between two 
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items. Next, we need to build an interconnected graph between items in the choice-set such 

that each item is connected by a fixed number of N symmetric neighbors. This is an instance 

of the maximum weight b-matching problem (Papadimitriou and Steiglitz 1998) . Exact 

algorithms exist for solving this problem, such as the blossom algorithm but these are 

impractical for large-scale applications (Edmonds 1965). Consequently, we use an 

approximate algorithm based on max-product message passing to find a b-matching (Jebara 

and Shchogolev 2006). Given a graph on stimuli that is a b-matching, proposals for d-

MCMCP can be made in a variety of ways. The selected proposal method is held constant 

throughout the experiment. The most straightforward proposal method, which we use here, is 

to choose a proposal uniformly from all b neighbors, where the value of b is chosen at the 

experimenter’s discretion, leaving a small probability of choosing uniformly from all of the 

other items (Hsu et al. n.d.). 

     When the chosen measure of similarity and what’s “nearby” matches the notion of nearby 

in a human respondent’s preference space (and presumably profiles with more overlapping 

attributes will be more similar in preference) then the d-MCMCP algorithm will move away 

from profiles lower in preference and towards exploring item profiles that are higher in 

preference. If the definition of similarity is not matched to psychological preference 

similarity, then the algorithm is still guaranteed to converge but somewhat more slowly. In 

practice, our simulations below show that even when no neighbors are used, and all proposals 

are chosen uniformly from all possible profiles, convergence rates are not much slower (see 

simulations below). 

     Summary of implementing  d-MCMCP. Figure 1 illustrates the sequence of steps involved 

in implementing d-MCMCP using the example domain of wine profiles, which we will use in 

our simulations and human experiments. The first step is to create a choice set of product 

profiles, over which the distribution of relative preference strengths will be estimated (figure 
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1a). The second step is to compute the similarity between all possible pairs of profiles (figure 

1b). The third step is to feed these similarities into a b-matching algorithm to construct a 

symmetric graph of connections with fixed number of neighbors (figure 1c). The neighboring 

connections on this graph are then used to define the proposal distribution used in d-

MCMCP. Finally, a d-MCMCP experiment is conducted where respondents are asked to 

choose between two profiles, corresponding to a current and proposal state (figure 1d).  

(These states are unlabelled for the respondent and are only kept track of in the computer.) 

The profile chosen by the participant becomes the new current state, and a new proposal is 

chosen for the next trial. The chain of chosen states will then converge to being samples from 

the distribution of preferred profiles. In practice, multiple d-MCMCP chains are interwoven 

randomly among trials. This has the advantages of allowing for multiple chains with multiple 

random starting states, and also the respondent does not see the same previously chosen state 

over and over.  

 

Simulations 

 

     Here we apply d-MCMCP to simulated choice data to assess its ability to recover the pre-

defined distribution of preference strengths over the choice set. For our simulations we will 

use the domain of wine preferences. We simulate choices based on relative preference 

strengths that are constructed from pre-defined attribute level utilities. Note, our simulation 

results are not specific only to wine attributes and would apply as readily to any domain that 

has similar attribute level structures. As mentioned above, we will compare the convergence 

results from the d-MCMCP method to that of the naïve alternative of estimating preferences 

from randomly presented pair-wise choices. By comparing d-MCMCP with the more 

intuitively transparent pair-wise method, we aim to demonstrate how d-MCMCP works, and 
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when it may be most useful.  In our simulations, we first compare two example sets of 

attribute utilities, one in which attribute utilities are independent, and the other where there 

are correlations among attribute utilities. Here, we will examine how d-MCMCP and random 

pair-wise methods are able to recover the original distribution of profile utilities as a function 

of the number of trials. Next, for a fixed number of trials, we will apply d-MCMCP and 

random pair-wise methods to six different preference strength distributions, arising from six 

respective sets of pre-defined attribute utilities. We show that the advantage of the d-

MCMCP method lies in its ability to recover utility distributions that are more selective 

(preferences are clustered mainly among a small number of items in the choice set).  

Two Attribute Sets and Varying Proposals 

     Stimuli. For the profiles in our choice set, we used 100 real wines that are commonly sold 

in a major UK supermarket. For our simulation work we chose to characterize these wines in 

terms of the attributes of price (cheap 0-£5, medium-£5-10, expensive-£10+),  color (Red, 

Rose, White), and Country (Argentina, Australia, Chile, France, Germany, Italy, New 

Zealand, Portugal, South Africa, Spain, USA). Correlations between attributes in our list of 

100 wines did not exceed .25.   

     Defining Preference Strength Distributions. A preference strength distribution is obtained 

by first defining utilities on attribute levels. Then based on these attribute utilities, preference 

strengths can be calculated for each wine profile in the choice set. In particular, for a set of N 

wines, W1, W2, W3…WN, each wine can be represented as a binary vector with indices 

corresponding to all the attribute levels represented in its profile. The binary vector for each 

wine will contain a 1 for all attribute levels which describe the wine and 0 otherwise. Figure 

2a shows an example of such a binary vector for a cheap, French, red wine. The profile utility 

U(Wk) for the k’th wine Wk is calculated based on the wine’s attribute and the defined 

attribute utilities plus random noise.   
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     Here we examine two different wine distributions of utilities over profiles. Our first 

distribution of profile utilities is constructed from linear attribute utilities. Linear attribute 

utilities can be represented by a vector A1 and we arbitrarily assigned utilities of 1,1,3,2 to 

the attribute levels of Cheap, French, White, Italian respectively (see figure 2b).  Based on 

these linear attribute utilities, we can calculate the profile utility for wine W1,  UA1(W1), as 

follows: UA1 (W1)= ∑i W1iA1i +ɛ, where ɛ is random noise with mean zero. We then obtain 

the distribution of preference strengths over all wines UA1(W), by repeating this for all 100 

wines in the choice set W: W1, W2, …W100 (see figure 3a). For illustration purposes 

preference strengths are shown normalized such that preferences sum to one. In practice, 

because we are simulating choices based on Luce’s choice rule (equation 2), only the relative 

strengths contribute the probability of choosing a given profile, normalization does not make 

a difference. (Note, if we were to simulate using a logit choice rule, then the scale would have 

to be determined). 

    For our second distribution of profile utilities, we defined correlated attribute utilities, by 

assigning utilities of 1 and 2, for white-Italian wines, and cheap-French wines respectively. 

These nonlinear utilities can be represented in a two dimensional matrix A2 (see figure 2c). 

Using these attribute utilities we calculate profile utilities over the 100 wines in our choice set 

as follows: UA2 (W1)= ∑j ∑iW1iA2i,jW1j+ɛ, where ɛ is random noise with mean zero. We use 

this to obtain the distribution of preference strengths over all wines UA2(W) (see figure 3c). 

Again, the preference utilities are shown normalized to sum to one, though under the 

assumption of Luce’s Choice rule for the binary choice behavior, the normalization does not 

affect our simulation.  

     From Preference Strengths to Choices: For a given distribution of preference strengths 

over all wines, e.g. UA1(W), we can then define the probability of choosing one wine, e.g. 

W1, out of a pair of wines, e.g. W1 and W2, using their respective strengths, e.g. UA1(W1) 



16 

and UA1(W2), and Luce’s Choice rule (equation 2). Now, for any pair of wine profiles, we can 

simulate a stochastic choice decision. For our noise term, ɛ, we used Gaussian noise of 

standard deviation .2 and mean 0. 

     Simulating d-MCMCP and Random Pair-wise Experiments. For d-MCMCP, we 

quantified a similarity between each pair of wines in our choice set based on the number of 

attributes levels the pair of wines had in common. We then input these similarity measures 

into a b-matching algorithm (Jebara and Shchogolev 2006), which we fixed at 10 neighbors. 

Proposals were made by randomly choosing uniformly from all profiles with probability 

puniform , and uniformly from one of the 10 neighbors of the time 1-puniform  of the time. In order 

to demonstrate the sensitivity of the d-MCMCP algorithm to the method of choosing 

proposals, we implement our d-MCMCP simulations for values of puniform set to 0, .33, .66, 1. 

Note, that d-MCMCP with puniform =1 is not the same as random pair-wise selection because 

MCMC chains are still being formed where the previously chosen state becomes the new 

current state.  For the random pair-wise experiment, instead of using current and proposal 

states, two randomly chosen wines were presented on each trial. For all simulations, 

estimated distributions of profile utilities (the histogram of choices computed over all wine 

profiles in our choice set) were evaluated at 20 trial increments from 20-200 trials. Because 

the simulations are stochastic, we repeated this procedure 100 times. The mean and standard 

error of these 100 repetitions are shown in the results. 

     Simulation Results. To quantify how well the methods recovered the actual underlying 

preference strength distributions, we computed the Pearson’s correlation between between 

the predefined and estimated preference strength distributions over the 100 wines. Figure 

3b,d show the mean and standard errors of correlations as a function of number of trials, for 

d-MCMCP with four different values of puniform and the random pair-wise method. In general, 

the value of puniform , does not drastically change performance.  The worst performances were 
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for the extreme values of puniform=0 and 1. Intuitively this makes sense because these 

represent proposals that are either explore the space not widely enough, or too widely, 

respectively. However, we note that puniform=1 does not fare much worse than the more 

optimal puniform= .33 and .66, thus suggesting that the d-MCMCP algorithm may be usefully 

implemented even without the use of nearest neighbors, and by merely choosing proposals 

uniformly at random from all profiles in the choice set. 

     We see that for preferences constructed from linear attribute utilities A1, which feature 

fairly widely distributed preference strengths, d-MCMCP and random pair-wise methods 

perform roughly similarly in their ability to recover the original preference strength 

distribution. Note, that d-MCMCP is still guaranteed to eventually converge to the correct 

distribution of profile utilities (i.e. at sufficient number of trials, the correlation will approach 

one), whereas a random pair-wise sampling is only guaranteed to converge if the actual 

distribution were uniform.  In contrast to A1, for A2, where the preference strength 

distribution is highly peaked and selective for particular wines, d-MCMCP is more effective 

than random pair-wise choice at recovering the distribution of profile utilities. This makes 

intuitive sense because d-MCMCP explores the choice-set in a systematic manner, which is 

what enables d-MCMCP to efficiently explore the range of profiles and focusing on offering 

choices between profiles with high preference strengths (i.e. profiles that neighbor previously 

chosen profiles).  In contrast, when the distribution approaches that of having no preferences 

(a uniform distribution of preferences), then a purely random pair-wise sampling method will 

be equally efficient. 

Simulations for Six Sets of Attribute Utilities 

     Here we repeat the analysis we did above for six different preference strength 

distributions, chosen for their varying amounts of “selectivity” over wines (see figure 4a). For 

these simulations, we fix the number of trials at 200 and puniform =.33.  These six distributions 
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were constructed from the varying combinations of linear and nonlinear attributes shown in 

Table 1. 

 

---insert Table 1 here--- 

 

     One way of quantifying the spread of a discrete distribution is it’s entropy which is given 

as:   

Entropy= -p(j)∑jlog(p(j))    (3) 

Where p(j) is the probability of the value j.  Thus, to quantify the spread of a profile utility 

distribution, we use the normalized profile utilities U(W) for p(j). For this analysis we also 

use a typically employed method in MCMP experiments, which is to run several chains in the 

same experiment and average the results of these chains together. This allows us construct 

chains from multiple starting states. Thus the 200 d-MCMCP trials consisted of five 40-trial 

chains. The random pair-wise experiment was conducted as before, also for 200 trials. As a 

way of quantifying the selectivity of the distribution, we calculated the entropy for our six 

different preference strength distributions. The lower the entropy, the more selective the 

distribution is. As before, performance was quantified by the correlations between estimated 

and actual distribution of profile utilities. As with the first set of simulations, we repeated 

simulations 100 times for each set of attribute utilities. Figure 4b shows the mean and 

standard error correlation, averaged over 100 repeated simulations, plotted against the 

entropy of the profile utility distribution (lower entropy means increasing selectivity). Again, 

our simulation results show that as the profile utility distribution becomes more selective 

(lower entropy), the advantage of d-MCMCP over random pair-wise samples increases.  

 

Human Experiment 
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     Here we assess the ability of d-MCMCP to estimate real human preference strength 

distributions using an online experiment. As with the simulations, we compare the results 

between the two. In order to test how well preference strength distributions are being 

estimated, we introduce 10 novel wines, which we ask participants to rank order in terms of 

preference at the end of the experiment.  A nonlinear model is fitted to the preference 

strength distributions obtained from each experiment, and these models are then used to 

predict the participants’ rank ordering of preferences for the 10 novel wines from the two 

experiments.  Spearman’s rank correlation between estimated rankings and actual rankings is 

used as our approximate of how well we were able to estimate a person’s wine preference 

strength distribution.  Because our simulations showed that d-MCMCP becomes more 

advantageous as preferences become more selective, we hypothesize that d-MCMCP will 

perform better for participants who claim to be expert wine drinkers (i.e. more selective 

preferences) over those who claim to be non-experts (i.e. less selective preferences). 

Method       

     Participants. 400 online participants were recruited via the Maximiles online panel 

(http://www.maximiles.co.uk). Participants were randomly assigned to complete an 

experiment conducted using either the d-MCMCP or the random pair-wise method (200 for 

each method). Because the experiment was estimated to take at least 20 minutes, participants 

who took less than this time were discarded from the analysis. This left 187 participants in 

the d-MCMCP method, and 189 in the random pair-wise method. 

        

     Procedure.  

Participants were asked to remember the last time they went to a supermarket to shop for 

wine. To refresh their memory they had to state the type of wine they purchased, the wine’s 



20 

attributes that were important for them at that time, as well as the occasion they bought the 

wine for. They were then instructed to imagine repeating that same wine shopping mission at 

a large national wine chain called ‘Jones’s Wine Store’ and to indicate their preferences in a 

series of pair-wise choices between wines. We also informed them that the wines shown in 

this task were both common brands and the store’s own-brand wines, which were presented 

as ‘Jones’s Own’. 

For this human experiment we again use the same 100 commonly purchased wines from a 

major UK supermarket used in the above simulations.  Because we were interested consumer 

preferences of these wines themselves, in the human experiment we also included 

information about the Grape, Producer, Wine Maker, Closure type, and Alcohol content as 

well as the Price, Color, and Country in the wine profiles.  We also provided exact prices and 

the name of the wine. All own-branded wines were labelled as ‘Jones’s Own’ in accordance 

with the cover story. An example screen shot of the experiment is shown in figure 5.  

     For the d-MCMCP experiment, we used 10 neighbors and a probability of choosing 

uniformly from all wines of .33. Also, as done for the 2nd set of simulations, and is the typical 

protocol in previous d-MCMCP studies (ref), we interweaved five d-MCMCP chains of 40 

trials each for a total of 200 trials. This is effectively like running five separate d-MCMCP 

experiments of 40 trials, but with the questions for these chains interweaved randomly among 

each other. Along with the advantage of having multiple starting states, this method 

minimizes the number of times the human participant will see his previously chosen state in 

the next trial, which would always happen if only one d-MCMCP chain was being 

constructed. For the random pair-wise method, 200 binary choices between randomly 

selected pairs were used. Under both methods, the experimental screen for participants 

looked exactly the same, except the only difference was that participants in the d-MCMCP 

were answering questions that formed interleaved d-MCMCP chains, which meant they 
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might see more immediate repetition of the wines they chose in previous trials.  An additional 

change we introduced in the human experiment was that in order to encourage more 

probabilistic, graded responses, participants were asked to indicate their degree of preference 

using a slider. Participants were asked “Which wine would you be more likely to purchase?” 

and asked to position their answer between two ends of a slider that said “Definitely wine A” 

and “Definitely wine B”.  The proportion to which the slider was adjusted towards a given 

wine x′ was taken to be pchoice( x′).        

     At the end of both d-MCMCP and random pair-wise experiments, participants were 

presented with ten additional novel wines that were arbitrarily made up to span the range of 

possible wine attributes. For this question, five red and five white wines were generated by 

randomly picking sensible attribute levels from the 100 wines used in the main experiment. 

When deciding which attribute levels were sensible it was taken care to avoid obvious 

conflicting combinations of attributes, such as a white grape varieties for a red wine.  

     After rating these novel wines participants were asked for their self-reported degree of 

wine expertise by rating their agreement on a 5-point scale (ranging from ‘Strongly 

Disagree’, ‘Somewhat Disagree’, ‘Neutral’, ‘Somewhat Agree’, ‘Strongly Agree’) to the 

following three statements: 1) I definitely know my favourite wines, where they come from 

and what grape variety they are. 2) I do not really know much about wine, such as the 

different regions or grape varieties. 3) I know a lot about wine. Participants’ wine expertise 

were scored by recoding their answers to the numbers -2,-1,0,1,2 for questions 1 and 3  and to 

2,1,0,-1,-2 for question 2.  Thus, the higher the score, the more wine expertise the participant 

was deemed. 

     Model Fitting and Predictions: After the data was collected, distributions of profile 

utilities, U(W), were estimated by computing the histogram of the choices made by each 

participant. For each participant, based on their estimated U(W), nonlinear model fits were 
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performed using the nonlinear least squares function nlinfit in Matlab for the following 

equation: ∑i xiA1i +∑j ∑ixiA2i,jxj. =U (x) where the independent variables x were the binary 

vectors describing each wine profile in the choice set, where A1 and A2 are the linear and 

correlated attribute utilities respectively.  While we had presented participants the additional 

attributes of wine maker, producer, exact price, stopper, and alcohol content, in order to limit 

the number of free parameters in the model fitting, we kept our model parameters to the 

original simulation attributes of three levels of price, country, and colour, which have 3,11, 

and 3 levels respectively.  Allowing for both linear and correlated utilities, this leaves us 

3+11+3 + 3*11+3*3+11*3 =92 parameters to fit. The fitted parameters for A1 and A2 were 

then used to predict the rank order of each participant’s preferences for the 10 novel wines.  

Spearman’s rank correlation was used to quantify the correspondence between the estimated 

ranking by the fitted model and the actual ranking by the participants.  

Results  

     Participants’ rank correlation between predicted and actual rankings for the 10 novel 

wines were analyzed in a two-way ANOVA looking at the factors of wine expertise (experts 

versus non-expert) and experimental method (MCMCP versus random pair-wise). 

Participants were labelled as experts if they obtained an average scored >0  in response to the 

three wine expertise questions. There were 86 experts and 101 non-experiments in the d-

MCMCP experiment, and 88 experts and 101 non-experts in the random pair-wise 

experiment. An unbalanced two-way ANOVA showed no significant main effects of 

experimental method (F(1,372)=.64, MSE=.06,p=ns) or expertise (F(1,372)=.06, 

MSE=.006,p=ns) on correlation between predicted and actual rankings for the 10 test wines. 

However, as predicted from our simulations, we did find a significant interaction between the 

factors of method and expertise (F(1,372)=5.07, MSE= .5, p=.025). An individual t-test 

showed that among expert wine drinkers, the d-MCMCP method had significantly higher 
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correlation in predictions (M= 0.39, SD= .0033) than the random pair-wise method, (M= .29, 

SD=.0039), t(172)=2.07, p<.05 (See figure 6). Based on the assumption that experts have 

more selective preferences, this is consistent with our earlier simulation results that showed 

that d-MCMCP is  more advantageous when preferences are more selective. 

 

Discussion and Future Work 

 

     In this paper we have presented the first normative tool for direct measurement of 

consumer preferences. d-MCMCP is mathematically guaranteed to converge to the real 

distribution of relative utilities over complex products. It yields results that are consistent 

with random utility theory, and thus suitable for application to economic models, and 

assessments of policy and welfare. Although here we demonstrate d-MCMCP on a relatively 

small (100 item) choice set, with pooled respondent data, d-MCMCP is capable of measuring 

distributions over much larger sets of items, e.g. thousands of items, as has been done in 

psychological research (Hsu et al. n.d. ; Sanborn et al. 2010).  The ability of d-MCMCP to 

efficiently explore a large space of profiles alleviates the burden of having to carefully choose 

a few select profiles for the survey, and potentially reduces the length of study required to 

explore consumer preferences across a large number of alternatives Also, it requires no a 

priori assumptions about the possible interactions among attributes. This is in contrast to CAs 

for which these interactions have to be assumed beforehand and specially included as a 

compound dimension.  Because d-MCMCP does not require a priori assumptions, and 

because its efficient algorithm can accommodate more factorial combinations of attributes in 

the choice set, d-MCMCP can capture potential attribute interactions without hypothesizing 

that they exist beforehand. 

Deleted: a

Deleted: recently-developed 
method in mathematical 
psychology that can be a useful 

Deleted: new 

Deleted: measuring 

Deleted: of profile utilities over 
a much large choice set

Deleted: 2011

Deleted: with conjoint methods 
such as FPCAs

Deleted: often 

Deleted: hypothesized 

Deleted: In

Deleted:  contrast

Deleted: can be accommodated 

Deleted:  under

Deleted: , 

Deleted: can be captured 



24 

     The model fitting we presented here, which we applied directly to the estimated 

distribution of profile utilities, is a slight departure from other choice-based experimental 

research, which usually fit models to people’s choices. Because the primary usage of d-

MCMCP is to capture the distribution of profile utilities itself, we chose, here, to fit our 

models to the estimated preferences directly. However, it is probable that the model fitting 

can also applied fruitfully to the d-MCMCP choice data. Because d-MCMCP focuses on 

presenting profile pairs that are most preferable and thus most relevant for determining 

preferences, it may serve as a natural adaptive algorithm for eliciting choices from the 

profiles most relevant for assessing preferences and may also be suitable for forms of discrete 

choice modelling.  We leave for future work to see whether there are benefits to fitting the 

choices instead of preferences directly. It also remains to be explored in future work the many 

domains for which d-MCMCP may be valuable. Based on our simulation and experimental 

results, we suggest that the domains in which d-MCMCP may offer particular advantages will 

be ones where preferences are expected to be selective, with potential attribute weight 

interactions, and for which one would like to directly obtain a correctly scaled estimate of the 

relative utility distribution over a set of product profiles. In consumer research, these domains 

are likely to be those with more complex products with many attributes, e.g. mobile phones 

or laptops, or those domains where a sizable population of consumers are highly engaged and 

have complex preferences, e.g. wine or music. Furthermore, d-MCMCP offers a novel 

method for characterising and classifying consumers into segments with similar preference 

structures, rather than grouping consumers using self-rated attitudinal or engagement 

statements such as the expertise ratings used in our study. Segmenting consumers into 

relatively homogenous groups using their utility profiles over a set of products could help 

marketers identify unfulfilled needs or estimate the likely demand for new products. 
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Table 1: Attribute levels used in simulation of six preference strength distributions 

Profile 

Utility  

Distribution 

Linear 

attribute 

levels 

Respective 

utilities 

Nonlinear 

attribute levels 

Respective 

utilities 

Entropy 

U1 Red, Cheap 1,1 none none 4.2 

U2 Red 1 none none 3.9 

U3 Red 1 French & Cheap, 

Red & Cheap 

1 3.8 

U4 none none French & Cheap,  

Australian & 

Cheap 

1,2 2.3 

U5 none none French & Cheap,  

White & Italian 

2,1 2.2 

U6 none none French & Cheap 1 1.6 
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FIGURE 1 

STEPS FOR MEASURING PREFERENCES USING MCMCP 

 

 

 

Figure 1: a) Assemble the profiles in the choice set. b) Quantify similarity (using a suitably 

chosen metric such as number of attributes in common) for all item pairs in the choice set. c) 

Enter similarity matrix into a B-matching algorithm to obtain a graph where each item is 

connected by its N neighbors. d) Run d-MCMCP experiment using the neighbors as “nearby” 

proposals. 



31 

FIGURE 2 

CALCULATION OF PROFILE UTILTIES FROM MARGINAL ATTRIBUTE UTILITIES 

 

Figure 2: Illustration of how profile utilities are constructed from attribute utilities for our 

simulations. a) Each wine is represented as a binary vector based on its attribute levels. b) 

Linear marginal attribute utilities are represented with a vector with weight values assigned to 

the relevant attribute levels. c) Correlated marginal attribute utilities are represented as a 

matrix with weight values assigned to the row and column that correspond to the correlated 

attribute levels. d) Calculation of profile utility for wine shown in a) for under linear and 

correlated attribute weights, respectively. 
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FIGURE 3 

SIMULATION RESULTS FOR TWO WINE UTILITY PROFILES 

 

 

Figure 3: d-MCMCP versus random pair-wise results on two simulated profile utility 

distributions. a) U1, distribution of profile utilities over 100 wines for linear marginal 

attribute utilities, normalized to sum to one. b) Correlations between the predefined and 

estimated preference strength distribution of the 100 wines, as a function of number of choice 

trials. Different lines correspond to different methods of estimating the profile utility 

distributions: d-MCMCP implemented with varying probabilities of puniform, the probability of 

choosing proposals randomly from all possible wines (versus from one of the neighbors), and 

the random pair-wise method. Each point shows the mean standard error of correlations over 

100 stochastic simulation runs. c) U2, distribution of profile utilities over 100 wines for 

correlated marginal attribute utilities, normalized to sum to one. d) same as b) but for the 

simulated profile utility distribution shown in c). 
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FIGURE 4 

SIMULATION RESULTS FOR SIX WINE DISTRIBUTION PROFILES 

 

 

 

Figure 4: d-MCMCP versus random pair-wise estimates of profile utilities for six different 

profile utility distributions of varying selectivity. a) Six simulated profile utility distributions 

over 100 wines. The marginal attribute utilities they were constructed from are listed in table 

1. b) Correlation between estimated and actual profile utility distributions plotted as function 

of entropy of the actual profile utility distribution (higher entropy means more selective 

distribution). Each point shows the mean standard error of correlations over 100 stochastic 

simulation runs fixed at 200 trials. d-MCMCP estimates used five chains of 40 trials each 

with puniform=.33. 

 



35 

FIGURE 5 

EXPERIMENT SCREEN SHOT 

 

Figure 5: Example screen shot seen by participants in d-MCMCP and random pair-wise 

experiments. 



36 

FIGURE 6 

 

Figure 6:  The profile utility distributions estimated from d-MCMCP and random pair-wise 

methods were fit to a non-linear least squares model. This model fit was then used to make 

predictions about the participants’ rankings of 10 test wines. Participants were split into 

expert or non-expert groups based on self reported wine expertise. The bar graphs show the 

mean and standard error of rank correlation between the predicted rankings of 10 novel test 

wines from both experimental methods, for expert, non-expert and all wine drinkers. For 

expert wine drinkers, the d-MCMCP method was significantly more predictive of 

participants’ rankings of the 10 test wines compared with the random pair-wise method.  

 


